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Abstract
In this paper we argue that a large class of recursive contracts can be studied by means of the

conventional Negishi method. A planner is responsible for prescribing current actions along with a
distribution of future utility values to all agents, so as to maximize their weighted sum of utilities.
Under convexity the method yields the exact efficient frontier. Otherwise the implementation re-
quires contracts be contingent on publicly observable random signals uncorrelated to fundamentals.
We compare our approach with the dual method established in the literature. Finally, considering
maxmin-type social welfare functions, we clarify that the dynamics of efficient contracts can be ex-
pressed as a stochastic evolution of welfare shares.
Keywords: Recursive contracts, efficiency, Negishi method, dynamic programming, optimal policy.
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1. INTRODUCTION

It has been a long tradition in economics to characterize Pareto frontiers of various eco-
nomic environments through the maximization of weighted sums of individuals’ utilities
subject to appropriate constraints, a method conventionally attributed to Negishi [31]. Lu-
cas and Stokey [24] showed that this approach has a convenient recursive decomposition in
deterministic growth economies with recursive utilities (see also Anderson [4], Dana and
LeVan [11] and Kan [16]). We argue that Lucas and Stokey [24]’s approach extends to vir-
tually all structures of interest in dynamic economies. In particular, we develop a Negishi
method for economies with recursive utilities and forward-looking constraints. To keep
the analysis tight, we abstract from endogenous state variables (such as capital or debt),
and we omit a thorough study of implied optimal policies. Both tasks are accomplished by
conventional extensions.

We study dynamic economies involving finitely many individuals whose utility is re-
cursively generated by an aggregator. A contract, or a distribution, prescribes a contingent
plan of actions for individuals subject to material balance and incentive constraints of vari-
ous nature. Our framework is general enough to encompass many economic environments
of interest such as optimal allocations in asymmetric information economies (e.g., Atke-
son and Lucas [6]), efficient distributions with risk-sensitive preferences (e.g., Anderson
[4]) and optimal risk-sharing under limited commitment (e.g., Kocherlakota [18]). Further-
more, by reinterpreting one of the individuals as a principal, our formulation also applies
to more conventional principal-agent contracts (e.g., Thomas and Worrall [35]).

Following Lucas and Stokey [24], we provide a characterization of efficient contracts by
means of an extended Negishi method. A benevolent planner maximizes the weighted sum
of utilities by allocating current resources and contingent utility promises subject to partic-
ipation and incentive constraints. As utility promises are drawn from the set of future at-
tainable utility profiles, the recursive program defines an extended Bellman operator, which
we call Negishi operator, mapping future into present attainable utility profiles. Thus, as
in conventional dynamic programming, the value of the program obtains as a fixed point
of the Negishi operator. However, differently from traditional recursive methods, welfare
weights need to adjust over time to reflect contingent rewards, or punishments, enforcing
optimal contracts.
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The Negishi operator provides a recursive technique to study efficient contracts. It is a
widespread belief that this approach is unsatisfactory in non-convex economies. We instead
argue that the Negishi approach can be safely applied provided that actions are contingent
on some publicly observable random signal, even if the economy remains intrinsically non-
convex. This extrinsic uncertainty serves as an intertemporal correlating device without
altering non-convex utilities and constraints. Adding lotteries is a common, and to some
extent natural, practice in non-convex economies. More importantly, it requires no appeal
to any law of large numbers to smooth non-convexities out.

As the Negishi operator is monotone, the existence of (ordered) fixed points obtains
plainly by means of Tarsky’s Fixed Point Theorem. In general, even in convex economies,
the fixed point is not unique. This is an intrinsic feature of recursive methods in economies
with incentive constraints, although individual preferences satisfy discounting (see Rusti-
chini [34]): Bellman’s principle of optimality only ensures the absence of short-run prof-
itable adjustments, and the additional long-run transversality condition might not be en-
forced in general. When the economy is convex, the greatest fixed point of the Negishi
operator implements efficient contracts exactly and, under a further interiority restriction,
this is the only fixed point (by Krasnosel’skiı̆ [20]’s theory of monotone concave opera-
tors). Unfortunately, non-convexity is more the norm than the exception in the presence
of incentive constraints. In general, the greatest fixed point of the Negishi operator might
overestimate the actual efficient frontier. However, the original non-convex economy can
be expanded by allowing the planner to allocate utility promises contingently on a publicly
observable, and purely extrinsic, random signal. The value of the augmented planner’s
program coincides with the greatest fixed point of the non-augmented Negishi operator.

The sunspot-implementation of efficient contracts requires a distinction between uncer-
tainty and risk. The random device used by the planner must be regarded as a mere risk
governed by objective probabilities and evaluated according to the traditional expected
utility, even when non-expected utility applies to other sources of uncertainty. This sort
of separation between objective risk and subjective uncertainty, inspired by Anscombe and
Aumann [5], is commonly adopted in the literature on ambiguity. Thus, in many applica-
tions of our theory, the introduction of the auxiliary random device seems innocuous both
on a normative and on a positive ground.1 In some environments, however, the expected-
utility evaluation of sunspot uncertainty is more unnatural or can be hardly justified, be-
cause it alters the essence of underlying preferences or incentives.2 In these circumstances,
the sunspot-implementation can still be used as a device to estimate the potential error in
the determination of the efficient frontier due to the Negishi method.

1On a normative ground, why should a social planner abstain from using a public random device when
this increases social welfare? On a positive ground, under expected utility, a sufficiently rich uncertainty on
fundamentals might mimic the allocative power of a truly extrinsic sunspot signal, uncorrelated to fundamentals,
as in the theory of noisy stochastic games (e.g., Duggan [12]).

2For instance, as observed by an anonymous reviewer, this happens in our Example 4.2.
3
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A vast literature developed recursive methods for dynamic economies with forward-
looking constraints and recursive utilities. A commonly used technique is the promised-
utility approach inspired by the work of Abreu et al. [1] on repeated games. The limits
of this method are extensively discussed in Marcet and Marimon [25] and Pavoni et al.
[32], which we refer to on this issue for the sake of brevity.3 This alternative established
literature privileges a Lagrangian approach that cannot be, in general, reduced to our more
primitive Negishi method. The inceptive observation is that the Lagrangian function of the
original welfare program admits a recursive decomposition, in which Lagrange multipliers
become state variables. Marcet and Marimon [25] restrict attention to convex environ-
ments and appeal to a saddle point operator, while Pavoni et al. [32] adopt a recursive
dual formulation.4 However, these methods are frustrated by duality gaps in non-convex
economies, that is, the saddle point operator might be undefined and the dual operator
might dramatically overestimate the efficient frontier.

In convex economies, the Negishi, the saddle point and the dual method all coincide by
the fundamental theorem of duality. Though adopting one or the other is largely a matter
of preference, the Negishi approach requires no explicit appeal to Lagrange multipliers and
seems a more natural route towards the determination of efficient contracts. In non-convex
economies, instead, the dual value dominates the Negishi value, whereas the saddle point
approach fails in general. Therefore, when the Negishi operator overestimates the efficient
frontier, so does the dual operator. Contrary to the Negishi gap, however, there is typically
no way to reconcile the overestimated dual frontier with an underlying economic mecha-
nism generating it. The dual approach produces a substantial alteration of primitives (a sort
of convex envelope), whereas the Negishi method only requires the relatively innocuous
assumption that plans are contingent on some public extrinsic uncertainty.

When Pareto utility frontier is not strictly convex, the applicability of both the Negishi
and the dual method becomes questionable in terms of optimal policies. Simple exam-
ples in Cole and Kubler [10] and Messner and Pavoni [27] clarify that the state variable
provides no guidance to the selection of controls consistent with past (incentive compati-
ble) promises. In fact, Cole and Kubler [10] consider environments with flat regions of the
Pareto utility frontier and augment the state space in order to make the state a sufficient sta-
tistics for the current optimal choices. We instead argue that, notwithstanding these issues

3Though published after Pavoni et al. [32], versions of Marcet and Marimon [25] have been circulating since
1994, inspiring a branch of the literature on dynamic contracts (see, for instance, Ljungqvist and Sargent [22]
and Miao [29]). Apart from occasional references to Pareto welfare weights, neither Negishi [31] nor Lucas and
Stokey [24] are cited in this literature on recursive contracts. The original motivation of Lucas and Stokey [24]’s
analysis was to encompass time-varying impatience in growth theory, independently of incentive constraints. This
might have obscured the fact that the method applies whatever is causing adjustments in welfare weights over
time and across states.

4Importantly, in Pavoni et al. [32], the Bellman operator for the dual program is a contraction in the Thomp-
son metric under some boundary conditions, thereby guaranteeing uniqueness of the fixed point even in a non-
convex environment. The contraction property under the Thompson metric is related to our approach inspired by
Krasnosel’skiı̆ [20]’s theory of monotone concave operators. Marcet and Marimon [25] instead use a conventional
Contraction Mapping Theorem. This powerful tool is available only in more restrictive environments.
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with the optimal policy, first-order conditions can be proficuously derived from the Negishi
recursive program, thus permitting a characterization of efficient contracts. Furthermore,
we provide a complementary approach to determine optimal policy: an alternative Negishi
method based on a maxmin-type social welfare function whose state variables are welfare
shares, as opposite to welfare weights. Optimal policy can so be exhaustively expressed in
terms of dynamics of welfare shares and, under convexity, long-term dynamics of efficient
contracts are governed by an ergodic distribution on this minimal state space.

Incidentally, we point out another potential drawback for recursive methods. For static
incentive economies, ex-ante efficient allocations may fail to attain ex-post efficiency (for
instance, Myerson [30]). This sort of time-inconsistency is also a known feature of dy-
namic contracts, requiring ex-ante commitment, and it is commonly revealed by the ab-
sence of a natural recursive decomposition of the contract. Yet, time-inconsistent contracts
can be studied by means of recursive methods on an enlarged state space (see, e.g., Fer-
nandes and Phelan [14]). We uncover that ex-post inefficiency might occur even when the
contract admits a natural recursive decomposition, thus limiting the application of recursive
methods. In fact, we present an example of ex-post inefficiency under private information.
We also provide an operational condition on fundamentals ensuring ex-post efficiency over
time. A thorough study of the implications of the failure of ex-post efficiency under private
information is left to future research.

The paper is organized as follows. In section 2 we illustrate our method by means of an
example and provide a comparison with the alternative approach based on Lagrange mul-
tipliers. In section 3 we describe the economic environment, present our assumptions on
fundamentals and provide examples of application of our theory. In section 4 we study the
Negishi method. In particular, we show that it exactly implements efficient contracts un-
der convexity, whereas it requires a random mechanism for utility promises in non-convex
economies. In section 5 we provide simple first-order conditions for the characterization
of efficient contracts. In section 6 we compare our method with the dual approach estab-
lished in the literature. In section 7, finally, we consider a modified Negishi method with
maxmin-type social welfare functions and argue that optimal policies can be expressed as
a random transition of welfare shares. We conclude with some brief remarks. All proofs
are collected in the Appendix.

2. ILLUSTRATIVE EXAMPLE

To illustrate the advantages of our Negishi method upon the dual approach, we abstract
from incentive constraints and present a simple example of optimal risk-sharing with non-
concave recursive utility. The non-concavity arises due to a preference for early resolution
of uncertainty, as established in Kreps and Porteus [21] and further studied in Weil [36].
We argue that the Negishi method is more accurate than the dual approach. In particu-
lar, the application of the dual method dramatically alters the temporal preference of the
individuals, yielding an erroneous optimal distribution.
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Consider an economy populated by two individuals, each endowed with a recursive
utility of the form

vit = W i
(
zit,Etvit+1

)
= f i

(
zit + δf i

−1 (Etvit+1

))
,

where δ in (0, 1) ⊂ R+ is the common discount factor and f i : R+ → R+ is a surjective,
strictly increasing, strictly concave map with f i (0) = 0. As shown by Kreps and Porteus
[21, Theorem 3], individuals exhibit a preference for early (late) resolution of uncertainty
over temporal lotteries whenW i : R+×R+ → R+ is convex (concave) in the continuation
expected utility, given current consumption zit in R+. In particular, a preference for early
resolution occurs whenever f i : R+ → R+ exhibits a constant, or decreasing, coefficient
of relative risk-aversion. The resource constraint imposes

zat + zbt ≤ et,

where zit in R+ is individual consumption and et in R+ is the uncertain aggregate endow-
ment.

Following Lucas and Stokey [24], the optimal distribution might be determined via a
recursive Negishi approach: the planner maximizes the weighted sum of utilities under
the resource constraint, conditional on the feasibility of continuation utility values. More
formally, given welfare weights θt in the (unit) simplex Θ ⊂ R+ × R+, we pose

Jt
(
θat , θ

b
t

)
= max θatW

a
(
zat ,Etvat+1

)
+ θbtW

b
(
zbt ,Etvbt+1

)
subject to the material balance,

zat + zbt ≤ et,

and the feasibility of continuation utility values,

0 ≤ min
θt+1∈Θ

(
Jt+1

(
θat+1, θ

b
t+1

)
− θat+1v

a
t+1 − θbt+1v

b
t+1

)
.

The latter constraint requires the value distributed by the planner in the continuation not to
exceed the maximum social welfare. It is known that, under non-convexity, this constraint
might be more permissive than the actual feasibility constraint arising from the primitives.
Due to this relaxation, the Negishi method might overestimate the actual value of efficient
distributions, as illustrated in Figure 1.

We show in this paper that the value delivered by the Negishi method, even when in-
accurate, is always achieved by a feasible distribution of consumptions contingent on an
additional purely extrinsic signal. We also establish that the Negishi method is faithful
whenever the economy, though non-convex, might be transformed into a convex economy.
Thus, accuracy is unaffected by monotone transformations of preferences, unlike the dual
method. To verify the implications of this property in the example, consider the trans-
formed recursive utility

ṽit = f i
−1 (

vit
)

= zit + δf i
−1 (Etf i (ṽit+1

))
= zit + δCit

(
ṽit+1

)
.
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va

vb

Negishi frontier (J (θ) = θ · v)

dual frontier (Ĵ (θ) = θ · v)

actual frontier

FIGURE 1. Error comparison

As this is a mere monotone transformation of utilities, preferences and, hence, efficient
allocations are unaltered. By Hardy et al. [15, Theorem 106(i)], the certainty equivalent
Cit
(
ṽit+1

)
is concave when f i : R+ → R+ exhibits constant relative risk-aversion. In

this case, the transformed recursive utility is concave and the Negishi method yields the
actual value of efficient distributions for the original (untransformed) economy, even if the
recursive utility is not concave. We next argue that the dual method is instead disruptive.

In the established literature, Marcet and Marimon [25] and Pavoni et al. [32] character-
ize optimal allocations by means of a recursive Lagrange approach in which the multipliers
become auxiliary state variables. This approach corresponds to the dual of our Negishi pro-
gram. We show in this paper that the application of the dual method distorts the primitives
replacing the utility aggregator W i : R+ × R+ → R+ with its concave envelope (i.e., the
least map W̃ i : R+ ×R+ → R+ that is concave, given zi in R+, and satisfies W i ≤ W̃ i).
In general, this induces an artificial manipulation of time-preference and, to make our anal-
ysis transparent, we set f i (v) = v1−σi with σi in (0, 1) ⊂ R+. The Negishi method yields
no error in this circumstance by our previous arguments on monotone concave transforma-
tions.

Notice that, for any λ in (0, 1),

W i
(
zit,Evit+1

)
≤ (1− λ)W i

(
zit, 0

)
+ λW i

(
zit, λ

−1Evit+1

)
≤ (1− λ) W̃ i

(
zit, 0

)
+ λW̃ i

(
zit, λ

−1Evit+1

)
.

≤ W̃ i
(
zit,Evit+1

)
,
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were we exploit the convexity of v 7→
(
z + δv

1
1−σ

)1−σ
and the definition of the concave

envelope. In the limit, this yields

W̃ i
(
zit,Etvit+1

)
= lim

λ→0
(1− λ)W i

(
zi, 0

)
+ λW i

(
zi, λ−1Evi

)
= f i

(
zi
)

+ lim
λ→0

λf i
(
zit + δf i

−1 (
λ−1Etvit+1

))
= f i

(
zit
)

+ f i (δ)Etvit+1,

which exhaustively identifies the concave envelope of the utility aggregator. Thus, the dual
method delivers the characterization corresponding to constant relative risk-aversion with
indifference for the resolution of uncertainty and with an erroneous rate of impatience.

3. FUNDAMENTALS

The economy extends over an infinite set of periods T = {0, 1, . . . , t, . . .}. Uncertainty
is governed by a Markov transition Π : S → ∆ (S) on a finite state space S. Given an
initial state s0 in S, the transition generates a probability space (Ω,F , µ) and a filtration
(Ft)t∈T of Ω corresponding to partial histories of Markov states. We describe all variables
as stochastic processes, and we omit the obvious almost-surely qualification. For a given
measurable space D, we let D be the space of all processes f : T × Ω → D adapted
to the filtration, and let Dt be the space of D-valued Ft-measurable random variables
ft : Ω → D. When D is endowed with a metric, D inherits the implied topology of
pointwise convergence.This approach will significantly simplify our notation.

The economy consists of a finite set I of agents (one of them might be a principal if this
helps the understanding). At every contingency, each agent can take an action in Zi, with
Z being the action space across agents. A contract specifies a full contingent plan z in Z
of actions for agents. The nature of these actions will depend on the specific application of
our theory.

Each agent evaluates contracts by means of a utility function U i : Z → Vi, where Vi

is the space of R-valued processes, or of R+-valued processes, depending on applications.
We interpret U it (z) as the contingent utility value at period t in T, a random variable in Vit .
Utility is recursively generated by an aggregator W i

t : Zt × Vit+1 → Vit , that is,

U it (z) = W i
t

(
zt, U

i
t+1 (z)

)
.

We assume that the aggregator uniquely identifies stationary preferences (Koopmans [19]).
In particular, we provide sufficient conditions for this property based on discounting (Black-
well [7]), and an extension to other (Thompson) aggregators can be found in Marinacci and
Montrucchio [26].5

5Without restricting utility aggregators, individual preferences might be misspecified: none or multiple utility
functions might be consistent with the given aggregator, and the very notion of efficiency becomes ambiguous. It
is by the Principle of Optimality that the recursive planning program will have a (possibly distinct) value for each
profile of individual utilities generated by the aggregators.
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All constraints on the contract are captured by contingent feasible sets Gt ⊂ Zt×Vt+1,
that is, a contract z in Z is feasible if

(zt, Ut+1 (z)) ∈ Gt.

These feasible sets restrict over time current actions and continuation utility values, or
promises. A feasible contract z in Z is (weakly) efficient if it is not (strongly) Pareto
dominated by another feasible contract ẑ in Z . The purpose of this note is to characterize
efficient contracts recursively.

Throughout our analysis, fundamentals are restricted by canonical assumptions, all to-
gether ensuring that the recursive program is sufficiently regular. Importantly, convexity is
not imposed, except when explicitly stated. For a more transparent presentation, we sep-
arate assumptions on preferences from assumptions on contractual restrictions, and pre-
liminarily establish that utility functions are unambiguously identified by the aggregators.
Notice that our Assumption 3.2 corresponds to Koopmans [19]’s Axiom of Stationarity,
and rules out time-inconsistent individual preferences.

Assumption 3.1 (Action space). Each action space Zi is a closed set of some Euclidean
space.

Assumption 3.2 (Monotonicity). Each utility aggregator W i
t : Zt × Vit+1 → Vit is in-

creasing given an action profile zt in Zt.

Assumption 3.3 (Discounting). Each utility aggregator W i
t : Zt × Vit+1 → Vit satisfies,

for some δi in (0, 1) ⊂ R+,∣∣W i
t

(
zt, v̂

i
t+1

)
−W i

t

(
zt, ṽ

i
t+1

)∣∣ ≤ δiEt ∣∣v̂it+1 − ṽit+1

∣∣ .
Assumption 3.4 (Boundedness). Each utility aggregator W i

t : Zt × Vit+1 → Vit satisfies,
for some Bi in R++, ∣∣W i

t (zt, 0)
∣∣ ≤ Bi.

Assumption 3.5 (Continuity). Each utility aggregator W i
t : Zt × Vit+1 → Vit is jointly

continuous.

Under the stated assumptions, a recursive utility is uniquely generated by the aggrega-
tor. In addition, there exist suitable processes bounding utility values over time and across
contingencies. We remark that our framework accommodates both non-additive time pref-
erences and non-expected utility.

Proposition 3.1 (Recursive utility). Under Assumptions 3.1-3.5, there exists a unique
bounded and continuous utility function U i : Z → Vi such that

U it (z) = W i
t

(
zt, U

i
t+1 (z)

)
.

Furthermore, there are bounded processes
¯
vi and v̄i in Vi such that, for every contract z

in Z ,

¯
vit ≤W i

t

(
zt,

¯
vit+1

)
≤W i

t

(
zt, v̄

i
t+1

)
≤ v̄it.
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The remaining assumptions ensure that the contractual framework is well-behaved. As-
sumption 3.6 is merely technical. The nature of Assumption 3.7 depends on the specific
application: it has to be thought as establishing existence of a feasible contract securing
some minimal level of utility to all individuals. Assumption 3.8 is rather demanding when
actions entail strong complementarities or, more conventionally, in the presence of goods
yielding disutility (bads). The bounds appearing in the assumptions below are those of
Proposition 3.1.

Assumption 3.6 (Closedness). Each feasible set Gt ⊂ Zt × Vt+1 is closed, and it is
compact under the additional restriction

¯
vt+1 ≤ vt+1 ≤ v̄t+1 for bounds

¯
vt+1 and v̄t+1 in

Vt+1.

Assumption 3.7 (Viability). There exists a contract z0 in Z such that(
z0
t , Ut+1

(
z0
))
∈ Gt.

Assumption 3.8 (Free disposal). Given any (zt, vt+1) in Gt, for every v̂t in Vt such that

¯
vt ≤ v̂t ≤Wt (zt, vt+1), there exists (ẑt, v̂t+1) in Gt satisfying

¯
vt+1 ≤ v̂t+1 ≤ vt+1 and

v̂t = Wt (ẑt, v̂t+1) .

Finally, as our notational choice might have obscured stationarity, we explicitly state
that all fundamentals are measurable with respect to Markov states only. Thus, the current
Markov state conveys all the relevant information about the future evolution of fundamen-
tals. As other state variables (such as capital and accumulated assets, or debts) are absent
in our simplified framework, the unfolding of welfare distributions over time is the only
link across periods. This link is typically referred to in the literature as promise-keeping
constraint.

Assumption 3.9 (Markov property). Feasible sets and utility aggregators are measurable
with respect to state space S.6

Our assumptions on fundamentals can be compared with those in Pavoni et al. [32, As-
sumptions 1-2]. Their restrictions for the general analysis are substantially weaker than
ours because they do not relate the dual program to the original primal program. Most
of the burden in their analysis is carried by primitive assumptions of compactness, sup-
plemented by an added transversality condition [32, Condition (T), Proposition 4]. Our
restrictions, instead, are exploited for a direct characterization of efficient contracts.

Our general framework encompasses several well-studied examples of recursive con-
tracts.7 We describe some of these instances and, in all these examples, we verify existence

6That is, up to obvious identifications, feasible sets are generated by a correspondenceG : S � Z×RI×S ,
whereas each utility aggregator can be expressed as a map W i : Z × RS × S → R, were RS is interpreted as
the space of uncertain utility values, or promises, in the next period.

7With minor adjustments, our framework could also encompass asymmetric information with history depen-
dence, as in Fernandes and Phelan [14]. We add fictitious individuals serving as (out-of-equilibrium) counter-
factuals for untruthful revelation of information. The Negishi method can be applied and efficient contracts can
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of a minimal contract z0 inZ , as required by Assumption 3.7. It is also immediate to check
for the validity of our free-disposal condition (Assumption 3.8).

Example 3.1 (Risk-sensitive preferences). This is the economy studied in Anderson [4].
We set Zi = R+ and interpret actions as consumption levels. The feasible set Gt corre-
sponds to material feasibility, that is,

(zt, vt+1) ∈ Gt if and only if
∑
i∈I

zit ≤
∑
i∈I

eit,

where the adapted process ei in Zi describes the uncertain evolution of the individual
endowment. Finally, the utility aggregator is given by

W i
t

(
zt, v

i
t+1

)
= (1− δ)ui

(
zit
)

+ δf i
−1 (Etf i (vit+1

))
,

where f i : R+ → R+ is a surjective strictly increasing and concave map, δ in (0, 1) ⊂ R+

is the subjective discount factor and ui : R+ → R+ is the Bernoulli utility function.
The reservation contract for Assumption 3.7 involves no consumption for all individuals,
z0 = 0.

Example 3.2 (Limited enforcement of contracts). This is the economy studied, among oth-
ers, by Kocherlakota [18] and Kehoe and Levine [17]. Suppose that Zi = R+, interpreted
as the consumption space, and assume that each agent can ensure a (possibly contingent)
external utility value φi in Vi. The utility aggregator is simply

W i
t

(
zt, v

i
t+1

)
= (1− δ)ui

(
zit
)

+ δEtvit+1.

The set Gt includes all plans (zt, vt+1) in Zt × Vt+1 satisfying material balance,∑
i∈I

zit ≤
∑
i∈I

eit,

and participation constraints,
W i
t

(
zt, v

i
t+1

)
≥ φit,

where the process ei in Zi describes the individual endowment. To ensure viability, we
assume that U it

(
ei
)
≥ φit. Autarky is thus the reservation contract fulfilling Assumption

3.7.

Example 3.3 (Asymmetric information). This is a finite version of the economy with pri-
vate information studied by Atkeson and Lucas [6]. Individuals experience privately ob-
servable shocks to preferences. Utilities are

U i0
(
zi
)

= (1− δ)E0

∞∑
t=0

δtui(zit (st+1) , sit+1),

where sit in Si is the shock to the preferences of individual i in I . The realization of this
shock is private information of the individual. The shocks take value into a finite set Si

be characterized using an exogenous space of welfare weights for truthful and untruthful individuals. To avoid a
discontinuity in our narrative, we relegate this extension to Appendix B.
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and are identically and independently distributed over time and across individuals. To fit
our framework we let zit take values into RS and we write the aggregator as

W i
t

(
zt, v

i
t+1

)
= Et

(
(1− δ)ui(zit(st+1), sit+1) + δvit+1 (st+1)

)
,

where we use shorthand notation to capture the dependence of consumptions and util-
ity promises on individuals’ reported information. Individuals can misreport their types
thereby changing the terms of the contracts. Incentive compatibility then reads

Et
(
(1− δ)ui(zit(st+1), sit+1) + δvit+1 (st+1) |sit+1

)
≥

Et
(
(1− δ)ui(zit

(
ŝit+1, s

−i
t+1

)
, sit+1) + δvit+1

(
ŝit+1, s

−i
t+1

)
|sit+1

)
,

that is, misreporting their own type is not profitable given truthful revelation by other in-
dividuals. The feasible set Gt is then defined by the incentive compatibility constraints,
along with material feasibility ∑

i∈I
zit (st+1) ≤ et+1,

where process e in R describes aggregate resources (and R is the space of real-valued
processes). No consumption is trivially the reservation contract required by Assumption
3.7.

Example 3.4 (Default risk). Our general formulation can encompass Eaton and Gersovitz
[13]’s model of sovereign default risk. The economy consists of a principal (a representa-
tive creditor) and an agent (a borrower). The action space is Z = [0, η] × R, with typical
element z = (c, b). We interpret c in [0, η] ⊂ R+ as the borrower’s consumption, limited
by an exogenous upper bound, and b in R as the amount of uncontingent bonds issued by
the borrower. The borrower’s preferences are given by

W b
t

(
zt, v

b
t+1

)
= (1− δ)u (ct) + δEt max

{
vb
t+1, φ

b
t+1

}
,

whereas the creditor’s aggregator is

W c
t

(
zt, v

c
t+1

)
= (et − ct) +

(
1

1 + r

)
Etvc

t+1,

where e inR is the uncertain endowment of the borrower. The exogenous process φb in Vb

identifies the borrower’s reservation value upon default. The principal is a representative
risk-neutral investor having access to capital markets at a constant rate of interest r in
R++. In fact, the role of creditors is to enforce the borrower’s budget constraint, as their
utility corresponds to the borrower’s minimum expenditure. The borrower can only issue
a uncontingent bond, so that feasibility imposes

vc
t+1 = bt1{vb

t+1≥φb
t+1},

where 1E is the indicator function of event E in F . This condition captures the fact
that the principal receives a flat payment conditional on borrower’s utility value being
above a given reservation value. Otherwise, the borrower defaults, securing the reservation
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value, and the creditor receives no payment. The overall construction captures Eaton and
Gersovitz [13]’s model of default risk. Any efficient contract is such that the borrower’s
utility cannot be increased without decreasing the principal’s utility. This reformulation of
Eaton and Gersovitz [13] is similar to the dual planning program developed in Amador and
Aguiar [2].

Example 3.5 (Dynamic Ramsey taxation). Our theory also applies to dynamic Ramsey
taxation (e.g., Lucas and Stokey [23]). A government must finance an uncertain stream
of expenditures by levying a distortive labor tax and issuing contingent debt. A repre-
sentative individual is endowed with a utility function u : R+ × [0, 1] → R+ that is
bounded, smoothly strictly increasing on R+, smoothly strictly decreasing on [0, 1] ⊂ R+

and smoothly strictly concave, where c in R+ is consumption and e in [0, 1] ⊂ R+ is labor
supply. A linear technology transforms labor directly into consumption. We assume that

sup
c≤e
|uc (c, e) c+ ue (c, e) e| is finite,

where uc and ue are, respectively, the marginal utility of consumption and the marginal
disutility of labor. This assumption is needed to enforce the transversality condition of the
representative individual.

To encompass Ramsey taxation in our general framework, we let the action space be
Z = R+× [0, 1], and consider an economy composed by the representative individual and
the government. The utility aggregator of the representative individual is

W a
t

(
zt, v

a
t+1

)
= (1− δ)u (ct, et) + δEtva

t+1,

whereas the government’s utility aggregator is

W g
t

(
zt, v

g
t+1

)
= uc (ct, et) ct + ue (ct, et) et + δEtvg

t+1.

This is basically the budget constraint of the government, whose utility increases with the
level of its debt. Finally, the feasible set Gt requires

ct + gt ≤ et,

where g inR is the uncertain expenditure of the government.
To verity that this formulation implements an optimal Ramsey taxation plan, consider

any efficient allocation. Consolidating the budged constraint of the government, and ex-
ploiting the boundedness assumption, we obtain

vg
0 = E0

∞∑
t=0

δt (uc (ct, et) ct + ue (ct, et) et) .

This is the usual implementability constraint (see Lucas and Stokey [23]). Furthermore,
by Pareto efficiency, it is not feasible to increase the utility of the representative-individual
without reducing vg

0 in R, and so without decreasing the initial debt of the government.
Hence, the efficient allocation maximizes the welfare of the representative individual sub-
ject to the government’s budget constraint.
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In the proposed formulation the government debt is conveniently denominated in terms
of the marginal utility for consumption. This avoids known issues of time-inconsistency
and permits a complete recursive decomposition: the debt issued at a future contingency,
differently from the initial outstanding debt, involves a commitment by the government
to a certain taxation policy, which is embedded in its marginal-utility value. However,
in the original Ramsey taxation program, the initial debt of the government is given in
consumption units, that is,

ṽg
0 =

vg
0

uc (c0, e0)
.

Recovering this additional constraint only requires to replace the government’s utility ag-
gregator in the initial period, and only in the initial period, with

W̃ g
0

(
z0, v

g
1

)
=
W g

0

(
z0, v

g
1

)
uc (c0, e0)

.

4. A NEGISHI METHOD

4.1. Recursive program. We study a recursive decomposition of efficient contracts in-
spired by Negishi [31].8 The planner maximizes the weighted sum of utilities by choosing a
current action profile along with feasible continuation utility values. In convex economies,
this method determines the exact Pareto frontier in utility values. Under non-convexities,
instead, the approach generally over-estimates the efficient frontier. However, we show
that the Negishi method yields the exact efficient frontier when the planner is allowed to
allocate promises contingent on a publicly observable random signal.

The Negishi operator acts on the space J of all bounded maps J : Θ→ R such that

(*) Jt (θt) ≥ θt · Ut
(
z0
)
,

where Θ is the space of welfare weights (the unit simplex in RI ),R denotes the space of R-
valued processes and reservation contract z0 in Z is given by Assumption 3.7.9 Elements
of J are called support maps. A support map J in J allows for recovering a convex set of
utility values at every contingency, that is,

Ut (Jt) = {vt ∈ Vt : θt ·
¯
vt ≤ θt · vt ≤ Jt (θt) for every θt ∈ Θ} .

Following Lucas and Stokey [24]’s recursive decomposition, a given support map J in J
restricts continuation utilities in the planner program, and the planner program itself yields
a possibly revised support map Ĵ in J . The Negishi value of contracts is a rest point of
this revision process.

8The method is applied by Lucas and Stokey [24] to deterministic optimal growth with recursive utilities.
Kan [16] and Anderson [4] provide an extension to efficient distributions under risk with non-expected utility.
Miao [29, Chapter 20] presents a textbook illustration. Bloise [8] studies optimal risk-sharing subject to limited
commitment. All these applications impose properties of convexity on fundamentals. The Contraction Mapping
Theorem can be applied in [4, 16, 24] because incentive constraints are absent. Bloise [8] instead exploits the
theory of monotone concave operators of Krasnosel’skiı̆ [20].

9Restriction (*) is imposed to ensure that the planner’s feasible set is always non-empty.
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Formally, Negishi operator T : J → J is defined as

(TJ)t (θt) = sup
(zt,vt+1)∈Gt

θt ·Wt (zt, vt+1)

subject to
vt+1 ∈ Ut+1 (Jt+1) .

Thus, the planning program moves from a given support map J in J , and yields a revised
support map (TJ) in J . A Negishi value is a fixed point of the Negishi operator, that is, a
support map J in J such that J = (TJ).

We compare the Negishi value with the actual, or exact, value of contracts. To this end,
consider the space of utility possibilities subject to feasibility, that is,

U∗0 = {v0 ∈ V0 :
¯
v0 ≤ v0 ≤ U0 (z) for some feasible contract z ∈ Z} .

The actual value of contracts is given by

J∗0 (θ0) = sup
v0∈U∗0

θ0 · v0.

As the economy is recursive, the actual value can be determined at any future contingency,
subject to feasibility beginning from that contingency. We so obtain a value J∗ in J
reflecting the shape of the actual efficient frontier over time and across contingencies.

By monotonicity, the Negishi operator admits ordered fixed points. Uniqueness, in
general, cannot be established without further assumptions, as illustrated by a simple, and
non-pathological, example. It is also clear that, in general, the greatest fixed point of
the Negishi operator is not a faithful description of the actual efficient frontier when the
economy is non-convex. This entails no pathological feature either, and is illustrated by
Example 4.2.

Proposition 4.1 (Fixed points). Negishi operator T : J → J admits a least fixed point
¯
J

in J and a greatest fixed point J̄ in J . In addition, J∗ ≤ J̄ , where J∗ in J is the actual
value of contracts.

Example 4.1 (Multiplicity). This example shows that the Negishi operator might admit
multiple fixed points. The recursive method only ensures the absence of feasible Pareto
improvements over finitely many periods, without in general preventing efficiency gains
over the extended infinite horizon. In the example, a low value is the only current distri-
bution satisfying the incentive constraints when a perpetual low value is expected in the
future. By induction, a low value cannot be improved over any arbitrary finite horizon.
Over the entire infinite horizon, instead, a higher value satisfies the incentive constraints.

Consider a simple deterministic economy with two identical individuals. The utility
aggregator is

W i
t

(
zt, v

i
t+1

)
= (1− δ)

(
zit
)2

+ δvit+1,
15
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where δ in (0, 1) is the discount factor. Feasibility imposes a participation constraint of the
form

W i
t

(
zt, v

i
t+1

)
≥ 1

4
.

In addition, allocations are restricted by the material balance constraint

zit + z−it ≤ 1.

We first show that
¯
Jt (θt) = 1/4 is a fixed point of the Negishi operator.

Notice that vt+1 in Ut+1 (
¯
Jt+1) necessarily implies that vit+1 ≤ 1/4. Therefore, the

participation constraint imposes zit ≥ 1/2 and material balance yields zit = 1/2. We so
conclude that

(T
¯
J)t (θt) = θt ·Wt (zt, vt+1) = (1− δ) 1

4
+ δ

1

4
=

1

4
=

¯
Jt (θt) .

Assuming that δ > 1/2, we now show that (TJ)t (θt) ≥ Jt (θt), where Jt (θt) = 1/2.
This implies that the Negishi method admits a greatest fixed point satisfying J̄t (θt) ≥ 1/2.
To prove this claim, notice that vt+1 = (1/2, 1/2) is a feasible distribution for continuation
utilities. Furthermore, assuming θit ≥ θ−it , the consumption profile

(
zit, z

−i
t

)
= (1, 0)

implies

θt ·Wt (zt, vt+1) = (1− δ) θit + δ
1

2
≥ 1

2
.

Hence, we only have to prove that the participation constraint is satisfied. To this purpose,
notice that

W i
t

(
zt, v

i
t+1

)
≥W−it

(
zt, v

−i
t+1

)
= δ

1

2
≥ 1

4
,

so establishing our claim.

Example 4.2 (Unfaithful value). This example illustrates that the Negishi operator might
overestimate the true Pareto frontier. This is related to the presence of non-convexity in
the economy. As a matter of fact, the Negishi planner is allowed to distribute continuation
values in the convex hull of the actual Pareto frontier. This constraint is more permissive
than the actual utility possibilities frontier and, consequently, the Negishi value increases.
The example is convoluted because time-varying distributions permit a rich approximation
of the convex hull, rendering hard the estimation of the Negishi gain.

The economy is deterministic and populated by two identical individuals with utility
aggregators

W i
t

(
zt, v

i
t+1

)
= (1− δ)

(
zit
)2

+ δvit+1,

where the action is thought as consumption, Zi = R+. Aggregate endowment is constant
and equal to unity. Feasible allocations are further restricted by envy-free constraints on
continuation utilities. Therefore, the feasible set Gt consists of all plans satisfying the
constraint of aggregate resources,

zit + z−it ≤ 1,
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and an envy-free constraint on continuation utilities,

vit+1 ≥ v−it+1.

We first determine the true value of the contract and then compare it with its Negishi value.
By the envy-free constraints, any feasible contract z in Z necessarily fulfills the condi-

tion
U it+1

(
zi
)

= U−it+1

(
z−i
)
.

Material balance thus implies that zt+1 = (1/2, 1/2) for all t in T. We finally conclude
that

J∗t (θt) = (1− δ) max{θit, θ−it }+
δ

4
.

We show that the Negishi operator instead admits a greater fixed point,

Jt (θt) = (1− δ) max{θit, θ−it }+
δ

2
.

This reveals that the Negishi method increases the value of contracts.
As individuals are identical, continuation utilities vt+1 in Vt+1 satisfy the envy-free

constraint only if vit+1 = v−it+1. In addition, they belong to the restricted set Ut+1 (Jt+1)

only if vt+1 ≤ (1/2, 1/2). We thus conclude that

(TJ)t (θt) = sup (1− δ)
(
θit
(
zit
)2

+ θ−it
(
z−it
)2)

+
δ

2

subject to
zit + z−it ≤ 1.

Therefore, (TJ)t (θt) = Jt (θt), as claimed.

4.2. Exact implementation. In a convex economy, the Negishi operator yields the actual
efficient frontier of dynamic contracts. Furthermore, when an additional interiority con-
dition is satisfied, the Negishi operator admits exactly one fixed point and this coincides
with the actual value of contracts. The intuition for exact implementation relies on basic
principles of convex analysis, as illustrated by Figure 2

Assumption 4.1 (Convexity). Each feasible set Gt ⊂ Zt × Vt+1 is convex. Furthermore,
each utility aggregator W i

t : Zt × Vit+1 → Vit is concave.

Proposition 4.2 (Implementation). Under additional Assumption 4.1, the actual value of
contracts J∗ in J is the greatest fixed point of the Negishi operator.

The established implementation exploits the free-disposal property (Assumption 3.8).
This is slightly disturbing because the hypothesis is not formulated in terms of primitive
principles. We thus identify a more transparent restriction on fundamentals ensuring exact
implementation even when free-disposal is dispensed with. Unfortunately, this additional
property is not innocuous in the presence of incentive constraints. In fact, it is violated by
economies in Examples 4.4-4.5.
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v1

v2

θ

J (θ) = θ · v

feasible set

U∗

FIGURE 2. Convex feasible set

Assumption 4.2 (Feasibility of welfare increases). Given any (zt, vt+1) in Gt, for every
v̂t+1 in Vt+1 such that vt+1 ≤ v̂t+1,

(zt, v̂t+1) ∈ Gt.

Proposition 4.3 (Implementation redux). Under additional Assumption 4.1, and Assump-
tion 3.8 replaced by Assumption 4.2, the actual value of contracts J∗ in J is the greatest
fixed point of the Negishi operator.

We now show that, under an interiority assumption, the Negishi approach delivers un-
ambiguously the value of efficient contracts. The intuition relies on the concave nature of
the recursive planning program, and in fact multiplicity persists when concavity fails even
under interiority. The additional assumption requires the existence of a feasible contract
ensuring a uniform increase in utility with respect to reservation values.

Assumption 4.3 (Interiority). There exists a plan
(
zt, Ut+1

(
z0
))

in Gt such that, for some
sufficiently small ε in R++,

U it
(
z0
)

+ ε ≤W i
t

(
zt, U

i
t+1

(
z0
))
,

where feasible contract z0 in Z is given in Assumption 3.7.

Example 4.3 (Interiority). Reconsider an economy as in Example 4.1 with the modified
utility aggregator of the form

W i
t

(
zt, v

i
t+1

)
= (1− δ) zit + δvit+1.
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Let the reservation contact be z0
t = (1/4, 1/4), so that U it

(
z0
)

= 1/4. The contract
zt = (1/2, 1/2) satisfies Assumption 4.3. Indeed,

W i
t

(
zt, U

i
t+1

(
z0
))

= (1− δ) 1

2
+ δ

1

4
= U it

(
z0
)

+ (1− δ) 1

4
≥ 1

4
,

as required.

Proposition 4.4 (Uniqueness). Under additional Assumptions 4.1 and 4.3, the actual value
of contracts J∗ in J is the only fixed point of the Negishi operator.

We finally notice that, without further restrictions, an ex-ante efficient contract might
not be ex-post efficient. In other terms, an efficient contract z in Z might be such that, at
some future contingency, implied utility values are not on the efficient frontier, that is, for
all welfare weights θt in Θ,

θt · Ut (z) < J∗t (θt) .

This might happen in the presence of incentive compatibility constraints or of negative
consumption externalities. When contracts are restricted by incentive compatibility, the
planner might find it profitable to sacrifice future efficiency in order to sustain current
incentives. Externalities, on the other side, might interfere with monotonicity, inducing
the planner to reduce welfare of some individuals in order to boost welfare of some other
individuals. We provide examples of both situations and, preliminarily, we annotate that a
failure of ex post efficiency can only occur under a violation of Assumption 4.2.

Proposition 4.5 (Ex post efficiency). Under additional Assumption 4.2, every efficiency
contract z in Z satisfies, for some contingent process (θt)t∈T of welfare weights in Θ,

θt · Ut (z) = J∗t (θt) .

Example 4.4 (Private information). We show that, in the presence of incentive constraints,
ex post efficiency might not be achieved. The logic of the example is simple: destroying
resources when types are equal allows the planner to satisfy incentive compatibility for
an asymmetric allocation, so privileging the type who values consumption more and thus
increasing social welfare.

We consider a simple economy with two ex-ante identical individuals, each with utility
function

U i0 (z) = (1− δ)E0

∑
t∈T

δtξizit+1.

The preference shock ξi takes values in {α, β} ⊂ R++ with α < β. This shock is private
information and affects utility permanently. Each individual action space is Zi = [0, 1]

and a material balance constraint imposes

zit + z−it ≤ 1.
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The planner devises a contract inducing truthful revelation of private information at the
beginning, and assigning contingent consumptions over the entire infinite horizon. Uncer-
tainty is fully resolved after individuals truthfully report their types to the planner.

Consider first the efficient allocation contingent on revealed information. After truthful
revelation of types, the planner splits the unit endowment between the two agents, condi-
tional on their preference shocks. The efficient frontier is so given by

(4.1)
vi
(
ξi, ξ−i

)
ξi

+
v−i

(
ξi, ξ−i

)
ξ−i

= 1.

To elicit private information, the incentive compatibility constraint imposes

Eξ−i|ξi
vi
(
ξi, ξ−i

)
ξi

≥ Eξ−i|ξi
vi
(
ξ̂i, ξ−i

)
ξ̂i

.

We show that the planner sacrifices future welfare in order to efficiently extract private
information from agents. To this purpose, we assume that, for some sufficiently small ε in
R++,

(4.2) π (α, β) = π (β, α) =
1− ε

2
and π (α, α) = π (β, β) =

ε

2
.

Conclusions survive perturbations of these probabilities.
We preliminarily establish that, by condition (4.2), ex-post efficient and incentive com-

patible allocations satisfy
vi
(
ξi, ξ−i

)
ξi

≡ zi,

that is, consumption is independent of types. This can be proved by direct inspection of all
incentive compatibility constraints under ex-post efficiency (4.1):

ε
v1 (α, α)

α
+ (1− ε) v

1 (α, β)

α
≥ ε

v1 (β, α)

β
+ (1− ε) v

1 (β, β)

β
,(4.3)

ε
v1 (β, β)

β
+ (1− ε) v

1 (β, α)

β
≥ ε

v1 (α, β)

α
+ (1− ε) v

1 (α, α)

α
,(4.4)

−εv
1 (α, α)

α
− (1− ε) v

1 (β, α)

β
≥ −εv

1 (α, β)

α
− (1− ε) v

1 (β, β)

β
,(4.5)

−εv
1 (β, β)

β
− (1− ε) v

1 (α, β)

α
≥ −εv

1 (β, α)

β
− (1− ε) v

1 (α, α)

α
.(4.6)

Adding up (4.3)-(4.5), and then (4.4)-(4.6), we obtain

v1 (α, β)

α
=
v1 (β, α)

β
.

Adding up (4.3)-(4.6), and then (4.4)-(4.5), we conclude that

v1 (α, α)

α
=
v1 (β, β)

β
.

This suffices to draw our implication.
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To see that ex-ante efficient allocations are not necessarily ex-post efficient, we argue
by contradiction. Conditional on ex-post efficiency (4.1), the value of the program is de-
termined as

J0

(
θi0, θ

−i
0

)
= max θi0z

iE0ξ
i + θ−i0 z−iE0ξ

−i

subject to
zi + z−i = 1.

Observing that (4.2) implies

E0ξ
i = E0ξ

−i =
α+ β

2
,

we obtain

J0

(
1

2
,

1

2

)
=
α+ β

4
.

We thus argue that, for any sufficiently small ε in R++, this value can be increased subject
to material balance and incentive compatibility, so delivering a contradiction.

Consider the contingent allocation given by

v1 (β, α)

β
=
v2 (α, β)

β
= 1− ε,

v1 (α, β)

α
=
v2 (β, α)

α
= ε,

vi (α, α)

α
=
vi (β, β)

β
= 0.

This allocation satisfies incentive compatibility constraints and material balance, though
resources are not exhausted in consumption whenever individuals are of the same types.
Direct computation shows that the social value of this program is

Ĵ0

(
1

2
,

1

2

)
=

1− ε
2

((1− ε)β + εα) .

As β > α, for any sufficiently small ε in R++,

Ĵ0

(
1

2
,

1

2

)
> J0

(
1

2
,

1

2

)
.

This establishes our claim.

Example 4.5 (Consumption externalities). In this example, the utility of each individual
decreases with the future consumption of the other individual. For this reason it is effi-
cient to not exhaust aggregate resources. Though extreme, this simple example singles
out a mechanism responsible for potential failure of ex post efficiency with consumption
externalities.

A deterministic economy is populated by two identical individuals with utility aggrega-
tor

W i
t

(
zt, v

i
t+1

)
= (1− δ) min

{
cit, 1

}
+ δvit+1 − γmax

{
w−it , 0

}
,
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where the individual action space is Zi = R+×R, with typical element zi =
(
ci, wi

)
. The

parameter γ > 0 captures the externality and we assume that 1 > γ > δ > 0. Contracts
are restricted by feasible sets Gt containing all plans satisfying consumption feasibility,

cit + c−it ≤ 1,

and perfect foresight about future utilities,

wit = vit+1.

Utility values are restricted to the interval
[
¯
vit, v̄

i
t

]
=
[
−γ (1− δ)−1

, 1
]
. Notice that this

economy is convex and presents no relevant pathological features. We claim that the value
of the contract is given by

(4.7) Jt (θt) = (1− δ) max
{
θit, θ

−i
t

}
+ max

{
δθit − γ (1− δ)−1

θ−it , 0
}
,

that is, the symmetric Pareto frontier is piecewise linear with three flat regions. This re-
quires us to verify that it is a fixed point of the Negishi operator.

In the Negishi program, the planner’s objective is

θt ·Wt (zt, vt+1) = (1− δ)
(
θitc

i
t + θ−it c−it

)
+
(
δθit − γθ−it

)
max

{
vit+1, 0

}
+
(
δθ−it − γθit

)
max

{
v−it+1, 0

}
+ δθit min

{
vit+1, 0

}
+δθ−it min

{
v−it+1, 0

}
.

Whenever δθit − γθ−it ≤ 0 and δθ−it − γθit ≤ 0, setting vt+1 = 0 is optimal and

(TJ)t (θt) = (1− δ) max
{
θit, θ

−i
t

}
.

Whenever δθit−γθ−it > 0 and, so, δθ−it −γθit < 0, an optimal plan satisfies vit+1 ≥ 0 and
v−it+1 ≤ 0. Hence, the planner’s objective becomes

θt ·Wt (zt, vt+1) = (1− δ) max
{
θit, θ

−i
t

}
+
(
δθit − γθ−it

)
vit+1 + δθ−it v−it+1.

Geometrically, the planner maximizes a linear functional of continuation utilities sub-
ject to sign restrictions. This gives as solution either

(
vit+1, v

−i
t+1

)
= ((1− δ) , 0) or(

vit+1, v
−i
t+1

)
=
(

1,− (1− δ)−1
γ
)

. In both cases, our conjecture (4.7) is confirmed.
All of the above established, we show that an ex-ante efficient contract will not achieve

ex-post efficiency. Consider the planner program at symmetric welfare weights
(
θit, θ

−i
t

)
=

(1/2, 1/2). The planner’s objective reduces to

θt ·Wt (zt, vt+1) =

(
1− δ

2

)(
cit + c−it

)
+

(
δ − γ

2

)
max

{
vit+1, 0

}
+

(
δ − γ

2

)
max

{
v−it+1, 0

}
+
δ

2
min

{
vit+1, 0

}
+
δ

2
min

{
v−it+1, 0

}
.
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J (θ) = θ · v

feasible set

U∗

FIGURE 3. Linear social welfare function

Observing that 1 > γ > δ > 0, we concluse that any optimal plan requires
(
vit, v

−i
t+1

)
=

(0, 0). Thus, continuation utility values are not on the Pareto efficient frontier.

4.3. Sunspot implementation. We show that, in the absence of convexity, the Negishi
method implements efficient contracts when the planner is allowed to use a random device
in order to allocate promises over time. This requires an expansion of the primitive pro-
gram with the introduction of purely extrinsic uncertainty. Preferences are also extended
by means of the expected utility principle to evaluate extrinsic uncertainty, whereas non-
expected utility is permitted with respect to sources of intrinsic uncertainty. The logic of
sunspot implementation in a non-convex economy is illustrated by Figure 3, where the
Pareto frontier refers to continuation utilities: the sunspot relaxes restrictions on continua-
tion utilities and so supports possibly higher current social welfare.

Uncertainty affecting fundamentals is governed by a Markov transition P : S → ∆ (S)

on the finite state space S. The sunspot consists of a publicly observable signal ε uniformly
distributed on the interval E = [0, 1]. The expanded probability space

(
Ω̂, F̂ , µ̂

)
reflects

both intrinsic and extrinsic uncertainty. In the sunspot-expanded economy, a plan ẑ in Ẑ
is contingent to the observable history of Markov states and sunspot shocks. We clarify
how the sunspot-expansion affects the feasible sets and the utility aggregators. To this
purpose, we use (Et)t∈T for the filtration reflecting sunspot shocks only, so that available
information is captured by F̂t = Ft ⊗ Et. To simplify our presentation, we only admit
contingent plans that are measurable, at every t in T, with respect to a finite partition of F̂t.
This dispenses us from dealing with issues of integrability.
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The sunspot-augmented economy satisfies the following properties. For the feasible set,
we assume that

(ẑt, v̂t+1) ∈ Ĝt if and only if (ẑt,E (v̂t+1|Ft+1 ⊗ Et)) ∈ Gt.

With some abuse of notation, the coincidence between these feasible sets is required condi-
tional on any partial history of sunspot shocks. This condition asserts that a plan is feasible
for the sunspot-expanded economy if and only if it is feasible for the primitive economy
when utility promises are evaluated in expectation conditional on non-sunspot uncertainty.
Utility aggregators are expanded according to

Ŵ i
t

(
ẑt, v̂

i
t+1

)
= W i

t

(
ẑt,E

(
v̂it+1|Ft+1 ⊗ Et

))
.

This also expresses the idea that the utility derived from sunspot-sensitive continuation
values is evaluated in sunspot-expected terms. An example clarifies the complication gen-
erated by non-expected utility. When the aggregator is linear in continuation utility, as in
the most conventional applications, this qualification is unnecessary.

Example 4.6 (Sunspot expansion with non-expected utility). Consider a utility aggregator
of the form

W i
t

(
zt, v

i
t+1

)
= (1− δ)u (zt) + δφ−1

(
Etφ

(
vit+1

))
,

where φ : R+ → R+ is surjective, increasing and concave. In the space of expanded plans,
the corresponding aggregator would be

Ŵ i
t

(
ẑt, v̂

i
t+1

)
= (1− δ)u (ẑt) + δφ−1

(
Etφ

(
E
(
v̂it+1|Ft+1 ⊗ Et

)))
.

The added randomness is evaluated using expected utility, though fundamental uncertainty
is not.

Proposition 4.6 (Random-device implementation). The actual value of sunspot-augmented
contracts Ĵ∗ in J is the greatest fixed point of the sunspot-free Negishi operator.

5. FIRST-ORDER CONDITIONS

We present simple first-order conditions arising from the application of the Negishi
method. In particular, we argue that first-order conditions allow for an operational char-
acterization of an efficient contract by means of a contingent process of welfare weights.
To illustrate the fruitfulness of this approach, we immediately derive certain properties of
some efficient contracts established in the previous literature.

We say that feasible contract z∗ in Z satisfies first-order conditions if there exists a
contingent process (θt)t∈T of welfare weights in Θ such that

θt · Ut (z∗) = max
(zt,vt+1)∈Gt

θt ·Wt (zt, vt+1)

subject to

(*) θt+1 · vt+1 ≤ θt+1 · Ut+1 (z∗) .
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In this recursive program, the Negishi constraint on continuation utility values is replaced
by its linear approximation. As the Euler equation in a conventional planning program,
these first-order conditions rule out welfare-improving readjustments over any arbitrary
finite horizon, so enforcing a short-term form of efficiency. Consistently, we say that fea-
sible contract z∗ in Z is short-term efficient if it is not Pareto dominated by an alternative
feasible contract z in Z coinciding with contract z∗ in Z at all but finitely many periods t
in T. Endowed with this notion, we present our first-order characterization.10

Proposition 5.1 (First-order conditions). Any feasible contract z∗ in Z satisfying first-
order conditions for strictly positive initial welfare weights θ0 in Θ is short-term efficient.
Furthermore, under additional Assumptions 4.1-4.2, any efficient contract z∗ in Z sat-
isfies first-order conditions for some contingent process (θt)t∈T of welfare weights in Θ,
provided that there exists a feasible contract z0 in Z such that U it (z) > U it

(
z0
)
.

We apply the first-order characterization established in Proposition 5.1 to some well-
known instances of recursive contracts. In an economy with limited commitment, we
show that the planner increases the welfare weight of a constrained individual, and this
fully determines the dynamics with only two individuals. For dynamic Ramsey taxation
with contingent government debt, we argue that welfare weights are stationary and, as
a consequence, the planner simply maximizes the static surplus subject to legacy debt.
Finally, when a principal insures a privately informed agent, we recover the well-known
inverted Euler equation in terms of dynamics of welfare weights.

Example 5.1 (Limited commitment). Consider a limited commitment economy described
in Example 3.2. Let γit ≥ 0 in Γt be the Lagrange multiplier for the participation con-
straints and let λt+1 in Λt+1 be the Lagrange multiplier for constraint (*) on continuation
utility values, where Lagrange multipliers are represented as random variables. The La-
grangean takes the form

Lt = Φt + δ
∑
i∈I

θitEtvit+1 + δ
∑
i∈I

γitEtvit+1 − δEtλt+1

∑
i∈I

θit+1v
i
t+1,

where Φt in Rt is short-notation for all terms that do not depend on continuation utility
values. Taking the derivative with respect to such values, we obtain

θit + γit − λt+1θ
i
t+1 = 0.

We see that the welfare weight of individual i in I is increased whenever the participation
constraint is binding.

Example 5.2 (Dynamic Ramsey taxation). Consider dynamic Ramsey taxation with con-
tingent government debt (Example 3.5). Invoking first-order conditions, and constructing

10First-order conditions cannot in general implement a fully efficient contract over the entire infinite horizon
when not complemented by some sort of transversality condition (see Marcet and Marimon [25, Theorem 2] and
Pavoni et al. [32, Condition (T), Proposition 4]). However, when the Negishi operator admits a unique value,
any efficient contract can be arbitrarily approximated over a sufficiently large finite horizon and our first-order
characterization turns accurate.

25

Electronic copy available at: https://ssrn.com/abstract=3848097



the associated Laragrangean, we obtain

Lt = Φt + δθa
tEtva

t+1 + δθg
tEtv

g
t+1 − δEtλt+1θ

a
t+1v

a
t+1 − δEtλt+1θ

g
t+1v

g
t+1,

where notation is interpreted as in previous Example 5.1. Taking the derivative with respect
to continuation utility values, we conclude that λt+1 = 1, θa

t = θa
t+1 and θg

t = θg
t+1. Thus,

welfare weights are stationary and the efficient contract is given by the static program

max θa
tu (ct, et) + θg

t (uc (ct, et) ct + ue (ct, et) et)

subject to
ct + gt ≤ et.

In other terms, the planner distributes the static surplus according to the given welfare
weights.

Example 5.3 (Asymmetric information). Consider an amended version of the economy
described in Example 3.3 featuring only two individuals: a principal (p) and an agent (a).
The agent is privately informed about her own preference shocks, which are unobserv-
able to the principal. The principal has a linear utility and no preference shocks. We let
γt+1 ≥ 0 in Γt+1 be the Lagrange multipliers associated with the incentive compatibility
constraints. Using first-order conditions, the Lagrangian takes the form

Lt = Φt + δEt
∑
i∈I

θitv
i
t+1 (st+1)− δEtλt+1

∑
i∈I

θit+1v
i
t+1 (st+1)

−δEt
∑

ŝt+1 6=st+1

γt+1 (st+1, ŝt+1)
(
va
t+1 (ŝt+1)− va

t+1 (st+1)
)
,

where Φt in Rt collects all other terms and ŝt+1 in S is the untruthful declaration when
the true type in st+1 in S. Taking derivatives with respect to continuation utility values,
we obtain

θp
t = λt+1θ

p
t+1

and
θa
t = Etλt+1θ

a
t+1,

where this latter condition is obtained supposing an equal increase of continuation utility
values of the agent contingent on all types, so that the incentive compatibility constraints
remain unaffected. These two equations jointly imply(

θa
t

θp
t

)
= Et

(
θa
t+1

θp
t+1

)
,

which is basically the inverted Euler equation appearing in the literature.

6. DUAL APPROACH

6.1. Comparison. A dual approach to recursive contracts was initially introduced by
Marcet and Marimon [25], and it is more recently studied by Pavoni et al. [32] (see also
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Messner et al. [28]).11 We argue that the dual approach might dramatically overestimate
the value of efficient contracts under non-pathological conditions. We discuss this feature
in a simple example for which conventional methods work smoothly. The Negishi method
delivers the correct value, whereas the dual method yield an erroneous characterization.
We also show that, in general, the dual value dominates the Negishi value and we further
explore this discrepancy in a class of economies with limited commitment. A conventional
Negishi approach seems more reliable than a characterization via dual method.

6.2. An example. To uncover the major drawback of the dual method, we consider an
environment in which both the Negishi and the dual method are inessential, because con-
ventional tools of dynamic programming can be safely applied and deliver an unambiguous
characterization. In addition, as the economy consists of a single individual, the Negishi
method is absolutely innocuous, as it exactly coincides with the primitive primal program.
So, our thought experiment intentionally uncovers the distortionary action of the dual
method. As the program is non-convex, the dual value overshoots dramatically because
of the duality wedge.

Consider an economy with a single individual whose utility aggregator is given by

W (z, v) = z + δf (v) ,

where δ in (0, 1) ⊂ R+ is the discount factor and f : R+ → R+ is a bounded increasing
map such that |f (v′)− f (v′′)| ≤ |v′ − v′′|. The action space is Z = R+. The trivial
planning program consists in allocating available resources to the only consumer in the
economy subject to

z ≤ e.

Yet, because of the non-linearity in the utility aggregator, the value of the program has to
be determined via a fixed point theorem.

The Negishi method reduces to determining a value J∗ in R+ such that

J∗ = e+ δf (J∗) .

Such a value exists and is unique by the Contraction Mapping Theorem. We now turn
to the dual program, and show that it might easily determine a different value due to the
non-convex nature of the program. This requires a short digression on conjugate maps (see
Blume [9] for a basic introduction).

Consider a bounded map f : R+ → R+. Its conjugate is defined as

f̂ (λ) = sup
x≥0

f (x)− λx,

whereas its double conjugate is

ˆ̂
f (x) = inf

λ≥0
f̂ (λ) + λx.

11More precisely, Marcet and Marimon [25] provide a saddle point, rather than a dual, approach to recursive
contracts, and they focus on programs in which a saddle point exists.
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It is a fundamental result of conventional duality theory that the double conjugate is a

bounded concave map such that ˆ̂
f ≥ f . In fact, it is the least map with this property,

that is, it is the concave envelope of the primitive map f : R+ → R+. We show that the
basic action of the dual approach consists in delivering the value of a modified program
corresponding to the concave envelope of the planner’s objective.

We construct Pavoni et al. [32]’s dual operator, though by different arguments.12 In-
troducing a Lagrange multiplier, the recursive primal operator T : R+ → R+ is given
by

(TJ) = sup
v≥0

inf
λ≥0

e+ δf (v)− δλ (v − J) .

The Lagrange multiplier simply accounts for the constraint on the continuation value, v ≤
J . The dual operator T̂ : R+ → R+ is instead given by(

T̂ J
)

= inf
λ≥0

sup
v≥0

e+ δf (v)− δλ (v − J) .

Exploiting conjugacy, the dual operator reduces to(
T̂ J
)

= inf
λ≥0

e+ δ sup
v≥0

(f (v)− λv) + δλJ

= inf
λ≥0

e+ δf̂ (λ) + δλJ

= e+ δ inf
λ≥0

(
f̂ (λ) + λJ

)
= e+ δ

ˆ̂
f (J) .

By monotone concavity (Krasnosel’skiı̆ [20]), the recursive dual operator admits a unique
fixed point Ĵ∗ in R+. This is also established in Pavoni et al. [32], because their boundary
conditions [32, Assumption 3] are satisfied in this simple example. The value, however,
can only fortuitously coincide with the actual value when f : R+ → R+ is not concave.
The logic of this misrepresentation is illustrated by Figure 4.

6.3. Dominance. We compare the Negishi value with the value obtained through the dual
approach. Marcet and Marimon [25] and Pavoni et al. [32] construct an extended La-
grangian accounting for incentive constraints in the program. As this seems inessential for
our purposes, we simplify by explicitly considering only the constraints on continuation
utilities, and the associated Lagrange multipliers. Thus, for the purpose of this compari-
son, we concede the most favorable conditions to the dual method: Adding Lagrange mul-
tipliers related to the feasible set would amplify the duality gap, increasing the distance
between the Negishi value and the dual value.

12More precisely, we obtain the dual Bellman operator as in [32, Definition 1] for the trivial program under
examination. To simplify, we directly exploit homogeneity and restrict the dual value function on the unit sphere.
Their unrestricted value function is implicitly determined everywhere by positive scaling.
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FIGURE 4. Concave envelope

We introduce Lagrange multipliers λ in Λ, the space of processes with values in R+.
Our Negishi operator can be innocuously expressed as

(TJ)t (θt) = sup inf θt ·Wt (zt, vt+1)− Etλt+1 (θt+1 · vt+1 − Jt+1 (θt+1)) ,

where the supremum is taken over feasible plans (zt, vt+1) in Gt and the infimum over
Lagrange multipliers λt+1 in Λt+1 and welfare weights θt+1 in Θt+1, both interpreted as
Ft+1-measurable random variables. We obtain the dual operator by reversing the role of
infimum and supremum operations. Although derived in a different way, this is precisely
the operator studied by Pavoni et al. [32].

The dual operator T̂ : J → J is given by(
T̂ J
)
t
(θt) = inf sup θt ·Wt (zt, vt+1)− Etλt+1 (θt+1 · vt+1 − Jt+1 (θt+1)) ,

where infimum and supremum in the previous primal program are reversed. The dual value
of contracts is a fixed point of the dual operator, that is, a support map Ĵ in J such that
Ĵ =

(
T̂ Ĵ
)

. This formulation allows for a simple comparison between the alternative
approaches: the Negishi value is in general more accurate. The excess error of the dual
method upon the Negishi method is an implication of the added duality gap, that is, a
reversal of the infimum and supremum operations. We only need a further restriction
ensuring that the dual operator admits a fixed point.13

Assumption 6.1 (Bounds). Utility values vt are restricted to the interval [
¯
vt, v̄t] ⊂ Vt,

where the bounds are given in Proposition 3.1.

13Pavoni et al. [32, Assumption 3] postulate the existence of bounds for the dual operator, in addition to
restricting actions and utility values to compact spaces. Their dual operator admits a unique fixed point under a
sort of interiority condition [32, Assumption 3 (i)-(iii)] which can be related to our more primitive Assumption
4.3. Our comparison holds true even when interiority fails.
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Proposition 6.1 (Comparison). Under additional Assumption 6.1, for any Negishi value J
in J , there exists a dual value Ĵ in J such that J ≤ Ĵ .

6.4. A class of economies. To further clarify the distortionary nature of the dual approach
under non-convexity, we consider a more tractable class of economies with limited com-
mitment. The individual action space Zi is R+, interpreted as consumption. Feasible set
Gt only require material balance, ∑

i∈I
zit ≤

∑
i∈I

eit,

and a participation constraint,
W i
t

(
zit, v

i
t+1

)
≥ φit,

where φi in Vi is an exogenously given reservation utility value. The only source of non-
convexity in this economy is the utility aggregator, or possibly the non-expected nature of
utility. We shall provide an explicit example at the end of our analysis.

In this class of economies, under uncertainty aversion, the computation error due to the
dual approach is unambiguously identified: The method returns the value of a transformed
economy in which, in the objective of the planner, each utility aggregator is replaced by
its concave envelope with respect to continuation utility values. This mirrors the simple
characterization obtained in our previous example (§6.2). We remark again that, had we
considered the dual operator with a fully expanded set of Lagrange multipliers, as in Pavoni
et al. [32]’s original analysis, the envelope would have also distorted the full spectrum of
non-convex constraints defining feasibility.

Assumption 6.2 (Uncertainty-aversion). Each utility aggregator is quasi-concave in con-
tinuation utility values, that is, given z̃it in Zit ,{

vit+1 ∈ Vit+1 : W i
t

(
z̃it, v

i
t+1

)
≥ ηit

}
is convex.

Proposition 6.2 (Dual error). Under uncertainty-aversion (Assumption 6.2), the dual value
of a given economy corresponds to the dual value of a related economy in which feasible
sets are unmodified and each utility aggregator in the planner’s objective is replaced by its
concave envelope with respect to continuation utility values.14

It is in general difficult to single out the distortionary effect entailed in the Negishi value.
We argue that the Negishi method is faithful when the economy, though non-convex. can
be transformed into a convex economy by a monotone transformation of utility aggrega-
tors. As clarified in the initial illustrative example (§2), this might happen with rather
conventional aggregators when the effect of the dual method is instead disruptive.

14That is, the least upper semicontinuous utility aggregator W̃ i
t : Zi

t × Vi
t+1 → Vi

t such that W i
t ≤ W̃ i

t

with the property that, given z̃it in Zi
t , it is concave on the restricted domain{
vit+1 ∈ Vi

t+1 :W i
t

(
z̃it, v

i
t+1

)
≥ φit

}
.
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We say that a utility aggregator is essentially concave if, for some strictly increasing
continuous map f i : V i → R on a convex domain V i ⊂ R with f i

(
V i
)
⊂ V i,

W̃ i
t

(
zit, ṽ

i
t+1

)
= f i

−1 (
W i
t

(
zit, f

i
(
ṽit+1

)))
is concave in

(
zit, ṽ

i
t+1

)
∈ Zit × Vit+1,

where the utility aggregator takes values in V i ⊂ R+. Whenever this monotone transfor-
mation into a concave aggregator is feasible, the Negishi method yields the correct value
for the untransformed economy. Unlike the dual method, the Negishi distortion depends
on intrinsic features of the feasible sets, more than on the representation of preferences by
means of a specific utility aggregator.

Example 6.1 (Essential concavity). Consider the aggregator of the form

vt =
√

(1− δ)
√
zt + δEtv2

t+1.

Using the transformation v =
√
ṽ, we obtain

ṽt = (1− δ)
√
zt + δEtṽt+1,

which is a monotone concave utility aggregator. Hence, the initial aggregator is essentially
concave and, as shown in Proposition 6.3, the application of the Negishi method is non-
distortive.

Proposition 6.3 (Essential concavity). When each utility aggregator is essentially concave,
the greatest fixed point of the Negishi operator is the actual value of contracts.

We conclude with another example of the extreme distortion created by the dual method.
We consider an economy with risk-sensitive preferences under the hypothesis of increasing
risk-tolerance. The dual method systematically under-estimate risk-aversion and, assuming
risk-aversion vanishes on arbitrarily large consumption, it delivers a risk-neutral efficient
contract.

Example 6.2 (Increasing risk-tolerance). Assume φi = 0 and consider the utility aggre-
gator given by

W i
t

(
zit, v

i
t+1

)
= (1− δ) zit + δf i

−1 (Etf i (vit+1

))
,

where f i : R+ → R+ is a strictly increasing and strictly concave map with f i (R+) =

R+. We assume that relative risk aversion decreases and vanishes as consumption grows
unboundedly. In particular, we require

f i
−1 (Ef i (λ−1vi

))
≥ λ−1f i

−1 (Ef i (vi)) for every λ ∈ (0, 1) .

This last condition ensures that the certainty equivalence increases no less than proportion-
ally with the expansion of utility values. In addition, for strictly positive utility values,

lim
λ→0

f i
−1 (Ef i (λ−1vi

))
E (λ−1vi)

= 1,
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that is, the certainty equivalent approaches the expected value of a lottery as risk aversion
disappears on large consumption levels. We then provide a full characterization of the dual
error using our Proposition 6.2.

Exploiting decreasing certainty equivalent, we obtain

W i
t

(
zit, v

i
t+1

)
≤ (1− λ)W i

t

(
zit, 0

)
+ λW i

t

(
zit, λ

−1vit+1

)
≤ (1− λ) W̃ i

t

(
zit, 0

)
+ λW̃ i

t

(
zit, λ

−1vit+1

)
≤ W̃ i

t

(
zit, v

i
t+1

)
.

Taking the limit as λ in (0, 1) ⊂ R vanishes, and recalling asymptotic risk-neutrality, we
conclude

Wt

(
zit, v

i
t+1

)
≤ (1− δ) zit + δEtvit+1 = W̃t

(
zit, v

i
t+1

)
.

Hence, the dual method delivers the efficient allocation of consumption under risk-neutrality.
We now turn to the examination of the error under the Negishi approach.

We compare the dual and the Negishi value at extreme welfare weights θt in Θ with
θit = 1 for some individual i in I . By our previous arguments, the dual value is the utility
the risk-neutral individual derives from the aggregate endowment, that is,

(6.1) v̂it = (1− δ) et + δEtv̂it+1.

The Negishi value is instead given by the utility from aggregate endowment of the risk-
averse individual. Hence, the Negishi value under extreme welfare weights is determined
by the recursive equation

(6.2) vit = (1− δ) et + δf i
−1 (Etf i (vit+1

))
.

Comparing equations (6.1)-(6.2), we notice that f i−1 (Etf i (v̂it+1

))
< Etv̂it+1 by strict

concavity and this ensures that the greatest solution to (6.2) is dominated by the only
solution to (6.1). We thus obtain

Jt (θt) < Ĵt (θt) .

In addition, the greater risk-aversion over the feasible set, the larger the discrepancy be-
tween these two values.

7. A MAXMIN-NEGISHI METHOD

We describe an alternative recursive planning program with a maxmin-type social wel-
fare function. This recursive approach allows us to implement efficient contracts exactly
even in non-convex economies. Beyond computational (dis)advantages, the method clar-
ifies that an optimal policy can always be expressed in terms of the evolution of welfare
shares, as opposed to welfare weights, along with Markov states, that is, as transitions on
the minimally extended state space S×Θ. This Markov property of the optimal policy only
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J (θ) = Φ (θ, v)

FIGURE 5. Maxmin-type social welfare function

requires that ex-ante efficient contracts remain ex-post efficient as time and uncertainty un-
fold. This is certainly the case when the economy satisfies the additional Assumption 4.2.15

Furthermore, in a convex economy, efficient contracts admits admits an ergodic probability
measure on the minimal state space S ×Θ.

Given welfare weights θ in Θ, the planner’s objective Φ : Θ× V → R is given as

Φ (θ, v) = max
{
λ ∈ R+ : λθ ≤ v −

¯
v
}
,

where
¯
v in V is the lower bound on utility values. Here, as in our previous analysis, Θ

represents the canonical simplex in RI , but welfare weights are more properly interpreted
as welfare shares. We can equivalently express the planner’s objective as a maxmin social
welfare function,

Φ (θ, v) = min

{
. . . ,

vi −
¯
vi

θi
, . . .

}
.

Maxmin-type social welfare functions support weakly Pareto efficient distributions of util-
ity values even under non-convexity. The advantage of this welfare evaluation, relative to
the more traditional weighted sum of utilities, is illustrated by Figure 5.

We modify the Negishi operator consistently, though maintaining the same notation for
parsimony. Feasible sets for utility values are now given by

Ut (Jt) = {vt ∈ Vt : Φ (θt,
¯
vt) ≤ Φ (θt, vt) ≤ Jt (θt) for every θt ∈ Θ} .

15The absence of such a representation for the optimal policy is the major concern in Cole and Kubler [10].
We also notice that Lucas and Stokey [24, Theorem 3]’s statement about recursive optimal policy is slightly
deceptive: it does not establish that any plan generated by the optimal policy is a feasible allocation.
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The recursive decomposition can so be expressed as

(TJ)t (θt) = sup
(zt,vt+1)∈Gt

Φ (θt,Wt (zt, vt+1))

subject to
vt+1 ∈ Ut+1 (Jt+1) .

The first constraint accounts for feasibility, whereas the second constraint reflects consis-
tency of promised utility values over time.

The maxmin-Negishi value of contracts is compared with the actual maxmin-value of
contracts, that is,

J∗t (θt) = sup
vt∈U∗t

Φ (θt, vt) .

Not surprisingly, this approach permits the exact determination of the (weakly) efficient
frontier. This is due to the fact that any allocation on a non-convex Pareto frontier can be
supported by a positive sublinear (as opposed to linear) functional.

Proposition 7.1 (Fixed points). Maxmin-Negishi operator T : J → J admits a least fixed
point

¯
J in J and a greatest fixed point J̄ in J . In addition, J∗ = J̄ , where J∗ in J is the

actual maxmin-value of contracts.

We complete our short exploration of the maxmin-Negishi method with a proof of ex-
istence of an ergodic distribution on the minimal state space S × Θ. In other terms, we
show that this space exhausts all long-term dynamical properties of efficient contracts. The
advantage of the maxmin-type social welfare function is that utility profiles on the efficient
frontier are univocally supported by welfare shares θ in Θ. It follows that, subject to ex
post efficiency (Assumption 4.2), efficient contracts are governed by a Markov correspon-
dence Φ : S×Θ � ∆ (S ×Θ). Indeed, given a current state (s, θ) in S×Θ, the recursive
optimal plan determines continuation utility values v′ in V , contingent on next period state
s′ in S. As efficient contracts remain on the Pareto frontier as time evolves (by Assump-
tion 4.2), contingent continuation utility values are supported by unique welfare shares
θ′ in Θ. Hence, the state in the next period can be unambiguously identified with some
(s′, θ′) in S×Θ. Convexity (Assumption 4.1) guarantees that the Markov correspondence
is convex-valued, so that a well-established theorem on ergodic measures can be applied
(see Aliprantis and Border [3, Theorem 19.31]).

Proposition 7.2 (Ergodic measure). Under additional Assumptions 4.1-4.2, efficient con-
tracts are fully described by a Markov correspondence Φ : S×Θ � ∆ (S ×Θ) admitting
an ergodic probability measure.

8. CONCLUSION

We have shown that a conventional Negishi method can be used to study recursive con-
tracts. Comparing with the established dual method, a Negishi approach seems more nat-
ural and more accurate. In addition, when contractual arrangements can be contingent on
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purely extrinsic and publicly observable random signals, the Negishi method yields the ex-
act frontier of efficient contracts even in the presence of non-convexity. Finally, a Negishi
approach through maxmin social welfare functions reveals that optimal contracts are mea-
surable with respect to a natural state space, consisting of shocks affecting fundamentals
augmented with the space of welfare shares.
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APPENDIX A. PROOFS

Proof of Proposition 3.1. To simplify notation, we omit reference to individual i in I and
we assume that utility values are in R. Let Cb (Z,V) be the space of bounded and con-
tinuous maps U : Z → V . Consider the Koopmans operator T : Cb (Z,V) → Cb (Z,V)

defined as
(TU)t (z) = Wt (zt, Ut+1 (z)) .

Clearly, (TU) : Z → V is continuous. To see that it is also bounded, notice that

(TU)t (z) ≤Wt (zt, ‖U‖∞) ≤Wt (zt, 0) + δ ‖U‖∞ ≤ B + δ ‖U‖∞

and

(TU)t (z) ≥Wt (zt,−‖U‖∞) ≥Wt (zt, 0)− δ ‖U‖∞ ≥ −B − δ ‖U‖∞ ,

where we have exploited Assumptions 3.2-3.4 and

‖U‖∞ = inf
{
λ ∈ R+ : |U (z)| ≤ λ1 for every z ∈ Z

}
.

By the discounting property (Assumption 3.3),∣∣∣(T Û)
t
(z)−

(
T Ũ
)

(z)t

∣∣∣ ≤ δEt ∣∣∣Ût+1 (z)− Ũt+1 (z)
∣∣∣ ≤ δ ∥∥∥Û − Ũ∥∥∥

∞
.

The Contraction Mapping Theorem [3, Theorem 3.48] can be applied, and gives a unique
fixed point, thus proving our claim.

To complete our proof, we show that the following process in V is indeed a lower bound:

¯
vt = inf

ẑ∈Z
Ut (ẑ) ≥ −‖U‖∞ .

To this purpose, observe that

¯
vt = inf

ẑ∈Z
Ut (ẑ) ≤ Ut (z) = Wt (zt, Ut+1 (z)) .

Moreover, using monotonicity and continuity of the utility aggregator,

¯
vt ≤ inf

ẑ∈Z
Wt (zt, Ut+1 (ẑ)) ≤Wt

(
zt, inf

ẑ∈Z
Ut+1 (ẑ)

)
= Wt (zt,

¯
vt+1) .

This establishes our claim for the lower bound. The upper bound exists by a similar argu-
ment. �

Proof of Proposition 4.1. Let J−t (θt) = θt ·Ut
(
z0
)

and J+
t (θt) = θt · v̄t, where contract

z0 in Z is given in Assumption 3.7 and the bounded processes v̄t is defined in Proposition
3.1. The interval [J−, J+] ⊂ J is invariant for the Negishi operator and is a complete
lattice. Therefore, the first claim is a direct application of Tarski’s Fixed Point Theorem [3,
Theorem 1.11].

As for the second claim, consider the following recursive decomposition of the actual
value of contracts:

J∗∗t (θt) = sup θt ·Wt (zt, vt+1)
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subject to
(zt, vt+1) ∈ Gt

and
vt+1 ∈ U∗t+1.

It is immediate to verify that J∗∗t (θt) ≥ J∗t (θt) (because the feasible set U∗t+1 contains
utility values that might not be attained by feasible contracts). The action of the Negishi op-
erator consists in modifying the latter constraint for continuation utilities, which becomes

vt+1 ∈ Ut+1

(
J∗t+1

)
.

This enlarges the feasible set because

U∗t ⊂ Ut (J∗t ) .

We so obtain that (TJ∗) ≥ J∗ and, by Tarski’s Fixed Point Theorem, the greatest fixed
point exists satisfying J̄ ≥ J∗. �

Proof of Proposition 4.2. Consider the set of utility values Ūt containing all vt in Vt such
that, for some feasible (zt, vt+1) in Gt,

¯
vt ≤ vt ≤Wt (zt, vt+1)

and
vt+1 ∈ Ut+1

(
J̄t+1

)
.

It is clear that Ūt ⊂ Ut
(
J̄t
)
. We thus show that Ut

(
J̄t
)
⊂ Ūt.

Fix a contingency and assume that v∗t lies in Ut
(
J̄t
)

but not in Ūt. Notice that the latter
is closed and convex by Assumption 4.1. Therefore, we can strongly separate Ūt from
{vt ∈ Vt : vt ≥ v∗t }. By the Strong Separation Theorem [3, Theorem 5.79], there exists θt
in Θ such that

sup
vt∈Ūt

θt · vt < θt · v∗t .

This, however, reveals the existence of welfare weights θt in Θ such that

J̄t (θt) < θt · v∗t ,

contradicting the fact that v∗t lies in Ut
(
J̄t
)
. Hence, our claim is established.

We now prove that, given welfare weights θ0 in Θ, J∗0 (θ0) = J̄0 (θ0). Clearly, there
exists v0 in U0

(
J̄0

)
such that J̄0 (θ0) = θ0 ·v0. By induction, for every vt in Ut

(
J̄t
)
, there

exists (zt, vt+1) in Gt such that vt ≤Wt (zt, vt+1) and vt+1 lies in Ut+1

(
J̄t+1

)
. It is here

that we exploit the coincidence established in the previous step, which is why convexity of
the program is required. Now notice that, by Assumption 3.8, at no loss of generality, the
plan recursively constructed satisfies

vit = W i
t

(
zt, v

i
t+1

)
.
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As the utility aggregator uniquely identifies an intertemporal utility function, we also have
vit = U it (z). This establishes that, for some feasible contract z in Z ,

J∗0 (θ0) ≤ J̄0 (θ0) = θ0 · v0 = θ0 · U0 (z) ≤ J∗0 (θ0) ,

thus proving our claim. �

Proof of Proposition 4.3. Arguing as in the proof of Proposition 4.2, we obtain a contract
z in Z and a process v in V such that

¯
vt ≤ vt ≤Wt (zt, vt+1) and (zt, vt+1) ∈ Gt.

Also notice that

θt ·Wt (zt, vt+1) ≤ J̄t (θt) only if Wt (zt, vt+1) ≤ v̄t.

We can thus construct an operator Tz : [
¯
v, v̄]→ [

¯
v, v̄] as

(Tz ṽ)t = Wt (zt, ṽt+1) .

Arguing as in the proof of Proposition 3.1, this operator is a contraction, and admits the
only fixed point U (z) in [

¯
v, v̄] ⊂ V . As v ≤ (Tzv), and the operator is monotone, we

conclude that U (z) ≥ v. Invoking Assumption 4.2, we establish that contract z in Z is
feasible, and this proves our claim. �

Proof of Proposition 4.4. We adapt traditional arguments due to Krasnosel’skiı̆ [20]. Con-
sider the action of the Negishi operator on interval [J−, J+] ⊂ J , where the interval is
defined in the proof of Proposition 4.1. Also, consider the greatest µ in [0, 1] ⊂ R+ such
that

(1− µ) J−t (θt) + µJ̄t (θt) ≤
¯
Jt (θt) .

Monotonicity yields (
T
(
(1− µ)J− + µJ̄

))
t
(θt) ≤

¯
Jt (θt) .

The convexity of the program implies

(1− µ)
(
TJ−

)
t
(θt) + µJ̄t (θt) ≤

¯
Jt (θt) .

This is true because, as it can be verified by direct inspection,

µUt
(
J−t
)

+ (1− µ)Ut
(
J̄t
)
⊂ Ut

(
µJ−t + (1− µ) J̄t

)
.

By the interiority hypothesis (Assumption 4.3),

J−t (θt) + ε ≤
(
TJ−

)
t
(θt) ,

so delivering
(1− µ) J−t (θt) + µJ̄t (θt) + (1− µ) ε ≤

¯
Jt (θt) .

This can only be consistent with the definition of µ in [0, 1] if µ = 1. Thus, J̄ =
¯
J , proving

our statement. �
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Proof of Proposition 5.1. Consider any other feasible contract z in Z coinciding with con-
tract z∗ in Z at all but finitely many periods t in T. We can assume that, at some large t
in T, θt+1 · Ut+1 (z) ≤ θt+1 · Ut+1 (z∗). By the first-order conditions, we conclude that
θt · Ut (z) ≤ θt · Ut (z∗). Recursively, this implies that

θ0 · U0 (z) ≤ θ0 · U0 (z∗) .

As θ0 in Θ is strictly positive, this shows that contract z∗ in Z is short-term efficient. We
now turn to the more convoluted argument for necessity.

By ex post efficiency (Proposition 4.5), at every t in T, we have contingent welfare
weights θt in Θt such that J∗t (θt) = θt · Ut (z∗). We determine this contingent process
recursively and we prove that it satisfies first-order conditions. To this end, observe that,
by the Negishi characterization,

θt · Ut (z∗) = max
(zt,vt+1)∈Gt

θt ·Wt (zt, vt+1)

subject to
vt+1 ∈ Ut+1

(
J∗t+1

)
.

We need to argue that the latter constraint can be innocuously relaxed for an appropriate
choice of contingent welfare weights θt+1 in Θt+1. Consider the set

Wt+1 = {wt+1 ∈ Vt+1 : θt ·Wt (zt, wt+1) > J∗t (θt) for some (zt, wt+1) ∈ Gt} .

Under Assumption 4.1 this set is convex. By the Separating Theorem, there exists θt+1 in
RIt+1 such that, for every vt+1 in Ut+1

(
J∗t+1

)
and every wt+1 inWt+1,

θt+1 · vt+1 ≤ θt+1 · wt+1.

Here, as in the rest of the paper, Rt denotes the space of Ft-measurable random variables
with values in R. By Assumption 4.2, we can assume that θt+1 lies in Θt+1. As Ut+1 (z∗)

belongs to the closure ofWt+1, we obtain

θt+1 · vt+1 ≤ θt+1 · Ut+1 (z∗) ,

Suppose there exists (zt, vt+1) in Gt, subject to these relaxed constraints on continuation
utility values, such that θt ·Wt (zt, vt+1) > J∗t (θt). Setting v0 = U

(
z0
)
, by convexity,

for all sufficiently large λ in [0, 1] ⊂ R+,(
λzt + (1− λ) z0

t , λvt+1 + (1− λ) v0
t+1

)
∈ Gt.

Furthermore, by continuity,

θt ·Wt

(
λzt + (1− λ) z0

t , λvt+1, (1− λ) v0
t+1

)
> J∗t (θt) .

By the previous separation argument, we thus conclude that

θt+1 · vt+1 = θt+1 · Ut+1 (z∗) = λθt+1 · vt+1 + (1− λ) θt+1 · v0
t+1,
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which in turn implies θt+1 · Ut+1

(
z0
)

= θt+1 · Ut+1 (z∗), thus revealing a contradiction
and establishing our claim. �

Proof of Proposition 4.6. By an adaptation of Proposition 3.1, there exists a unique sunspot-
extended utility Û i : Ẑ → Vi. We so consider the sunspot-augmented value of contracts,

Ĵ∗t (θt) = sup
vt∈Û∗t

θt · vt,

where Û∗t is the space of utility values that are feasible in the sunspot-augmented economy
beginning from contingencies at t in T. As sunspot uncertainty does not affect fundamen-
tals, the sunspot-extended value Ĵ∗ is an element of the sunspot-free space J . We show
that

(
T Ĵ∗

)
≥ Ĵ∗, so proving that Ĵ∗ ≤ J̄ .

As in the proof of Proposition 4.1, consider the following recursive decomposition of
the actual (sunspot-augmented) value of contracts:

Ĵ∗∗t (θt) = sup θt · Ŵt (zt, v̂t+1)

subject to
(zt, v̂t+1) ∈ Ĝt

and
v̂t+1 ∈ Û∗t+1.

Exploiting the sunspot-invariance properties of fundamentals, we obtain

Ĵ∗∗t (θt) = sup θt ·Wt (zt, vt+1)

subject to
(zt, vt+1) ∈ Gt

and
vt+1 ∈ E

(
Û∗t+1|Ft+1 ⊗ Et

)
.

It is immediate to verify that Ĵ∗∗t (θt) ≥ Ĵ∗t (θt). The action of the Negishi operator
consists in modifying the latter constraint for continuation utilities, which becomes

vt+1 ∈ Ut+1

(
Ĵ∗t+1

)
.

This enlarges the feasible set because

E
(
Û∗t+1|Ft+1 ⊗ Et

)
⊂ Ut+1

(
Ĵ∗t+1

)
.

To prove this claim, consider any v̂t+1 in Û∗t+1. We have

Ĵ∗t+1 (θt+1) ≥ θt+1 · v̂t+1 only if Ĵ∗t+1 (θt+1) ≥ θt+1 · E (v̂t+1|Ft+1 ⊗ Et) ,

where we use the fact that Ĵ∗ in J is insensitive to sunspot uncertainty. This show the
inclusion. Hence,

(
T Ĵ∗

)
≥ Ĵ∗∗ ≥ Ĵ∗, which proves our claim.

To establish coincidence with the greatest fixed point of the Negishi operator, we argue
as in the proof of Proposition 4.2. Due to the lack of convexity, however, we can only
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verify that
Ut
(
J̄t
)
⊂ convex hull

(
Ūt
)
.

By Carathéodory Convexity Theorem [3, Theorem 5.32], any vt in Ut
(
J̄t
)

can be ex-
pressed as the convex combination of finitely many elements of Ūt. This permits to con-
struct a sunspot-contingent feasible contract ẑ in Ẑ , measurable with respect to a finite
partition of F̂t at every t in T, achieving the value corresponding to the greatest fixed point
of the Negishi operator, which completes our proof. �

Proof of Proposition 6.1. This is the traditional duality argument, complemented with a
fixed point theorem. Consider a plan

(
z∗t , v

∗
t+1

)
in Gt such that

Jt (θt) = θt ·Wt

(
z∗t , v

∗
t+1

)
,

where v∗t+1 lies in Ut+1 (Jt+1). We have that(
T̂ J
)
t
(θt) = inf sup θt ·Wt (zt, vt+1)− Etλt+1 (θt+1 · vt+1 − Jt+1 (θt+1))

≥ inf θt ·Wt

(
z∗t , v

∗
t+1

)
− Etλt+1

(
θt+1 · v∗t+1 − Jt+1 (θt+1)

)
≥ θt ·Wt

(
z∗t , v

∗
t+1

)
= Jt (θt) .

In addition, Assumption 6.1 guarantees that
(
T̂ J+

)
≤ J+, where J+ in J is given in

the proof of Proposition 4.1. By Tarski’s Fixed Point Theorem [3, Theorem 1.11], the dual
operator admits a fixed point Ĵ in J such that J ≤ Ĵ , so proving the claim. �

Proof of Proposition 6.2. Let W̃ i
t : Zit × Vit+1 → Vit be the concave envelope of the

original utility aggregator (see Aliprantis and Border [3, Definition 7.4]), that is,

W̃ i
t

(
z̃it, ṽ

i
t+1

)
= inf Etξit+1ṽ

i
t+1 + ψit

subject to
W i
t

(
z̃it, v

i
t+1

)
≤ Etξit+1v

i
t+1 + ψit if W i

t

(
z̃it, v

i
t+1

)
≥ φit,

where the infimum is taken over ξit+1 in Ξit+1 and ψit in Ψi
t, both interpreted as spaces of

random variables. Consider the internal supremum of the dual operator, and suppose the
claim is false. It follows that, at some contingency, there exists ε > 0 such that, for all
feasible plans,

ε+
∑
i∈I

θitW
i
t

(
z̃it, v

i
t+1

)
− Etλt+1

∑
i∈I

θit+1v
i
t+1 ≤

∑
i∈I

θitW̃
i
t

(
z̃it, ṽ

i
t+1

)
− Etλt+1

∑
i∈I

θit+1ṽ
i
t+1,

where each vit+1 in Vit+1 is chosen, subject to feasibility, given z̃it in Zit . At no loss of
generality, we can assume that θt in Θt is strictly positive, and so define

ξit+1 =
λt+1θ

i
t+1

θit
.
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Suppose that, for some individual,

ε+W i
t

(
z̃it, v

i
t+1

)
− Etξit+1v

i
t+1 ≤ W̃ i

t

(
z̃it, ṽ

i
t+1

)
− Etξit+1ṽ

i
t+1.

It follows that

W i
t

(
z̃it, v

i
t+1

)
≤ Etξit+1v

i
t+1 + ψit if W i

t

(
z̃t, v

i
t+1

)
≥ φit,

where
ψit = W̃ i

t

(
z̃it, ṽ

i
t+1

)
− Etξit+1ṽ

i
t+1 − ε.

This implies

W̃ i
t

(
z̃it, ṽ

i
t+1

)
≤ Etξit+1ṽ

i
t+1 + ψit = W̃ i

t

(
z̃it, ṽ

i
t+1

)
− ε,

a contradiction. It follows that the value can be approximated with the degree of accuracy
ε > 0, that is, for some feasible plan,

ε+
∑
i∈I

θitW
i
t

(
z̃it, v

i
t+1

)
− Etλt+1

∑
i∈I

θit+1v
i
t+1 >

∑
i∈I

θitW̃
i
t

(
z̃it, ṽ

i
t+1

)
− Etλt+1

∑
i∈I

θit+1ṽ
i
t+1,

thus contradicting our initial statement and establishing our claim. �

Proof of Proposition 6.3. At no loss of generality, we set
¯
vit = f i

(
¯
ṽit
)

and v̄it = f i
(
¯̃vit
)
.

Consider an auxiliary planning program in which each utility aggregator is given by the
concave transformation W̃ i

t : Zit × Vit+1 → Vit and each reservation value is replaced by
φ̃it = f i

−1 (
φit
)
. Let J̃∗ in J̃ be the actual value of contracts in this auxiliary economy.

As this economy is convex, by Proposition 4.2, J̃∗ in J̃ coincides with the greatest fixed
point of the Negishi operator T̃ : J̃ → J̃ .

Given the greatest fixed point J̄ in J of the original Negishi operator T : J → J ,
consider the inverse monotone transformation of the utility feasible set,

Ñt =
{
ṽt ∈ Vt : ˜

¯
vit ≤ ṽit ≤ f i

−1 (
vit
)

for some vt ∈ Ut
(
J̄t
)}
,

and let J̃ in J̃ be its support map. As convexity might fail, we can only establish that
Ñt ⊂ Ũt

(
J̃t

)
, which in turn implies that(

T̃ J̃
)
t
(θt) ≥ sup

(zt,ṽt+1)∈G̃t
θt · W̃t (zt, ṽt+1)

subject to
ṽt+1 ∈ Ñt+1.

Under the identification vit = f i
(
ṽit
)
, notice that

(zt, vt+1) ∈ Gt if and only if (zt, ṽt+1) ∈ G̃t.
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We conclude that the feasible set in the above recursive program is basically Ñt, so that(
T̃ J̃
)
t
(θt) ≥ sup

ṽt∈Ñt
θt · ṽt = J̃t (θt) .

Hence, by Tarski’s Fixed Point Theorem [3, Theorem 1.11], the greatest fixed point J̃∗ in
J̃ of T̃ : J̃ → J̃ satisfies J̃∗ ≥ J̃ .

For the sake of contraction, suppose that J̄t (θt) > J∗t (θt) for some welfare weights
θt in Θ. It follows that there exists vt in Ut

(
J̄t
)

that is not in U∗t and, consequently, by
monotone transformations of individual utility values, there exists ṽt in Ñt that is not in Ũ∗t .
Therefore, for some welfare weights θt in Θ,

(
T J̃
)
t
(θt) > J̃∗t (θt), a contradiction. �

Proof of Proposition 7.1. We argue exactly as in the proof of Proposition 4.1. Let J−t (θt) =

Φ
(
θt, Ut

(
z0
))

and J+
t (θt) = Φ (θt, v̄t), where contract z0 in Z is given in Assumption

3.7 and the bounded processes v̄t is defined in Proposition 3.1. The interval [J−, J+] ⊂ J
is invariant for the maxmin-Negishi operator and is a complete lattice. Therefore, the first
claim is a direct application of Tarski’s Fixed Point Theorem [3, Theorem 1.11].

As for the second claim, consider the following recursive decomposition of the true
value of contracts:

J∗∗t (θt) = sup
(zt,vt+1)∈Gt

Φ (θt,Wt (zt, vt+1))

subject to
vt+1 ∈ U∗t+1,

where U∗t denotes the utility possibilities set, that is, the set of utility values attainable by
means of contracts which are feasible beginning from period t in T. We so show that (the
closure of) U∗t coincides with (the closure of) Ut (J∗t ). This delivers (TJ∗) = J∗∗ ≥ J∗

and, thus, J̄ ≥ J∗.
It is clear that U∗t ⊂ Ut (J∗t ), because J∗ in J gives the maximum maxmin-value over

feasible contracts. To the purpose of contradiction, at some contingency, assume that v̂t lies
in Ut (J∗t ), whereas it is not in the closure of U∗t . Choose λ̂ in R+ such that λ̂θ̂t = (v̂t −

¯
vt)

for some welfare weights θ̂t in Θ and, at no loss of generality, suppose that λ̂ = 1. As v̂t
is not in the closure of U∗t , there exists a sufficiently small ε in R++ such that vt is not in
U∗t whenever (1− ε) v̂t + ε

¯
vt ≤ vt. Therefore,

J∗t

(
θ̂t

)
= sup
vt∈U∗t

Φ
(
θ̂t, vt

)
≤ 1− ε < Φ

(
θ̂t, v̂t

)
≤ J∗t

(
θ̂t

)
,

thus revealing a contradiction.
Arguing as in the proof of Proposition 4.2, a similar argument also shows that (the

closure of) Ūt coincides with (the closure of) Ut
(
J̄t
)
, and we can proceed as in that proof

to establish the coincidence J∗ = J̄ . �

Proof of Proposition 7.2. At no loss of generality, assume that
¯
v = 0. In the maximin-

Negishi program, an optimal policy correspondence is described as γt : Θt � Zt ×Θt+1.
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Indeed, an optimal plan is of the form (zt, vt+1) in Gt and, under Assumption 4.2, vt+1 in
Vt+1 achieves the maxmin social value for welfare weights θt+1 in Θt+1 given by

θt+1 =
vt+1∑
i∈I v

i
t+1

.

Hence, the continuation utility values can be identified with those welfare weights θt+1 in
Θt+1. Under Assumptions 4.1-4.2, the correspondence γt : Θt � Zt × Θt+1 is upper
semicontinuous. It is also convex valued, because the convex combination of continuation
utility values is also optimal. Indeed, supposing v0

t+1 and v1
t+1 in Vt+1 are both optimal,

for all α0 and α1 in R++, we have that the convex combination is also optimal, where

vt+1 =
α0

α0 + α1
v0
t+1 +

α1

α0 + α1
v1
t+1,

Considering weights

α0 = (1− λ)
1∑

i∈I v
i,0
t+1

and α1 = λ
1∑

i∈I v
i,1
t+1

,

we obtain

θt+1 = (α0 + α1) vt+1 = (1− λ)
v0
t+1∑

i∈I v
i,0
t+1

+ λ
v1
t+1∑

i∈I v
i,1
t+1

= (1− λ) θ0
t+1 + λθ1

t+1.

We conclude that efficient contracts are governed by a closed Markov correspondence
Φ : S ×Θ � ∆ (S ×Θ) with nonempty convex values. To prove existence of an ergodic
measure, we apply Aliprantis and Border [3, Theorem 19.31]. �

APPENDIX B. HISTORY DEPENDENCE

B.1. Fundamentals. We describe an economy in which a principal insures a risk-averse
agent experiencing privately observed preference shocks. The unobservable preference
shock s in the finite space S is governed by Markov transition π : S → ∆ (S). Consump-
tion z in Z, a transfer from the principal to the agent, is restricted to a compact interval
[0, η] ⊂ R+. Per-period utility of the agent is u : Z × S → R+, and satisfies conventional
assumptions. The cost of the principal is c : Z → R−, and it is also subject to canonical
assumptions. To describe the recursive contract, we adopt a more traditional notation.

Let S be the space of all partial histories of shocks and, given history st in S, let S (st)

be the space of all continuation histories (beginning from the next period). Given a contin-
gent plan for consumption, the overall utility of the agent is

U (z)
(
st, ŝt

)
=

∑
st+j∈S(st)

δjπ
(
st+j |ŝt

)
u
(
z
(
st+j

)
, st+j

)
.

We assume that type declaration is truthful in all continuations, whereas the agent has
initially declared type st in S when in state ŝt in S. The principal utility (i.e., the negative
of the cost) is

U0 (z)
(
st, ŝt

)
= −

∑
st+j∈S(st)

δjπ
(
st+j |ŝt

)
c
(
z
(
st+j

))
.

45

Electronic copy available at: https://ssrn.com/abstract=3848097



Finally, we impose the incentive compatibility constraint, enforcing truthful revelation of
private information. This takes the form

u
(
z
(
st+1

)
, st+1

)
+ δU (z)

(
st+1, st+1

)
≥

u
(
z
(
st, ŝt+1

)
, st+1

)
+ δU (z)

((
st, ŝt+1

)
, st+1

)
.

It is a well-known property that preventing a single misreport of type is sufficient to imple-
ment truthful revelation over the entire infinite horizon.

B.2. Efficiency. The classical formulation features cost-minimization, subject to incen-
tive compatibility, given a sustainable utility level for the truthful agent and for any un-
truthful agent. Though the agent reports the true type, an untruthful version of the agent
serves as a counterfactual. We argue that efficient contracts can be equivalently repre-
sented as efficient utility profiles on the utility possibilities frontier, so setting the stage for
the application of the Negishi method.

Fix an initial state s0 in S, and assume initial truthful revelation, that is, s0 = ŝ0.
A contract z in Z is feasible if it satisfies incentive compatibility at all histories st+1 in
S
(
s0
)
. A feasible contract z in Z is efficient it there exists no other feasible contract ẑ in

Z , such that
U0 (ẑ)

(
s0, s0

)
≥ U0 (z)

(
s0, s0

)
and, for every ŝ0 in S,

U (ẑ)
(
s0, ŝ0

)
≥ U (z)

(
s0, ŝ0

)
,

with at least one strict inequality.

Claim B.1 (Efficiency). A feasible contract z in Z is efficient only if it is cost-minimizing
subject to incentive compatibility at every history st+1 in S

(
s0
)

and subject to the promise-
keeping constraints, for every ŝ0 in S,

U (ẑ)
(
s0, ŝ0

)
≥ U (z)

(
s0, ŝ0

)
.

Proof. Otherwise, for some feasible contract ẑ in Z , U0 (ẑ)
(
s0, s0

)
> U0 (z)

(
s0, s0

)
, so

violating efficiency. �

Endowed with this simple characterization, we can develop the application of the Negishi
method for the determination of efficient contracts. The advantage upon the more tradi-
tional approach is that the state space for the recursive program is exogenously given: it
consists of (normalized) welfare weights, one for the principal, one for the truthful agent
and one for each counterfactual untruthful agent.

B.3. Recursive decomposition. Let v (s, ŝ) in R+ be the overall utility of an agent of
type ŝ in S having declared type s in S. The utility of the agent satisfies the recursive
condition

(U) v (s, ŝ) =
∑
s′∈S

π (s′|ŝ) (u (z (s′) , s′) + δv (s′, s′)) .
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Similarly, the utility of the principal satisfies the recursive condition

(P) v0 (s, ŝ) =
∑
s′∈S

π (s′|ŝ) (−c (z (s′)) + δv0 (s′, s′)) .

Finally, the incentive compatibility constraint is

(IC) u (z (s′) , s′) + δv (s′, s′) ≥ u (z (ŝ′) , s′) + δv (ŝ′, s′) .

Let Θ be the simplex in R × RS . Welfare weights θ in Θ refer to the principal, θ0,
and to each agent conditional on (possible unfaithful) type declaration ŝ in S, θ (ŝ). Given
a truthful state s in S, the objective of the Negishi planner is to maximize the weighted
surplus,

J (θ) (s) = θ0v0 (s, s) +
∑
ŝ∈S

θ (ŝ, s) v (ŝ, s) .

Constraints are given by (U), (P) and (IC). Continuation values are chosen subject to the
consistency constraint, for every state s′ in S,

sup
θ′∈Θ

θ′0v0 (s′, s′) +
∑
ŝ′∈S

θ′ (ŝ′, s′) v (ŝ′, s′)− J (θ′) (s′) ≤ 0.

This ensures that values are in the convex envelope of the utility possibilities frontier.
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