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Abstract. We propose an algorithm, based on Reinforcement Learning, to hedge the payoff on a

European call option. The algorithm is first tested in a model where the problem has a well known

analytic solution, so that we can compare the strategy obtained by the algorithm to the theoretical

optimal one. In a more realistic case, considering transaction costs, the algorithm outperforms the

standard delta hedging strategy.

Keywords: Reinforcement Learning; Dynamic Strategies; Risk management

1 Introduction

The hedging of European option payoffs is among the most extensively studied topics in
quantitative finance. This problem arises when a trader takes a position—long or short—in
an option and seeks to hedge it using a dynamic strategy involving the underlying asset.
Under the assumptions of the Black-Scholes model, this challenge is addressed through the
”Delta Hedging” strategy. This strategy involves holding an amount of the underlying asset
equal to the option’s ”Delta,” which measures the sensitivity of the option’s price to changes
in the underlying asset. Mathematically, Delta is computed as the first derivative of the
option price with respect to the price of the underlying asset.
The Black-Scholes model assumes that the price of the underlying follows a geometric

Brownian motion and that trading occurs continuously and without transaction costs. These
assumptions allow for the derivation of closed-form option prices and provide hedging strategies.
However, in real financial markets, these assumptions often do not hold. Market frictions
such as transaction costs, discrete trading times, and deviations from log-normal price
distributions complicate the implementation of Delta Hedging. Despite these limitations,
Delta Hedging remains a cornerstone of practical financial risk management due to its
simplicity and effectiveness in many scenarios.
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In this paper, we explore the hedging problem in a more general and realistic setting than
the one assumed by the Black-Scholes model. Specifically, we address the challenges of Delta
Hedging in markets where trading occurs at discrete intervals rather than continuously and
where transaction costs are significant.
To do so, we propose an approach based on Reinforcement Learning (RL). RL is a branch of

machine learning where an agent interacts with an environment over time, observing its state
and taking actions to maximize cumulative rewards. At each time step, the agent observes
a new state and receives feedback in the form of a reward, which guides its future actions.
RL algorithms train agents by simulating a large number of ”episodes,” enabling them to
improve their understanding of the environment and refine their strategies through trial and
error. Seminal works on RL, such as [Sutton and Barto, 2018], provide the foundation for
applying these algorithms to a wide range of dynamic decision-making problems.
Recent applications of RL in finance have demonstrated its potential to address complex

optimization problems. For instance, [Kolm and Ritter, 2019] and [Giorgi et al., 2024], apply
RL to dynamic portfolio optimization under transaction costs, while [Buehler et al., 2019]
and [Cao et al., 2019] leverage RL to develop optimal hedging strategies for derivatives.
[Vittori et al., 2020] extend these approaches by combining RL with neural networks to
handle high-dimensional state spaces.
We present an RL-based algorithm for Delta Hedging, in discrete-time, with transaction

costs. The proposed algorithm combines the SARSA (State-Action-Reward-State-Action)
algorithm with a neural network to estimate the value function. This combination allows
the model to handle a continuous set of states (e.g., current holdings, market realizations)
and actions (e.g., the quantity of shares to trade). The value function is iteratively refined
through batches of simulated episodes. Initially, the agent follows its current policy to make
decisions, but its performance improves over time as it incorporates new information from
simulated rewards. RL algorithms, while powerful, are not guaranteed to perform optimally
in all instances. To validate the effectiveness of our approach, we conduct comparative tests
in scenarios where the optimal solution is known, to assess whether the algorithm produces
accurate and robust results.
The remainder of this paper is organized as follows. Section 2 provides a detailed description

of the hedging problem, including the key challenges associated with discrete-time trading
and transaction costs. Section 3 introduces the fundamental concepts of Reinforcement
Learning relevant to our approach. In Section 4, we present the algorithm and discuss its
implementation. In Section 5 we evaluate its performance through numerical experiments.
Finally, Section 6 concludes with a summary of findings and directions for future research.

2 The hedging problem

We analyze the problem faced by a trader who sells the contingent claim at time t0 for a
price P0 and subsequently adopts a dynamic strategy to cover the exposure to the payoff of
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the claim PT at time T . We consider a market where it is possible to trade a single risky
asset, whose price at time t is denoted by St. Let nk represent the units of the underlying
held in the portfolio at time tk, and let ck denote the cost incurred at time tk to adjust
the portfolio from nk−1 to nk (this cost can be negative, reflecting a gain). Assuming that
hedging occurs at discrete times t0, t1, . . . , tN−1, with tN−1 < T , the total cost of the strategy
is given by

∑N−1
k=0 ck, while the liquidation value of the final position in the asset is nN−1ST .

Thus, the final profit and loss (P&L) of the trader’s position at time T is:

HT = −PT −
N−1
∑

k=0

ck + nN−1ST + P0. (1)

The goal of the hedging strategy is to minimize the risk of HT , specifically by minimizing its
variance. A contingent claim is said to be ”replicable” if a strategy exists that reduces the
variance of HT to zero. Markets in which any contingent claim can be perfectly replicated
are referred to as ”complete.”
The completeness of a market model depends on the dynamics of the price process St and

the cost functions ck. In the Black-Scholes-Merton (BSM) model [Black and Scholes, 1973],
[Merton, 1973], the dynamics of the underlying asset are described by:

dSt = µSt dt+ σSt dWt, (2)

where µ is the drift, σ is the volatility, and Wt is a standard Brownian motion. Additionally,
the model assumes the existence of a risk-free asset with continuously compounded interest
rate r, continuous-time trading, and the absence of transaction costs. Under these conditions,
any contingent claim is replicable.
We focus on a European Call option, a contingent claim with a payoff:

PT = max(ST −K, 0), (3)

where K is the strike price and T is the maturity. The objective is to determine a dynamic
strategy that adjusts nk at each time step to replicate the payoff in (3). Since PT is an
increasing function of ST , the hedging strategy typically involves holding positive amounts
of the underlying asset.
In the BSM model, the optimal hedging strategy is determined by the option’s ”Delta,”

the first derivative of the option’s no-arbitrage price with respect to the underlying asset.
The Delta is computed as:

nt = Φ





ln(St/K) + τ
(

r + σ2

2

)

σ
√
τ



 , (4)

where Φ(·) is the cumulative distribution function of the standard normal distribution, and
τ = T − t is the time to maturity. This Delta hedging strategy achieves perfect replication
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in the BSM framework, ensuring HT = 0 almost surely, provided that P0 is the no-arbitrage
price and the strategy is executed continuously in time.
However, in practice, perfect hedging is impossible when trading is restricted to discrete

times tk ∈ {t0, . . . , tN−1}. Under these conditions, the Delta hedging strategy introduces
replication errors, and the variance of the error depends on the time discretization and
the ”Gamma” of the option, the second derivative of the option price with respect to the
underlying asset (see [Angelini et al., 2009] and [Angelini and Herzel, 2015] for details).
Additionally, the assumption of zero transaction costs in the BSMmodel is often unrealistic.

When transaction costs are present, the Delta hedging strategy becomes suboptimal. In
such cases, alternative strategies are needed. The remainder of this work explores how
Reinforcement Learning can provide an effective alternative to the classical Delta hedging
approach.

3 Reinforcement Learning

To make this paper as self-contained as possible, we summarize key concepts of Reinforcement
Learning (RL) that are essential for the implementation of our algorithm.
In RL problems, an agent interacts with an environment over time. The ”environment”

refers to the system outside the agent’s direct control, and the agent’s goal is to maximize
cumulative rewards through a sequence of actions. Figure 1 illustrates the typical RL
framework. At each time step t, the agent observes the environment’s ”state”:

st ∈ S, (5)

where S denotes the ”state space”. Based on this observation, the agent selects an ”action”:

at ∈ A(st), (6)

where A(st) represents the set of feasible actions, which may depend on the current state st.
After taking the action, at time t+ 1, the agent receives a ”reward”:

Rt+1 = R(st, at, st+1), (7)

which depends on the current state, the action taken, and the resulting next state. Additionally,
the agent transitions to a new state st+1, completing the interaction cycle.
The sequence of states, actions, and rewards forms a stochastic process. The mathematical

framework commonly used to model this process is the ”Markov Decision Process (MDP)”.
In an MDP, the state and reward at time t+1 depend only on the current state and action,
not on the full history:

L (st+1, Rt+1|s0, a0, R1, . . . , st, at) = L (st+1, Rt+1|st, at) , (8)

where L(X|Y ) denotes the conditional probability law of X given Y . In most RL problems,
the transition dynamics L are not explicitly known and must be estimated through interactions
with the environment.
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Figure 1: At time t, represented by the blue arrows, the agent receives the current state st from
the environment (right arrow) and performs an action at, affecting the environment (left arrow).
In the next period t+1, represented by the orange arrows, the environment returns a reward Rt+1

and a new state st+1.

3.1 Policies and Value Functions

A ”policy” defines the agent’s behavior, specifying the action a to take for a given state s.
A stationary Markovian policy depends only on the current state:

π : S → A(s),
s 7→ a = π(s). (9)

The combination of an initial state distribution, the MDP dynamics (8), and a policy π
determines the evolution of the system as a ”homogeneous Markov chain” (see [Csáji and Monostori, 2008]
for extensions to time-varying environments). To evaluate policies, we define the ”cumulative
discounted reward”:

Gt =
∞
∑

k=0

γkRt+k+1, (10)

where γ ∈ (0, 1] is the discount factor, which weights immediate rewards more heavily than
distant ones. The ”state-value function” for a policy π is:

vπ(s) = Eπ [Gt|st = s] , (11)

where Eπ denotes the expectation assuming the agent follows policy π. Similarly, the ”action-
value function” is:

qπ(s, a) = Eπ [Gt|st = s, at = a] , (12)
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which quantifies the expected cumulative reward starting from state s, taking action a, and
subsequently following π.
An ”optimal policy” π∗ maximizes the expected cumulative reward for all states:

π∗ = argmax
π

vπ(s) ∀s ∈ S. (13)

All optimal policies share the same ”optimal value functions”:

v∗(s) = max
π

vπ(s), (14)

q∗(s, a) = max
π

qπ(s, a). (15)

These satisfy the ”Bellman optimality equations” (see [Sutton and Barto, 2018]):

v∗(s) = max
a∈A(s)

E [Rt+1 + γv∗(st+1)|st = s, at = a] , (16)

q∗(s, a) = E

[

Rt+1 + γ max
at+1∈A(st+1)

q∗(st+1, at+1)|st = s, at = a

]

. (17)

3.2 Exploration, Exploitation, and Learning

In practice, RL algorithms alternate between ”exploration” and ”exploitation”. During
exploitation, the agent selects actions based on the current estimate of the optimal policy,
while exploration involves trying alternative actions to improve the policy. A common
approach is the ǫ-greedy policy:

πǫ-greedy(s) =

{

ã, if u < ǫ,

argmaxa q(s, a), if u ≥ ǫ,
(18)

where ǫ ∈ (0, 1), u ∼ U(0, 1), and ã is a random action. Over time, ǫ decreases to favor
exploitation as the policy improves.
Under appropriate conditions, RL algorithms converge to the optimal value functions (15)

through repeated training and interaction with the environment (see [Sutton and Barto, 2018]).
This process is a hallmark of RL, distinguishing it from classical dynamic programming by
its reliance on simulation rather than explicit knowledge of the MDP dynamics.

3.3 Model-Based vs. Model-Free RL

RL algorithms can be classified as ”model-based” or ”model-free”. Model-based approaches
rely on either known or estimated MDP dynamics (8), enabling planning and simulation.
In contrast, model-free methods use only observed data, avoiding model risk but requiring
sufficient data for training. Each approach has trade-offs in terms of efficiency, robustness,
and applicability.
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4 The algorithm

The hedging problem must be formulated in a manner suitable for applying Reinforcement
Learning (RL). The objective is to optimize the mean-variance utility of the hedging target
HT defined in (21):

MV[H] = E[H]− κ

2
V[H], (19)

where κ is a constant representing the trader’s risk aversion. Define the change in the units
of the asset S at time tk as:

∆nk := nk − nk−1.

The cost of updating the portfolio at time tk is given by:

ck := Stk∆nk + c(∆nk),

where the first term reflects the cost of trading in a perfectly liquid market, and the second
term, c(∆nk), represents transaction costs, which are always positive and become zero only
in a perfectly liquid market.
The hedging target HT can then be expressed as:

HT = −PT −
N−1
∑

k=0

(Stk∆nk + c(∆nk)) + nN−1ST + P0. (20)

Let us define the “profit and loss” (P&L) of the portfolio position at time tk as:

̺k := (−Ptk + Ptk−1
)− nk−1(Stk − Stk−1

).

Substituting this into HT , we obtain:

HT =
N
∑

k=1

̺k − c(∆nk−1), (21)

where the hedging target is expressed as the sum of “local costs”, defined as the differences
between P&L and transaction costs.
Based on the reformulated hedging target, we propose the following “reward function”:

Rt = (̺t − c(∆nt−1))−
κ

2
(̺t − c(∆nt−1))

2 , (22)

which encourages the agent to optimize the mean-variance utility of the local costs, and
consequently, the overall hedging target. This is validated under the assumptions:

V[HT ] =
N
∑

k=1

V[̺k − c(∆nk−1)], E[̺k] = 0, k = 1, . . . , N.
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To define the state space, we include all relevant and non-redundant information that the
agent needs to make decisions at time t. The state variable is:

st := (St, τ, nt−1) ∈ R
3,

where St is the current value of the underlying, τ = T − t is the time to maturity, and nt−1

is the current position in the underlying asset. The action variable is defined as:

at := ∆nt ∈ R,

where the action space is constrained by:

at ∈ (−nt−1, L− nt−1) = A(st), (23)

ensuring that the trader does not short-sells and does not exceed a lot size L. This state-
dependent action space is also bounded, which facilitates optimization during the greedy
policy computation.
We compute the trading costs as

c(a) = m× tick × (|a|+ 0.01a2), (24)

where tick > 0 is the tick size, and m > 0 reflects market friction. The term tick × |a|
reflects the cost of crossing a bid-offer spread, while the quadratic term models the market
impact of the trade. This function is often used in the literature to quantify trading costs,
but the flexibility of the algorithm allows to change it to reflect specific market conditions.
Although the reward function depends on the option price Pt, it is not explicitly included

in the state space. Instead, Pt is simulated using the Black-Scholes-Merton (BSM) formula
Pt = pBSM(St), ensuring compatibility with the RL framework without relying on a specific
pricing model. Importantly, the intermediate option prices cancel out, as shown:

T
∑

t=1

(

pBSM(St)− pBSM(St−1)
)

= pBSM(ST )− pBSM(S0) = (ST −K)+ − P0.

Our algorithm is based on the SARSA approach introduced in [Rummery and Niranjan, 1994]
and refined in [Sutton and Barto, 2018]. SARSA estimates the optimal action-value function
q∗ through simulations of State-Action-Reward-State-Action (SARSA) sequences:

s
(j)
0 , a

(j)
0 , r

(j)
1 , s

(j)
1 , a

(j)
1 , . . . . (25)

The value function is updated iteratively using the formula:

qk+1(st−1, at−1) = qk(st−1, at−1) + α (Rt + γqk(st, at)− qk(st−1, at−1)) , (26)

where α ∈ [0, 1] is the learning rate. Setting α = 1 simplifies this to:

qk+1(st−1, at−1) = Rt + γqk(st, at). (27)
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The algorithm combines the SARSA method with supervised regression for value function
approximation. Training proceeds over batches, starting with an initial value function
q̂(0)(s, a). Exploration is managed using the ǫ-greedy policy (18), where ǫ is gradually reduced
during training.
To optimize the greedy policy we tested several global optimization methods, including

basin-hopping [Wales and Doye, 1997], brute force, differential evolution [Storn and Price, 1997],
dual annealing [Xiang et al., 1997], and we finally opted for SHGO [Endres et al., 2018] that,
in our experience, ensured more stable and robust performances even in complex state-action
spaces.
In the next section, we present numerical results demonstrating the algorithm effectiveness.

5 Applications

5.1 Case 1: Without Transaction Costs

In our first experiment, we compare the Reinforcement Learning (RL) policy to the standard
delta hedging strategy under the assumption of no transaction costs.

5.1.1 Simulation Setup

We model the underlying dynamics using a geometric Brownian motion (2), with daily drift
and volatility parameters set to µ = 0% and σ = 1%, respectively. The initial price is
S0 = $100. The scenario involves a lot of L = 100 plain vanilla European call options on
the underlying S, traded at-the-money with a strike price K = $100. The options have a
maturity of 10 days, during which the trader rebalances their position 5 times daily, resulting
in T = 50 total rebalancing times. The tick size (minimum price change) is tick = $0.1, and
the risk-free rate is assumed to be r = 0%. Transaction costs are set to zero by applying
m = 0 in the general cost formula (24).
The RL agent is trained over NB = 10 consecutive batches, each consisting of J = 75, 000

episodes using the MDP (2). The epsilon-greedy policy begins with ǫ = 50% and decreases at
each batch iteration as ǫ← ǫ/3 (see Table 1). During training, the SHGO global optimization
algorithm [Endres et al., 2018] is used to compute the policy’s maximization.

5.1.2 Training Results

Table 1 and Figure 2 illustrate the agent’s training performance. As the batches progress,
the rewards improve, reflecting the agent’s learning and adaptation to the hedging problem.

9



Batch ǫ E0

[

∑T

t=1 γ
t−1Rt

]

1 50.000% -848.449
2 16.667% -252.860
3 5.556% -143.128
4 1.852% -108.470
5 0.617% -96.350
6 0.206% -94.690
7 0.069% -92.977
8 0.022% -93.011
9 0.007% -92.451
10 0.002% -92.717

Table 1: Reward evolution during training (no transaction costs).

Figure 2: Reward evolution across batches (no transaction costs).

5.1.3 Out-of-Sample Testing

For out-of-sample validation, J = 10, 000 MDP paths are simulated. Figure 3 compares
the histograms of the hedging target HT (20) obtained using the optimal delta strategy (4)
and the RL-based strategy. Both methods achieve similar outcomes, with the delta strategy
showing less variance due to its deterministic nature.
Figures 5 and 4 provide further insights:

• Figure 5a is composed of two plots. In the first (5a) we compare, for each simulation,
the P&L of the RL hedging strategy (on the x- axis), to the P&L of the static strategy
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Figure 3: Histogram of hedging targets (no transaction costs) for the optimal delta strategy (blue)
and RL agent (black).

in the option. A successful hedging strategy would return the same values for the two
P&L’s, therefore we can judge the effectiveness of the strategy by comparing it to the
line y = x. The second (5b) shows the scatter plot of the trades performed by the RL
agent versus those provided by the delta hedging (4). This plot shows a significant
difference between the two policies, even if the final result is comparable.

• Figure 4 shows the evolution of one out of sample path of the hedging strategy
performed by the RL agent. In blue, we can see the path of the agent’s position in the
option, whereas in orange we can see the path of the agent’s position in the underlying.
In green, we see the evolution of the hedged portfolio, which is approximately zero at
all times. We see that the RL agent tries to keep the total value of the hedged portfolio
(the green line) as close to zero as possible.

5.2 Case 2: With Transaction Costs

5.2.1 Simulation Setup

We introduce transaction costs by setting the multiplier m = 1 in the cost formula (24). The
RL agent is trained in this new environment using the same setup as in the no-cost case.
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Figure 4: No-transaction costs case. The evolution of one path of the hedging strategy
performed by the RL agent.

(a) RL vs benchmark hedge (b) RL vs benchmark trades

Figure 5: No-transaction costs case. Figure (a) is the scatter plot of the (negative) P&L hedging
obtained by the RL agent, versus the option P&L. Figure(b) is the scatter plot of the trades
performed by the RL agent versus those of the standard delta hedging.

5.2.2 Training Results

Table 2 and Figure 6 show the evolution of rewards during training. The agent adapts to
transaction costs, learning to optimize hedging performance while minimizing costs.

5.2.3 Out-of-Sample Testing

Figure 7 compares the histograms of hedging targets under transaction costs for both
strategies. The RL agent shows a slightly larger variance, but effectively accounts for
transaction costs, resulting in more conservative trading.
Figure 8 demonstrates the RL agent’s ability to reduce trading costs compared to the delta

hedging strategy, highlighting its cost-efficiency.
Figures 9 and 10 provide further details:
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Batch ǫ E0[
∑T

t=1 γ
t−1Rt]

1 50.000% -1220.311
2 16.667% -358.981
3 5.556% -187.995
4 1.852% -133.114
5 0.617% -116.638
6 0.206% -111.007
7 0.069% -109.778
8 0.022% -102.280
9 0.007% -102.054
10 0.002% -102.651

Table 2: Reward evolution during the training phase across batches under transaction costs.

Figure 6: Reward evolution across batches (transaction costs).

• Figure 9a shows the scatter plot of the hedging portfolio P&L agent, versus the option
P&L. As we have seen in Figure 7, the two outcomes are close to each other, and
hence their scatter plot is distributed along the 45◦ line. Figure 9b shows the scatter
plot of the trades performed by the RL agent versus those provided by the optimal
Black-Merton-Scholes solution (4).

• Figure 10a shows the evolution of one out of sample path of the hedging strategy
performed by the RL agent. In blue, we can see the path of the agent’s position in the
option, whereas in orange we can see the path of the agent’s position in the underlying.
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Figure 7: Histogram of hedging targets (transaction costs) for the optimal delta strategy (blue)
and RL agent (black).

Figure 8: Total trading costs for the delta hedging strategy (blue) and RL agent (black).

In green, we see the evolution of the hedged portfolio, which is approximately zero at
all times. Figure 10b shows the evolution of the optimal and RL strategy in terms of
shares of the underlying (top plot), whose value path is displayed in black (bottom
plot).
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(a) RL vs benchmark hedge (b) RL vs benchmark trades

Figure 9: For the transaction costs case, in (a), the scatter plot of the (negative) hedge portfolio
P&L obtained by the RL agent, versus the option P&L In (b), the scatter plot of the trades
performed by the RL agent versus those provided by the optimal Black-Merton-Scholes solution
(4).

(a) RL hedging strategy (b) Hedge portfolio and underlying evolution

Figure 10: For the transaction costs case, in (a), the evolution of one out of sample path of the
hedging strategy performed by the RL agent. In (b), the evolution of the optimal and RL strategy
in terms of shares on the underlying (top plot), whose value path is displayed in black (bottom
plot).

6 Conclusion

In this paper, we have proposed a Reinforcement Learning (RL) algorithm for hedging
European call options in a market with discrete-time trading and transaction costs. Our
approach combines the SARSA algorithm with the SHGO global optimization algorithm
[Endres et al., 2018] to compute the policy maximization. The use of RL allows the algorithm
to learn and adapt to complex market dynamics, and is applicable to more general situations
than the traditional Delta Hedging strategies.
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We began by validating the algorithm in an environment where the Black-Scholes model
assumptions hold, allowing for a direct comparison between the RL-based strategy and the
theoretical optimal Delta Hedging strategy. The results demonstrated that the RL agent
successfully approximates the optimal hedging policy, achieving comparable performance in
terms of minimizing the variance of the hedging error.
Next, we extended the evaluation to a market setting that incorporates transaction costs.

The RL algorithm outperformed the standard Delta Hedging strategy, effectively balancing
hedging accuracy with cost efficiency. By explicitly accounting for transaction costs in its
reward function, the RL agent adapted its trading behavior to minimize unnecessary trades,
reducing overall costs while maintaining robust hedging performance.
This work demonstrates that RL can provide an effective and adaptable solution for option

hedging in modern financial markets. By addressing practical constraints such as transaction
costs and discrete trading, the proposed algorithm offers a step forward in the application
of machine learning techniques to quantitative finance.
As future research on this topic, we believe that it would be valuable to explore the

performance of the RL algorithm in alternative market settings, such as those with stochastic
volatility, jump diffusion dynamics, or illiquid trading conditions. The impact of incorporating
more sophisticated cost models and risk metrics into the reward function should also be
investigated. Finally, extending the approach to multi-asset portfolios and higher-dimensional
problems would also represents a natural next step.
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