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A B S T R A C T

Despite progress, the molecular mechanisms underlying Kawasaki Disease (KD) and intravenous immunoglob
ulin’s (IVIG) ability to mitigate the inflammatory process remain poorly understood. To characterize this con
dition, plasma proteomic profiles, flow cytometry, and gene expression of T cell subsets were investigated in 
longitudinal samples from KD patients and compared with two control groups. Systems-level analysis of samples 
in the acute phase revealed distinctive inflammatory features of KD, involving mainly Th-1 and Th-17 mediators 
and unveiled a potential disease severity signature. APBB1IP demonstrated an association with coronary artery 
involvement (CAI) and was significantly higher in CAI+ compared to CAI- patients. Integrative analysis revealed 
a transient reduction in CD4+ EM T cells and a comprehensive immune activation and exhaustion. Following 
treatment, Tregs at both frequency and gene expression levels revealed immune dynamics of recovery. Overall, 
our data provide insights into KD, which may offer valuable information on prognostic indicators and possible 
targets for novel treatments.

1. Introduction

Kawasaki disease (KD) is the leading cause of acquired heart disease 
among children in developed countries [1–3]. Approximately 30 % of 
untreated children may encounter coronary artery involvement (CAI), 
dropping to 5–7 % in patients who undergo high-dose intravenous 
immunoglobulin (IVIG) treatment [4,5]. However, the specific mecha
nisms underlying IVIG’s ability to mitigate cardiovascular complications 

in KD patients remain unclear [6]. In addition, the pathogenesis of KD 
remains partially elusive, leaving certain aspects of the disease incom
pletely understood. Previous studies highlighted the pathogenic role of 
T-cell compartment especially in the initial stages of the disease, where 
the production of inflammatory cytokines resulting from Th17/Treg 
cells imbalance plays a pivotal role [7–12]. However, the precise 
contribution of specific subsets, such as peripheral follicular T helper 
cells (pTfh), effector memory (EM) and central memory (CM) T cells, 
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remains controversial [8–10]. Furthermore, limited knowledge 
currently exists regarding the IVIG effects on specific T-cell populations 
at both frequency and gene-expression levels. Previous studies have 
attempted at finding possible transcriptional characteristics identifying 
genes of interest for KD diagnosis [13]. Although such data have pro
vided a crucial advance in understanding this condition, a multi modal 
longitudinal analysis following immune modulation treatment is 
missing. To address these gaps and enhance insights into KD’s patho
genesis, we performed a comprehensive analysis of the immune profile 
of KD children before and after IVIG therapy and compared with those of 
controls.

2. Materials and methods

2.1. Sex as a biological variable

Our study examined male and female participants, and similar 
findings are reported for both sexes.

2.2. Study participants, samples collection and study approval

We recruited KD Caucasian children during the acute febrile stage as 
well as age-sex matched healthy controls (HC), and febrile controls (FC) 
at Bambino Gesù Children’s Hospital (BGCH) in Rome between March 
2017 and January 2020. For KD children fever onset was considered as 
the first day of the acute phase. Blood samples from KD patients and FC 
(infectious diseases of FC were detailed in Table S1) were collected at 
the time of admission before any antibiotic or/and anti-inflammatory 

therapies administration. KD blood samples were collected at diag
nosis (T0), 48 h (T1) and 4 weeks after IVIG therapy (T2) (Fig. 1A).

According to the Italian Society of Pediatric [14], and American 
Heart Association (AHA) guidelines [3] IVIG infusion has been per
formed in 10–12 h if patient’s cardiac function is normal or in 16–24 h 
for patients displaying cardiac failure. IVIG resistance was defined as 
persistent or recrudescent fever at least 36 h and < 7 days after 
completion of first IVIG infusion.

Two-dimensional echocardiographic examination was performed for 
all KD patients at onset. The internal diameter of the left main (LM) 
coronary artery, the left anterior descending (LAD), and the right main 
coronary artery (RCA) were measured and expressed as Z-score (SD units 
from the mean normalized for body surface area). CAI was defined ac
cording to the AHA guidelines [3], which classify Z-Score value as fol
lows: a) no involvement: <2; b) dilation: from 2 to <2.5; c) small 
aneurysm: ≥2.5 to <5; d) medium aneurysm: ≥5 to <10, and absolute 
dimension <8 mm; e) large or giant aneurysm: ≥10, or absolute 
dimension ≥8 mm. Patients with Z-scores ≥2 for any coronary artery 
were considered to be CAI+, patients without as CAI-.

The BGCH Ethics Committees approved the study (protocol 
1376_OPBG_2017) and informed consent was obtained from all parents 
prior to inclusion. All patients were included in accordance with study 
protocol, the International Conference on Harmonization Good clinical 
Practice guidelines, and the provisions of the Declaration of Helsinki.

2.3. Proteomic assay

Plasma samples were analyzed using the Olink Inflammation and 

Fig. 1. Proteomic profiling and Exploring Network Analysis. 
(A) Schematic of the longitudinal study design, involving KD patients and two cohorts of controls. 
(B) Venn diagram highlights the common number of proteins found differentially expressed across KD patients and the control groups. 
(C) Volcano plot showing DEPs between Kawasaki Disease acute patients and Healthy controls. 
(D) Principal component analysis of inflammatory proteins allows to distinguish acute KD from the control groups. 
(E) Protein-protein interaction network analysis showing upregulated (yellow) or repressed (light blue) proteins and their function [target (cycle), effector (square) or 
both (triangle)] in KD children versus healthy controls and F) febrile controls. The relationships between pathways and DEP nodes, as well as their regulatory mode 
(positive or negative), were sourced from the Omnipath database. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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Cell Regulation 96-plex panels based on the highly sensitive and specific 
proximity extension assay technology [15]. Briefly, each target protein 
was recognized by double antibodies and coupled with its specific 
complementary DNA barcode, which was subsequently quantified using 
a high throughput microfluidic real-time PCR instrument, Biomark HD 
(Fluidigm, South San Francisco, CA). To reduce variations between 
different runs of the experiment and within each run, the data under
went a normalization process. This involved the utilization of two con
trol measures: an internal control (also known as an extension control) 
and an inter-plate control. The pre-processed data were reported in 
arbitrary units as Normalized Protein Expression (NPX) that enables 
individual protein analysis across a sample set analyzed in log2 scale, 
wherein a higher NPX correlates with higher protein expression. The 
data were pre-processed using the NPX Manager Software and Olink 
Analyze R package (version 1.3.0). Proteins exhibiting values below the 
limit of detection (LOD) in over 80 % of cases were excluded from the 
dataset. To streamline research and enrichment analyses in public da
tabases, the Olink protein names were substituted with their corre
sponding official gene symbols.

2.4. Flow cytometry analysis of T subsets in KD patients and control 
groups

Isolated PBMC were first stained with LIVE/DEAD™ Fixable Near-IR 
Dead Cell Stain Kit (for 633 or 635 nm excitation, ThermoFisher, Wal
tham, Massachusetts, US) for 15 min at room temperature (RT). Then, 
the cells were washed in wash buffer (phosphate-buffer saline with 1 % 
bovine serum albumin) and stained for 30 min at 4 ◦C with anti-hCD3 
PE-CF594, anti-hCD4 BV510, anti-hCD25 PE, anti-hCD45RO-PerCP-Cy 
5.5, anti-hCD27 V450, anti-hCD57 APC, anti-hCXCR5 BV605 (all from 
BD Biosciences, Milan, Italy), anti-hCD127 PE-Cy7, anti-hPD1 BV786 
(all from Biolegend, San Diego, CA). After incubation, superficially 
stained cells were washed and fixed with 1 % PFA (phosphate-buffer 
saline with 1 % paraformaldehyde) at RT for 10 min. Washed cells were 
permeabilized with 1 % Permeabilizing Solution 2 (BD Biosciences, 
Milan, Italy) and incubate for 10 min at RT. Intracellular detection of 
FoxP3 with anti-hFoxP3 AF488 (Biolegend, San Diego, CA) was per
formed incubating for 30 min at 4 ◦C. The gating strategy to identify T 
cell subsets (CD3 + CD4+), comprising Regulatory T cells (Treg, CD4 +
CD25 + CD127low), Central memory T cells (CM, CD4+ CD45RO+

CD27+), Effector memory T cells (EM, CD4+ CD45RO+ CD27-), 
memory T cells re-expressing CD45RA (TEMRA, CD4+ CD27-CD45RO) 
and pTfh (CD4+ CD45RO+ CD27+, CXCR5+). The gating strategy is 
shown in supplementary Fig.S1.

Data acquired by CytoFLEX cytometer (Beckman Coulter, Milan, 
Italy) were analyzed by FlowJo software v.10 (Treestar Software, Ash
land, Oregon, USA). Statistical comparisons were performed with paired 
or unpaired nonparametric Mann-Whitney U test or t-test.

2.5. Cell sorting and RNA extraction

Cryopreserved PBMC from T0, T1 and T2 were thawed, stained for 
the following previously titrated surface antibodies: hCD3 PE-CF594, 
anti-hCD4 BV510, anti-hCD25 PE, anti-hCD45RO-PerCP-Cy 5.5, anti- 
hCD27 V450 (all from BD Biosciences, Milan, Italy), anti-hCD127 PE- 
Cy7 (Biolegend, San Diego, CA) and sorted by FACSAriaII (BD Bio
sciences). LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit (for 633 or 
635 nm excitation, ThermoFisher, Waltham, Massachusetts, US) was 
used to determine viability of the cells. Five hundred live cells per T cell 
subset were sorted in tubes previously loaded with 9 μL of CellsDirect 
one-step polymerase chain reaction (PCR) buffer and pooled TaqMan 
gene expression assays (2× CellsDirect Reaction mix 5 μL, Superscript 
III + Taq polymerase 0.5 μL, 0.2× TaqMan primer pool 2.5 μL, Resus
pension Buffer 1 μL). After sorting Tregs, CM and EM CD4+ T cells, 
samples were transferred to PCR tubes and reverse transcription and 
target-specific preamplification was performed on a C1000 Thermal 

Cycler (BioRad) with the following scheme (50 ◦C for 20 min, 95 ◦C for 
2 min, 95 ◦C for 15 s, 60 ◦C for 4 min, last two steps repeated for 18 
cycles). Resulting cDNA was stored at − 20 ◦C until further analysis.

2.6. Multiplexed RT-PCR

Previously amplified samples were loaded on a Fluidigm 96.96 
standard chip following manufacturer’s instructions, as previously 
described [16]. All TaqMan primers/ probes used for the gene mix were 
selected according to literature, online gene banks and biological 
queries. The sorting experiments and BioMark experiments were ran
domized to include a mix of HC, KD, and FC patient samples to avoid 
bias. Genes and samples exceeding 40 % and 20 % of flagged values, 
respectively, were removed from the dataset. Expression threshold 
values were normalized doubling the weight of the housekeeping gene 
CD74 included in our panel [17]. Differential analysis was performed 
using the limma package and only genes with an adjusted p-value <0.05 
and a log2 fold change >1.2, in absolute value, were considered as 
Differential Expressed Genes (DEGs).

2.7. Statistical analysis

Normality for continuous variables was assessed using the Shapiro 
test. Proteomics and clinical variable comparison employed one-way 
ANOVA followed by Tukey-Kramer’s post hoc test for normally 
distributed and homogeneous distributions. For comparisons between 
two groups, we used the t-test, Welch t-test, and Mann-Whitney test. 
Results were considered statistically significant for variables with an 
adjusted p-value (adj) < 0.05. A ranking plot [− log10(Adjusted p-value) 
* log2(Fold Change)], was used to emphasize the magnitude of the 
difference. The multiple comparisons were adjusted using False Dis
covery Rate (FDR).

Differential expressed proteins (DEPs) functions were analyzed with 
KEGG pathway enrichment (enrichr v3.2) 16 and explored protein- 
protein interactions (PPI) using OmnipathR v3.2 [18].

Principal Component Analysis (PCA) on proteomics data was utilized 
to assess patient distribution. Moreover, to integrate laboratory pa
rameters, flow cytometry, and proteomics data we applied Multi-Omics 
Factor Analysis (MOFA) using the MOFA2 R package [19]. MOFA is an 
integration method catching the common variability among the datasets 
provided as input. MOFA calculates factors made up of a linear combi
nation of the multi variables and selects the most relevant contributors 
after discarding the not relevant ones by regularization. Spearman’s 
correlation was used to examine the associations between variables.

All statistical analyses were performed using R (version 4.1.1).

2.8. Machine learning

To investigate KD key proteins and to build a model able to correctly 
classify KD patients based on these features, we applied a Machine 
Learning (ML) approach.

To reduce the overfitting risk caused by the small sample size, we 
selected the 13 DEPs exclusively different in the KD group against the 
subjects of all other groups. After a preprocessing step, this dataset was 
split into training (60 %, 35 subjects) and testing (40 %, 23 subjects) 
datasets. The choice of a 60 % training and 40 % testing split for our ML 
dataset was made to ensure a balance between sufficient training data 
and robust evaluation [20]. Four ML algorithms were used, including 
Logistic Regression, Random Forest, eXtreme Gradient Boosting 
(XGBoost) and k-nearest neighbor (kNN). Accuracy, sensitivity, and 
specificity computed on the testing dataset were used to evaluate the 
models (Table S2). XGBoost (XGB) classification algorithm, which is a 
scalable end-to-end tree boosting system that can and capture non-linear 
relationships between the features and the target variable, was chosen 
for the construction of the final model. Notably, this tool has been 
already used to differentiate patients with KD from controls using 
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routine laboratory parameters. [21]

3. Results

Forty-three acute KD children, thirty-one HC and eleven FC were 
recruited. Demographic data, routine laboratory parameters, echocar
diogram data as well as differences in these parameters among groups 
are summarized in Table 1. Clinical features observed in KD patients 
were reported in Table S3. At disease onset, 11 KD patients (25.6 %) 
exhibited CAI. Forty-one patients (95.3 %) responded favorably to IVIG 
infusion (2 g/kg of body weight) while two patients received a second 
infusion due to persistent fever post treatment.

3.1. Unravelling the proteomic profile of Kawasaki disease

To explore the proteomic profile of KD, we investigated 180 plasma 
proteins at baseline, at T1 and at T2 as in the control groups. The 
analysis revealed a distinctive signature consisting of 27 DEPs between 
acute KD and HC (Fig. 1B). Of these, the majority (21 DEPs; Fig. 1C) 
were linked to inflammatory processes aligning with previous reports 
[22–25], while 6 additionally DEPs (APBB1IP, LRRN1, CBL, KAZALD1, 
IRAG2, DKKL; Fig. S2A) predominantly contributed to immune regula
tion response. The analysis revealed a KD proteomic signature when 
compared to FC made of 8 DEPs, 6 of which overlapped with the KD vs 
HC comparison (Fig.S2B). Indeed, KD patients displayed higher levels of 
CXCL9, CXCL10, CCL7, CCL13 and reduced levels of NTF3, ADA, 
EIF4EBP1 and CD8A when compared to FC. Principal component anal
ysis (PCA) of the protein dataset was able to distinguish KD from FC 
suggesting a distinct inflammatory proteomic profile between the two 
conditions (Fig. 1D). To further investigate the plasma proteomic sig
natures identified in KD children from a functional and qualitative 
perspective we employed Protein-protein interaction (PPI) network 
analysis and Gene Ontology (GO) and KEGG enrichment analysis. The 
PPI network highlighted 8 main clusters when comparing the proteomic 
profile of KD with HC (Fig. 1E) and 3 clusters when comparing KD to FC 
(Fig. 1F). In both comparisons, predominance of cytokine-chemokine 
mediated signaling pathways, showing the roles of CXCL9 and 
CXCL10 and highlighting the central role of chemokine CCL7.

In comparison to HC, KD children also exhibit several TNFSF proteins 
which regulate various aspects of the immune system, cell survival and 
inflammatory cytokine pathways such as IL-6 and IL-17 [26]. KEGG 
enrichment analysis, showed that DEPs in KD present a significant 
enrichment in cytokine-cytokine receptor, chemokine signaling path
ways, IL-17 signaling pathway and PI3k-Akt signaling pathway (Fig. 
S2C). Moreover, KD patients also showed DEPs mainly enriched in cell 
chemotaxis, leukocyte migration, cytokine-mediated signaling pathway 
and response to chemokines when compared to FC (Fig. S2D).

3.2. Prognostic indicators

To enhance our understanding of Kawasaki disease’s pathogenesis 
and unveil potential prognostic indicators, we conducted correlation 
analyses integrating laboratory parameters, echocardiogram values and 
proteomics in KD. Our analysis identified an inverse correlation between 
age and an array of proteins including CASP8, OSM, TGFA, TNFSF14, 
EIFEBP1, APBB1IP, and STAMBP (Fig. 2A). Furthermore, we found a 
negative correlation linking CCL13 with ferritin, AST levels, and 
intriguingly, with RCA values. Regarding echocardiographic parame
ters, we identified a positive correlation between APBB1IP levels and the 
maximum Z-score (any dilated coronary artery; p = 0.001, r = 0.66;), as 
well as with the LAD values expressed in mm (p = 0.04, r = 0.47). A full 
list of echocardiogram values of patients presenting with CAI has now 
been shown in Table S4. The association between APBB1IP and CAI was 
also confirmed by a preliminary analysis showing a significantly higher 
protein level in CAI+ as compared to CAI- patients (p = 0.00183, Fig. 
S2E).

3.3. Longitudinal analysis reveals the proteomic dynamics after IVIG in 
KD

The effect of IVIG on KD proteomic profile was investigated by lon
gitudinal analysis. PCA segregated well KD samples collected in distinct 
time-points suggesting that proteomic dynamics were able to charac
terize the effect of IVIG intervention (Fig. 2B). Top contributing features 
for PCA are reported in Fig. 2C. Following IVIG infusion, a significant 
decline was observed in various proteins, each exhibiting a distinct ki
netic pattern. Notably, TNFRSF10A and CCL23 exhibited an initial and 
significant reduction at T1, which was followed by a sustained decrease 
at T2, reaching levels comparable to those observed in HC (Fig. 2D). 
Conversely, several cytokines exhibited a gradual decline, with statis
tically significant differences emerging only at T2 when compared to 
both T0 and T1. This trend was exemplified by IL-6, IL-17 A, IL-17C, 
CXCL11, CXCL10, CXCL9, CCL23, TNF and others (Fig. 2D, Fig.S3A). 
IVIG was also able to reduce VEGFA levels, a protein associated with 
angiogenesis and vasculogenesis which resulted previously correlated 
with CAI in KD patients [27]. Therapy also resulted in a decrease in the 
two proteins positively associated with echocardiogram values (CCL13 
and APBB1IP) (Fig.S3B).

On the other hand, IVIG increased the levels of TNFSF11, NTF3, CD6, 
LRRN1, TAFA5, DCBLD2, ZBTB16, and KAZALD1 (Fig. S3C). Whereas 
the proteomic profile mainly overlapped between convalescent KD and 
HC, a downregulation of EIF4EBP1, AXIN1, IFNG, SIRT2, STAMBP, 
ADA, CD8A, IL17C, and DKKL1, along with an increase in CASP8 levels 
(Fig.S3D) was found between T2 and HC suggesting that an aspecific 
inflammatory perturbation may persist after clinical recovery.

3.4. Flow cytometry of T-cell compartments in acute phase and post IVIG 
treatment

To enhance our understanding of KD pathogenesis, in line with the 
proteomic results which highlighted the role of proteins involved in T 
cell regulation we investigated the T cell compartment by flow cytom
etry analysis in longitudinal samples.

The analysis of memory CD4+ T-cells subsets showed significantly 
lower frequency of EM and TEMRA subsets compared to FC (p = 0.006; 
p = 0.01 respectively) (Fig. 3A). Compared to HC, KD and FC showed 
lower percentage of both naïve T-cells and T CD4+ CM cells (KD vs HC: 
p = 0.025, p < 0.001 respectively; HC vs FC: p = 0.025; p = 0.03). In 
addition, a lower frequency of pTfh cells was observed in both KD and 
FC groups respect the HC group (p = 0.015; p = 0.012 respectively). KD 
children exhibited a higher percentage of PD1 + Treg+ cells compared 
to FC subjects (p < 0.001; Fig. 3A). We further explored the T-cell 
subsets dynamics in KD cells at T1 and T2. The percentage of Tregs cells 
significantly increased following IVIG therapy at both time points 
compared to baseline (p = 0.013; p = 0.006, respectively; Fig. 3B). 
Conversely, the CM cells populations exhibited a gradual rise, culmi
nating at T2 (p = 0.004) with value like HC. The levels of PD1+ Treg 
cells showed a decreasing trend although a significant difference was not 
achieved. Interestingly, performing a correlation analysis we found an 
inverse correlation between this peculiar cell subset and the levels of 
OSM, TGFA, and APBB1IP (Fig. 3C).

3.5. Distinct T cells gene expression pattern between KD children and 
control groups

To further explore the T-cells compartment we investigated gene 
expression in sorted EM, CM and Treg cells. Differential analysis be
tween KD and FC, revealed 17 DEGs, 11/17 within the EM subset and 6/ 
17 within the CM T-cells subset (Fig. 3D, Fig. 3E), suggesting that 
qualitative perturbation, identified by transcriptional analysis, coupled 
with quantitative T-cell subsets analysis may define distinctive signa
tures of KD.

We further investigated whether there were any individual-level 
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Table 1 
Clinical characteristics of enrolled patients and controls. Demographic, laboratory parameters, and echocardiogram data of our cohort at baseline and throughout the 
follow-up period. The Mann-Whitney U test was used to compare median values across groups of children, and the same test was also used to compare distributions of 
clinical data.

T0 
Acute onset 
(n = 43)

T1 
48 h post IVIG 
(n = 30)

T2 
1 month 
post IVIG 
(n = 17)

FC 
(n = 11)

HC 
(n = 31)

P value

Gender (F:M) 19:24 11:19 8:9 5:6 16:15
Age, median (range), years 1.93 

(0.37–7.15)
2.12 
(0.38–7.16)

1.74 
(0.78–7.24)

2.05 
(0.19–5.38)

2.82 
(0.55–7.8)

Red Blood Cells, median 
(range), 106/microL)

4.05 
(3.15–5.67)

4.01 
(3.51–5.36)

4.41 
(4.07–5.71)

4.62 
(3.09–5.27)

4.81 
(4.36–5.58)

p < 0.001 (T0 vs HC), p < 0.001 (T1 vs HC), p = 0.0303 
(T2 vs T0), p = 0.046 (T2 vs HC)

Hemoglobin, median 
(range), g/dL

10.75 (8–12.7) 10.3 
(8.5–12.8)

11.5 
(10.3–13.6)

11.9 (9–13.1) 12.3 
(10.9–14.7)

p < 0.001 (T0 vs HC), p < 0.001 (T1 vs HC), p =
0.0228 (T2 vs T0), p = 0.0244 (T2 vs T1)

Hematocrit, median (range), 
%

32.6 
(26.9–39.6)

32.1 
(27.7–38.9)

36.45 
(29.1–40.7)

35.1 
(27.1–38.4)

37.6 
(34.3–42.2)

p < 0.001 (T0 vs HC), p < 0.001 (T1 vs HC), p < 0.001 
(T2 vs T0), p = 0.0028 (T2 vs T1), p = 0.0114 (FC vs 
HC)

White Blood Cells, median 
(range), 103/microL

13.38 
(4.51–23.82)

8.8 
(4.94–20.27)

7.92 
(5.15–30.04)

14.73 
(4.97–21.83)

7.93 
(0.36–11.84)

p < 0.001 (T0 vs HC), p = 0.0013 (FC vs HC), p =
0.0082 (T2 vs T0), p = 0.0176 (T1 vs T0), p = 0.0256 
(T2 vs FC)

Neutrophils, median (range), 
103/microL

8.91 
(1.34–17.13)

4.66 
(1.31–14.58)

3.29 
(1.77–23.61)

6.66 
(1.91–15.76)

2.67 
(0.9–6.11)

p < 0.001 (T0 vs HC), p < 0.001 (T2 vs T0), p < 0.001 
(FC vs HC), p = 0.0031 (T1 vs T0), p = 0.0049 (T2 vs 
FC), p = 0.0081 (T1 vs HC)

Lymphocytes, median 
(range), 103/microL

2.92 
(0.29–8.86)

3.2 
(0.99–11.35)

4 (2.46–8.28) 3.38 
(2.22–6.96)

4.08 
(1.5–5.89)

Monocytes, median (range), 
103/microL

0.48 
(0.1–1.55)

0.53 
(0.23–1.34)

0.46 
(0.3–1.26)

1.22 
(0.21–2.19)

0.43 
(0.22–1.28)

p = 0.0114 (FC vs HC)

Eosinophils, median (range), 
103/microL

0.3 
(0.01–1.33)

0.31 
(0.01–0.89)

0.26 
(0.09–0.9)

0.15 
(0.01–0.58)

0.16 
(0.03–0.71)

Basophils, median (range), 
103/microL

0.04 
(0.01–0.13)

0.05 
(0.01–0.24)

0.06 
(0.02–0.18)

0.04 
(0.03–0.29)

0.04 
(0.01–0.09)

Platelets, median 
(range),103/microL

409.5 
(82–811)

601 
(269–1069)

334.5 
(168–985)

466 (210–550) 355 
(220–563)

p < 0.001 (T1 vs HC), p = 0.002 T2 vs T1), p = 0.002 
(T1 vs T0), p = 0.0083 (T1 vs FC)

Neutrophils, median (range), 
%

67.75 
(11.1–87.4)

53.6 
(16.8–82.2)

40.45 
(23.5–78.6)

58.7 
(35.2–74.9)

37.7 
(16.3–63.6)

p < 0.001 (T0 vs HC), p < 0.001 (T2 vs T0), p = 0.003 
(FC vs HC), p = 0.0088 (T1 vs T0), p = 0.0148 (T1 vs 
HC), p = 0.0197 (T2 vs FC)

Lymphocytes, median 
(range), %

22.65 
(4.6–73.3)

35.4 
(13.8–71.6)

44.8 
(15.3–64)

29.8 
(14.8–44.6)

52.2 
(17.2–69.8)

p < 0.001 (T0 vs HC), p < 0.001 (T2 vs T0), p < 0.001 
(FC vs HC), p = 0.005 (T1 vs HC), p = 0.0119 (T1 vs 
T0), p = 0.0168 (T2 vs FC)

Monocytes, median (range), 
%

3.95 
(1.8–10.9)

5.6 (2.1–12) 5.5 (4.2–10.2) 8.3 (2.6–13.5) 5.4 (3.4–12.1) p = 0.0158 (T0 vs FC)

Eosinophils, median (range), 
%

2.65 (0.2–9.1) 2.8 (0.1–11) 3.3 (0.3–9.4) 1.1 (0.1–3.6) 2.25 (0.4–7.8)

Basophils, median (range), 
%

0.3 (0.1–1.1) 0.5 (0.1–1.9) 0.6 (0.3–1.1) 0.5 (0.2–1.5) 0.6 (0.3–1) p < 0.001 (T0 vs HC), p = 0.002 (T2 vs T0), p = 0.002 
(T1 vs T0)

C-Reactive Protein, median 
(range), mg/dL

10.48 
(0.5–29.33)

2.97 
(0.64–15.59)

0 (0–1.91) 10.41 
(0.78–19.32)

0.01 (0–1.9) p < 0.001 (T0 vs HC), p < 0.001 (T2 vs T0), p < 0.001 
(FC vs HC), p < 0.001 (T1 vs HC), p = 0.0188 (T1 vs 
T0), p < 0.001 (T2 vs FC), p < 0.001 (T2 vs T1),

Ferritin, median (range), ng/ 
mL

205 (95–1270) 188 (73–315) 41 (16–419) 196 (49–494) 20 (5–81) p < 0.001 (T0 vs HC), p < 0.001 (T1 vs HC), p =
0.0015 (T2 vs T0), p = 0.0046 (FC vs HC), p = 0.0099 
(T2 vs T1)

Sodium, median (range), 
mEq/L

136 (130–143) 136 
(132–138)

137 
(134–139)

137.5 
(135–139)

139 
(134–142)

p < 0.001 (T0 vs HC), p < 0.001 (T1 vs HC)

Potassium, median (range), 
mEq/L

4.56 
(0.25–5.96)

5 (3.34–6.04) 5.03 
(4.35–5.37)

4.72 
(3.68–5.92)

4.64 
(0.2–5.83)

Calcium, median (range), 
mg/dL

9.1 (7.3–9.8) 9.1 (7.9–10) 10.2 
(9.6–10.9)

9.1 (8.9–9.5) 10.1 
(9.3–11.2)

p < 0.001 (T2 vs T0), p < 0.001 (T0 vs HC), p < 0.001 
(T2 vs T1), p = 0.002 (T1 vs HC), p = 0.0035 (T2 vs 
FC), p = 0.0099 (FC vs HC)

Glucose, median (range), 
mg/dL

94.5 (75–131) 76 (70–94) 76 (63–94) 88.5 (72–105) 78 (55–112) p < 0.001 (T0 vs HC), p < 0.001 (T2 vs T0), p = 0.0339 
(T1 vs T0)

Aspartate Aminotransferase, 
median (range), U/L

29 (14–87) 32 (18–168) 36.5 (26–43) 34.5 (19–82) 35 (23–75)

Alanine Aminotransferase, 
median (range), U/L

29 (8–275) 18 (8–90) 17 (7–48) 18.5 (6–47) 17 (9–35) p = 0.0164 (T0 vs HC)

Gamma-glutamyl 
Transferase, median 
(range), U/L

18 (3–139) 19 (3–58) 11 (5–91) 10 (7–45) 10 (2–38)

Bilirubin, median (range), 
mg/dL

0.23 
(0.11–0.63)

0.18 
(0.15–0.37)

0.28 
(0.16–0.51)

0.15 
(0.15–0.27)

0.29 
(0.15–1.16)

Albumin, median (range), g/ 
dL

3.7 (2.5–4.8) 3.35 (2.4–4.1) 4.5 (4–5) 3.9 (3.7–4.2) 4.6 (4.1–5.1) p < 0.001 (T1 vs HC), p < 0.001 (T0 vs HC), p < 0.001 
(T2 vs T1), p < 0.001 (T2 vs T0), p = 0.011 (FC vs HC)

LM, median (range), mm 27 (2–39) 25.5 (17–34) 23 (13− 31) NA NA
Z-SCORE, median (range) 1.25 

(− 2.29–5.4)
0.91 
(− 2.2–5.4)

0.42 
(− 1.64–1.5)

NA NA

LAD, median (range), mm 19 (1–29) 19.5 (10–27) 17 (12–26) NA NA
RCA, median (range), mm 22 (1− 31) 20.5 (10–26) 19 (13–25) NA NA
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gene expression changes in CM, EM, and Treg following IVIG infusion. In 
this light, we performed paired analysis using data from each partici
pant. In EM compartment this analysis revealed that 2 genes (IFNAR2, 
TGFB1), both involved in the regulation of T cells functions, were 
upregulated after one month of IVIG infusion (Fig. 3F). In the Treg 
compartment, we found a strong upregulation of NFATC1 (Nuclear 
Factor of Activated T Cells 1) (Fig. 3F) which controls many activation, 
proliferation, and differentiation pathways of T cells [28,29]. In 
conclusion, our findings affirm the impact of IVIG on Treg cells and 
highlight its impact on EM cells at transcriptional level.

3.6. Multi omics integration analysis to comprehensively characterize 
Kawasaki disease

MOFA was used to integrate laboratory parameters, frequencies of T 
cell subsets, and plasma protein concentrations derived from both KD 
patients and control groups.

We identified 7 latent factors that elucidate the combined variances 
present within the routine laboratory analysis, cellular compositions, 
and protein datasets (Fig.S4A, Fig.S4B). The first factor, mainly 
informed by routine laboratory analysis and proteomics, distinctly seg
regates KD during both acute and convalescent phases and from the 
control groups. The top three laboratory features enabling the differ
entiation between KD and controls were: CRP levels, ferritin levels, and 
the absolute neutrophil count (Fig.S4C). Conversely, factors showing a 

negative association included both the absolute number and percentage 
of lymphocytes. Among proteins the top five markers were inflamma
tory cytokines: IL-6, OSM, CXCL10, IL-17 A and CCL7 (Fig.S4D). In 
contrast, the key proteins negatively associated with KD were KITLG and 
TNFSF11 (Fig.S4E).

3.7. Machine learning model highlighted potential key protein

To obtain more precise information about proteins that might be 
useful in clinical practice we used a mathematical model approach. 
Leveraging machine learning techniques, we successfully identified the 
key contributing features that account for the distinctions between KD 
and the other groups (Fig. 4A). This mathematical model showed an 
accuracy of 0.87, a specificity of 0.91, and a sensitivity of 0.83 (Fig. 4B). 
In Fig. 4C were reported proteins ordered by importance within the 
model. We found that CXCL10, IL-17 A and IL-10 contributed most to the 
cytokine storm of KD. Both CXCL10 and IL-17 A are key mediators 
secreted in response to pro-inflammatory signals, serving critical roles in 
attracting activated Th1 and Th17 cells to the sites of inflammation 
[30–33]. In contrast, the top negative contributor was TNFSF12 (TNF 
Superfamily Member 12) that has multiple biological activities, including 
stimulation of microvascular growth and angiogenesis, endothelial cells 
proliferation, induction of inflammatory cytokines and stimulation of 
apoptosis [34]. While this approach was constrained by the limited 
sample size and the accompanying risk of overfitting, it suggests the 

Fig. 2. Proteomic Analysis in KD patients: Clinical Correlation and Longitudinal Investigation. 
(A) Heat map illustrating positive correlations (in red) and negative correlations (in blue) between proteins, laboratory parameters, and echocardiogram values in 
children with Kawasaki Disease. ‘X’ represents p-values <0.05, while ‘O’ signifies p-adjusted values <0.05. 
(B) Principal component analysis (PCA) of inflammatory proteins allows to distinguish acute KD patients from those who received IVIG treatment. 
(C) Top contributing features for PCA2. 
(D) Proteomics longitudinal analyses of KD at the three time points analyzed compared to HC. Violin plots represent the group’s distribution. Each line between KD 
timepoints represents the protein level trajectory for an individual patient. We present the two proteins (CCL23 and TNFRSF10A) that showed a significant reduction 
at both T1 and T2 respect baseline and changes in IL6, IL17A value which showed a decreasing kinetic pattern at both T0 and T1 when compared to T2. The pre- 
processed data were reported in arbitrary units as Normalized Protein Expression (NPX) that enables individual protein analysis across a sample set analyzed in log2 
scale, wherein a higher NPX correlates with higher protein expression. * p-adjusted value <0.05, ** p-adjusted value <0.01; *** p-adjusted value <0.001. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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potential benefit of replicating this analysis on a larger dataset. Such an 
endeavor may prove valuable in distinguishing KD from other 
mimicking conditions.

4. Discussion

Considerable efforts have been made in the research of KD; but still 
many pivotal questions remain unresolved. The limited knowledge in 
these areas hinders the development of diagnostic or prognostic test, as 
well as advance in the treatment of IVIG resistant patients. Cellular 
immune dysfunction underlying such conditions has been only partially 
understood, often with conflicting results [8,35].

Our analysis shows that the cytokine storm is modulated during the 
acute phase by the administration of IVIG. We explored the longitudinal 
proteomic dynamics of children with KD, identifying DEPs which inform 
a novel list of candidate proteins for diagnosis and prognosis. The 
cytokine storm observed in KD was characterized by elevated levels of 
CXCL10, CXCL9, IL-6, IL-17 A, IL-17C, IL-10.

In addition, our analysis also highlighted TNF superfamily members 
12 (TNFSF12) and IL-6 to be upregulated DEPs in KD compared to FC 
and HC. In line with this, previous findings also showed that those 
pathways, out of a 13 gene expression signature, were able to distinguish 
KD from FC [13].

We further confirmed the pathogenic role of IL-17 A [30,31]. Spe
cifically, the elevated levels of Th17 mediators such as IL-17 A, along 
with increased Th1 downstream mediators as TNF-α and CXCL10 in KD, 
indicate potential targets for intervention. Thus, considering the use of 
Secukinumab or Ixekizumab to target IL-17 A or employing anti-TNFα 
treatments could be valuable strategies, especially for KD children with 

IVIG resistance or in groups considered at “higher risk”.
Nonetheless, our findings brought to light the significance of CCL7, 

which serves as a potent chemotactic factor for monocytes and neutro
phils, playing a critical role in the pathogenesis of cardiovascular and 
inflammatory diseases [36,37]. Moreover, this chemokine is overex
pressed in cardiac fibroblasts of mouse model of KD [38] and it is 
emerging as a key player in the pathogenesis of aortic aneurysms 
[39,40].

To further explore prognosis correlations, clinical characteristics 
including CAI were analyzed in association with protein level at base
line. The impact of age was confirmed by the correlation plot: indeed, 
most proteins involved in the cytokine storm and possibly underlying 
the disease course were inversely related to age, further confirming what 
literature knows very well, that the youngest are at higher risk for dis
ease complications [41]. This observation further provides molecular 
evidence that this specific group may deserve a distinct clinical man
agement with a combined “first line” therapeutic approach that com
bines high dose of IVIG with other immunosuppressive treatments (e.g. 
CS, anti-TNF-a) [14,41].

The analysis further revealed a positive association between dilated 
coronary artery Z-score and APBB1IP. The same trend was found also for 
RCA, LAD and LM value expressed in mm. Such protein resulted 
significantly higher in CAI+ patients, suggesting a potentially pivotal 
role for this protein in informing and possibly predicting CAI in KD. 
APBB1IP, also known as RIAM, is required for neutrophil migration, 
adhesion, extravasation, and polarity in response to chemokines, and is 
crucial for the cooperative actions of neutrophils and platelets in pro
ducing neutrophil extracellular traps, as well as for NK cell cytotoxicity 
[42]. Moreover, through its various domains, APBB1IP is a critical node 

Fig. 3. Evaluation of T Cell Subsets, Post-Therapy Alterations, and Transcriptomic Profiles in KD Children. 
(A) Violin plots illustrating differences in cellular T subsets in children with KD and control groups. 
(B) Longitudinal flow cytometry analyses reveal an increase of Treg and CM CD4+ T cell subsets after IVIG therapy. Conversely, PD1+ Tregs cells exhibit a tendency 
to decrease. Violin plots depict group distributions, and each line connecting KD timepoints represents the protein level trajectory for an individual patient. 
(C) Spearman correlation analysis demonstrates the relationship between baseline PD1+ Treg levels and APBB1IP, TGFA, and OSM proteins, with the regression line 
displayed in black. 
(D) Differentially expressed genes ranked by p-value and fold change in sorted EM CD4+ T cells and E) CM CD4+ T cells between acute KD children and the FC. 
(F) Longitudinal alterations in gene expression post IVIG therapy within EM CD4+ T cell and Treg subsets.

N. Cotugno et al.                                                                                                                                                                                                                                Clinical Immunology 267 (2024) 110349 

7 



of signal integration for activation of T cells [43]. Interestingly, APBB1IP 
was linked to coronary artery disease in both mice and humans [44].

APBB1IP may enhance platelet activation, promoting their interac
tion and aggregation with monocytes and neutrophils. These leukocy
te–platelet aggregates could exacerbate KD pathogenesis through their 
pro-inflammatory and thrombotic activities, potentially contributing 
to the development of coronary artery aneurysms [45]. Further studies 
should dissect its contribution in the immune cell’s infiltration at cor
onary artery level in KD.

To investigate the contribution of the T cell compartment we 
analyzed T cell subsets at both quantitative and qualitative level. KD is 
characterized by decreased absolute T cell counts in peripheral blood as 
previously reported [35], downregulation of T cell receptor expression 
[11], reduced levels of Tregs and a notable increase in Th17 cells during 
the acute phase [7,22,46].

Our analysis showed a global perturbation within maturational 
subsets of the T cell compartment with lower naïve, EM, CM and pTfh 
CD4+ T cell subsets in the acute phase of the KD. A longitudinal eval
uation of the T cell distribution mirrored findings from Franco et al., 
who identified a rapid expansion of circulating EM, CM and Treg cells 
after IVIG and over the convalescent phase [10].

The Treg compartment seems to play an important role especially 
after treatment intervention [7,22,46]. In this context we explored PD1 
expression which can enhance FOXP3 expression, Treg function and de- 
novo generation of Treg [47].

An inverse association was found between APBB1IP, OSM and TGFA 
and PD1+ Treg cells over the acute phase of KD. This association reflects 
on a possible protection effect sustained by PD1 + Treg over the acute 
phase and it may represent a possible indicator of disease progression 
once confirmed by larger studies. In this context, it is unknown whether 
Tregs can be destabilized through a NOTCH1-dependent mechanism 
also in KD, as recently observed in MIS-C [48].

From a longitudinal perspective, we highlighted the ability of IVIG in 
inducing an increase in Treg frequency, and to enhance the gene 
expression of NFATc1 of these cells. Interestingly, NFATc1 signaling was 
previously shown to be able to promote Tregs stability and their sup
pressive function [28] as well as being a major molecular target for other 
immunosuppressive drugs such as cyclosporin A and tacrolimus [49,50]. 
In addition, genes involving the NFATs pathway have been identified as 
KD susceptibility genes [51]. Overall, these results further suggest that 
IVIG intervention provide anti-inflammatory effects through multiple 
mechanisms highlighted by proteomic, T cell compartment and gene 
expression dynamics. Further analysis able to integrate such multi-omics 
signatures will be needed to provide definitive diagnostic and prognostic 
biomarkers.

In this scenario, albeit limited by the small sample size, by employing 
a ML approach, we identified key proteins, which allow to distinguish 
KD from the control groups, achieving high accuracy in classification. 
Interestingly, in our study KD children had lower expression of TNFSF12 
which is a stronger angiogenic regulator involved in the endothelial cell 

Fig. 4. Machine Learning Model. 
The cartoon illustrates the stepwise progression in constructing a predictive model able to distinguish KD patients from the control groups. Four machine learning 
algorithms were evaluated, encompassing Logistic Regression, Random Forest, eXtreme Gradient Boosting (XGBoost), and knearest neighbor (k− NN). The assessment 
of the models’ performance entailed computing accuracy, sensitivity, and specificity on the testing dataset. A) The model showing the best performance was built 
using the eXtreme Gradient Boosting (XGBoost) algorithm. B) The performance metrics are displayed in the upper right quadrant of the ROC curve. C) The lower right 
quadrant provides a visual representation of the features importance ranking employed within the model. Of note, proteins were colored in blue if upregulated in KD 
children respect to the control groups and in gray if downregulated. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
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survival and proliferation and CXCL10 which play roles in regulating T 
cells and inflammation [51].

Some limitations of this study should be mentioned. Firstly, the study 
cohort’s sample size might be limited, which could impact the gener
alizability of the findings to a broader population. One of the major 
limitations of our findings is the enrollment of only Caucasian patients 
with no children of African and Asian ancestry. Moreover, our samples 
from KD children with CAI were limited. Our proteomic results may be 
biased by the selection of 180 proteins. Thus, the use of other high 
throughput proteomic assays could provide additional information. 
Furthermore, the key proteins identified lack validation in an indepen
dent cohort.

Nonetheless, this study directly delineated expression alterations in 
numerous inflammatory proteins and T cell subsets between KD and 
control groups, yielding valuable insights for future multi-omics 
research. Overall, the data presented, albeit to be confirmed in a large 
validation cohort, suggest the design of future studies, aiming to achieve 
a more mechanistic understanding of the immunopathology of KD and 
the identification of novel intervention targets.
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