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Abstract

The novel polarizable FQFµ force field is proposed and coupled to a QM SCF Hamil-

tonian. The peculiarity of the resulting QM/FQFµ approach stands in the fact the

polarization effects are modeled in terms of both fluctuating charges and dipoles, which

vary as a response to the external electric field/potential. Remarkably, QM/FQFµ is

defined in terms of three parameters: electronegativity and chemical hardness, which

are well defined in Density Functional Theory, and polarizability, which is a physi-

cal observable. Such parameters are numerically adjusted so to reproduce full QM

reference electrostatic energy values. The model is challenged against test molecular

systems in aqueous solution, showing remarkable accuracy and thus highlighting its

potentialities for future extensive applications.
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1 Introduction

The problem of describing the interaction between a molecule and its embedding environ-

ment is a challenge in Quantum Chemistry. The interplay between the molecule and the

environment can in fact dramatically alter both the structure and the electronic response to

external electromagnetic fields. The most successful answer to this problem has been found

within the realm of multiscale approaches:1–6 there, the focus is always the molecule and

the key is to accurately capture the molecule/environment interactions and their effects on

the molecular structure and properties, while neglecting to simulate the intrinsic properties

of the environment. Such an approach is based on the assumption that molecular energetic

and response properties are local properties of the molecule, which are modified but not

determined by the presence of the environment.

In the last years, much effort has been devoted to develop multiscale QM/MM approaches,

which keep an atomistic description of all the system under study and are therefore able

to model specific molecule-environment interactions, such as hydrogen bonding (HB).7,8

Most QM/MM approaches developed so far focus on describing the electrostatic interactions

between the QM and MM portions. The most physically consistent of such methods are

those in which the mutual polarization between the QM and MM portions of the system is

recovered. This has led to the development of the so-called polarizable QM/MM approaches,

which can be based on distributed multipoles,9–13 induced dipoles,14–16 Drude oscillators17

or Fluctuating Charges (FQ).18–20 In the latter approach, the electrostatic interaction is

described by endowing each MM atom with a charge that can vary as a response to both

the differences in electronegativity between MM atoms and in electric potential generated

by the QM density.

The classical FQ force field is described only in terms of charges. This poses some conceptual

issues because only monopoles, i.e. zeroth order of the electrostatic Taylor expansion, are

taken into consideration. As a consequence, the intrinsic anisotropy of some specific molecule-

environment interactions, such as HB, is not explicitly taken into account. To overcome this
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problem, the electrostatic description of the FQ force field can be refined by including an

additional source of polarization. This can be done by adding induced point dipoles,21

Drude Oscillators (Polarizable Charge Equilibration PQEq),22,23 or Gaussian-like induced

atomic dipoles (Q+P iso [R,αiso] model,24 Discrete Interaction Model DIM,25 Capacitance

Polarization Model CMM26). Differently from the basic formulation of the FQ force field, in

the last two approaches gaussian distributions representing the charges, the Drude Oscillators

or the induced atomic dipoles are considered, so that the Coulomb law divergence at zero

distance, i.e. the so-called “polarization catastrophe”, is avoided.24,25

In this work, we present a novel polarizable force field, which we will call Fluctuating Charge

Fluctuating Dipoles (FQFµ), in which both monopoles (charges) and dipoles can vary as a

response to the external Maxwell sources, i.e. electric potential/field. The proposed model

founds its fundamental basis on Ref.24 and overcomes the limitations of FQ at describing

anisotripic electrostatic terms. FQFµ is then coupled to a QM description, following the

general structure of QM/MM approaches, yielding the novel QM/FQFµ method. Therefore,

QM/FQFµ can be seen as a refinement of our previously developed QM/FQ method.20,27–31

An important difference between QM/FQFµ (and QM/FQ) and other polarizable QM/MM

approaches, is that the latter only adjust the first order of the electrostatic Taylor expansion

(i.e. dipole terms) to the QM density, but they keep the monopole (and higher orders) terms

fixed. However, it has been proven that charges indeed give the main contribution to the

electrostatic interaction energy.32,33

As stated before, similar polarizable QM/MM approaches, in which both charges and dipoles

are polarizable, have been proposed (see Refs.25,26). However, our approach presents sev-

eral differences with respect to them. The most relevant is that the widths of the gaussian

charge/dipoles distributions are defined in terms of atomic chemical hardnesses and polar-

izabilities, which are the quantities entering the definition of FQFµ. Also, to the best of

our knowledge, we report on the first application of a QM/fluctuating charges+fluctuating

dipoles approach to molecular systems in a molecular environment (not on surfaces/nanoparticles,
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as for instance in Ref.24–26). Another relevant novelty of the present work stands in the

strategy which is exploited for model parametrization and testing. In fact, parametrization

is tuned to get an accurate reproduction of electrostatic interaction energies (vide infra),

whereas other approaches rely on atomic parameters defining the specific MM polarizable

force field which is actually used.

The manuscript is organized as follows. In the next section, the FQFµ force field is proposed

and then coupled to a QM SCF description (QM/FQFµ). A parametrization for aqueous

solutions is proposed and applied to the the calculation of electrostatic and total interaction

energies of a water dimer as a function of the intermolecular distance. Then, QM/FQFµ

is tested against solute-solvent electrostatic interactions of four selected systems in aqueous

solution. Some conclusions and future perspectives end the manuscript.

2 Theoretical Model

2.1 FQFµ force field

In the FQFµ force field each MM atom is endowed with both a charge q and an atomic

dipole µ, that can vary according to the external electric potential and electric field. Both

charges and dipoles are described as s-type gaussian distribution functions:

ρqi(r) =
qi

π
3
2R3

qi

exp

(
−|r− ri|2

R2
q

)

ρµi
(r) =

|µi|
π

3
2R3

µi

n̂i ·∇
[

exp

(
−|r− ri|2

R2
µi

)]
(1)

where Rqi and Rµi
are the width of the Gaussian distributions ρqi and ρµi

, respectively. n̂i

is a unit vector pointing to the dipole direction µi.

The total energy E associated with a distribution of charges and dipoles is equal to:24
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where χ is the atomic electronegativity, η the chemical hardness and α the atomic polariz-

ability. Tqq
ij , Tqµ

ij and Tµµ
ij are the charge-charge, charge-dipole and dipole-dipole interaction

kernels, respectively. If the gaussian distributions in Eq. 1 are adopted, the functional form

of the interaction kernels provided by Mayer24 can be exploited. Tqq
ij term reads:

Tqq
ij =

1

|rij|
erf

(
|rij|
Rqi−qj

)
(3)

where Rqi−qj is equal to
√
R2
qi

+R2
qj

. When ri tends to rj, the use of gaussian distributions

avoids any issues which are related to the typical divergence of Coulomb kernels (i.e. the

so-called “polarization catastrophe”):24,25

lim
rij→0

Tqq
ij = Tqq

ii =
2√
π

1

Rqi−qi
(4)

In order to collect all the quadratic terms in the charges, the diagonal elements of Tqq can

be imposed to be equal to the atomic chemical hardnesses η, so that the width of the charge

distribution Rq is defined without the need of any parametrization:

Tqq
ii = ηi ⇒ Rqi =

√
2

π

1

ηi
(5)

where it is assumed Rqi−qi =
√

2Rqi .

The charge-dipole and dipole-dipole interaction kernels are obtained as first and second

derivatives of the charge-charge interaction kernel in Eq. 3:24
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where Rxi−xj =
√
R2
xi

+R2
xj

(x = q, µ) and I is the identity matrix. Similarly to what was

done before for Tqq
ij , the limits for rij → 0 in the case of Tqµ

ij and Tµµ
ij are:

lim
rij→0

Tqµ
ij = Tqµ

ii = 0 (8)

lim
rij→0

Tµµ
ij = Tµµ

ii = −
√

2

π

I

3R3
µi

(9)

From Eq.9, Rµi can be defined in terms of the atomic polarizability αi:

α−1i =

√
2

π

1

3

1

R3
µi

⇒ Rµi =

(√
2

π

1

3
αi

) 1
3

(10)

The definition of the gaussian width Rqi and Rµi in terms of ηi and αi limits the number of

parameters which enter the definition of FQFµ to electronegativity, chemical hardness and

polarizability for each atom type. Therefore, Eq. 2 can be formally rewritten as:

E(q,µ) =
1

2

∑
i

∑
j

qiT
qq
ij qj +

1

2
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i
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†
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=
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2
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1

2
µ†Tµµµ + q†Tqµµ + χ†q (11)
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where a matrix notation has been adopted. Notice that FQFµ can be further expanded to

consider also polarizable quadrupolar terms, by only defining the appropriate interaction

kernels.

In Eq. 11, the sum of charge values is not forced by any external constrain. However, the

equilibrium condition is reached when the Electronegativity Equalization Principle (EEP) is

satisfied. Such a principle states that at equilibrium each atom has the same electronega-

tivity. Thus, an energy functional to be minimized can be written for instance by adopting

Lagrangian multipliers. Notice that we can in principle assume:

• The entire system is constrained to have charge Qtot, and no constraint is imposed on

single molecules. This permits inter-molecular Charge Transfer (CT) and makes, at

the equilibrium, the electronegativity of each atom to be the same.

• Each molecule is constrained to assume a fixed, total charge Qα, which sums to Qtot).

Therefore, the electronegativity of each atom in the same molecule is the same but

generally has different values among different molecules.

We report here the equations obtained by adopting the first assumption. Consistently with

what has been done for FQ by some of the present authors,28,34 similar equations can be

derived under the second assumption : they are given in Section S1 of the Supporting

Information (SI). Notice that our implementation is general and can treat both cases. The

energy functional F can be written by exploiting the Lagrangian multiplier (λ):

F (q,µ, λ) = E (r,q,µ) + λ

[∑
i
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]
=

=
1

2

∑
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qiT
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ij qj +

1

2

∑
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∑
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∑
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ij µ

†
j +
∑
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+ λ
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]
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=
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2
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1

2
µ†Tµµµ + q†Tqµµ + χ†q + λq (12)
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where λ is meant to preserve the total charge Qtot of the MM portion. Therefore, the

conditions for the constrained minimum are found by imposing the derivatives of F with

respect to all the variables to be zero, resulting in the following linear problem:



∑
j Tqq

i,jqj + λ+
∑

j Tqµ
i,jµj = −χi∑

j Tµµ
i,jµj +

∑
j Tqµ

i,jqj = 0∑
i qi = Qtot

(13)

The whole system can be recast in a more compact form as:21,26


Tqq 1λ Tqµ

1†λ 0 0

−Tqµ† 0 Tµµ




q

λ

µ

 =


−χ

Qtot

0

 ⇒ DQλ = −CQ (14)

where 1λ is a vector which accounts for the Lagrangian. CQ is a vector containing atomic

electronegativities and total charge constraint, whereas Qλ is a vector containing charges,

dipoles and the Lagrange multiplier.

2.2 The QM/FQFµ model

In order to couple FQFµ to a QM wavefunction in a QM/MM framework, the first step is

to define an extended energy functional, which is composed of three terms:

E = EQM + EMM + EQM/MM (15)

where EMM is defined in Eq. 12. If the QM term is a variational functional itself, the

resulting, coupled equations are derived following the same procedure as for the uncoupled

case. The QM density interacts as a classical density of charge with both charges and dipoles:
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EQM/MM =
∑
i

V [ρQM ](ri)qi − µ†iE[ρQM ](ri) (16)

where V [ρQM ](ri) and E[ρQM ](ri) are the electric potential and electric field, respectively,

calculated at the i-th charge and i-th dipoles placed at ri. The QM potential and the electric

field are composed by an electronic (Ve, Ee) and a nuclear (VN , EN) contribution:

V [ρQM ](ri) = Vi [P] = V N
i (P) + V e

i (P) =
∑
ζ

Zζ
|ri −Rζ |

+

∫
R3

ρel(r)

|ri − r|
dr (17)

E[ρQM ](ri) = Ei(P) = EN
i (P) + Ee

i (P) =
∑
ζ

Zζ(Rζ − ri)

|ri −Rζ |3
−
∫
R3

ρel(r)(ri − r)

|ri − r|3
dr (18)

where ρel is the electron density. ζ index runs over the QM nuclei, whose charges are named

Zζ and whose positions are Rζ . If the electronic density ρel(r) is expanded in an atomic

basis set {χµ}, the second terms in Eqs.17 and 18 become:

V e
i (P) = −

∑
νµ

Pµν

∫
R3

dr
χµ(r)χν(r)

|ri − r|
=
∑
µν

PµνVµν,i (19)

Ee
i (P) = −

∑
µν

Pµν

∫
R3

χµ(r)χν(r)(ri − r)

|ri − r|3
=
∑
µν

PµνEµν,i (20)

where we have introduced the “uncontracted” potential Vµν and the “uncontracted” field Eµν .

Pµν are elements of the QM density matrix. Finally, the global QM/MM energy functional

for a SCF-like description of the QM portion is:

F (P,q,µ,λ) = trhP +
1

2
trPG(P) +

1

2
q†Tqqq +

1

2
µ†Tµµµ + q†Tqµµ + χ†q + λ†q+

+ q†V(P)− µ†E(P) (21)
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where

hµν = 〈ψµ| −
∇2

2
−
∑
ζ

Zζ
|r−Rζ |

|ψν〉

Gµν =
∑
στ

Pστ (〈µσ|ντ〉 − cx〈µσ|τν〉) + cl〈ψµ|vxc|ψν〉

are the usual one- and two-electron matrices. The coefficients cx and cl define whether

Hartree–Fock (cx = 1, cl = 0), pure DFT (cx = 0, cl = 1), or hybrid DFT are exploited.

For the sake of brevity, we will refer to both the HF and KS matrices as Fock matrix. The

effective Fock matrix is defined as the derivative of the energy with respect to the density

matrix:

F̃µν =
∂E
∂Pµν

= hµν +Gµν(P) + V†µνq− E†µνµ (22)

where the interaction of the electron density with both charges and dipoles are included

through the coupling electrostatic terms. Charges and dipoles are obtained by imposing the

global functional to be stationary with respect to charges, dipoles and Lagrangian multiplier.


Tqq 1λ Tqµ

1†λ 0 0

−Tqµ† 0 Tµµ




q

λ

µ

 =


−χ

Qtot

0

+


−V(P)

0

E(P)

 ⇒ DQλ = −CQ−S(P)

(23)

Notice that, with respect to Eq. 14, a new source term S(P) arises. Such a term, which rep-

resents the coupling of both charges and dipoles with the SCF density, permits to determine

them for a given density matrix.

QM/FQFµ introduces two polarization sources: fluctuating charges and fluctuating dipoles.

From Eq. 23 both QM/FQ and QM/Induced Dipoles can be recovered by considering only

charge-charge or dipole-dipole blocks in the linear system. QM/FQFµ response matrix is

four times bigger than the QM/FQ one (Tqq block). As a consequence, QM/FQ can treat

four times bigger systems than QM/FQFµ at the same computational cost. Similarly to
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QM/Induced Dipoles, QM/FQFµ introduces two contributions in Fock matrix (see Eq. 22).

However, in QM/FQFµ both the zeroth order monopoles and the first order dipoles are

indeed dependent on the QM density. This only causes a small increase in the computational

cost with respect to QM/Induced Dipoles, because the response matrix need to be enlarged

so to include the Tqq block (which is squared the number of MM atoms).

As pointed out in the Introduction, QM/FQFµ finds its fundamentals in Ref.,24 similarly

to QM/DIM35 and QM/CMM.26 However, the definition of the gaussian widths, which

in both QM/DIM and QM/CMM are external parameters, is automatically obtained in

QM/FQFµ from chemical hardnesses and polarizabilities (see Eqs. 5 and 10). As a conse-

quence, QM/FQFµ is defined only in terms of three parameters for each atom type: elec-

tronegativity, chemical hardness and polarizability. A second relevant difference stands in

the formulation of the interaction between QM and MM portions. In QM/CMM, the electro-

static interactions is expressed in terms of a Coulomb integral of the gaussian distributions of

both charges and dipoles with the QM density.26 In this way, Coulomb repulsion is also taken

into account. In QM/FQFµ, instead, MM charges and dipoles are seen as point charges and

point dipoles by the QM density, as it is generally assumed in most polarizable QM/MM

approaches. However, QM/FQFµ can be reformulated in a similar way to QM/DIM and

QM/CMM, for instance by following what has been proposed in other contexts.36 In addi-

tion, differently from DIM and CMM, FQFµ has been formulated in terms of a variational

functional (see Eqs. 12 and 21), which guarantees its rigorous further extension to molecular

properties.37 It is worth remarking that the application of both QM/DIM and QM/CMM

has been so far limited to the study of molecular properties of systems adsorbed on a metal

surface, in which the metal surface is described by DIM or CMM force fields.38–41 The hetero-

geneous environment is instead modeled in terms of non-polarizable force fields.38 QM/FQFµ

is not limited to any specific kind of environment (pending an accurate parametrization is

obtained), thus being of broader applicability with respect to other approaches.
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2.3 Fluctuating Dipoles vs Drude Oscillators

FQFµ describes the first order of electrostatic Taylor expansion in terms of fluctuating

dipoles. As an alternative, Drude oscillators can be employed, as it has been recently pro-

posed in the PQEq force field.22 PQEq combines the Charge Equilibration model (QEq)42

with the Drude Oscillator approach.43 Each MM atom is seen as composed of a core and a

shell, on which gaussian charge distributions are placed. In particular, both a fluctuating

charge (q) and a fixed charge (+Z) are placed on the core. The fixed charge is connected

trough an isotropic harmonic spring to the shell fixed but mobile charge (−Z), thus allow-

ing variable charge displacements. PQEq can be coupled to a QM description by following

the same strategy adopted above for QM/FQFµ, yielding the QM/PQEq model. In this

approach fluctuating charges result from the solution of a modified FQ system, whereas the

positions of the shell mobile charges are obtained by imposing the total electric force acting

on them to be zero (see Section S2, given as SI). QM/PQEq Fock operator reads:

F̃µν =
∂E
∂Pµν

= hµν +Gµν(P) + V†µν,cq + V†µν,cZ−V†µν,sZ (24)

where, q and Z are the vectors containing fluctuating and fixed charges, respectively, whear-

eas c and s subscripts indicate core and shell positions, where the QM potential V is calcu-

lated. Thus, differently from QM/FQFµ, QM/PQEq is defined only in terms of the QM elec-

tric potential. The equation which defines the equilibrium positions of shell mobile charges

(see Eq. S11 given as SI) introduces a non-linearity in the problem, which can be solved

only by exploiting iterative techniques.17,44–46 Also, due to its non-linearity, QM/PQEq could

present some issues in the definition of the response property of the QM portion. On the

contrary, this does not apply to QM/FQFµ. Due to its linearity and variational nature,

QM/FQFµ can be extended to the calculation of molecular properties12,28,29,47–51 by using

the standard techniques of quantum chemistry.52 PQEq can indeed be mapped into the

FQFµ approach, similarly to what has been done in the case of basic Drude Oscillator and
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Induced Dipole force fields.53

3 Computational Details

QM/FQFµ was implemented in a locally modified version of Gaussian16.54 All QM/FQ and

QM/FQFµ calculations were performed by treating the QM portion at the HF or DFT levels

of theory, combined with selected basis sets. Three different parametrizations to treat the

FQ electrostatic component in QM/FQ calculations were exploited, taken from ref.,18 ref.49

and ref.55 Non-electrostatic contributions, i.e. repulsion and dispersion, were modeled as re-

ported in Ref.56 All the classical Molecular Dynamics (MD) simulations were performed with

the Gromacs package,57–60 by keeping the same settings as previously reported by some of the

present authors.27,61,62 Details on MD simulations are given as SI. The Kitaura-Morokuma

Energy Decomposition Analysis (KM-EDA)63,64 was performed by using the GAMESS pack-

age.65,66 Symmetry Adapted Perturbation Theory (SAPT)67,68 calculations were performed

by using Psi4 1.1.69

4 Numerical Results

In this section, the parametrization of the QM/FQFµ approach to treat aqueous solutions

is presented and discussed. Then, the resulting parameters are tested to reproduce elec-

trostatic energies of a water dimer as a function of the oxygen-oxygen distance as com-

puted at the KM-EDA/6-31+G* level. Then, the total interaction energy Eint, i.e. the

sum of electrostatic (Eele), repulsion (Erep) and dispersion (Edis) contributions, is compared

to SAPT2+3(CCD)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ with Counter-Poise correc-

tions values for the same dimer. The dependence of the QM/FQFµ electrostatic energy

on the level of theory, i.e. the combination of HF/DFT with several basis sets is also dis-

cussed. Finally, in order to test the transferability of our parameters to other systems, four

molecules (Methyloxirane, Acrolein, N-Methyl Acetamide and Methanol) in aqueous solu-
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tion are studied. In such cases, QM/FQFµ and QM/FQ electrostatic energies are compared

to SAPT0/6-311++G** values.

4.1 Model Parametrization

QM/FQFµ is general enough to model any kind of external environment, pending an appro-

priate parametrization of the quantities entering Eqs. 21 and 22. Such a parametrization is

a crucial step towards the routinely application of the method to real cases. In this section

we will focus on aqueous solutions, which will also allow for a quantitative comparison with

QM/FQ, thus highlighting the effect of including atomic fluctuating dipoles in QM/MM

electrostatic energies.

In order to set the parameters entering Eq. 21, selected water clusters taken from Kratz et

al.70 (see Figure 1), were studied. Reference full QM electrostatic energy values of such clus-

ters were calculated by performing a KM-EDA63,64 calculation on each structure in Figure

1 at the HF/6-31+G* level, according to what has already been proposed in the litera-

ture.56,71,72

I II III
Figure 1: Structures of water dimers exploited in the parametrization of QM/FQFµ.

KM-EDA values were compared to electrostatic energies obtained with the QM/FQFµmodel.

In the latter, one water molecule was treated at the QM level (HF/6-31+G*), whereas the

second molecules was described by means of the FQFµ force field. For each dimer struc-

ture two calculations were performed, by exchanging the QM and FQFµ water molecules.

Remarkably, electrostatic interaction is by definition symmetric if the two water molecules

are interchanged. Thus, differently to what some of the present authors reported for the

parametrization of non-electrostatic contributions,56 we imposed the two calculations (i.e.
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the MM water molecule acts as HB donor or acceptor) to give the same results. In such

a way the transferability of the final parameters should be guaranteed. Notice that in the

QM/FQFµ approach, electrostatic and polarization terms cannot be separated, because the

electrostatic charge contribution is partially due to QM polarization (see Eq. 23). Thus,

QM/FQFµ electrostatic energies are compared with the sum of electrostatic and polarization

KM-EDA energy contributions.

For the studied dimers, Eq. 21 depends on six parameters (electronegativities, chemical

hardnesses and polarizabilities of hydrogen and oxygen atoms, respectively): their best values

were defined by performing a least square roots fitting on full KM-EDA data, by allowing

the parameters to vary freely. Their best fitted values are reported in Table S1 in the

SI. Electrostatic energies of the selected water dimers are reported in Table S2 in SI. The

reliability of the parametrization protocol is confirmed by the agreement between QM/FQFµ

and KM-EDA data. The effects due to the introduction of atomic dipoles can also be

quantified. The zeroth order monopoles, i.e. fluctuating charges, account for almost 70∼72

% of the total electrostatic energy, whereas the first order dipoles for 28∼30%, i.e. they give

a minor, but not negligible contribution.

4.2 Interaction energy of a water dimer as a function of O-O dis-

tance

In this section, the dependence of Eele and Eint on the water-water intermolecular distance is

investigated. To this end, the water dimer depicted in Figure 2 (optimized at the MP2/aug-

cc-pVQZ level) was exploited, and the distance d between the oxygen atoms was taken as

reference.

In Figure 3, QM/FQFµ Eele is reported as a function of d. The plot was constructed

by increasing the O-O distance from 2.54 Å to 6.49 Å by a step of 0.05 Å (80 points).

Eele was calculated by treating the QM moiety at the HF/6-31+G* level. Again, QM and

MM moieties were interchanged, and the average values were taken. Charge and dipole
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d d
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QMFQFμ

FQFμ

1 2
Figure 2: Structure of the water dimer used to study the dependence of electrostatic and
interaction energies as a function of O-O intermolecular distance.

electrostatic contributions QM/FQFµ|q and QM/FQFµ|µ, are also depicted, showing that

also in this case the charge contribution is dominating at all distances (70 ∼ 72 %).
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Figure 3: Plot of the QM/FQFµ electrostatic energy as a function of the O-O intermolecular
distance for the water dimer depicted in Figure 2. Charge and dipole contributions to Eele
are also plotted.

In Figure 4, computed QM/FQFµ electrostatic energies are compared with KM-EDA full-QM

reference electrostatic (summed with polarization) energies. An almost perfect superposition

is observed, the average computed error being of about 7% and the computed Root Mean

Squared Deviation (RMSD) being only 0.29 kcal/mol (∼ 0.47 mH). The excellent reproduc-

tion of Eele is not unexpected, because the dimer structure under study is very similar to

structure I exploited in the parametrization step (see Fig.1).
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The inset in Figure 4 shows the difference between calculated QM/FQFµ Eele values obtained

by assuming the QM water molecule to act as H-bond donor or acceptor.The two curves are

almost superimposed, as expected by considering the parametrization protocol that we have

followed (see previous section).
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Figure 4: Plot of the electrostatic energy as a function of the O-O intermolecular distance
for the water dimer depicted in Figure 2. QM/FQFµ values (HF/6-31+G* for the QM
moiety) are compared to KM-EDA (HF/6-31+G*) calculations. In KM-EDA calculations,
electrostatic and polarization contributions are summed up. In the inset QM/FQFµ Eele as
a function of the O-O distance is depicted for the two structures (1 and 2) in Figure 2.

To end this discussion, the total B3LYP/aug-cc-pVTZ QM/FQFµ interaction energy as a

function of d is plotted in Figure 5 and compared with SAPT2+3(CCD)/aug-cc-pVTZ or

CCSD(T)/aug-cc-pVTZ data (counterpoise corrections are included). To this end, QM/FQFµ

is coupled to the approach proposed by some of the present authors to model non-electrostatic

repulsion/dispersion contributions,56 which formulates repulsion in terms of an auxiliary

density on the MM portion, whereas QM/MM dispersion is obtained by extending the

Tkatchenko-Scheffler approach to DFT.73–77

Clearly, QM/FQFµ+dis/rep is able to correctly reproduce both CCSD(T) equilibrium dis-

tance (2.99 Å vs. 2.99 Å) and CCSD(T) interaction energy at the equilibrium distance
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(-4.56 vs. -4.65 kcal/mol). The RMSD calculated over all 80 structures is 0.34 kcal/mol.
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Figure 5: QM/FQFµ (B3LYP/aug-cc-pVTZ for the QM moiety), SAPT2+3(CCD) and
CCSD(T)/aug-cc-pVTZ total interaction energies for the water dimer in Figure 2 as a func-
tion of the O-O distance.

4.3 Dependence on the QM level of theory

In this section, the dependence of calculated QM/FQFµ Eele values on the level used to model

the QM moiety is studied. To this end, the water dimer depicted in Figure 2 with d = 2.94

Å is exploited. Thirteen different methods were used by following the recent literature,78,79

ranging from HF to pure DFT functionals (LDA, PBE,80 B97D,81,82 R-TPSS83), to different

classes of hybrid functionals (BLYP,84 M06,85 PBE0,86 B3LYP,87 M062X,85 SOGGA11-X,88

mPW1PW9189), also including long-range (CAM-B3LYP90). Each functional was coupled

to several Pople-type basis sets (see Figure 6), in order to separate the contributions arising

from polarization and diffuse functions. In addition, correlation-consistent and augmented

correlation-consistent basis sets were employed, up to aug-cc-pVQZ.91

Figure 6 schematically reports the observed trends. Numerical values are given in Table S3
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in the SI.
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Figure 6: Dependence of Eele on the choice of basis set and QM method for the water dimer
depicted in Figure 2 with d = 2.94 Å.

All employed QM methods predict very similar Eele values as varying the basis set, with HF

always showing the highest absolute values for a given basis set (on average, HF values are

about 5% higher than the absolute average value of the other methods). The lowest absolute

values are instead shown by PBE and BLYP functionals. However, the difference between

HF and PBE/BLYP functionals (i.e. the limit values of the computed Eele for a given basis

set) is 0.75 kcal/mol on average, being the maximum value 1.15 kcal/mol for aug-cc-pVDZ.

This clearly shows that the computed QM/FQFµ energy values are almost unaffected by the

choice of the QM description.

Let us focus on the dependence of Eele on the choice of the basis set. First, we notice that

electrostatic energy absolute values increase (of about 5% on average) with adding diffuse

functions, that probably due to the spreading of the QM density. The addition of polarization
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functions has instead an opposite effect, in fact absolute values decrease of about 17% on

average. Such trends are almost constant for all QM descriptions. Calculated Eele obtained

by exploiting correlation consistent basis sets are always smaller than Pople-calculated values.

Moving from cc-pVDZ to cc-pVQZ, the QM/FQFµ electrostatic energy increases in absolute

value, and the same trend is reported if augmented basis sets are considered. aug-cc-PVQZ

gives very similar results with respect to 6-311++G**, being the average difference of about

0.5%.

In conclusion, stable values of Eele are obtained by adding both diffuse and polarization

functions, so that their inclusion appears mandatory. For this reason, in the following sec-

tion the 6-31+G* basis set is exploited, being a good compromise between accuracy and

computational cost.

4.4 Molecules in aqueous solution

In order to show the applicability of QM/FQFµ to the study of molecular systems, and to

investigate on the reliability of its parametrization, in this section the method is applied to

four selected molecules in aqueous solution: (R)-Methyloxirane (MOXY), acrolein (ACRO),

N-methyl acetamide (NMA) and methanol (MeOH). In the first three molecules solute-

solvent Hydrogen Bonding (HB) can occur, however the surrounding water molecules can

only act as HB donor. For aqueous MeOH, water molecules can instead act as both H-donor

and H-acceptor, due to the presence of the O-H group in solute structure. Therefore, the

chosen set of systems can appropriately represent the main solute-solvent interactions which

are in place in aqueous solutions.

For each of the selected molecules, we ran classical MD simulations (see Section S4.1 for

further details) to sample the phase space. From each MD run, we extracted 10 representative

structures. Spheres of 5 Å centered in the oxygen atom in case of MOXY, ACRO, and MeOH,

and in the nitrogen atom in case of NMA were cut. Sample final structures are reported in

Figure 7, where solute-solvent HBs are sketched. All extracted structures are reported in

20



Figures S1-S4 in SI. The choice of the spheres’ radius is justified by the analysis of the Radial

Distribution Functions g(r) (see Section S4.1 in SI), which show that a cutting radius of 5.0

Å guarantees that all water molecules in the first two solvation shells are included. The

actual number of water molecules in each of the ten considered snapshots for each system is

reported in Table 1.

a) b) c) d)

Figure 7: Sample structures obtained by cutting a sphere of 5.0 Å around a) (R)-
methyloxirane; b) acrolein; c) N-methyl acetamide; d) methanol.

Table 1: Number of water molecules included in each of the ten considered snapshots for
each studied molecule in aqueous solution, obtained by using a cutting radius of 5 Å

Structure MOXY ACRO NMA MeOH
1 22 19 21 26
2 18 23 17 25
3 19 19 19 23
4 19 18 18 19
5 20 19 16 21
6 19 20 17 23
7 20 14 16 18
8 13 19 15 24
9 19 20 16 17
10 20 21 20 25

For each of the extracted structures, solute-solvent Eele was calculated by exploiting both

QM/FQ and QM/FQFµ. In case of QM/FQ calculations, three different parametrizations,

namely QM/FQa,18 QM/FQb 49 and QM/FQc 55 were considered. QM/FQ and QM/FQFµ

were compared with full-QM electrostatic energies calculated by exploiting SAPT0/6-311++G**

(see Figure 8, the corresponding raw data are given in Tables S4-S5 in SI). In both QM/FQ

and QM/FQFµ calculations, the QM portion was described at the HF/6-311++G** level,

21



and the charge constraint in Eq. 21 is imposed so to fix the total charge of the solvent

molecules to zero. This implies that Charge Transfer (CT) between different water molecules

is allowed. Such a choice is justified by the fact that reference full-QM data implicitly take

into account CT between solvent molecules. Additional calculations on the same structures

were performed by fixing the total charge of the single MM water to zero; the corresponding

results are given in Section S5.4 in SI.

The comparison between polarizable QM/MM and SAPT0 Eele are graphically depicted in

Figure 8. RMSD, Maximum Absolute Error (MAE) and Relative Error (RE) on the ten

selected structures are reported in Table 2. Let us focus on the results obtained for MOXY

in aqueous solution. SAPT0 values range from -17 to -30 kcal/mol, thus showing large

electrostatic interactions due to HBs, which are reported for all the ten selected structures

(see Figure S1 in SI). QM/FQb values are always larger than QM/FQa: this is related to the

difference between atomic electronegativities of the two parametrizations. Such a difference is

larger in FQb. On the other hand, QM/FQc predicts the greatest absolute Eele values, because

polarization is promoted by smaller values of chemical hardnesses. The largest discrepancy

between QM/FQ and SAPT0 is observed for the pristine FQ parametrization by Rick et

al.,18 i.e. QM/FQa, whereas the best agreement is given by our recent parametrization,55

i.e. QM/FQc (see also Table 2). This is not surprising, because FQc was tuned to reproduce

the total interaction energy calculated at the CCSD(T) level, whereas FQa and FQb were

set to reproduce bulk water properties (FQa, ref.18) or QM atomic charges (FQb, ref.49). As

depicted in Figure 8, QM/FQFµ over-performs QM/FQ. This is also confirmed by the data

reported in Table 2, where a RMSD of only 1.62 kcal/mol and an RE of 6.47 % are reported.

QM/FQFµ Eele are dominated by charge contributions (on average 75%), that in agreement

with what has shown above for the water dimer. Raw data of charge/dipoles contributions to

QM/FQFµ Eele are reported in Table S4 in SI. To further confirm the quality of QM/FQFµ,

the same analysis was applied to a snapshots of MOXY in aqueous solution constructed by

using a cutting radius of 7 Å. Such an analysis is discussed in Section S5.7 in SI.
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Figure 8: Comparison between calculated QM/FQa, QM/FQb, QM/FQc, QM/FQFµ Eele

(HF/6-311++G** level for the QM portion) and SAPT0/6-311++G** data. In case of
SAPT0 calculations electrostatic and induction energy contributions are summed up. Raw
data are given in Table S5 in SI. All data are reported in kcal/mol.
a FQ parametrization taken from Ref.18
b FQ parametrization taken from Ref.49
c FQ parametrization taken from Ref.55
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The same behavior highlighted for MOXY also applies to the other selected molecules

(ACRO, MeOH, NMA). In fact, QM/FQFµ always overperforms QM/FQ. This is particu-

larly evident in case of MeOH, where SAPT0 values range from -40 to -15 kcal/mol, thus

moving from weak solute-solvent interactions to strong HBs. This is due to the fact the

MeOH is the only chosen molecule in which solvent water molecules can act both as H-donor

and H-acceptor. Figure 8 clearly shows that at small Eele values all four approaches pre-

dict similar energy values, whereas as energy increases, the differences between the methods

increases. On the other hand, QM/FQFµ correctly reproduces SAPT0 values in the whole

range of energies (i.e. for both weak and strong HBs configurations), as can be seen both

from Table 2 and Figure 8, where QM/FQFµ values lie almost perfectly on the diagonal.

This can be particularly appreciated from the data shown in the last column of Table 2,

which reports a statistical analysis over the whole set of 40 structures. It is also remarkable

that QM/FQFµ, as well as all the three QM/FQ parametrizations, give errors with respect

to full QM calculation by far lower than what has been recently reported for QM/AMOEBA

calculations on different aqueous systems.92

To end the discussion, QM/FQFµ charge and dipole contributions for two representative

structures of MOXY and MeOH in aqueous solution (structures MOXY1 and MeOH-2 in

Figures S1 and S2, given as SI) are analyzed. In Figures 9 and 10, each water molecule

is colored as a function of the contribution to Eele. Such an analysis is done according

to what has been recently proposed for Functional group-SAPT (FSAPT).93,94 MOXY1 is

characterized by one HB, where a single water molecule acts as H-donor, whereas MeOH-2

is involved in two HBs, in which one water molecules acts as H-donor and a second one as H-

acceptor. Figures 9 and 10 clearly show that in both cases HB water molecules give the largest

contributions to Eele. However, other water molecules, which are not directly involved in HB

with the QM portion, give non-negligible contributions to the total electrostatic energy. This

has a practical consequence: in fact, cluster approaches, in which only few, geometrically

close, water molecules are included in the QM portion, can inappropriately model solvent
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Table 2: Root Mean Squared Deviation (RMSD), Maximum Absolut Error (MAE) and
Relative Error (RE) of ten selected structures of MOXY, ACRO, MeOH and NMA in aqueous
solution extracted from aqueous solution. SAPT0/6-311++G** Eele values are taken as
reference. TOT indicates statistical parameters calculated on all 40 structures extracted
from MD runs. RMSD and MAE are given in kcal/mol.
a FQ parametrization taken from Ref.18
b FQ parametrization taken from Ref.49
c FQ parametrization taken from Ref.55

MOXY ACRO NMA MeOH TOT

QM/FQa

RMSD 10.02 7.46 11.53 12.66 10.60
MAE 13.76 11.11 16.62 23.38 23.38
RE 42.54% 39.72% 40.56% 39.85% 40.67%

QM/FQb

RMSD 7.29 5.38 8.71 9.35 7.83
MAE 10.14 8.32 13.34 19.75 19.75
RE 30.85% 28.02% 30.07% 27.09% 29.01%

QM/FQc

RMSD 5.92 2.36 2.96 6.16 4.67
MAE 13.59 4.41 6.88 9.90 13.59
RE 19.67% 14.39% 8.79% 19.54% 15.60%

QM/FQFµ
RMSD 1.62 1.44 1.41 1.29 1.45
MAE 2.92 3.06 2.37 2.18 3.06
RE 6.47% 5.68% 4.65% 4.72% 5.38%

effects, because such relevant contributions will be most probably neglected.
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Figure 9: QM/FQFµ electrostatic energy contributions (kcal/mol) for MOXY1. Echarges

and Edipoles indicate charge and dipole contributions to the total Eele. All atoms in each
water molecule are colored according to their contribution. The color maps saturate at ±4
kcal/mol.
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Figure 10: QM/FQFµ electrostatic energy contributions (kcal/mol) for MeOH-2. Echarges

and Edipoles indicate charge and dipole contributions to the total Eele. All atoms in each
water molecule are colored according to their contribution. The color maps saturate at ±4
kcal/mol.
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5 Summary and Conclusions

In this paper, a new polarizable force field, FQFµ, has been proposed and coupled to a QM

SCF Hamiltonian. The peculiarity of QM/FQFµ stands in the fact the polarization of the

MM portion is modeleed in terms of both charges and dipoles that can vary as a response to

the external electric potential/field. From the theoretical point of view, QM/FQFµ approach

is an extension of the QM/FQ which we have developed in recent years, REFS in which only

fluctuating charges are used to describe the polarization of the environment. Differences and

analogies with previously developed methods and a comparison between Drude Oscillators

and Fluctuating dipoles has been discussed, pointing out the novelty and the computational

features of our approach.

QM/FQFµ has been parametrized in order to reproduce electrostatic energies of aqueous

solutions. Then, such an approach has been tested against the reproduction of electrostatic

energy of a water dimer as a function of the O-O distance, as well as its total interaction

energy. QM/FQFµ has also been coupled with a model that we have recently proposed to

account for non-electrostatic energy terms , and it has been shown to appropriately reproduce

CCSD(T) equilibrium geometry and the corresponding interaction energy for the same water

dimer.

Finally, QM/FQFµ has been applied to the calculation of electrostatic energies of four

molecules in aqueous solution. Such molecules were chosen by considering the specific in-

teractions that they can form with the surrounding water molecules (i.e. H-acceptor or

H-donor). QM/FQFµ overcomes the limits of QM/FQ, giving a better agreement with ref-

erence full QM SAPT0 data. However, all the tested methods are in better agreement with

full QM data than what has been shown for QM/AMOEBA on different aqueous systems.92

The large errors reported for QM/AMOEBA Eele values,92 have been ascribed to the perma-

nent electrostatic contribution (fixed charges and quadrupoles). Our results seem to show

that charge polarization is indeed crucial to lower the errors with respect to full QM values,

whereas the inclusion of dipole contributions refines the quality of the results.
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To end this discussion we point out that, thanks to its variational formulation, QM/FQFµ

can be extended to molecular properties/spectroscopies by following the same strategy which

has been proposed by some of us for QM/FQ.28–30,48,51 Such an extension, as well as model

parametrization for non-aqueous environments, will be the topic of future studies.

6 Supporting Information

Equations for FQFµ force field without charge transfer between MM molecules. QM/PQEq

model. Details on the parametrization of aqueous solution. Raw data showing the de-

pendence of the electrostatic interaction energy on the level of theory for the water dimer.

Details on MD runs of MOXY, ACRO, NMA and MeOH in aqueous solution. Structures

of solute-solvent clusters. Electrostatic interaction energies for solute-solvent clusters calcu-

lated by exploiting 6-311++G** and 6-31+G* basis sets. Analysis of MOXY-water cluster

obtained by exploiting a cutting radius of 7 Å.
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tional theory/molecular mechanics approach for linear response properties in heterogeneous

environments. J. Chem. Theory Comput. 2014, 10, 989–1003.

(27) Giovannini, T.; Ambrosetti, M.; Cappelli, C. A polarizable embedding approach to second

harmonic generation (SHG) of molecular systems in aqueous solutions. Theor. Chem. Acc.

2018, 137, 74.

(28) Lipparini, F.; Cappelli, C.; Barone, V. Linear response theory and electronic transition en-

ergies for a fully polarizable QM/classical hamiltonian. J. Chem. Theory Comput. 2012, 8,

4153–4165.

(29) Lipparini, F.; Cappelli, C.; Scalmani, G.; De Mitri, N.; Barone, V. Analytical first and second

derivatives for a fully polarizable QM/classical hamiltonian. J. Chem. Theory Comput. 2012,

8, 4270–4278.

31



(30) Lipparini, F.; Cappelli, C.; Barone, V. A gauge invariant multiscale approach to magnetic

spectroscopies in condensed phase: General three-layer model, computational implementation

and pilot applications. J. Chem. Phys. 2013, 138, 234108.

(31) Giovannini, T.; Del Frate, G.; Lafiosca, P.; Cappelli, C. Effective computational route towards

vibrational optical activity spectra of chiral molecules in aqueous solution. Phys. Chem. Chem.

Phys. 2018, 20, 9181–9197.

(32) Jakobsen, S.; Jensen, F. Systematic improvement of potential-derived atomic multipoles and

redundancy of the electrostatic parameter space. J. Chem. Theory Comput. 2014, 10, 5493–

5504.

(33) Jakobsen, S.; Jensen, F. Searching the Force Field Electrostatic Multipole Parameter Space.

J. Chem. Theory Comput. 2016, 12, 1824–1832.

(34) Lipparini, F.; Barone, V. Polarizable force fields and polarizable continuum model: a fluctuat-

ing charges/PCM approach. 1. theory and implementation. J. Chem. Theory Comput. 2011,

7, 3711–3724.

(35) Morton, S. M.; Jensen, L. A discrete interaction model/quantum mechanical method for

describing response properties of molecules adsorbed on metal nanoparticles. J. Chem. Phys.

2010, 133, 074103.

(36) Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solva-

tion. I. General formalism. J. Chem. Phys. 2010, 132, 114110.

(37) Lipparini, F.; Scalmani, G.; Mennucci, B.; Cancès, E.; Caricato, M.; Frisch, M. J. A variational

formulation of the polarizable continuum model. J. Chem. Phys. 2010, 133, 014106.
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