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Abstract

A methodology to account for non-electrostatic interactions in Quantum Mechani-

cal (QM)/Molecular Mechanics(MM) approaches is developed. Formulations for Pauli

repulsion and dispersion energy, explicitly depending on the QM density are derived.

Such expressions are based on the definition of an auxiliary density on the MM portion

and the Tkatchenko-Scheffler (TS) approach, respectively. The developed method is

general enough to be applied to any QM/MM method and partition, provided an accu-

rate tuning of a small number of parameters is obtained. The coupling of the method

with both non-polarizable and the fully polarizable QM/Fluctuating Charges(FQ) ap-

proaches is reported and applied. A suitable parametrization for the aqueous solution,

so that its most representative features are well reproduced, is outlined. Then, the

obtained parametrization and method are applied to calculate the non-electrostatic

(repulsion and dispersion) interaction energy of nicotine in aqueous solution.
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1 Introduction

Multiscale computational approaches rooted in the so-called hybrid quantum mechanics

(QM) molecular mechanics (MM) methods (QM/MM)1–9 have nowadays been amply and

successfully applied to a variety of chemical systems and their physico-chemical proper-

ties.10–20

The idea behind those approaches is to treat accurately, by QM methods, a small but critical

part of the overall system, while resorting to much cheaper and less accurate MM methods

for the remaining portion of the whole system. Such a partition is sometimes naturally

applicable (such as in solvation phenomena and non-covalent interactions), however in some

cases (i.e. covalently bound systems) the QM and MM portions are more difficult to define.

In any case, a specific choice of the QM/MM partition introduces some assumptions on the

system, which in the worst cases can negatively affect the quality of the final computed

results. The quality of the results which can be obtained with QM/MM models do not

only depend on the definition of the two moieties, but also (and crucially) on the approach

exploited to model the interaction between the two portions.8,9

Different choices are possible in this context, however the model for the QM/MM coupling

must be capable of treating both bonded and non-bonded interactions (electrostatic and non-

electrostatic). The way of treating the electrostatic interaction is generally a key element

of any QM/MM approach, largely affecting the quality of the computed results.9,21–24 Two

groups of methods exist, the so called mechanical embedding schemes and the electrostatic

embedding methods.25 The latter may o may not include mutual polarization effects between

the QM and MM portions: in the first case, a set of atomic-centered partial point charges

are used for calculating the electrostatic interaction at the MM level, which also enters in

definition of the effective QM Hamiltonian. Polarization effects can be included by using

either Fluctuating Charges (FQ),26,27 distributed multipoles,28–30 induced dipoles,23,31,32 or

Drude oscillators.33

Limiting QM/MM interactions to electrostatic-only terms may yield an unphysical descrip-
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tion of the systems. Non electrostatic interactions,34 also called London interactions, play a

crucial role in many chemical processes. For instance, most of DNA and RNA functionalities,

as well as the adsorption of a molecule on a surface are regulated by repulsion/dispersion

interactions. Moreover, these interactions can also play an important role in solvation phe-

nomena.

Although their paramount importance, in most QM/MM approaches non-electrostatic in-

teractions between the QM and MM moieties are only retained at the MM level and treated

by means of Lennard-Jones or similar parametrized analytical functions.35

This approach, if computationally inexpensive, introduces a rough approximation in the

computational modeling. In fact, non-electrostatic interactions are primarily due to the

Pauli repulsion principle, which cannot be postulated in a classical framework, and to long-

range electron correlation effects, which are again not defined in the classical realm. In

purely QM approaches, such interactions are modeled by resorting to correlated expensive

QM methods, such as coupled cluster with single, double, and perturbative triple excitations

- CCSD(T) coupled to large atomic basis sets in order to reduce the Basis Set Superposition

Error (BSSE).36,37

The formulation of QM/MM approaches able to account for QM effects affecting disper-

sion/repulsion interactions between the QM and MM portions has received so far only little

attention in the literature. To the best of our knowledge, the only approach which has been

proposed is the so-called Effective Fragment Potential (EFP) method.20,28,29,38–40 In this ap-

proach, empirical force-fields are not exploited, but the force-field (FF) for the ”MM” portion

is obtained from electronic structure calculations of the single fragments. In this way, the FF

is defined in terms of point charges, multipoles, static and dynamic polarizabilities, localized

molecular orbitals and related QM quantities.

Due to the nature of the EFP method, the inclusion of dispersion and Pauli repulsion terms

can be formulated in terms of QM quantities calculated for the fragments. Therefore, such

an approach cannot be straightforwardly extended to generic QM/MM methods based on
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empirical potentials.

The account for QM-based non-electrostatic interactions (explicitly depending on the QM

density) in QM/MM calculations will permit not only a more reliable description of the

interaction between the QM and the MM moieties, but also to include them in the QM

Hamiltonian and to propagate such terms also to molecular properties and spectra. The

common approaches, based on Lennard-Jones and similar potentials, which do not bear any

explicit dependence on QM quantities, do not give any contribution to the QM Hamiltonian;

therefore they only result in a correction to the QM/MM energy. As it will be detailed in

the following sections, the development of a model with the aforementioned features is the

goal of this paper.

Notice that we do not aim to propose a way of decomposing the intermolecular energy terms.

Such kind of calculations can be performed by exploiting other approaches, for instance

the general effective fragment potential (EFP2)20 or the Symmetry Adapted Perturbation

Theory (SAPT)41,42 approach.

The manuscript is organized as follows: first, a general formulation of Pauli repulsion and

dispersion energy in a QM/MM framework is presented. The formulation that is reported

is based on the definition of an auxiliary density on the MM portion and the Tkatchenko-

Scheffler (TS) approach43–46 for the repulsion and dispersion terms, respectively. Next, the

inclusion of such terms in the QM/MM Hamiltonian is derived, with specific emphasis in the

coupling with the polarizable QM/MM approach which is developed in our group.13,24,27,47–49

The derived repulsion/dispersion terms depend on some parameters. A parametrization to

treat aqueous solution is then proposed, which allows the application of the methodology

to treat non-electrostatic interaction energies of solvated systems. To this end, aqueous

solutions of (L)-Methyl Lactate (MLAT) and (R)-Methyloxirane (MOXY) are considered, as

well as the more complicated case of Nicotine in aqueous solution, where the focus is on the

influence of non electrostatic interactions on conformational populations and on the electric

dipole. Summary, conclusions and future perspectives end the presentation.
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2 Theory

The total energy of a system composed by two interacting moieties A and B can be expressed

as:50,51

EAB = Eele
AB + Epol

AB + Epen
AB + Eex

AB + Edis
AB (1)

where, Eele
AB arises from electrostatic interactions and Epol

AB is the polarization contribution.

Epen
AB is the so-called penetration term, Eex

AB is the exchange contribution and Edis
AB arises

from dispersion interactions. In the context of QM/MM approaches, A can represent the

QM portion of the system, while B the MM one. Eele
AB and Epol

AB are the energy terms

considered within electrostatic embedding schemes and in particular in polarizable QM/MM

approaches1,8,23,27,31–33

2.1 Pauli Repulsion Energy

The Pauli Repulsion energy, Erep
AB, also known as Exchange-Repulsion energy, is formally the

sum between the Penetration (Epen
AB ) and the Exchange (Eex

AB) contributions in Eq. 1 above.

The penetration term is considered to be twice the exchange term in the van der Waals

region, thus giving rise to the following expression:51,52

Erep
AB =

1

2

∫
dr1 dr2
r12

ρA(r1, r2)ρB(r2, r1) (2)

where ρx is the density matrix of the A or B moieties, placed at distance r12.

The extension of Eq. 2 to QM/MM partitions, is obstructed by the the difficulty to define

the density matrix ρB of the classical region B (no electrons are present in this region).

In the following derivation we will work out an approximate expression for Pauli repulsion in

the framework of the so-called focused models,53 namely models in which the main compo-
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nent, that essentially bearing the property, is described at a higher level than the remainder,

which plays a complementary, but not negligible role. Within such an approach, terms re-

lated to two fragments of the MM portion are not considered.

The starting point for the derivation of the equations is the formulation of quantum repulsion

effects for the Polarizable Continuum Model.52,54–56 In particular, each fictitious valence

electron pair of the MM molecules is localized in bond and lone pair (if they are present)

regions and represented by an s-gaussian-type function. Due to the different physical nature

of the two (bond or lone pair) regions, the two are discerned by using two different sets of

parameters, so that the expression for ρB becomes:52

ρMM(r1, r2) =
∑
R

ξ2Re
−βR(r1−R)2 · e−βR(r2−R)2 (3)

where, R collects the centers of the gaussian functions used to represents the fictitious MM

electrons. The β and ξ parameters are generally different for lone-pairs or bond-pairs: their

values are adjusted to the specific kind of environment (MM portion) to be modeled (vide

infra). By substituting Eq. 3 in Eq. 2, the QM/MM repulsion energy reads:

Erep
QM/MM =

1

2

∑
R

∫
dr1 dr2
r12

ρQM(r1, r2)
[
ξ2Re

−βR(r1−R)2 · e−βR(r2−R)2
]

(4)

In this formalism, the QM/MM Pauli Repulsion energy is calculated as a two-electron in-

tegral. Interestingly, this differs from the formulation of the same quantity in the PCM

model,52 where this term is a pure one-electron term.

Eq. 4 holds for every kind of MM environment, independent from its nature, i.e. the

formalism not only holds for solvents, but can be extended to other substrates (proteins,

surfaces) surrounding the QM core region. The specification for the different external en-

vironments is simply done by defining the number of different electron-pair types and the

relative β and ξ parameters in Eq. 3. Also, due to its simplicity, this formalism is retained
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also in case of polarizable QM/MM approaches, such as our polarizable QM/Fluctuating

Charge(FQ) approach49 (vide infra), by only refining the parameters if necessary. To end

the discussion, it is worth noticing that in the present work ρMM will only defined in terms of

spherical gaussian-type functions. Extension to p/d-type functions is possible, and mainly

implies the definition of additional parameters in Eq. 3. Such an extension (and the related

parametrization work) will be the topic of future communications.

2.1.1 Practical Formulation of Erep
QM/MM

As pointed out above, Eq. 4 requires the calculation of a two-electron integral. Such an

integral is formally similar to the exchange integral (with opposite sign), where one of the

densities in Eq. 2 has been replaced with an explicit function of r1 and r2. A similar

approach is sometimes used within the framework of Density Functional Theory (DFT), in

the development of Hybrid Density Functionals with a non-local contribution to the energy.

Similar to the definition of exchange term, in DFT an exchange-repulsion energy density can

be defined:57

εrep(r1) =
1

2

∫
du

ρQM(r1, r1 + u)ρMM(r1, r1 + u)

u
(5)

where u = r2 − r1 has been introduced (u is its module). In this formalism, ρMM acts as

”semi-local density” in the DFT framework.57–59,59–61 By inserting ρMM in Eq. 5, we obtain:

εrep(r1) =
1

2

∫
du

ρQM(r1, r1 + u)

u

(∑
R

ξ2Re
−βR|r1−R|2e−βR|r1+u−R|2

)
(6)

By exploiting the standard approach of expanding noninteracting reference system’s Kohn-

Sham orbitals in a finite basis set of real, nonorthogonal, Gaussian-type atomic orbitals {χµ},

the non-local one-particle density becomes:

ρQM(r1, r1 + u) =
∑
µν

Pµνχµ(r1)χν(r1 + u) (7)
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where Pµν is the µ, ν element of the density matrix P . By substituting Eq. 7 into Eq. 6,

and symmetrizing, to recover the notation of Rung 3.5 functionals, εrep(r1) becomes:

εrep(r1) =
1

2

∑
µν

Pµν

[
χµ(r1)Aν(r1) + Aµ(r1)χν(r1)

2

]
(8)

where, similarly to what is done in the context of the definition of the so-called ”hybrid Rung

3.5 density functionals”61–64 the Aµ function is introduced:

Aµ(r1) =

∫
du

χµ(r1 + u)

u

(∑
R

ξ2Re
−βR|r1−R|2e−βR|r1+u−R|2

)
(9)

Eq. 9 has the form of an electrostatic potential integral, yielding the potential at point r1

due to the product of a basis function centered at Rµ and the sum of the Gaussian functions

representing ρMM, centered at R. Such an integral can be calculated analytically, for instance

by specifying the Obara-Saika algorithm65–67 to the evaluation of Eq. 9. The details on the

formulation and implementation of this algorithm in the context of the present work are

given as Supporting Information (SI) (Section S1). Notice however, that a straightforward

adaption of the current implementations of Rung 3.5 density functionals61–64 to the evalu-

ation of Eq. 9 is impossible. In addition, the definition of ρMM (Eq. 3) does not allow the

use of the auxiliary basis sets exploited in Rung 3.5 functionals, because the gaussian func-

tions which we are using (Eq. 3) are centered in the MM grid. Since they are by definition

non-symmetric functions, the Müntz theorem68 can not be applied to our case.

By re-writing Eq. 9 as a function of r2:

Aµ(r1) =
∑
R

ξ2Re
−βR|r1−R|2

∫
dr2

χµ(r2)e−βR|r2−R|
2

|r2 − r1|
(10)

the exchange-repulsion energy, Erep
QM/MM, can be calculated by numerical integration of the

energy density in Eq. 8:
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Erep
QM/MM =

1

2

∑
µν

Pµν

∫
dr1

[
χµ(r1)Aν(r1) + Aµ(r1)χν(r1)

2

]
(11)

and the matrix element of the Pauli-Repulsion potential, to be added to the QM Fock matrix,

reads:

F rep
µν =

∂Erep

∂Pµν
=

1

2

∫
dr1

[
χµ(r1)Aν(r1) + Aµ(r1)χν(r1)

2

]
(12)

It is worth remarking that the resorting to the DFT formalisms allows to transform the two-

electron integral in Eq. 4 into a one-electron integral, which can be evaluated by integration

over grid points defined in the DFT formalism.

Also, Eq. 11 depends explicitly both on Pµν and the atomic basis {χµ}. This introduces

an explicit contribution to the QM Hamiltonian, which propagates to the calculation of

molecular properties and spectra, through the definition of suitable analytical procedures.

Such an extension will be the topic of further investigations.

2.2 Quantum Dispersion Energy

The exact quantum-mechanical definition of the dispersion interaction originally proposed by

McWeeny, results in a computational expensive approach, depending on transition densities

of the QM portion.51,69 A popular remedy to this issue, widely used in the case of dispersion

corrected density functionals,43,44,70–81 consists of adding a pairwise interatomic C6R
−6 term

to the DFT energy:

Edis = −1

2

∑
A,B

fdamp(RAB, R
0
A, R

0
B)C6ABR

−6
AB (13)

where, RAB is the distance between atoms (portions) A and B, C6AB is the corresponding

C6 coefficient, R0
A and R0

B are the van der Waals (vdW) radii. The R−6AB singularity at small

distances is eliminated by the short-range damping function fdamp(RAB, R
0
A, R

0
B).
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Among the several corrections proposed in the literature, we found the approach by Tkatchenko

and Scheffler (TS) the most suitable for our purposes, due to its mathematical formulation

and its performances.43 Starting from the Casimir-Polder equation and the Padé series, the

C6AB coefficients are defined by only using homonuclear parameters, i.e. C6AA, C6BB, α0
A,

α0
B (the latter being static polarizabilities of the A and B moieties):

C6AB =
2C6AAC6BB

α0
B

α0
A
C6AA +

α0
A

α0
B
C6BB

(14)

Similarly to repulsion, also for dispersion terms only the interaction between QM (A) and

MM (B) atoms will be considered. The TS model resorts to an Atom in Molecules82 approach

and adopts the Hirshfeld83 partition of the density to define effective homonuclear coefficients

Ceff
6AA of the A atom in the molecule:

Ceff
6AA =

(
V eff
A

V free
A

)2

Cfree
6AA = η2AC

f
6AA (15)

where (V eff
A ) is the effective volume of the A atom in the molecule, (V free

a ) is the free volume

of the same atom, and Cfree
6AA are the free homonuclear coefficients Cfree

6AA . ηA can be written

in terms of the electron density of the system by employing the Hirshfeld partitioning of the

density:83

ηA =

∫
dr r3wA(r)ρ(r)∫
dr r3ρfreeA (r)

(16)

wA(r) =
ρfreeA (r)∑
J ρ

free
J (r)

(17)

where, wA(r) is the Hirshfeld atomic partitioning weight for the atom A, r is the distance

from the nucleus , ρ(r) is the total electron density, ρfreeA (r) is the electron density of the

free atom A, and the summation runs over all atoms J in the system.
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By following this approach, the QM/MM dispersion energy, Edis
QM/MM , becomes:

Edis
QM/MM = −1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB, R
0
A, R

0
B)

η2AC
free
AA Ceff

6BB

α0
B

α0
A
η2AC

free
AA +

α0
A

α0
B
Ceff

6BB

R−6AB (18)

The Ceff
6BB are the effective homonuclear coefficients of the B (MM) atoms. Due to the

difficulty to express them through Eq. 15, in this work their values are parametrized in

an atom-type fashion with respect to QM calculations based on the Hirshfeld partitioning

proposed in TS.84,85 α0
A and α0

B are parametrized with respect to high-level QM calculations

(vide infra).

fdamp(RAB, R
0
A, R

0
B) in Eq. 18 is a Fermi-type damping function, which is specified by fol-

lowing the standard approaches exploited to define dispersion corrected density function-

als:43,70,81

fdamp(RAB, R
0
A, R

0
B) =

1

1 + exp
[
−d
(

RAB

sRR
0
AB
− 1
)] (19)

where, R0
AB = R0

A +R0
B, and d, sR are free parameters (see Section 5.1).

The dispersion contribution to the QM/MM Fock matrix is:

F dis
µν =

∂Edis
∂ρ

∂ρ

∂Pµν
= −1

2

∂ρ

∂Pµν

∑
A∈QM

∑
B∈MM

fdamp(RAB)
∂C6AB

∂ρ
R−6AB (20)

By considering that the free atomic related quantities are independent of the density matrix,

and that the same obviously applies to MM-related quantities, the terms in Eq. 20 can be

written as follows:

∂Ceff
6AB

∂ρ
=

2
α0
A

α0
B
C2

6BB(
α0
B

α0
A
Ceff

6AA +
α0
A

α0
B
C6BB

)2 ∂Ceff
6AA

∂ρ
(21)

∂Ceff
6AA

∂ρ
= Cfree

6AA2ηA
∂ηA
∂ρ

(22)

∂ηA
∂ρ

= ηρA =

∫
dr r3wA(r)χµ(r)χν(r)∫

dr r3ρfreeA (r)
(23)
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where the eff superscript in the C6BB term is omitted for the sake of readability of the

equations. In Eq. 23 the term due to the partial derivative of the density with respect the

density matrix is accounted for. By recollecting all the terms in of the above equations, the

quantum dispersion contribution to the Fock matrix becomes:

F dis
µν = −1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB)
2
α0
A

α0
B
C2

6BBC
free
6AA2ηA(

α0
B

α0
A
Ceff

6AA +
α0
A

α0
B
C6BB

)2ηρAR−6AB (24)

Similarly to the Pauli repulsion term, Eq. 24 introduces an explicit contribution to the QM

Hamiltonian, which propagates to the calculation of molecular properties and spectra, which

will be considered in future communications.

3 Coupling dispersion/repulsion to non-polarizable

QM/MM approaches

In electrostatic embedding QM/MM models the MM atoms are endowed with fixed atomic

charges, that produce an electric field which polarizes the electron density. The electrostatic

embedding introduces a new term in the molecular Hamiltonian, that is, the interaction

between the potential generated by the MM charges and the electron density:

Hele
QM/MM =

NMM∑
j=1

∫
R3

ρQM(r)qj
|r− rj|

dr (25)

In Eq. 25 the summation runs over the j MM charges. Notice how the MM charges, that are

parameters of the employed force field, are a fundamental quantity: their quality is crucial

as they provide a representation, albeit crude, of the electron density of the environment.

Quantum Pauli repulsion and quantum dispersion act as additive contributions to Eq. 25:
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HQM/MM = Hele
QM/MM +Hrep

QM/MM +Hdis
QM/MM =

=

NMM∑
j=1

∫
R3

ρQM(r)qj
|r− rj|

dr+

+
1

2

∑
R

∫
dr1 dr2
r12

ρQM(r1, r2)
[
β2
Re
−ξR(r1−R)2 · e−ξR(r2−R)2

]
+ (26)

− 1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB, R
0
A, R

0
B)

η2AC
free
AA Ceff

6BB

α0
B

α0
A
η2AC

free
AA +

α0
A

α0
B
Ceff

6BB

R−6AB (27)

By expanding ρQM in a finite basis set {χµ} and taking the derivative with respect to the

density matrix Pµν , it is possible to define the contribution to the Fock matrix:

Fµν = hµν +Gµν(P) + V†µνq +
1

2

∫
dr1

[
χµ(r1)Aν(r1) + Aµ(r1)χν(r1)

2

]
+

− 1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB)
2
α0
A

α0
B
C2

6BBC
free
6AA2ηA(

α0
B

α0
A
Ceff

6AA +
α0
A

α0
B
C6BB

)2ηρAR−6AB (28)

3.1 Coupling dispersion/repulsion to the polarizable QM/FQmodel

In polarizable embedding QM/MM models, the mutual polarization of the MM and QM

portions is explicitly taken into account. The MM force field contains a response term,

which modifies the electrostatics as a reaction to the presence of the QM density. In a

symmetric fashion, a polarization term is included in the core’s Hamiltonian to represent

the interaction of the electronic density with the MM electrostatics. If the polarizability

of the MM region is introduced by means of induced point dipoles,31,32,86 the electric field

produced by the QM density appears in the equations that determine the dipoles and the

dipoles appears in an interaction term in the Hamiltonian multiplied by a field operator. If

instead a fluctuating charge (FQ) description26,27,49,87,88 is adopted to make the force field

polarizable, the electrostatic potential produced by the QM density gives rise to a charge
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flow in the MM region; the MM fluctuating charges in turn interact with the QM density.

Therefore, the expression for the interaction between the QM and MM portions is the same

as Eq. 25, but the charges are in this case calculated by solving the following response

equation:47

Dqλ = −CQ −V(PQM) (29)

where D is the response matrix whose diagonal terms are the atomic electronegativities, q

is a vector containing the FQs and the Lagrangian multipliers, C is a vector containing the

atomic electronegativities and the constraints to ensure that each MM molecule has fixed

charge, and V(P) is the potential due to the QM density matrix P. The Pauli repulsion

and quantum dispersion terms developed in the previous pages can be added to the QM/FQ

Hamiltonian in the same fashion as in Eq. 27. The resulting expression is the same,

however the qj charges in Eq. 27 and Eq. 28 this time are the FQs calculated through Eq.

29 at each step of the SCF procedure.

4 Computational Details

The equations presented in the previous section were implemented in the Gaussian16 com-

putational package.89 Notice that the current implementation of Eq. 9 is restricted to uncon-

tracted basis sets of s-, p- and cartesian d-type primitive gaussian functions. In all QM/FQ

and QM/non-polarizable MM calculations were performed by treating the QM portion at the

DFT level of theory, combined with selected Pople-type basis sets. The parameters to treat

the electrostatic component in FQ calculations were taken from Rick et al.26 The TIP3P90

force-field was exploited in non-polarizable MM calculations. All the classical Molecular Dy-

namics (MD) simulations were performed by using the Gromacs package,91–94 with the same

settings as previously reported by some of the present authors.13,95 The Kitaura-Morokuma

Energy Decomposition Analysis (KM-EDA)96,97 was performed by using the GAMESS pack-
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age.98,99 Symmetry Adapted Perturbation Theory (SAPT)41,42 calculations were performed

by using Psi4 1.1.100

5 Numerical Results

In this section the methodology explained in Sections 2-3 is applied to test cases. In partic-

ular, the model is first parametrized to treat the aqueous solution, so to reliably reproduce

some of the most relevant properties of bulk water. Then, the method is applied to the cal-

culation of the non-electrostatic interaction energy of molecular systems in aqueous solution.

5.1 Parametrization Strategy: Aqueous Solutions

The methodology stretched in the previous sections is general enough to be applied to differ-

ent polarizable and non-polarizable QM/MM approaches and to model any kind of external

environment, pending an appropriate parametrization of the quantities entering Eqs. 11, 12,

18 and 24. Such a parametrization is a crucial step towards the routinely application of the

method to real cases. The development of accurate parametrizations for various kinds of

environments is beyond the scope of this paper. Here, we will present the strategy that is

followed to parametrize the method coupled with our polarizable QM/MM model based on

FQs (QM/FQ), and specifically tailored to aqueous solutions.13,24,47,101

In the specific case of water, Eq. 4 requires the definition and the numerical setting of 4

parameters: the exponents of the lone pairs and bond pairs βR and the coefficients ξR. In

fact, the use of the same parameters for bond and lone pairs would not been justified. Also,

the actual positions of the gaussian-type functions (Eq. 3) has to be set, and this introduces

a further degree of freedom in the parametrization procedure. In case of water, eq. 3 reads:

ρH2O(r1, r2) =

NH2O∑
j=1

4∑
i=1

ξ2i e
−βi(r1−R

(j)
i )2 · e−βi(r2−R

(j)
i )2 (30)

where j runs over the water molecules of the MM portion, while i runs over the electron

15



pairs of a single water molecule. Two sets of indices βi and ξi are set, and again they differ

if a lone-pair or a bond-pair is considered. R
(j)
i collects the points where the gaussian-

type functions are centered, which are chosen in analogy with what is done in the TIP4P

force field.102 In particular, the R
(j)
i centers are set as the charge centroids of the localized

molecular orbitals, as defined according to the Boys method103 (see Figure 1), which in the

present case were calculated at the B3LYP/6-311++G** level of theory (see Section S2 in

SI).

Figure 1: Calculated B3LYP/6-311++G** Boys localized orbitals centroids (purple spheres)
for a single water molecule.

Notice that the way the ρMM is constructed, permits to extend this approach to solvents/environments

other than water. Also, in the present work ρMM is defined in terms of spherical gaussian-type

functions only.

By further substituting Eq. 30 in Eq. 2 we obtain:

Erep
QM/H2O

=
1

2

NH2O∑
j=1

4∑
i=1

∫
dr1 dr2
r12

ρQM(r1, r2)
[
ξ2i e
−βi(r1−R

(j)
i )2 · e−βi(r2−R

(j)
i )2
]

(31)

In order to set the parameters entering Eq. 31, selected water clusters, chosen by following

Refs.104,105 (see Figure 2), were exploited. In particular, the reference full QM data for the

Pauli repulsion energy of such clusters were calculated by performing a full QM calculation on

each structure in Figure 2 at the Hartree-Fock (HF) level in combination with selected Pople-

type basis sets, also including diffuse functions (6-31G, 6-31+G*, 6-311G, 6-311+G*). Then,

the repulsion contribution to the energy was extracted by resorting to the KM-EDA,96,97 by

following what has already been proposed in the literature.104,105

Then, the Pauli Repulsion on the same water clusters was calculated with our method (Eq.
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Figure 2: Water clusters used for the parametrization of Erep
QM/H2O

, see text.

31). This has been done by treating only one water molecule at the QM level (B3LYP

functional combined with the same selection of basis sets) and the other one (or two, in

case of the trimer in Figure 2) at the FQ level. For each dimer structure, we performed

two calculations, by exchanging the QM and FQ water molecules in order to average among

hydrogen bond donor and acceptor moieties. Three calculations were performed for the

trimer, by exchanging each time the QM molecule with one of the two FQ molecules.

Eq. 31 depends on 4 parameters (the exponents and the coefficients of each gaussian func-

tion): their best values were defined by performing a least square roots fitting on full QM data

obtained with the KM-EDA approach, without setting any constraint on the parameters.

The best fitted values are reported in Section S2 in SI. Notice that such values give repulsion

energies not perfectly fitting the KM-EDA data (see Table S1 in SI); this is probably due to

the absence of the contributions due to p-type gaussian functions in the MM moiety. Such

functions can possibly be added by extending the formalism in a straightforward way, by

only making the computations more cumbersome.

Moving to quantum dispersion (Eq. 18), its expression depends on several parameters, which

were set according to the following scheme:

• α0 are static atomic polarizabilities. They were calculated at the CCSD(T)/aug-cc-

pVTZ level of theory, or taken from the literature.106 The used values are reported in

Table S2, in SI.

• The homonuclear Cfree
6 coefficients were taken from Chu and Dalgarno,107,108 and are

reported in Table S3 in SI.
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• The homunuclear Ceff
6 coefficients of the MM atoms cannot be intuitively defined,

because they actually depend on the effective volume of a given atom in a molecule.

Since our target environment is water, the effective volumes of oxygen and hydrogen

atoms in a water molecule optimized at the B3LYP/6-311++G** were calculated.

From these values, the Ceff
6OO and and Ceff

6HH were calculated, being 14.8 Hartree·bohr6

and 2.8 Hartree·bohr6, respectively. Notice that these data are in agreement with those

proposed by TS.43

• The d coefficient of Eq. 19 was set to 20, according to the TS approach.43 An extensive

testing was however performed, showing that similar Edis values are obtained for any

choice of d between 15 and 40.

• The van der Waals radii R0 were set to the Bondi reference values.109

• As previously noticed in the literature,43 the sR coefficient in Eq. 19 is actually the only

empirical parameter. sR was chosen in such a way Edis of a water dimer as a function

of the intermolecular distance O-O (calculated at the B3LYP-D3 level of theory) is

accurately reproduced. The sR coefficient was therefore set to 0.92, which gives an

average error of about 5% in the region of hydrogen bonding (dO−O 2.5-3.0 Å) (see

below for more details). Notice that the calculated Edis at the equilibrium distance

between two neighbour water molecules (dO−O = 2.9 Å )110 is very close to the value

reported recently by Guidez and Gordon.111

5.2 Dependence of Erep and Edis on the water-water intermolecular

distance

In this section, the dependence of Erep and Edis on the water-water intermolecular distance

is studied. To this end, the water dimer depicted in Figure 3 has been exploited, and the dis-

tance d between the oxygen atoms has been taken as reference. Notice that this distance has
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been chosen as reference because it is generally reported in the experimental/computational

evaluation of radial distribution functions.110

QM	
QM	

MM	

MM	

d	 d	

Figure 3: Structure of the water dimer used to study the dependence of EQnel on the
water-water intermolecular distance.

In Figure 4, Erep is reported as a function of d. The plot was constructed by performing

80 calculations increasing the O-O distance from 2.54 Å to 6.49 Å by a step of 0.05 Å. Erep

was calculated both with the QM/FQ and non-polarizable QM/MM(TIP3P) methods, by

exploiting the B3LYP/6-31+G* level to treat the QM moiety. Also in this case, the QM

and MM moieties were interchanged, and the average values were taken. In Figure 4, these

data are compared with the repulsion energy obtained at the full QM level by means of the

KM-EDA approach.

An almost perfect superposition of QM/FQ and QM/MM results is observed. For d <

3.5 Å, for which Erep is large, the QM/FQ method shows an average percentage deviation

from the full QM KM-EDA of around 10%, similarly to the non-polarizable QM/TIP3P

approach. Notice that the QM/FQ results are in very good agreement with KM-EDA results

in the region around d = 3 Å. This is not unexpected, because the water-water structures

that were exploited to perform the parametrization of this contribution (see Figure 2) were

characterized by a similar intermolecular distance (2.04 Å).

The inset in Figure 4 shows in more detail the difference between the calculated QM/FQ

and KM-EDA values in the region between 2.5 and 4 Å, the two curves obtained for the

QM water molecule acting as H-bond donor and acceptor are given. We notice that Erep is

larger when the QM water molecule acts as H-bond acceptor. This is due to the fact that the
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Figure 4: Plot of Erep as a function of the O-O intermolecular distance in the water dimer
depicted in Figure 3. QM/FQ and non polarizable QM/MM(TIP3P) values (B3LYP/6-
31+G* for the QM moiety) are compared to KM-EDA (HF/6-31+G*) calculations. The
inset shows Erep calculated values with the QM/FQ approach, in case the QM water molecule
acts as H-bond donor or acceptor.
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Gaussian function in eq. 30 on the MM O-H water bond is larger than that related to the

fictitious MM oxygen atom lone pair (i.e. the exponent of the function placed in the middle

of the O-H distance is smaller than the exponent of the function placed at the position of the

fictitious O lone pair). Therefore, the overlap between the Gaussian functions and the QM

density is larger when the MM water molecule acts as H-bond acceptor, and this corresponds

to a greater value of Erep. The inset in Figure 4 also shows that the KM-EDA values lie

almost always in between the two QM/FQ curves. This supports the averaging of the two

values in the parametrization procedure (see the previous section). At small intermolecular

distances the repulsion contribution is underestimated. This is probably related again to the

absence of p-type Gaussian functions on the MM moiety, which would guarantee a greater

overlap of the QM and MM densities.

Let us pass to discuss the dependence of the Edis as a function of the intermolecular O-O

distance. The data are plotted in Figure 5, which also reports the curve obtained with the

B3LYP-D3 functional.81

Notice that also in this case the QM and MM moieties were interchanged (see inset in Figure

5). Different from Erep, Edis is larger (in absolute value) when the QM water molecule acts

as H-bond donor. This can be explained by considering the values obtained for the effective

Ceff
6 coefficients for the MM molecule (see previous section). In fact, when the QM molecule

acts as H-bond donor, the oxygen atom of the MM water molecule is close to the QM

portion:because Ceff
6OO is greater than Ceff

6HH (14.8 vs. 2.8 Hartree·bohr6), Edis increases.

The behaviour of the total quantum non-electrostatic interaction energy EQnel, i.e. the

sum of Erep and Edis, as a function of d is plotted in Figure 6, which also reports the

SAPT2+3(CCD)/aug-cc-pVDZ curve. Also in this case the QM and MM moieties were

interchanged (see inset in Figure 6). Comparison of Figure 5 and Figure 4 shows that the

repulsion term is generally larger than the dispersion contribution: this clearly emerges from

the trend reported in Figure 6, which closely resembles Figure 4. It is also worth pointing

out that QM/FQ and non-polarizable QM/TIP3P give similar EQnel values. This is a further
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Figure 5: QM/FQ and non polarizable QM/TIP3P (B3LYP/6-31+G* for the QM moieties)
quantum dispersion energy, Edis, of the water dimer in Figure 3 as a function of the O-
O distance. B3LYP-D3/6-31+G* data are also reported. The inset shows Edis calculated
values with the QM/FQ approach, in case the QM water molecule acts as H-bond donor or
acceptor.
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evidence of the stability of our parametrization, which gives similar results as changing the

force field used to represent the MM portion.
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Figure 6: QM/FQ and non polarizable QM/TIP3P (B3LYP/6-31+G* for the QM moieties)
quantum non electrostatic interaction energy, EQnel, of the water dimer in Figure 3 as a func-
tion of the O-O distance. SAPT2+3(CCD)/aug-cc-pVDZ data are also reported. The inset
shows EQnel calculated values with the QM/FQ approach, in case the QM water molecule
acts as H-bond donor or acceptor.

To end this discussion, the total interaction energy as a function of d is plotted in Figure

7 and compared with CCSD(T)/aug-cc-pVTZ data (counterpoise corrections are included).

The differences in the two curves can be attributed to the electrostatic contributions and the

lack in our model of charge transfer effects and multipole terms. The equilibrium distance is

a bit shifted in our model (3.14 Å vs. 2.99 Å), but the interaction energy at the equilibrium

distance is accurately reproduced with an error of only 7% with respect to the CCSD(T)

data and comparable with similar data reported in the literature.111–113
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Figure 7: QM/FQ (B3LYP/6-31+G* for the QM moieties) and CCSD(T)/aug-cc-pVDZ
total interaction energy for the water dimer in Figure 3 as a function of the O-O distance.

5.3 Testing on water dimers

In order to test the quality of the parametrization presented in the previous sections, the

methodology was applied to ten water dimer structures, taken from Kratz and coworkers

(see Figure 8).114

All the calculations were performed with both the QM/FQ and QM/MM(TIP3P) methods,

coupled with the B3LYP/6-31+G* level for the QM moiety. Again, each time the QM

and MM portions were exchanged, and the two values averaged to get the final results (see

previous section). Erep values were compared to KM-EDA data (see Figure 9 and Table 1).

QM/FQ and QM/TIP3P values are very similar, although the parametrization has been

performed only with the QM/FQ method, thus confirming once again the stability of our

approach. The largest deviation from KM-EDA results is given by structures 4-6, which

show the smallest oxygen-oxygen distance, probably due to the absence of p-type gaussian

functions placed at lone pair positions.

The ∆ values in Table 1, i.e. the half-difference of the two calculations performed by ex-
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Figure 8: Selected water dimer structures, taken from Kratz et al.114

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 1  2  3  4  5  6  7  8  9  10

R
e
p
u
ls

io
n
 (

a
.u

.)

Structure

KM-EDA
QM/FQ
QM/MM

Figure 9: Calculated QM/FQ and QM/TIP3P (B3LYP/6-31+G*) Erep values for the water
dimer structures in Figure 8. KM-EDA (HF/6-31+G*) data are also reported for comparison.
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Table 1: Calculated Erep (10−3 Hartree) for the ten water dimers. ∆ shows the deviation
obtained by exchanging the QM and MM moieties. The percentage error from the KM-EDA
values is also reported.

KM-EDA QM/FQ ∆ Err.% QM/TIP3P ∆ Err.%
1 11.245 10.831 1.517 3.68 11.013 0.550 2.06
2 9.284 9.138 1.203 1.57 9.334 0.320 0.54
3 8.856 8.687 1.154 1.91 8.897 0.285 0.46
4 7.892 9.167 - 16.16 9.118 - 15.54
5 6.600 8.185 0.003 24.02 8.139 0.001 23.32
6 6.046 7.769 - 28.51 7.756 - 28.28
7 4.858 5.174 0.039 6.51 5.100 0.516 4.99
8 1.255 1.478 - 17.75 1.391 - 10.81
9 5.556 6.161 1.506 10.89 6.164 1.159 10.94
10 2.727 3.168 0.738 16.17 3.162 0.533 15.95

Average Error 12.72 11.29

changing the QM and MM moieties, are larger for structures characterized by a strong H-O

intermolecular interaction. Furthermore, except for structure 7, the QM/FQ ∆ values are

greater than the corresponding QM/MM ones. This difference is linked to the different phys-

ical description of the MM portion in the polarizable and non-polarizable models. In fact,

the polarizable QM/FQ approach emphasizes the H-bond acceptor or donor characters of

the MM molecule, thus resulting in a different interaction with the QM densities.

The total calculated quantum non-electrostatic contribution (EQnel,i.e. the sum of the Pauli

repulsion and quantum dispersion) is reported in Table 2. Only QM/FQ data are shown,

due to the similarity of the calculated results by exploiting the QM/FQ and QM/TIP3P

approaches. According to what is expected for aqueous solutions, which are dominated by

electrostatic interaction, EQnel is always smaller than the electrostatic term (EFQ). However,

the London contribution is not negligible, being as large as 35% of the total interaction

energy.

A closer look at Table 2 shows that EQnel is generally dominated by the Pauli repulsion inter-

action, which is always larger than Edis. This behavior confirms the results reported above,

where the dependence of such contributions on the intermolecular distance was outlined.
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Table 2: Erep, Edis, EQnel, electrostatic energies (EFQs) and total interaction energies, Etot,
for the ten water dimers. The values in parentheses give the percentage of the corresponding
contribution with respect to Etot. All energy values are given in 10−3 Hartree.

Erep Edis EQnel EFQ Etot

1 10.831 -1.123 9.708 (34%) -18.483 (66%) -8.775
2 9.138 -1.005 8.133 (33%) -16.823 (67%) -8.690
3 8.687 -0.977 7.710 (31%) -17.014 (69%) -9.304
4 9.167 -1.005 8.162 (35%) -15.190 (65%) -7.028
5 8.185 -0.988 7.197 (33%) -14.516 (67%) -7.319
6 7.769 -0.986 6.783 (31%) -14.852 (69%) -8.069
7 5.174 -1.687 3.487 (24%) -11.068 (76%) -7.581
8 1.478 -1.046 0.432 (12%) -3.169 (88%) -2.737
9 6.161 -1.174 4.987 (29%) -12.498 (71%) -7.511
10 3.168 -1.119 2.049 (18%) -9.409 (82%) -7.360

Furthermore, the two terms are very similar for some structures, such as 8 and 10, thus

demonstrating that the inclusion of both terms is compulsory to get a reliable description of

EQnel.

To end the discussion on these water dimers, in Table 3 the total Quantum non electrostatic

calculated by our approach is compared with SAPT2+3(CCD)/aug-cc-pVDZ values.

Table 3: EQnel for the ten water dimers calculated by using our model and the
SAPT2+3(CCD)/aug-cc-pVDZ. The values in parentheses give the percentage of the corre-
sponding contribution with respect to the last column. All energy values are given in 10−3

Hartree.

EQnel(QM/FQ) EQnel(SAPT)
1 9.708 (1 %) 9.814
2 8.133 (3 %) 7.882
3 7.710 (3 %) 7.451
4 8.162 (19%) 6.863
5 7.197 (35%) 5.348
6 6.783 (44%) 4.707
7 3.487 (20%) 4.381
8 0.432 (50%) 0.866
9 4.987 (6 %) 4.693
10 2.049 (2 %) 2.000

As already pointed out, the largest deviation from SAPT values is given by structures 4-6,
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which show the smallest oxygen-oxygen distance. Notice that the largest error is shown by

dimer 8, for which, however, EQnel is very small and the deviation in absolute value is even

smaller than for the other structures.

To further testing the quality of our approach, the model is applied to the water dimer in

Figure 10, previously studied by Guidez and Gordon111 by exploiting the EFP2(E6 + E7)

model.

Figure 10: Structure of the water dimer optimized at the MP2/aug-cc-pVDZ level of the-
ory115 previously studied by Guidez and Gordon.111

In table 4, the three terms entering in the definition of the interaction energy are reported as

calculated by our model, the EFP2(E6 + E7) and the Energy Decomposition Analysis per-

formed at CCSD(T)/aug-cc-pVQZ level of theory, with the further inclusion of counterpoise

corrections.

Table 4: Electrostatic, exchange-Repulsion, dispersion and total interaction energy for the
water dimer depicted in Figure 10 calculated by using our model, EFP2(E6 +E7)

111 and En-
ergy Decomposition Analysis EDA (CCSD(T)/aug-cc-pVQZ//MP2/aug-cc-pVQZ).112 The
values in parentheses give percentages with respect to the values in the last column. All
energy values are given in kcal/mol.
a: for EFP2 and EDA the electrostatic term is the sum of Coulomb and polarization contri-
butions.

level of theory QM/FQ EPF2(E6 + E7)
111 EDA112

Electrostatica -11.01 (2 %) -9.32 (14%) -10.79
Exchange repulsion 6.57 (8 %) 5.59 (22%) 7.16
Dispersion -0.70 (47%) -0.51 (62%) -1.33
Charge Transfer N/A -0.47 N/A
Total interaction energy -5.15(4 %) -4.71 (5% ) -4.95

In the QM/FQ approach, electrostatic and polarization contribution cannot be separated,

as previously reported by some of the present authors.47 Therefore a single term is reported
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in Table 4. The largest deviation with respect to the EDA is shown by the dispersion

term. However, as pointed out by Guidez and Gordon,111 EDA overestimates the dispersion

interaction due to the fact that it is computed as the difference between CCSD(T) and HF

interaction energies. Overall, the agreement between our data and EDA is satisfactory, being

the errors for the single terms generally small and the total interaction energy similar to the

EDA value.

5.4 Dependence of Erep and Edis on the QM description

In this section, the dependence of calculated Erep and Edis values on the level used to model

the QM moiety is studied. To this end, the water dimer depicted in Figure 3 with d =

2.64 Å is exploited. Eight different DFT functionals were selected, by following the recent

literature,116,117 ranging from pure (B97D118,119), to different classes of hybrid functionals

(B3LYP,120 B3PW91,121 M062X,122 PBE0,123 SOGGA11-X124), also including long-range

(CAM-B3LYP125) and dispersion corrections (ωB97xD126). Each functional was coupled

to several Pople-type basis sets (see Figure 11 and Figure 12), in order to separate the

contribution arising from polarization and diffuse functions.

Figure 11 reports schematically the trends obtained by computing Erep with the different

DFT functionals and the different basis sets. Numerical values are given in Table S4 in

the SI. All DFT functionals predict very similar Erep values as varying the basis set, with

CAM-B3LYP always showing the highest values for a given basis set (on average, the CAM-

B3LYP values are about 2% higher than the average value of the other functionals). This

is not surprising, if the tendency of the CAM-B3LYP of spreading out the QM density is

considered. Thus, the overlap between the QM density and the MM one is enlarged, resulting

in an increase of Erep.

The reported dependence on the choice of the basis set is also not surprising. In fact, the

addition of functions on the hydrogen atoms (e.g. from 6-31G to 6-311G) increases the

QM-MM overlap, and Erep increases of about 6% on average. Such an increase is reduced
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when diffuse functions are included. The effect of polarization functions is usually negligible,

however the addition of such functions generally results in the decreasing of Erep, especially

moving from single to double polarization functions. The addition of diffuse functions causes

instead an increase of Erep, due to an enlarged overlap between the QM and MM densities.

Figure 11: Dependence of Erep on the basis set and DFT functional for the water dimer
depicted in Figure 3.

Figure 12 reports the same analysis applied to Edis (raw data are given in Table S5 in the

SI).

The results reported in Figure 12 show some general trends, that are very similar to what

already observed for Erep. Firstly, CAM-B3LYP predicts the highest Edis, and again this is

probably due to the peculiarities of this functional. The observed trend as varying the basis

set is similar to what has already been commented for Erep. In fact, the addition of functions

on hydrogen atoms increases Edis of about 8%, and this increment is reduced when diffuse

functions are considered. Once again, the effect of polarization functions is negligible, and

finally results in the decreasing of Edis, especially when double polarization functions are

included. An opposite effect is observed when diffuse functions are added: an increase of

Edis is noticed, due to larger effective volumes of QM atoms and Ceff
6 coefficients (see Eq.
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15).

Figure 12: Dependence of Edis on the basis set and DFT functional for the water dimer
depicted in Figure 3.

The global effect of the choice of the DFT functional and basis set on EQnel is reported in

Figure S3 in the SI (raw data are given in Table S6 in the SI). To end this discussion, it

is worth pointing out that the results of the model here proposed are very stable as the

functional and basis set vary. Furthermore, stable values of Erep and Edis are obtained by

adding diffuse functions, so that their inclusion appears mandatory. For this reason, in the

following section the 6-31+G* basis set, which adequately reproduces the total EQnel, is

exploited.

6 Molecular Systems in aqueous solution described with

the QM/FQ approach

We have shown in the previous section that our model permits a correct reproduction of

the properties of the aqueous solution. In this section we will focus on the calculation of

the non-electrostatic contribution to the energetic properties of molecular systems in bulk
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aqueous solution, as modeled with the QM/FQ approach. We first notice that only the

closest FQ solvent molecules will reasonably give a not negligible contribution to the solute-

solvent interaction energy, due to the short-range character of Erep and Edis. This feature

can help at reducing the computational cost of the calculation. In fact, suitable thresholds

can be set. For quantum dispersion (Eq. 18) a cut-off is set, so that this term vanishes at

intermolecular distances larger than 10 Å. Notice however that the further consideration of

larger solvent shells would not increase much the computational demand.

On the contrary, the computational cost of the quantum repulsion term (Eq. 4) strongly

depends on the number of water molecules around the solute, because each of them bears

the gaussian functions used to represent ρMM; increasing the number of gaussian functions,

makes the calculation of the the two-electron integral in Eq. 4 more and more cumbersome.

Thus, the setting of a threshold appears beneficial.

To this end, only those FQ water molecules having a geometric center closer to at least a

QM atom than a given geometric parameter R are included in the calculation of Erep. In the

practice, this requires to build up a cavity made of the union of identical spheres centered

on each QM atom: only the MM molecules lying inside this cavity are considered in the

evaluation of Erep. Notice that in the present implementation the same radius R is used for

different QM atom types: this may be possibly refined.

In order to validate this approach and to set a reasonable value of R, we took as test cases

two random snapshots taken from a MD simulation of (L)-Methyl Lactate (MLAT) and

(R)-Methyloxirane (MOXY) in aqueous solution. MOXY is a small rigid almost spherical

molecule, whereas MLAT develops in the plane of the sp2 carbon atom. On such snapshots,

Erep was calculated as a function of R by using the B3LYP/6-31+G* level to treat the QM

solute. The results of such calculations are reported in Figure 13 for the resulting systems

depicted in Figure 14 and 15. Notice that such figures only show the FQ water molecules

relevant for the evaluation of Erep, i.e. those within a range of variation of R between

1.5 Å and 5 Å with a step of 0.5. The other FQ water molecules are indeed present, but
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only contribute to the electrostatic interaction. The numbers of relevant water molecules

associated at each radius for the structures depicted in Figure 14 and 15 are reported in

Table 5.
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Figure 13: Erep of (L)-Methyl Lactate and (R)-Methyloxirane in aqueous solution as a
function of R. B3LYP/6-31+G* is used to treat the QM solute. Erep calculated by exploiting
the KM-EDA approach, at the HF/6-31+G* level of theory, is also reported.

Figure 14: (L)-Methyl Lactate - water clusters arising from different choices of R.

Figure 13 clearly shows that the trend of Erep as a function of R strictly depends on the

studied system. Also, the structure of the resulting clusters for a given R differs for the
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Figure 15: (R)-Methyloxirane - water cluster arising from different choices of R.

Table 5: Radii (Å) of the spheres centered in each QM atom, and the total number of
relevant waters for the structures depicted in Figures 14 and 15.

Structure Radius Nwat Structure Radius Nwat

ML-1 2.5 2 MO-1 3.0 5
ML-2 3.0 9 MO-2 3.5 13
ML-3 3.5 16 MO-3 4.0 19
ML-4 4.0 25 MO-4 4.5 27
ML-5 4.5 32 MO-5 5.0 32
ML-6 5.0 39
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two systems. MLAT has a greater surface area and a larger number of H-bond sites with

respect to MOXY. This implies a greater exchange repulsion energy contribution for MLAT

than for MOXY. Convergence in the repulsion energy value is reached at different values

of the atomic radius R. In particular, imposing R = 3.5 Å is sufficient to describe the

repulsion contribution for MOXY, whereas for MLAT a slightly larger value (R = 4 Å) is

required. This is connected to the relative atomic positions: in case of MOXY, which is

almost spherical, the majority of the relevant FQ molecules are shared by more than a single

QM atom. MLAT has a more extended structure: therefore, increasing the R value causes

new independent relevant FQ molecules to be included in the calculation.

Figure 13 also reports Erep values obtained by using the KM-EDA approach. The error

between our values and the reference KM-EDA data is about 9 % for MOXY, and about 20

% for MLAT. These findings confirm the applicability of our procedure to molecular systems

in aqueous solution, in fact the calculated errors are of the same magnitude as what has been

previously reported for water dimers (see Figure 8). Table S7 in the SI gives a more detailed

comparison between our calculated values, KM-EDA data, and what can be obtained by

exploiting the EFP2 approach.

6.1 Nicotine in aqueous solution

To end the section on the numerical testing of the developed procedure, the approach re-

ported in this paper is applied to nicotine in aqueous solution (Figure 16, panel a)).

Starting from the MD performed previously by some of the present authors,95 300 snapshots

were selected (more details on the MD protocol and the procedure for the extraction of

the snapshots are given in the SI, section S5.1). The QM portion of the system was then

described at the CAM-B3LYP/6-31+G* level of theory, according to previous studies on

this molecule.95,127 Figure 16, panel b) depicts a randomly selected snapshot taken from the

MD of Nicotine in aqueous solution.

The analysis of the MD trajectory95 shows that nicotine exhibits 3 different conformers in
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(a)	 (b)	

(a)	

(c)	 (b)	

Figure 16: (a) Nicotine structure and definition of the δ1 dihedral angl, defining the con-
formers; (b) a random snapshot selected from the MD simulation of nicotine in aqueous
solution; c) conformational analysis extracted from MD.95
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aqueous solution: the A conformer, having an average value of δ1 = 106.4 degrees, the B

conformer (δ1 = −65 degrees) and the 0 conformer, where δ1 = 0 degrees. Figure 16, panel

(c) shows the distribution of each conformer obtained from the MD simulation.127 The most

populated conformers belong to the B family, followed by the 0 and A families. Also, the

analysis of the MD trajectory95 shows that at least two water molecules are bound to nicotine

nitrogen atoms through hydrogen-bonding interactions.

The distribution in panel (c) of Figure 16 is maintained in the 300 snapshots selected in this

study, for which Erep, Edis and consequently EQnel were calculated. The resulting values of

such energies are reported in the Figure 17 as a function of the snapshot. On the basis of

the values depicted in Figure 13, Erep was calculated by imposing the R= 5 Å, which in the

present case implies on average 52 water molecules to be considered in the evaluation of this

term.
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Figure 17: Calculated Erep, Edis and EQnel as a function of the snapshot for nicotine in
aqueous solution. The trends in average values as a function of the snapshot are given as
inset.

Figure 17 clearly shows that, as previously reported by some of the present authors for other

molecular properties,13,24,49 Erep, Edis and EQnel may differ as a function of the snapshot.
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EQnel is always positive, showing that the attractive, negative, Edis terms is always smaller

than the repulsive, positive Erep contribution. The average value of the three terms as a

function of the snapshot is depicted as inset in Figure 17. Clearly, convergence is reached

very quickly, when only 80 snapshots are considered, that different from other investigated

properties of this and other molecular systems, requiring hundreds or thousands of snapshots

to get a fully converged value for molecular spectral properties.13,24,49

To refine the analysis, the 300 snapshots were assigned to the three different conformers, that

in order to dissect the role of the different Erep and Edis terms in each subclass of structures.

To this end, a snapshot was considered to belong to the A family of conformers if 70 < δ1 <

180, B conformers if −180 < δ1 < −40 and 0 conformers otherwise. This partitioning allows

the snapshots to be divided in subclasses of structures and the contributions for each class

to be calculated. The results of this analysis are summarized in Table 6, where also standard

deviations are reported.

Table 6: Calculated Erep, Edis and EQnel for nicotine in aqueous solution. ∆EQnel is the
non-electrostatic energy difference between the various conformers and the most stabilized
one (0). All data are given in 10−2 Hartree unless differently stated and refer to 300 selected
snapshots. Standard deviations are reported in parentheses.

Conformer Erep Edis EQnel ∆EQnel

A 12.8 (±1.5) -2.2 ( ±0.1) 10.6( ±1.5) 0.4 (2.4 kcal/mol)
B 12.6 (±1.7) -2.2 ( ±0.2) 10.4( ±1.6) 0.2 (1.2 kcal/mol)
0 12.4 (±1.1) -2.2 ( ±0.1) 10.2( ±1.1) 0.0

Table 6 clearly shows that the calculated EQnel values are similar for the three conformers,

and they do not differ statistically. In particular, the lowest EQnel is exhibited by conformer

0, due to the fact that this conformer shows the lowest value of Erep in combination with a

rather small absolute value of Edis. As it has been noticed by some of us in previous works,95

the analysis of the MD shows that the 0 conformer is characterized by a short lifetime (10

ps), and this is due to the weak hydrogen bonding pattern exhibited by this conformer with

respect to the other two. Therefore, the nearest water molecules are placed farther than in
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the two other cases, thus giving rise to lower Erep values.

The total non-electrostatic energy difference of the various conformers with respect to 0 is

reported in the last column of Table 6. The values are small, but not negligible, and in

particular their magnitude is such to potentially affect the predicted conformational weights

in aqueous solutions.

Table 7: Calculated dipole moment of nicotine in aqueous solution, obtained by exploit-
ing non polarizable (QM/TIP3P), polarizable (QM/FQ) and polarizable+non electrostatic
(QM/FQ + Qnel) approaches. All data are given in Debye and refer to 300 selected snap-
shots.

µQM/TIP3P µQM/FQ µQM/FQ + Qnel

3.1 5.9 4.2

In Table 7, the average dipole moments calculated by exploiting the three QM/TIP3P,

QM/FQ and QM/FQ + Quantum non-electrostatic interactions approaches are reported.

The difference between the dipole obtained by including polarization effects is huge, as

expected (an increase of about 50% is observed). The third column in Table 7 shows the

dipole moment calculated by using the QM/FQ approach coupled with our description of

repulsive and dispersive interactions. By referring again to Table 6 and Figure 17, we note

again that the repulsion term is dominant if compared to the dispersion. This results in a

confinement of the molecular density, which causes the decrease of the molecular dipole, as

expected.

7 Summary, Conclusions and Future Perspectives

In this paper, a general route to calculate quantum repulsion and quantum dispersion effects

in polarizable and non-polarizable QM/MM approaches has been formulated. A remarkable

peculiarity of the proposed approach is that repulsion/dispersion contributions are explicitly

introduced in the QM Hamiltonian. Therefore, such terms not only enter the evaluation of

the energetic properties of the systems but, remarkably, can be propagated to the calcula-
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tion of molecular properties and spectra. Due to the specific form of the contributions, a

reliable yet extensive application of the methodology requires a compulsory parametrization

for different MM substrates, however the number of parameters entering the definition of our

method is remarkably low. In this paper, a parametrization for the aqueous solution, which

is the natural environment for most biomolecules, is proposed. Such a parametrization is able

to reproduce the most important features of the aqueous solution, for which the reported data

are in good agreement with reference data. The application of the obtained parametrization

to the calculation of the non-electrostatic interaction energy of aqueous nicotine shows that

the Pauli repulsion contribution is larger than the dispersion term for all the representative

snapshots extracted from the MD. This feature can potentially impact QM/MM geometry

optimization of molecular systems in aqueous solution, which are currently performed by

only resorting to the electrostatic term.48 The results of this study pave the way to similar

studies, aimed at extending the parametrization to environments other that water, in which

non-electrostatic terms can compare (or even overcome) with the generally dominating elec-

trostatic component of the molecule-environment interaction. Such studies, and the related

parametrizations, together with the extension of our method to the calculation of molecular

properties and spectroscopies, will be the topic of future communications.
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(77) Román-Pérez, G.; Soler, J. M. Efficient implementation of a van der Waals density functional:

application to double-wall carbon nanotubes. Phys. Rev. Lett. 2009, 103, 096102.

(78) Vydrov, O. A.; Van Voorhis, T. Nonlocal van der Waals density functional made simple.

Phys. Rev. Lett. 2009, 103, 063004.

(79) Vydrov, O. A.; Van Voorhis, T. Dispersion interactions from a local polarizability model.

Phys. Rev. A 2010, 81, 062708.

(80) Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dis-

persion correction. J. Comput. Chem. 2006, 27, 1787–1799.

(81) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements

H-Pu. J. Chem. Phys. 2010, 132, 154104.

(82) Bader, R. F. W. Atoms in Molecules A Quantum Theory ; OUP Oxford, 1990.

48



(83) Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor.

Chem. Acc. 1977, 44, 129–138.

(84) Johnson, E. R.; Becke, A. D. A post-Hartree–Fock model of intermolecular interactions. J.

Chem. Phys. 2005, 123, 024101.

(85) Olasz, A.; Vanommeslaeghe, K.; Krishtal, A.; Veszprémi, T.; Van Alsenoy, C.; Geerlings, P.

The use of atomic intrinsic polarizabilities in the evaluation of the dispersion energy. J.

Chem. Phys. 2007, 127, 224105.

(86) Caprasecca, S.; Jurinovich, S.; Viani, L.; Curutchet, C.; Mennucci, B. Geometry optimization

in polarizable QM/MM models: the induced dipole formulation. J. Chem. Theory Comput.

2014, 10, 1588–1598.

(87) Rick, S. W.; Stuart, S. J.; Bader, J. S.; Berne, B. J. Fluctuating charge force fields for

aqueous solutions. J. Mol. Liq. 1995, 65-66, 31–40.

(88) Rick, S. W.; Berne, B. J. Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation

of Amides. J. Am. Chem. Soc. 1996, 118, 672–679.

(89) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-

man, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.;

Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.;

Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lip-

parini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.;

Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toy-

ota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;

Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.;

Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.;

Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;

Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision A.03. 2016;

Gaussian Inc. Wallingford CT.

49



(90) Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models

at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960.

(91) Berendsen, H.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel

molecular dynamics implementation. Comp. Phys. Comm. 1995, 91, 43 – 56.

(92) Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: a package for molecular simulation

and trajectory analysis. J. Mol. Model. 2001, 7, 306–317.

(93) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C.

GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718.

(94) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly

Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput.

2008, 4, 435–447.

(95) Egidi, F.; Russo, R.; Carnimeo, I.; D’Urso, A.; Mancini, G.; Cappelli, C. The Electronic

Circular Dichroism of Nicotine in Aqueous Solution: A Test Case for Continuum and Mixed

Explicit-Continuum Solvation Approaches. J. Phys. Chem. A 2015, 119, 5396–5404.

(96) Kitaura, K.; Morokuma, K. A new energy decomposition scheme for molecular interactions

within the Hartree-Fock approximation. Int. J. Quantum Chem. 1976, 10, 325–340.

(97) Morokuma, K.; Kitaura, K. Chemical applications of atomic and molecular electrostatic po-

tentials; Springer, 1981; pp 215–242.

(98) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.;

Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Mont-

gomery, J. A. General atomic and molecular electronic structure system. J. Comput. Chem.

1993, 14, 1347–1363.

(99) Gordon, M. S.; Schmidt, M. W. Theory and Applications of Computational Chemistry: the

first forty years; Elsevier, 2005; pp 1167–1189.

50



(100) Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; DePrince, A. E.; Hohen-

stein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M.; Gonthier, J. F.;

James, A. M.; McAlexander, H. R.; Kumar, A.; Saitow, M.; Wang, X.; Pritchard, B. P.;

Verma, P.; Schaefer, H. F.; Patkowski, K.; King, R. A.; Valeev, E. F.; Evangelista, F. A.;

Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4 1.1: An Open-Source Electronic Struc-

ture Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem.

Theory Comput. 2017, 13, 3185–3197.

(101) Giovannini, T.; Olszówka, M.; Egidi, F.; Cheeseman, J. R.; Scalmani, G.; Cappelli, C.

Polarizable Embedding Approach for the Analytical Calculation of Raman and Raman

Optical Activity Spectra of Solvated Systems. J. Chem. Theory Comput. 2017, DOI:

10.1021/acs.jctc.7b00628.

(102) Abascal, J. L.; Vega, C. A general purpose model for the condensed phases of water:

TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.

(103) Boys, S. F. Construction of some molecular orbitals to be approximately invariant for changes

from one molecule to another. Rev. Mod. Phys. 1960, 32, 296.

(104) Jensen, J. H.; Gordon, M. S. An approximate formula for the intermolecular Pauli repulsion

between closed shell molecules. Mol. Phys. 1996, 89, 1313–1325.

(105) Jensen, J. H.; Gordon, M. S. An approximate formula for the intermolecular Pauli repulsion

between closed shell molecules. II. Application to the effective fragment potential method.

J. Chem. Phys. 1998, 108, 4772–4782.

(106) Thierfelder, C.; Assadollahzadeh, B.; Schwerdtfeger, P.; Schäfer, S.; Schäfer, R. Relativistic
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