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Abstract We present a new supervised deep-learning
approach to the problem of the extraction of smeared spec-
tral densities from Euclidean lattice correlators. A distinctive
feature of our method is a model-independent training strat-
egy that we implement by parametrizing the training sets
over a functional space spanned by Chebyshev polynomials.
The other distinctive feature is a reliable estimate of the sys-
tematic uncertainties that we achieve by introducing several
ensembles of machines, the broad audience of the title. By
training an ensemble of machines with the same number of
neurons over training sets of fixed dimensions and complex-
ity, we manage to provide a reliable estimate of the system-
atic errors by studying numerically the asymptotic limits of
infinitely large networks and training sets. The method has
been validated on a very large set of random mock data and
also in the case of lattice QCD data. We extracted the strange-
strange connected contribution to the smeared R-ratio from
a lattice QCD correlator produced by the ETM Collabora-
tion and compared the results of the new method with the
ones previously obtained with the HLT method by finding
a remarkably good agreement between the two totally unre-
lated approaches.

1 Introduction

The problem of the extraction of hadronic spectral densities
from Euclidean correlators, computed from numerical lattice
QCD simulations, has attracted a lot of attention since many
years (see Refs. [1–30], the works on the subject of which we
are aware of, and Refs. [31,32] for recent reviews). At zero
temperature, the theoretical and phenomenological impor-
tance of hadronic spectral densities, strongly emphasized in
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the context of lattice field theory in Refs. [1,11,13,14,17–
19], is associated with the fact that from their knowledge it
is possible to extract all the information needed to study the
scattering of hadrons and, more generally, their interactions.

From the mathematical perspective, the problem of the
extraction of spectral densities from lattice correlators is
equivalent to that of an inverse Laplace-transform operation,
to be performed numerically by starting from a discrete and
finite set of noisy input data. This is a notoriously ill-posed
numerical problem that, in the case of lattice field theory
correlators, gets even more complicated because lattice sim-
ulations have necessarily to be performed on finite volumes
where the spectral densities are badly-behaving distributions.

In Ref. [14], together with M. Hansen and A. Lupo, one
of the authors of the present paper proposed a method to
cope with the problem of the extraction of spectral densities
from lattice correlators that allows to take into account the
fact that distributions have to be smeared with sufficiently
well-behaved test functions. Once smeared, finite volume
spectral densities become numerically manageable and the
problem of taking their infinite volume limit is mathemat-
ically well defined. The method of Ref. [14] (HLT method
in short) has been further refined in Ref. [21] where it has
been validated by performing very stringent tests within the
two-dimensional O(3) non-linear σ -model.

In this paper we present a new method for the extraction
of smeared spectral densities from lattice correlators that is
based on a supervised deep-learning approach.

The idea of using machine-learning techniques to address
the problem of the extraction of spectral densities from lattice
correlators is certainly not original (see e.g. Refs. [15,16,
22–29]). The great potential of properly-trained deep neural
networks in addressing this problem is pretty evident from
the previous works on the subject. These findings strongly
motivated us to develop an approach that can be used to obtain
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Fig. 1 By introducing a discrete functional-basis, with elements
Bn(E), that is dense in the space of square-integrable functions f (E)

in the interval [E0,∞) with E0 > 0, any such function can exactly
be represented as f (E) = ∑∞

n=0 cn Bn(E). With an infinite number of
basis functions (Nb = ∞) and by randomly selecting an infinite number
(Nρ = ∞) of coefficient vectors c = (c0, . . . , cNb ), one can get any
possible spectral density. This is the situation represented by the filled
blue disk. If the number of basis functions Nb and the number of ran-
domly extracted spectral densities Nρ are both finite one has a training
set that is finite and that also depends on Nb. This is the situation rep-
resented in the first disk on the left. The other two disks schematically
represent the situations in which either Nb or Nρ is infinite

trustworthy theoretical predictions. To this end we had to
address the following two pivotal questions

1. is it possible to devise amodel independent training strat-
egy?

2. if such a strategy is found, is it then possible to quan-
tify reliably, together with the statistical errors, also the
unavoidable systematic uncertainties?

The importance of the first question can hardly be under-
estimated. Under the working assumption, supported by the
so-called universal reconstruction theorems (see Refs. [33–
35]), that a sufficiently large neural network can perform any
task, limiting either the size of the network or the information
to which it is exposed during the training process means, in
fact, limiting its ability to solve the problem in full gener-
ality. Addressing the second question makes the difference
between providing a possibly efficient but qualitative solu-
tion to the problem and providing a scientific numerical tool
to be used in order to derive theoretical predictions for phe-
nomenological analyses.

In order to address these two questions, the method that
we propose in this paper has been built on two pillars

1. the introduction of a functional-basis to parametrize the
correlators and the smeared spectral densities of the train-
ing sets in a model independent way;

2. the introduction of the ensemble of machines, the broad
audience mentioned in the title, to estimate the systematic
errors.1

1 The idea of using ensembles of machines has already been explored
within the machine-learning literature in other contexts, see e.g. Ref.
[36] where the so-called “ensembling” technique to estimate the errors
is discussed from a Bayesian perspective.

Fig. 2 We generate several training sets Tσ (Nb, Nρ) built by consid-
ering randomly chosen spectral densities. These are obtained by choos-
ing Nρ random coefficients vectors with Nb entries, see Fig. 1. For
each spectral density ρ(E) we build the associated correlator C(t) and
smeared spectral density ρ̂σ (E), where σ is the smearing parameter.
We then distort the correlator C(t), by using the information provided
by the statistical variance of the lattice correlator (the one we are going
to analyse at the end of the trainings), and obtain the input–output pair
(Cnoisy(t), ρ̂σ (E)) that we add to Tσ (Nb, Nρ). We then implement dif-
ferent neural networks with Nn neurons and at fixed N = (Nn, Nb, Nρ)

we introduce an ensemble of machines with Nr replicas. Each machine
r = 1, . . . , Nr belonging to the ensemble has the same architecture and,
before the training, differs from the other replicas for the initialization
parameters. All the replicas are then trained over Tσ (Nb, Nρ) and, at
the end of the training process, each replica will give a different answer
depending upon N

A bird-eye view of the proposed strategy is given in Figs. 1,
2 and in Fig. 3. The method is validated by using both mock
and true lattice QCD data. In the case of mock data the exact
result is known and the validation test is quite stringent. In
the case of true lattice QCD data the results obtained with
the new method are validated by comparison with the results
obtained with the HLT method.

The plan of the paper is as follows. In Sect. 2 we intro-
duce and discuss the main aspects of the problem. In Sect. 3
we illustrate the numerical setup used to obtain the results
presented in the following sections. In Sect. 4 we describe
the construction of the training sets and the proposed model-
independent training strategy. In Sect. 5 we illustrate the pro-
cedure that we use to extract predictions from our ensembles
of trained machines and present the results of a large number
of validation tests performed with random mock data. Fur-
ther validation tests, performed by using mock data generated
by starting from physically inspired models, are presented in
Sect. 6. In Sect. 7 we present our results in the case of lattice
QCD data and the comparison with the HLT method. We
draw our conclusions in Sect. 8 and discuss some technical
details in the two appendixes.

2 Theoretical framework

The problem that we want to solve is the extraction of the
infinite-volume spectral density ρ(E) from the Euclidean
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Fig. 3 Flowchart illustrating the three-step procedure that, after the
training, we use to extract the final result. Here C(t) represents the
input lattice correlator that, coming from a Monte Carlo simulation, is
affected by statistical noise. We call Cc(t) the c-th bootstrap sample
(or jackknife bin) of the lattice correlator with c = 1, . . . , Nc. In the
first step, Cc(t) is fed to all the trained neural networks belonging to the
ensemble at fixedN and the corresponding answers ρ̂

pred
σ (E,N, c, r) are

collected. In the second step, by combining in quadrature the widths of
the distributions of the answers as a function of the index c (�latt

σ (E,N))
and of the index r (�net

σ (E,N)) we estimate the error �stat
σ (E,N)) at

fixed N. At the end of this step we are left with a collection of results
ρ̂

pred
σ (E,N)±�stat

σ (E,N). In the third and last step, the limits N �→ ∞
are studied numerically and an unbiased estimate of ρ̂

pred
σ (E) and of its

error �tot
σ (E), with the latter also taking into account the unavoidable

systematics associated with these limits, is finally obtained

correlators

CLT (t) =
∫ ∞

E0

dE bT (t, E) ρLT (E) , (1)

computed numerically in lattice simulations. These are per-
formed by introducing a finite spatial volume L3, a finite
Euclidean temporal direction T and by discretizing space-
time,

x = a(τ,n) , 0 ≤ τ < NT = T

a
, 0 ≤ ni < NL = L

a
,

(2)

where a is the so-called lattice spacing and (τ,n) are the inte-
ger space-time coordinates in units of a. In order to obtain the
infinite-volume spectral density one has to perform different
lattice simulations, by progressively increasing L and/or T ,
and then study numerically the L �→ ∞ and T �→ ∞ limits.
In the T �→ ∞ limit the basis functions bT (t, E) become

decaying exponentials and the correlator is given by

CL(t) = lim
T �→∞CT L(t) =

∫ ∞

E0

dE e−t E ρL(E) , (3)

where ρL(E) = 0 for E < E0 and the problem is that
of performing a numerical inverse Laplace-transform opera-
tion, by starting from a discrete and finite set of noisy input
data. This is a classical numerical problem, arising in many
research fields, and has been thoroughly studied (see e.g.
Refs. [37,38] for textbooks discussing the subject from a
machine-learning perspective). The problem, as we are now
going to discuss, is particularly challenging from the numeri-
cal point of view and becomes even more challenging and del-
icate in our Quantum Field Theory (QFT) context because,
according to Wightman’s axioms, QFT spectral densities live
in the space of tempered distributions and, therefore, cannot
in general be considered smooth and well behaved functions.

Before discussing though the aspects of the problem that
are peculiar to our QFT context, it is instructive to first
review the general aspects of the numerical inverse Laplace-
transform problem that, in fact, is ill-posed in the sense of
Hadamard. To this end, we start by considering the correlator
in the infinite L and T limits,

C(aτ) = lim
L ,T �→∞CT L(aτ) =

∫ ∞

E0

dE e−τaE ρ(E) , (4)

and we assume that our knowledge of C(t) is limited to the
discrete and finite set of times t = aτ . Moreover we assume
that the input data are affected by numerical and/or statistical
errors that we call �(aτ).

The main point to be noticed is that, in general, the spectral
density ρ(E) contains an infinite amount of information that
cannot be extracted from the limited and noisy information
contained into the input dataC(aτ). As a consequence, in any
numerical approach to the extraction of ρ(E) a discretization
of Eq. (4) has to be introduced. Once a strategy to discretize
the problem has been implemented, the resulting spectral
density has then to be interpreted as a “filtered” or (as is
more natural to call it in our context) smeared version of the
exact spectral density,

ρ̂(E) =
∫ ∞

E0

dω K (E, ω) ρ(ω) , (5)

where K (E, ω) is the so-called smearing kernel, explicitly or
implicitly introduced within the chosen numerical approach.

There are two main strategies (and many variants of them)
to discretize Eq. (4). The one that we will adopt in this paper
has been introduced and pioneered by Backus and Gilbert
[39] and is based on the introduction of a smearing kernel
in the first place. We will call this the “smearing” discretiza-
tion approach. The other approach, that is more frequently
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used in the literature and that we will therefore call the “stan-
dard” one, is built on the assumption that spectral densities
are smooth and well-behaved functions. Before discussing
the smearing approach we briefly review the standard one,
by putting the emphasis on the fact that also in this case a
smearing kernel is implicitly introduced.

In the standard discretization approach the infinite-volume
correlator is approximated as a Riemann sum,

Ĉ(aτ) = σ

NE−1∑

m=0

e−τaEm ρ̂(Em) , Em = E0 + mσ, (6)

under the assumption that the infinite-volume spectral den-
sity is sufficiently regular to have

∣
∣
∣C(aτ) − Ĉ(aτ)

∣
∣
∣ � �(aτ) (7)

for NE sufficiently large and σ sufficiently small. By intro-
ducing the “veilbein matrix”

Êτm ≡ e−τaEm , (8)

and the associated “metric matrix” in energy space,

Ĝnm ≡
[
ÊT Ê

]

nm

=
NT −1∑

τ=1

e−τa(En+Em ) = e−a(En+Em ) − e−T (En+Em )

1 − e−a(En+Em )
,

(9)

Eq. (6) is then solved,

ρ̂(En) =
NT −1∑

τ=1

gτ (En) Ĉ(aτ) ,

gτ (En) = 1

σ

NE−1∑

m=0

Ĝ−1
nm Êτm . (10)

By using the previous expressions we can now explain why
the problem is particularly challenging and in which sense it
is numerically ill-posed.

On the numerical side, the metric matrix Ĝ is very badly
conditioned in the limit of large NE and small σ . Conse-
quently, the coefficients gτ (En) become huge in magnitude
and oscillating in sign in this limit and even a tiny distortion
of the input data gets enormously amplified,

NT −1∑

τ=1

gτ (En)�(aτ)
σ �→0�−→ ∞ . (11)

In this sense the numerical solution becomes unstable and
the problem ill-posed.

Another important observation concerning Eqs. (10), usu-
ally left implicit, concerns the interpretation of ρ̂(En) as a
smeared spectral density. By introducing the smearing kernel

K (En, ω) =
NT −1∑

τ=1

gτ (En) e
−aτω , (12)

and by noticing that, as a matter of fact, the spectral density
has to be obtained by using the correlator C(aτ) (and not its
approximation Ĉ(aτ), to be considered just as a theoretical
device introduced in order to formalize the problem), we have

ρ̂(En) =
∫ ∞

E0

dω K (En, ω) ρ(ω) . (13)

Consistency would require that K (En, ω) = δ(En − ω) but
this cannot happen at finite T and/or NE . In fact K (En, ω)

can be considered a numerical approximation of δ(En − ω)

that, as can easily be understood by noticing that

K (En, Em) = δnm

σ
, (14)

has an intrinsic energy-resolution proportional to the dis-
cretization interval σ of the Riemann’s sum. A numerical
study of K (En, ω) at fixed En reveals that for ω ≥ En the ker-
nel behaves smoothly while it oscillates wildly for ω < En

and small values of σ . A numerical example is provided in
Fig. 4.

Once the fact that a smearing operation is unavoidable
in any numerical approach to the inverse Laplace-transform
problem has been recognized, the smearing discretization
approach that we are now going to discuss appears more
natural. Indeed, the starting point of the smearing approach is
precisely the introduction of a smearing kernel and this allows
to cope with the problem also in the case, relevant for our QFT
applications, in which spectral densities are distributions.

By reversing the logic of the standard approach, that led
us to Eq. (12), in the smearing approach the problem is dis-
cretized by representing the possible smearing kernels as
functionals of the coefficients gτ according to

K (g, ω) =
NT −1∑

τ=1

gτ bT (aτ, ω) . (15)

Notice that we are now considering the correlator CLT (aτ)

at finite T and L and this allows to analyse the results of a
single lattice simulation. The main observation is that in the
T �→ ∞ limit any target kernel Ktarget(E, ω) such that

∥
∥Ktarget(E)

∥
∥2 =

∫ ∞

E0

dω
∣
∣Ktarget(E, ω)

∣
∣2

< ∞, (16)
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Fig. 4 Top panel: Smearing kernel of Eq. (12) at En = 5 for three
values of σ . The reconstruction is performed by setting E0 = 1 and
Emax = 10 as UV cutoff in Eq. (5) and by working in lattice units with
a = 1. The kernel is smooth for ω ≥ En while it presents huge oscil-
lations for ω < En . In the case σ = 0.1 these oscillations range from
−10126 to +10121. Bottom panel: Corresponding coefficients gτ (En)

(see Eq. 10) in absolute value for the first 20 discrete times. Extended-
precision arithmetic is mandatory to invert the matrix Ĝnm . This test,
in which det(Ĝ) = O

(
10−15700

)
for σ = 0.1, has been performed by

using 600-digits arithmetic

can exactly be represented as a linear combination of
the b∞(aτ, ω) = exp(−aωτ) basis functions (that are
indeed dense in the functional-space L2[E0,∞] of square-
integrable functions). With a finite number of lattice times,
the smearing kernel is defined as the best possible approxi-
mation of Ktarget(E, ω), i.e. the coefficients gτ (E) are deter-
mined by the condition

∂
∥
∥K (g) − Ktarget(E)

∥
∥2

∂gτ

∣
∣
∣
∣
∣
gτ =gτ (E)

= 0 . (17)

Once the coefficients are given, the smeared spectral density
is readily computed by relying on the linearity of the problem,

ρ̂LT (E) =
NT −1∑

τ=1

gτ (E)CLT (aτ)

=
∫ ∞

E0

dω K (E, ω) ρLT (ω) , (18)

where now

K (E, ω) ≡ K (g(E), ω) . (19)

In the smearing approach one has

lim
T �→∞ ρ̂LT (E) =

∫ ∞

E0

dω Ktarget(E, ω) ρL(E) . (20)

Moreover, provided that ρ(E) exists, it can be obtained by
choosing as the target kernel a smooth approximation to
δ(E − ω) depending upon a resolution parameter σ , e.g.

Ktarget(E, ω) = 1√
2πσ

e− (E−ω)2

2σ2 ,

lim
σ �→0

Ktarget(E, ω) = δ(E − ω) , (21)

and by considering the limits

lim
σ �→0

lim
L ,T �→∞ ρ̂LT (E) = ρ(E) , (22)

in the specified order. When σ is very small, the coefficients
gτ (E) determined by using Eq. (17) become gigantic in mag-
nitude and oscillating in sign, as in the case of the coefficients
obtained by using Eq. (10). In fact the numerical problem is
ill-posed independently of the approach used to discretize it.

We now come to the aspects of the problem that are pecu-
liar to our QFT context. Hadronic spectral densities

ρ(p1, . . . pn−1) = 〈0|Ô1(2π)3δ4(P̂ − p1)Ô2

· · · (2π)3δ4(P̂ − pn−1)Ôn |0〉, (23)

are the Fourier transforms of Wightman’s functions in
Minkowski space,

W (x1, . . . xn−1) = 〈0|Ô1e
−i P̂ ·x1 Ô2 · · · e−i P̂ ·xn−1 Ôn|0〉 ,

(24)

where P̂ = (Ĥ , P̂) is the QCD four-momentum operator and
the Ôi ’s are generic hadronic operators. According to Wight-
man’s axioms, vacuum expectation values of field operators
are tempered distributions. This implies that also their Fourier
transforms, the spectral densities, are tempered distributions
in energy–momentum space. It is therefore impossible, in
general, to compute numerically a spectral density. On the
other hand, it is always possible to compute smeared spectral
densities,

ρ[K1, . . . Kn−1] =
∫ {

∏

i

d4 pi Ki (pi )

}

ρ(p1, . . . pn−1) ,

(25)

where the kernels Ki (p) are Schwartz functions.
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In this paper, to simplify the discussion and the notation,
we focus on the dependence upon a single space-time vari-
able,

W (x) = 〈0|ÔF e−i P̂·x ÔI |0〉 , (26)

where the operators ÔI and ÔF might also depend upon
other coordinates. The spectral density associated with W (x)
is given by

ρ(E) = 1

2π

∫

d4x eip·x W (x)

= 〈0|ÔF δ
(
Ĥ − E

)
(2π)3δ3

(
P̂ − p

)
ÔI |0〉 , (27)

and, to further simplify the notation, we don’t show explicitly
the dependence of ρ(E) w.r.t. the fixed spatial momentum
p. The very same spectral density appears in the two-point
Euclidean correlator

C(t) =
∫

d3x e−ip·x〈0|ÔF e−t Ĥ+i P̂·x ÔI |0〉

=
∫ ∞

E0

dE e−t E ρ(E) (28)

for positive Euclidean time t . In the last line of the previous
equation we have used the fact that, because of the presence
of the energy Dirac-delta function appearing in Eq. (27), the
spectral density vanishes for E < E0 where E0 is the smallest
energy that a state propagating between the two hadronic
operators ÔI and ÔF can have.

On a finite volume the spectrum of the Hamiltonian is
discrete and, consequently, the finite-volume spectral density
ρL(E) becomes a particularly wild distribution,

ρL(E) =
∑

n

wn(L) δ(En(L) − E) , (29)

the sum of isolated Dirac-delta peaks in correspondence of
the eigenvalues En(L) of the finite volume Hamiltonian. By
using the previous expression one has that

CL(t) =
∑

n

wn(L) e−En(L)t , (30)

and this explains why we have discussed the standard
approach to the discretization of the inverse Laplace-
transform problem by first taking the infinite-volume limit.
Indeed if the Riemann’s discretization of Eq. (6) is applied
to CL(aτ) and all the Em’s are different from all the En(L)’s
one gets ĈL(aτ) = 0!

On the one hand, also in infinite volume, spectral densities
have to be handled with the care required to cope with tem-
pered distributions and this excludes the option of using the

standard approach to discretize the problem in the first place.
On the other hand, in some specific cases it might be con-
ceivable to assume that the infinite volume spectral density is
sufficiently smooth to attempt using the standard discretiza-
tion approach. This requires that the infinite-volume limit of
the correlator has been numerically taken and that the asso-
ciated systematic uncertainty has been properly quantified
(a non-trivial numerical task at small Euclidean times where
the errors on the lattice correlators are tiny).

The smearing discretization approach can be used either
in finite- and infinite-volume and the associated systematic
errors can reliably be quantified by studying numerically
the limits of Eq. (22). For this reason, as in the case of the
HLT method of Ref. [14], the target of the machine-learning
method that we are now going to discuss in details is the
extraction of smeared spectral densities.

3 Numerical setup

In order to implement the strategy sketched in Figs. 1, 2
and 3 and discussed in details in the following sections,
the numerical setup needs to be specified. In this section we
describe the data layout that we used to represent the input
correlators and the output smeared spectral densities and then
provide the details of the architectures of the neural networks
that we used in our study.

3.1 Data layout

In this work we have considered both mock and real lattice
QCD data and have chosen the algorithmic parameters in
order to be able to extract the hadronic spectral density from
the lattice QCD correlator described in Sect. 7. Since in the
case of the lattice QCD correlator the basis function bT (t, E)

(see Eq. (1)) is given by

bT (t, ω) = ω2

12π2

[
e−tω + e−(T−t)ω

]
, (31)

with T = 64a, we considered the same setup also in the
case of mock data. These are built by starting from a model
unsmeared spectral density ρ(E) and by computing the asso-
ciated correlator according to

C(t) =
∫ ∞

E0

dω
ω2

12π2

[
e−tω + e−(T−t)ω

]
ρ(ω) , (32)

and the associated smeared spectral density according to

ρ̂σ (E) =
∫ ∞

E0

dω Kσ (E, ω)ρ(ω) . (33)
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Since in the case of the lattice QCD spectral density, in
order to compare the results obtained with the proposed new
method with the ones previously obtained in Ref. [40], we
considered a Gaussian smearing kernel, also in the case of
mock data we made the choice

Kσ (E, ω) = 1√
2πσ

e− (E−ω)2

2σ2 . (34)

We stress that there is no algorithmic reason behind the choice
of the Gaussian as the smearing kernel and that any other ker-
nel can easily be implemented within the proposed strategy.

Among the many computational paradigms available
within the machine-learning framework, we opted for the
most direct one and represented both the correlator and
the smeared spectral density as finite dimensional vectors,
that we used respectively as input and output of our neu-
ral networks. More precisely, the dimension of the input
correlator vector has been fixed to NT = 64, coincid-
ing with the available number of Euclidean lattice times
in the case of the lattice QCD correlator. The inputs of
the neural networks are thus the 64-components vectors
C = {C(a),C(2a), . . . ,C(64a)}. The output vectors are
instead given by ρ̂σ = {ρ̂σ (Emin), . . . , ρ̂σ (Emax)}. As in
Ref. [40], we have chosen to measure energies in units of
the muon mass, mμ = 0.10566 GeV, and set Emin = mμ

and Emax = 24mμ. The interval [Emin, Emax] has been
discretized in steps of size mμ/2. With these choices our
output smeared spectral densities are the vectors ρ̂σ with
NE = 47 elements corresponding to energies ranging from
about 100 MeV to 2.5 GeV.

The noise-to-signal ratio in (generic) lattice QCD correla-
tors increases exponentially at large Euclidean times. For
this reason it might be numerically convenient to choose
NT < T/a and discard the correlator at large times where
the noise-to-signal ratio is bigger than one. According to our
experience with the HLT method, that inherits the original
Backus–Gilbert regularization mechanism, it is numerically
inconvenient to discard part of the information available on
the correlator provided that the information contained in the
noise is used to conveniently regularize the numerical prob-
lem. Also in this new method, as we are going to explain
in Sect. 4.2, we use the information contained in the noise
of the lattice correlator during the training process and this,
as shown in Appendix B, allows us to conveniently use all
the available information on the lattice correlator, i.e. to set
NT = T/a, in order to extract the smeared spectral density.

We treat σ , the width of the smearing Gaussian, as a fixed
parameter by including in the corresponding training sets
only spectral functions that are smeared with the chosen
value of σ . This is a rather demanding numerical strategy
because in order to change σ the neural networks have to be
trained anew, by replacing the smeared spectral densities in

the training sets with those corresponding to the new value of
σ . Architectures that give the possibility to take into account
a variable input parameter, and a corresponding variable out-
put at fixed input vector, have been extensively studied in the
machine learning literature and we leave a numerical inves-
tigation of this option to future work on the subject. In this
work we considered two different values, σ = 0.44 GeV and
σ = 0.63 GeV, that correspond respectively to the smallest
and largest values used in Ref. [40].

3.2 Architectures

By reading the discussion on the data layout presented in
the previous subsection from the machine-learning point of
view, we are in fact implementing neural networks to solve a
R

NT �→ R
NE regression problem with NT = 64 and NE =

47 which, from now on, fix the dimension of the input and
output layers of the neural networks.

There are no general rules to prefer a given network archi-
tecture among the different possibilities that have been con-
sidered within the machine-learning literature and it is com-
mon practice to make the choice by taking into account the
details of the problem at hand. For our analysis, after hav-
ing performed a comparative study at (almost) fixed num-
ber of parameters of the so-called Multilayer perceptron and
convolutional neural networks, we used feed-forward con-
volutional neural networks based on the LeNet architecture
introduced in Ref. [41].

We studied in details the dependence of the output of
the neural networks upon their size Nn and, to this end, we
implemented three architectures that we called arcS, arcM
and arcL. These architectures, described in full details in
Tables 1, 2 and 3, differ only for the number of maps in the
convolutional layers. The number of maps are chosen so that
the number of parameters of arcS:arcM:arcL are approxi-
mately in the proportion 1 : 2 : 3. For the implementation
and the training we employed both Keras [42] and Tensor-
Flow [43].

4 Model independent training

In the supervised deep-learning framework a neural network
is trained over a training set which is representative of the
problem that has to be solved. In our case the inputs to each
neural network are the correlatorsC and the target outputs are
the associated smeared spectral densities ρ̂σ . As discussed
in the Introduction, our main goal is to devise a model-
independent training strategy. To this end, the challenge is
that of building a training set which contains enough vari-
ability so that, once trained, the network is able to provide
the correct answer, within the quoted errors, for any possible
input correlator.
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Table 1 arcS: the smallest neural network architecture used in this
work. The architecture is of the type feed-forward and the structure
can be read from top to bottom of the table. It consist of three 1D
convolutional layers with an increasing number of maps followed by
two fully connected layers. The two blocks are intermediated by one
flatten layer. The column denoted by “Size” reports the shape of the
signal produced by the corresponding layer. The stride of the filters is
set to 2 in such a way that the dimension of the signal is halved at each
1D convolutional layer thus favouring the neural network to learn a
more abstract, and possibly more effective, representation of the input
data. As activation functions we use the LeakyReLu with negative slope
coefficient set to −0.2. The neurons with activation functions are also
provided with biases. The output is devoid of activation function in
order not to limit the output range. The bottom line reports the total
number of trainable parameters

Type Maps Size Kernel size Stride Activation

Input 64

Conv1D 2 32x2 3 2 LeakyReLu

Conv1D 4 16x4 3 2 LeakyReLu

Conv1D 8 8x8 3 2 LeakyReLu

Flatten 384

Fully conn 256 LeakyReLu

Fully conn 256 LeakyReLu

Output 47

Parameters 94651

As a matter of fact, the situation in which the neural net-
work can exactly reconstruct any possible function is merely
ideal. That would be possible only in absence of errors on the
input data and with a neural network with an infinite number
of neurons, trained on an infinitely large and complex train-
ing set. This is obviously impossible and in fact our goal is
the realistic task of getting an output for the smeared spec-
tral density as close as possible to the exact one by trading
the unavoidable limited abilities of the neural network with
a reliable estimate of the systematic error. In order to face
this challenge we used the algorithmic strategy described in
Figs. 1, 2 and in Fig. 3. In our strategy,

• the fact that the network cannot be infinitely large is
parametrized by the fact that Nn (the number of neurons)
is finite;

• the fact that during the training a network cannot be
exposed to any possible spectral density is parametrized
by the fact that Nb (the number of basis functions) and
Nρ (the number of spectral densities to which a network
is exposed during the training) are finite (see Fig. 1);

• the fact that at fixed

N = (Nn, Nb, Nρ) (35)

the answer of a network cannot be exact, and therefore
has to be associated with an error, is taken into account by

Table 2 arcM: the medium-size
architecture used in this work.
See Table 1 for the description

Type Maps Size Kernel size Stride Activation

Input 64

Conv1D 12 32 × 12 3 2 LeakyReLu

Conv1D 24 16 × 24 3 2 LeakyReLu

Conv1D 48 8 × 48 3 2 LeakyReLu

Flatten 384

Fully conn 256 LeakyReLu

Fully conn 256 LeakyReLu

Output 47

Parameters 180,871

Table 3 arcL: the largest
architecture used in this work.
See Table 1 for the description

Type Maps Size Kernel size Stride Activation

Input 64

Conv1D 32 32 × 32 3 2 LeakyReLu

Conv1D 64 16 × 64 3 2 LeakyReLu

Conv1D 128 8 × 128 3 2 LeakyReLu

Flatten 1024

Fully conn 256 LeakyReLu

Fully conn 256 LeakyReLu

Output 47

Parameters 371,311
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introducing an ensemble of machines, with Nr replicas,
and by estimating this error by studying the distribution
of the different Nr answers in the Nr �→ ∞ limit (see
Fig. 2);

• once the network (and statistical) errors at fixed N are
given, we can study numerically the N �→ ∞ limits and
also quantify, reliably, the additional systematic errors
associated with these unavoidable extrapolations (see
Fig. 3).

We are now going to provide the details concerning the
choice of the functional basis that we used to parametrize the
spectral densities and to build our training sets.

4.1 The functional-basis

In our strategy we envisage studying numerically the limit
Nb �→ ∞ and, therefore, provided that the systematic errors
associated with this extrapolation are properly taken into
account, there is no reason to prefer a particular basis w.r.t.
any other. For our numerical study we used the Chebyshev
polynomials of the first kind as basis functions (see for exam-
ple Ref. [44]).

The Chebyshev polynomials Tn(x) are defined for x ∈
[−1, 1] and satisfy the orthogonality relations

∫ +1

−1
dx

Tn(x)Tm(x)√
1 − x2

=

⎧
⎪⎨

⎪⎩

0 n 
= m,
π
2 n = m 
= 0

π n = m = 0

. (36)

In order to use them as a basis for the spectral densities that
live in the energy domain E ∈ [E0,∞), we introduced the
exponential map

x(E) = 1 − 2e−E (37)

and set

Bn(E) = Tn(x(E)) − Tn(x(E0)) . (38)

Notice that the subtraction of the constant term Tn(x(E0))has
been introduced in order to be able to cope with the fact that
hadronic spectral densities vanish below a threshold energy
E0 ≥ 0 that we consider an unknown of the problem. With
this choice, the unsmeared spectral densities that we use to
build our training sets are written as

ρ(E; Nb) = θ(E − E0)

Nb∑

n=0

cn [Tn (x(E)) − Tn (x(E0))] ,

(39)

Fig. 5 Examples of unsmeared spectral densities generated according
to Eq. (39) using the Chebyshev polynomial as basis functions for dif-
ferent Nb. For all the examples we set E0 = 0.8 GeV. As it can be seen,
by generating the cn coefficients according to Eq. (40), the larger the
number of terms of the Chebyshev series the richer is the behaviour of
the spectral density in terms of local structures

and vanish identically for E ≤ E0. Once E0 and the coeffi-
cients cn that define ρ(E; Nb) are given, the correlator and
the smeared spectral density associated with ρ(E; Nb) can
be calculated by using Eqs. (32) and (33).2

Each ρ(E; Nb) that we used in order to populate our train-
ing sets has been obtained by choosing E0 randomly in the
interval [0.2, 1.3] GeV with a uniform distribution and by
inserting in Eq. (39) the coefficients

c0 = r0 ; cn = rn
n1+ε

, n > 0 , (40)

where the rn’s are Nb uniformly distributed random num-
bers in the interval [−1, 1] and ε is a non-negative parameter
that we set to 10−7. Notice that with this choice of the coeffi-
cients cn the Chebyshev series of Eq. (39) is convergent in the
Nb �→ ∞ limit and that the resulting spectral densities can
be negative and in general change sign several times in the
interval E ∈ [0,∞). Notice also that up to a normalization
constant, that it will turn to be irrelevant in our training strat-
egy in which the input data are standardized as explained in
Sect. 4.3, the choice of the interval [−1, 1] for the rn random
numbers is general.

A few examples of unsmeared spectral densities generated
according to Eq. (39) are shown in Fig. 5. As it can be seen,
with the choice of the coefficients cn of Eq. (40), the larger is
the number of terms in the Chebyshev series of Eq. (39) the
richer is the behaviour of the resulting unsmeared spectral
densities in terms of local structures.

This is an important observation and a desired feature.
Indeed, a natural concern about the choice of Chebyshev

2 By representing also the smearing kernels and the basis functions on
a Chebyshev basis, the orthogonality relations of Eq. (36) can conve-
niently be exploited to speedup this step of the numerical calculations.
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Fig. 6 The black dashed curve is a generic continuous unsmeared spec-
tral density ρ(E) while the vertical dashed lines indicate the energy
sampling defining the support of ρδ(ω) according to Eq. (42). The blue
and red curves are the smeared version of respectively ρ(ω) and ρδ(ω).
The green curve represents �σ,�E (E) = ρ̂σ (E)−ρ̂δ,σ (E). The spacing
is set to �E = 0.1 GeV. The smearing kernel is a normalized Gaussian
function of width σ and as resolution width we refer to the full width at
half maximum 2

√
2 ln 2 σ . Top-panel: the resolution width is equal to

�E and it is such that the single peaks are resolved. Bottom-panel: in
this case 2

√
2 ln 2 σ � �E and the two smeared functions are almost

undistinguishable

polynomials as basis functions is the fact that we are thus
sampling the space of regular functions while, as we pointed
out in Sect. 2, on a finite volume the lattice QCD spectral
density is expected to be a discrete sum of Dirac-delta peaks
(see Eq. (29)). Here we are relying on the fact that the inputs
of our networks will be Euclidean correlators, that in fact
are smeared spectral densities, and will also be asked to pro-
vide as output the smeared spectral densities ρ̂σ (E). This
allows us to assume that, provided that the energy smear-
ing parameter σ and Nb are sufficiently large, the networks
will be exposed to sufficiently general training sets to be
able to extract the correct smeared spectral densities within
the quoted errors. To illustrate this point we consider in
Fig. 6 a continuous spectral density ρ(E) and approximate
its smeared version through a Riemann’s sum according to

ρ̂σ (E) =
∫ ∞

E0

dω Kσ (E, ω)ρ(ω)

= �E
∞∑

n=0

Kσ (E, ωn)ρ(ωn) + �σ,�E (E)

=
∫ ∞

E0

dω Kσ (E, ω)ρδ(ω) + �σ,�E (E), (41)

where

ρδ(ω) ≡ �E
∞∑

n=0

ρ(ω)δ(ω − ωn) , ωn = E0 + n�E .

(42)

The previous few lines of algebra show that the smearing
of a continuous function ρ(ω) can be written as the smear-
ing of the distribution defined in Eq. (42), a prototype of
the finite-volume distributions of Eq. (29), plus the approx-
imation error �σ,�E (E) = ρ̂σ (E) − ρ̂δ,σ (E). The quantity
�σ,�E (E), depending upon the spacing �E of the Dirac-
delta peaks and the smearing parameter σ , is expected to be
sizeable when σ ≤ �E and to become irrelevant in the limit
σ � �E . A quantitative example is provided in Fig. 6 where
�σ,�E (E) is shown at fixed �E for two values of σ . In light
of this observation, corroborated by the extensive numerical
analysis that we have performed at the end of the training
sessions to validate our method (see Sect. 5.2 and, in partic-
ular, Fig. 16), we consider justified the choice of Chebyshev
polynomials as basis functions provided that, as is the case
in this work, the energy smearing parameter σ is chosen suf-
ficiently large to not be able to resolve the discrete structure
of the finite-volume spectrum.

4.2 Building the training sets

Having provided all the details concerning the functional
basis that we use to parametrize the unsmeared spectral den-
sities, we can now explain in details the procedure that we
used to build our training sets.

A training setTσ (Nb, Nρ) contains Nρ input–output pairs.
Each pair is obtained by starting from a random unsmeared
spectral density, parametrized at fixed Nb according to
Eq. (39) and generated as explained in the previous sub-
section. Given the unsmeared spectral density ρ(E; Nb), we
then compute the corresponding correlator vectorC (by using
Eq. (32)) and, for the two values of σ that we used in this
study, the smeared spectral densities vectors ρ̂σ (by using
Eq. (33)). From each pair (C, ρ̂σ ) we then generate an ele-
ment (Cnoisy, ρ̂σ ) of the training set at fixed Nb and σ ,

ρi (E; Nb) �→ (C, ρ̂σ )i �→ (Cnoisy, ρ̂σ )i ∈ Tσ (Nb, Nρ) ,

i = 1, . . . , Nρ , (43)
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that we obtain, as we are now going to explain, by distorting
the correlator C using the information provided by the noise
of the lattice correlator Clatt (see Sect. 7).

In order to cope with the presence of noise in the input
data that have to be processed at the end of the training, it is
extremely useful (if not necessary) to teach to the networks
during the training to distinguish the physical content of the
input data from noisy fluctuations. This is particularly impor-
tant when dealing with lattice QCD correlators for which, as
discussed in Sect. 3.1, the noise-to-signal ratio grows expo-
nentially for increasing Euclidean times (see Fig. 7). A strat-
egy to cope with this problem, commonly employed in the
neural network literature, is to add Gaussian noise to the
input data used in the training. There are several examples
in the literature where neural networks are shown to be able
to learn rather efficiently by employing this strategy of data
corruption (see the already cited textbooks Refs. [37,38]).
According to our experience, it is crucially important that
the structure of the noise used to distort the training input
data resembles as much as possible that of the true input
data. In fact, it is rather difficult to model the noise structure
generated in Monte Carlo simulations and, in particular, the
off-diagonal elements of the covariance matrices of lattice
correlators. In the light of these observations we decided to
use the covariance matrix �̂latt of the lattice correlator Clatt

that we are going to analyse in Sect. 7 to obtainCnoisy fromC.
More precisely, given a correlator C, we generate Cnoisy by
extracting a random correlator vector from the multivariate
Gaussian distribution

G

[

C,

(
C(a)

Clatt(a)

)2

�̂latt

]

(44)

having C as mean vector and as covariance the matrix �̂latt

normalized by the factor
(

C(a)
Clatt(a)

)2
.

In order to be able to perform a numerical study of the
limits N �→ ∞, we have generated with the procedure
just described several training sets, corresponding to Nb =
{16, 32, 128, 512} and Nρ = {50, 100, 200, 400, 800}×103.
At fixed Nb, each training set includes the smaller ones, i.e.
the training set Tσ (Nb, 100 × 103) includes the training set
Tσ (Nb, 50 × 103) enlarged with 50 × 103 new samples.

4.3 Data pre-processing

A major impact in the machine-learning performance is
played by the way the data are presented to the neural net-
work. The learning turns to be more difficult when the input
variables have different scales and this is exactly the case
of Euclidean lattice correlators since the components of the
input vectors decrease exponentially fast. The risk in this
case is that the components small in magnitude are given less

Fig. 7 Noise-to-signal ratio of the lattice correlator Clatt(t), discussed
in Sect. 7, whose covariance matrix is used to inject the statistical noise
in the training sets

importance during the training or that some of the weights
of the network become very large in magnitude, thus gen-
erating instabilities in the training process. We found that a
considerable improvement in the validation loss minimiza-
tion is obtained by implementing the standardization of the
input correlators (see next subsection and the central panel
of Fig. 8) and therefore used this procedure.

The standardization procedure of the input consists in
rescaling the data in such a way that all the components of the
input correlator vectors in the training set are distributed with
average 0 and variance 1. For a given training set Tσ (Nb, Nρ)

we calculate the NT -component vectors μ and γ whose com-
ponents are

μ(τ) = 1

Nρ

Nρ∑

i=1

Ci (aτ) (45)

and

γ (τ) =
√
√
√
√

∑Nρ

i=1 (Ci (aτ) − μ(τ))2

Nρ

. (46)

Each correlator in the training is then replaced by

Cnoisy(aτ) �→ C ′
noisy(aτ) = Cnoisy(aτ) − μ(τ)

γ (τ )
. (47)

where Cnoisy is the distorted version of C discussed in the
previous subsection. Notice that the vectors μ and γ are
determined from the training set before including the noise.
Although the pre-processed correlators look quite different
from the original ones, since the components are no longer
exponential decaying, the statistical correlation in time is
preserved by the standardization procedure.
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At the end of the training, the correlators fed into the neu-
ral network for validation or prediction have also to be pre-
processed by using the same vectors μ and γ used in the
training.

4.4 Training an ensemble of machines

Given a machine with Nn neurons we train it over the training
set Tσ (Nb, Nρ) by using as loss function the Mean Absolute
Error (MAE)

�(w) = 1

Nρ

Nρ∑

i=1

∣
∣
∣ρ̂

pred,i
σ (w) − ρ̂

i
σ

∣
∣
∣ , (48)

where ρ̂
pred,i
σ (w) is the output of the neural network in corre-

spondence of the input correlator Ci
noisy. In Eq. (48) we used

the norm |ρ̂| = ∑NE=47
j=1 |ρ̂ j | and we have explicitly shown

the dependence of the predicted spectral density ρ̂
pred,i
σ (w)

upon the weights w of the network.
At the beginning of each training session each weight wn

(with n = 1, . . . , Nn) is extracted from a Gaussian distri-
bution with zero mean value and variance 0.05. To end the
training procedure we rely on the early stopping criterion:
the training set is split into two subsets containing respec-
tively the 80% and 20% of the entries of the training set
Tσ (Nb, Nρ). The larger subset is used to update the weights
of the neural network with the gradient descent algorithm.
The smaller subset is the so-called validation set and we use
it to monitor the training process. At the end of each epoch
we calculate the loss function of Eq. (48) for the validation
set, the so-called validation loss, and stop the training when
the drop in the validation loss is less than 10−5 for 15 con-
secutive epochs. In the trainings performed in our analysis
this occurs typically between epoch 150 and 200. The early
stopping criterion provides an automatic way to prevent the
neural network from overfitting the input data.

We implement a Mini-Batch Gradient Descent algorithm,
with Batch Size (BS) set to 32, by using the Adam optimizer
[45] combined with a learning rate decaying according to

η(e) = θ(e − 25)η(e − 1)

1 + e · 4 × 10−4 , (49)

where e ∈ N is the epoch and η(0) = 2×10−4 is the starting
value. The step-function is included so that the learning rate
is unchanged during the first 25 epochs. Although a learn-
ing rate scheduler is not strictly mandatory, since the Adam
optimizer already includes adaptive learning rates, we found
that it provides an improvement in the convergence with less
noisy fluctuations in the validation loss (see the top panel
of Fig. 8). Concerning the BS, we tested the neural network
performance by starting from BS = 512 and by halving it up

Fig. 8 Numerical tests to optimize the training performances. The val-
idation loss functions of the trainings of the Nr = 20 replica machines
belonging to the same ensemble are plotted with the same color. All the
trainings refer to arcL, Nρ = 50 × 103, Nb = 512 and σ = 0.44 GeV.
If not otherwise specified the data are pre-processed, BS=32 and the
learning rate scheduler is implemented. Top panel: Comparison of the
validation losses with and without the learning scheduler rate defined in
Eq. (49). Central panel: Comparison of the validation losses by imple-
menting or not the input data pre-processing procedure described in
Sect. 4.3. Bottom panel: Comparison of the validations losses at differ-
ent values of the BS parameter

to BS = 16 (see bottom panel of Fig. 9). Although the perfor-
mance improves as BS decreases we set BS = 32 in order to
cope with the unavoidable slowing down of the training for
smaller values of BS.

As we already stressed several times, at fixedN the answer
of a neural network cannot be exact. In order to be able to
study numerically the N �→ ∞ limits, the error associated
with the limited abilities of the networks at finite N has to be
quantified. To do this we introduce the ensemble of machines
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Fig. 9 Validation losses at the end of the trainings as functions of the
training set dimension Nρ . The top-plot corresponds to σ = 0.44 GeV
and the bottom-plot to σ = 0.63 GeV. The different colors correspond
to the different architectures and different markers to the different num-
ber of basis functions Nb considered in this study. The error on each
point correspond to the standard deviation of the distribution of the
validation loss in an ensemble of Nr = 20 machines. As expected,
the validation loss decreases by increasing Nρ (more general training)
and/or Nn (larger and therefore smarter networks). Moreover, at fixed
Nn and Nρ the neural network performs better at smaller values of Nb
as consequence of the fact that the training set exhibits less complex
features and learning them is easier

by considering at fixed N

Nr = 20 (50)

machines with the same architecture and trained by using the
same strategy. More precisely, each machine of the ensem-
ble is trained by using a training set Tσ (Nb, Nρ) obtained
by starting from the same unsmeared spectral densities, and
therefore from the same pairs (C, ρ̂σ ) (see Eq. (43)), but with
different noisy input correlator vectors Cnoisy.

In Fig. 9 we show the validation loss as a function of Nρ

for the different values of Nb, the three different architectures
and the two values of σ considered in this study. Each point
in the figure has been obtained by studying the distribution
of the validation loss at the end of the training within the cor-
responding ensemble of machines and by using respectively
the mean and the standard deviation of each distribution as
central value and error. The figure provides numerical evi-
dences concerning the facts that

• networks with a finite number Nn of neurons, initialized
with different weights and exposed to training sets con-
taining a finite amount of information, provide different
answers and this is a source of errors that have to be
quantified;

• the validation loss decreases for larger Nn because larger
networks are able to assimilate a larger amount of infor-
mation;

• the validation loss decreases for larger Nρ since, if Nn

is sufficiently large, the networks learn more from larger
and more general training sets;

• at fixed Nn and Nρ the networks perform better at smaller
values of Nb because the training sets exhibit less com-
plex features and learning them is easier.

In order to populate the plots in Fig. 9 we considered
several values of Nρ and Nb and this is rather demanding
from the computational point of view. The training sets that
we found to be strictly necessary to quote our final results
are listed in Table 4.

5 Estimating the total error and validation tests

Having explained in the previous section the procedure that
we used to train our ensembles of machines, we can now
explain in details the procedure that we use to obtain our
results. We start by discussing the procedure that we use to
estimate the total error, taking into account both statistical
and systematics uncertainties, and then illustrate the vali-
dation tests that we have performed in order to assess the
reliability of this procedure.

5.1 Procedure to estimate the total error

The procedure that we use to quote our results for smeared
spectral densities by using the trained ensembles of machines,
illustrated in Fig. 3, is the following

• given an ensemble of Nr machines trained at fixed N, we
feed in each machine r belonging to the ensemble all the
different bootstrap samples (or jackknife bins) Cc(aτ) of
the input correlator (c = 1, . . . , Nc) and obtain a collec-
tion of results ρ̂

pred
σ (E,N, c, r) for the smeared spectral

density that depend upon N, c and r ;
• at fixed N and r we compute the bootstrap (or jack-

knife) central values ρ̂
pred
σ (E,N, r) and statistical errors

�latt
σ (E,N, r) and average them over the ensemble of

machines,

ρ̂
pred
σ (E,N) = 1

Nr

Nr∑

r=1

ρ̂
pred
σ (E,N, r) ,
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�latt
σ (E,N) = 1

Nr

Nr∑

r=1

�latt
σ (E,N, r) ; (51)

• by computing the standard deviation over the ensemble
of machines of ρ̂

pred
σ (E,N, r), we obtain an estimate of

the error, that we call �net
σ (E,N), associated with the fact

that at fixed N the answer of a network cannot be exact;
• both �latt

σ (E,N) and �net
σ (E,N) have a statistical origin.

The former, �latt
σ (E,N), comes from the limited statistics

of the lattice Monte Carlo simulation while the latter,
�net

σ (E,N), comes from the statistical procedure that we
used to populate our training sets Tσ (Nb, Nρ) and to train
our ensembles of machines at fixed Nb. We sum them in
quadrature and obtain an estimate of the statistical error
at fixed N,

�stat
σ (E,N) =

√
[
�latt

σ (E,N)
]2 + [

�net
σ (E,N)

]2 ;
(52)

• we then study numerically the N �→ ∞ limits by using
a data-driven procedure. We quote as central value and
statistical error of our final result

ρ̂
pred
σ (E) ≡ ρ

pred
σ (E,Nmax) ,

�stat
σ (E) ≡ �σ (E,Nmax) , (53)

where Nmax, given in Table 4, is the vector with the
largest components among the vectors N considered in
this study;

• in order to check the numerical convergence of the
N �→ ∞ limits and to estimate the associated system-
atic uncertainties �X

σ (E), where

X = {ρ, n, b} , (54)

we define the reference vectors Nref
X listed in Table 4. We

then define the pull variables

PX
σ (E) =

∣
∣
∣ρ̂

pred
σ (E) − ρ̂

pred
σ (E,Nref

X )·
∣
∣
∣

√[
�stat

σ (E)
]2 + [

�stat
σ (E,Nref

X )
]2

, (55)

and then we weight the absolute value of the difference∣
∣
∣ρ̂

pred
σ (E) − ρ̂

pred
σ (E,Nref

X )

∣
∣
∣ with the Gaussian probabil-

ity that this is not due to a statistical fluctuation,

�X
σ (E) =

∣
∣
∣ρ̂

pred
σ (E) − ρ̂

pred
σ (E,Nref

X )

∣
∣
∣ erf

( |PX
σ (E)|√

2

)

;
(56)

Table 4 List of the vectors N
used to estimate the systematic
errors associated with the
N �→ ∞ limits. With these
choices the errors �X

σ (E)

defined in Eq. (56) are
maximised on our setup and,
consequently, Eq. (57) provides
a conservative estimate of the
total error

Label Nn Nb Nρ

Nmax arcL 512 800 × 103

Nref
b arcL 16 800 × 103

Nref
n arcS 512 800 × 103

Nref
ρ arcL 512 50 × 103

• the total error that we associate to our final result ρ̂pred
σ (E)

is finally obtained according to

�tot
σ (E)

=
√

[
�stat

σ (E)
]2 + [

�
ρ
σ (E)

]2 + [
�b

σ (E)
]2 + [

�n
σ (E)

]2
.

(57)

Some remarks are in order here. We don’t have a theo-
retical understanding neither of the dependence of the statis-
tical errors �latt

σ (E,N) and �net
σ (E,N) upon E and N (see

Appendix C for a numerical investigation) nor of the rates
of convergence of the N �→ ∞ limits. Gaining this theoreti-
cal understanding is a task that goes far beyond the scope of
this paper. The procedure that we have devised to quote our
results, that at first sight might appear too complicated, has
therefore to be viewed as just one of the possible ways to per-
form conservative plateaux-analyses of the N �→ ∞ limits.
This explains our choice of the points Nref

X given in Table 4
that, in our numerical setup, provide the most conservative
estimates of the systematic errors. The stringent validation
tests that we have performed with mock data, and that we are
going to discuss below, provide a quantitative evidence that
the results obtained by implementing this procedure can in
fact be trustworthy used in phenomenological applications.

5.2 Validation

In order to illustrate how the method described in the previous
subsection can be applied in practice, we now consider an
unsmeared spectral density ρ(E) that has not been used in
any of the trainings and that has been obtained as described
in Sect. 4.1, i.e. by starting from Eq. (39), but this time with
Nb = 1024, i.e. a number of basis functions which is twice
as large as the largest Nb employed in the training sessions.

From this ρ(E) we then calculate the associated correlator
C and the smeared spectral density corresponding to σ =
0.44 GeV. We refer to the true smeared spectral density as
ρ̂true

σ (E), while we call ρ̂
pred
σ (E) the final predicted result.

Both the unsmeared spectral density ρ(E) (grey dotted curve,
partially visible) and the expected exact result ρ̂true

σ (E) (solid
black curve) are shown in the top panel of Fig. 12.

Starting from the exact correlator C corresponding to
ρ(E) we have then generated Nc = 800 bootstrap samples
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Fig. 10 Each row corresponds to a different energy, as written on
the top of each plot, and in all cases we set σ = 0.44 GeV and
N = Nmax = (arcL, 512, 800 × 103). Left panels: the x-axes cor-
responds to the replica index r = 1, . . . , Nr = 20 running over the
entries of the ensemble of machines. The plotted points correspond
to the results ρ̂

pred
σ (E,N, r) ± �latt

σ (E,N, r) obtained by comput-
ing the bootstrap averages and errors of the c = 1, . . . , Nc = 800
results ρ̂

pred
σ (E,N, c, r). Right panels: distributions of the central val-

ues ρ̂
pred
σ (E,N, r). The means of these distributions correspond to the

results ρ̂
pred
σ (E,N) that are shown in the left panels as solid blue lines.

The widths correspond to the network errors �net
σ (E,N) that are repre-

sented in the left panels with two dashed blue lines. The blue bands in
the left panels correspond to �stat

σ (E,N), defined in Eq. (52)

from the distribution of Eq. (44), thus simulating the out-
come of a lattice Monte Carlo simulation. The Nc samples
have been fed into each trained neural network and we col-
lected the answers ρ̂

pred
σ (E,N, c, r) that, as shown in Fig. 10

for a selection of the considered values of E , we have then
analysed to obtain �latt

σ (E,N) and �net
σ (E,N).

Fig. 11 Numerical study of the N �→ ∞ limits. Each row corresponds
to a different energy, as written on the top of each plot, and all cases
we set σ = 0.44 GeV. Left panels: Study of the limit Nρ �→ ∞ at
fixed Nb = 512 and Nn =arcL. Central panels: Study of the limit
Nn �→ ∞ at fixed Nb = 512 and Nρ = 800 × 103. Right panels: Study
of the limit Nb �→ ∞ at fixed Nn =arcL and Nρ = 800 × 103. All
panels: The horizontal blue line is the final central value, corresponding
to N = Nmax = (arcL, 512, 800 × 103) (blue points) and it is common
to all the panels within the same row. The blue band represents instead
�tot

σ (E) calculated by the combination in quadrature of all the errors
(see Eq. 57). The red points correspond to Nref

X and the grey ones to the
other trainings, see Table 4

The next step is now the numerical study of the limits
N �→ ∞ that we illustrate in Fig. 11 for the same values of
E considered in Fig. 10. The limit Nρ �→ ∞ (left panels)
is done at fixed Nb = 512 and Nn =arcL. The limit Nn �→
∞ (central panels) is done at fixed Nb = 512 and Nρ =
800 ×103. The limit Nb �→ ∞ (right panels) is done at fixed
Nn =arcL and Nρ = 800 × 103. As it can be seen, the blue

points, corresponding to our results ρ̂
pred
σ (E)±�stat

σ (E), are
always statistically compatible with the first grey point on the
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Fig. 12 Final results for σ = 0.44 GeV. Top panel: The final results
predicted by the neural networks (blue points) is compared with the true
result (solid black). The dotted grey curve in the background represents
the unsmeared spectral density. Central panel: Relative error budget as
a function of the energy. Bottom panel: Deviation of the predicted result
from the true one in units of the standard deviation, see Eq. (58)

left of the blue one in each plot. The red points correspond
to the results ρ̂

pred
σ (E,Nref

X ) ± �stat
σ (E,Nref

X ) that we use to
estimate the systematic uncertainties �X

σ (E). The blue band
correspond to our estimate of the total error �tot

σ (E).
In the top panel of Fig. 12 we show the comparison of our

final results ρ̂
pred
σ (E) ± �tot

σ (E) (blue points) with the true
smeared spectral density ρ̂true

σ (E) (black curve) that in this
case is exactly known. The central panel in Fig. 12 shows the
relative error budget as a function of the energy. As it can be
seen, the systematics errors represent a sizeable and impor-
tant fraction of the total error, particularly at large energies.
The bottom panel of Fig. 12 shows the pull variable

pσ (E) = ρ̂
pred
σ (E) − ρ̂true

σ (E)

�tot
σ (E)

(58)

Fig. 13 Left panel: Normalized distribution of the significance defined
in Eq. (58). The distribution is calculated over 2000 validation samples
generated on the Chebyshev functional space. Right panel: compari-
son of the normalized cumulative distribution functions (CDF) of the
observed distribution of pσ (blue) and of the normal one obtained from
the mean and variance of pσ (red). The black arrow represents the
Kolmogorov–Smirnov statistics (DKS), i.e. the magnitude and the posi-
tion of the maximum deviation between the two CDFs in absolute value

and, as it can be seen, by using the proposed procedure to
estimate the final results and their errors, no significant devia-
tions from the true result have been observed in this particular
case.

In order to validate our method we repeated the test just
described 2000 times. We have generated random spectral
densities, not used in the trainings, by starting again from
Eq. (39) and by selecting random values for E0 and Nb

respectively in the intervals [0.3, 1.3] GeV and [8, 1024].
The values of pσ (E) for all the energies and for all the

samples is collected in one set, pσ for short, whose normal-
ized distribution is shown in the left panels of Fig. 13 (top
panel for σ = 0.44 GeV, bottom panel for σ = 0.63 GeV).
The distributions are nicely bell-shaped around 0 and the
right panels in Fig. 13 show the comparison between the
normalized cumulative distribution functions of pσ with the
normal distribution obtained from the mean and variance of
pσ . The p-value calculated from the Kolmogorov–Smirnov
test is much less than 0.05 in both the cases and therefore
the distribution of pσ cannot be considered as a normal one.
On the other hand, given the procedure that we use to quote
the total error, we observe deviations ρ̂

pred
σ (E) − ρ̂true

σ (E)

smaller than 2 standard deviations in 95% of the cases and
smaller than 3 standard deviations in 99% of the cases. The
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Fig. 14 The same as Fig. 13 but for 2000 samples of unsmeared spec-
tral densities generated according to Eq. (59) and thus totally unrelated
to the data used during the training

fact that deviations smaller than 1 standard deviation occur in
∼80% of the cases for σ = 0.44 GeV and ∼85% of the cases
for σ = 0.63 GeV (to be compared with the expected 68%
in the case of a normal distribution) is an indication of the
fact that our estimate of the total error is indeed conservative.
Moreover, from Fig. 13 it is also evident that our ensembles
of neural networks are able to generalize very efficiently out-
side the training set.

In order to perform another stringent validation test of the
proposed method, we also considered unsmeared spectral
densities that cannot be written on the Chebyshev basis. We
repeated the analysis described in the previous paragraph for
a set of spectral densities generated according to

ρ(E) =
Npeaks∑

n=1

cnδ(E − En), (59)

where 0 < E0 ≤ E1 ≤ E2 ≤ · · · ≤ Epeaks. By plug-
ging Eq. (59) into Eqs. (32) and (33) we have calculated the
correlator and smeared spectral density associated to each
unsmeared ρ(E). We have generated 2000 unsmeared spec-
tral densities with Npeaks = 5000. The position En of each
peak has been set by drawing independent random numbers
uniformly distributed in the interval [E0, 15 GeV] while E0

has been randomly chosen in the interval [0.3, 1.3] GeV.
The coefficients cn have also been generated randomly in
the interval [−0.01, 0.01]. The 2000 trains of isolated Dirac-
delta peaks are representative of unsmeared spectral densities
that might arise in the study of finite volume lattice correla-

Table 5 Additional parameters used to generate the mock unsmeared
spectral densities based on a Gaussian mixture model, Eq. (60). The
corresponding functions are plotted in Fig. 15 (dashed grey)

Model C M (GeV) � (GeV) δ2 (GeV)

ρGM
1 (E) 10 1 0.1 1.5

ρGM
2 (E) 5 1 0.1 1.5

ρGM
3 (E) 5 0.8 0.05 1.2

tors. These are rather wild and irregular objects that our neu-
ral networks have not seen during the trainings. Figure 14
shows the plots equivalent to those of Fig. 13 for this new
validation set. As it can be seen, the distributions of pσ (E)

are basically unchanged, an additional reassuring evidence of
the ability of our ensembles of neural networks to generalize
very efficiently outside the training set and, more importantly,
on the robustness of the procedure that we use to estimate the
errors.

6 Results for mock data inspired by physical models

In the light of the results of the previous section, providing a
solid quantitative evidence of the robustness and reliability of
the proposed method, we investigate in this section the per-
formances of our trained ensembles of machines in the case
of mock spectral densities coming from physical models. A
few more validation tests, unrelated to physical models, are
discussed in Appendix A.

For each test discussed in the following subsections we
define a model spectral density ρ(E) and then use Eqs. (32)
and (33) to calculate the associated exact correlator and true
smeared spectral density. We then generate Nc = 800 boot-
strap samplesCc(t), by sampling the distribution of Eq. (44),
and quote our final results by using the procedure described
in details in the previous section.

6.1 A resonance and a multi-particle plateaux

The first class of physically motivated models that we inves-
tigate is that of unsmeared spectral densities exhibiting the
structures corresponding to an isolated resonance and a multi-
particle plateau. To build mock spectral densities belonging
to this class we used the same Gaussian mixture model used
in Ref. [24] and given by

ρGM(E) = θ̂ (E, δ1, ζ1)

[

Ce
−

(
E−M

�

)2 (
1 − θ̂ (E, δ2, ζ2)

)
]

+ C0θ̂ (E, δ1, ζ1)θ̂(E, δ2, ζ2), (60)
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Fig. 15 Results for three different unsmeared spectral densities ρ(E)

(dashed grey lines) generated from the Gaussian mixture model of
Eq. (60). The solid lines correspond to ρ̂true

σ (E). The points, with error

bars, refer to the predicted spectral densities ρ̂
pred
σ (E)

where

θ̂ (E, δi , ζi ) = 1

1 + exp
(
− E−δi

ζi

) . (61)

The sigmoid function θ̂ (E, δ1, ζ1) with δ1 = 0.1 GeV and
ζ1 = 0.01 GeV dumps ρGM(E) at low energies while the
other sigmoid θ̂ (E, δ2, ζ2), with ζ2 = 0.1 GeV, connects
the resonance to the continuum part whose threshold is δ2.
The parameter C0 = 1 regulates the height of the continuum
plateaux which also coincides with the asymptotic behaviour
of the spectral density, i.e. ρGM(E) �→ C0 for E �→ ∞.
We have generated three different spectral densities with this
model that, in the following, we call ρGM

1 (E), ρGM
2 (E) and

ρGM
3 (E) and whose parameters are given in Table 5.

Fig. 16 Reconstructed smeared spectral densities (points with errors)
compared to the true ones (solid lines) for two unsmeared spectral densi-
ties simulating a finite volume distribution, see Eq. (62). The unsmeared
ρ(E) is represented by vertical lines located in correspondence of
E = En with heights proportional to cn

The predicted smeared spectral densities for smearing
widths σ = 0.44 GeV and σ = 0.63 GeV are compared
to the true ones in Fig. 15. In all cases the predicted result
agrees with the true one, within the quoted errors, for all the
explored values of E . The quality of the reconstruction of
the smeared spectral densities is excellent for E < 1.5 GeV
while, at higher energies, the quoted error is sufficiently large
to account for the deviation of ρ̂

pred
σ (E) from ρ̂true

σ (E). This
is particularly evident in the case of ρGM

1 (E) shown in the
top panel.

The same class of physical models can also be investigated
by starting from unsmeared spectral densities that might arise
in finite volume calculations by considering

ρpeak(E) = Cpeak δ(E − Epeak) +
Npeaks∑

n=1

cnδ(E − En).

(62)

The parameter Epeak parametrizes the position of an isolated
peak while the multi-particle part is introduced with the other
peaks located at Epeak < E1 ≤ · · · ≤ ENpeaks . We have

generated two unsmeared spectral densities, ρ
peak
1 (E) and

ρ
peak
2 (E) by using this model. In both cases we set Npeaks =

10,000, selected random values for the En’s up to 50 GeV and
random values for the cn’s in the range [0, 0.01]. In the case of
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ρ
peak
1 (E) we set Epeak = 0.8 GeV, Cpeak = 1 and E1 = 1.2

GeV. In the case of ρ
peak
2 (E) we set instead Epeak = 0.7

GeV, Cpeak = 1 and E1 = 1.5 GeV.
The predicted smeared spectral densities are compared

with the true ones in Fig. 16. In both cases ρ̂
pred
σ (E) is in

excellent agreement with ρ̂true
σ (E).

It is worth emphasizing once again that the model in
Eq. (62) cannot be represented by using the Chebyshev basis
of Eq. (39) and, therefore, it is totally unrelated to the smooth
unsmeared spectral densities that we used to populate the
training sets.

6.2 O(3) non-linear σ -model

In this subsection we consider a model for the unsmeared
spectral density that has already been investigated by using
the HLT method in Ref. [21]. More precisely, we consider
the two-particles contribution to the vector-vector spectral
density in the the 1+1 dimensional O(3) non-linear σ -model
(see Ref. [21] for more details) given by

ρO(3)(E)

= θ(E − Eth)
3π3

4θ2

θ2 + π2

θ2 + 4π2 tanh3 θ

2

∣
∣
∣
∣
θ=2 cosh−1 E

Eth

,

(63)

where Eth is the two-particle threshold. We considered three
mock unsmeared spectral densities, that we call ρ

O(3)
1 (E),

ρ
O(3)
2 (E) and ρ

O(3)
3 (E), differing for the position of the

multi-particle threshold, which has been set respectively to
Eth = 0.5 GeV, 1 GeV and 1.5 GeV. The reconstructed
smeared spectral densities for σ = 0.44 GeV and σ = 0.63
GeV are compared with the exact ones in Fig. 17.

The predicted smeared spectral densities are in remarkably
good agreement with the true ones in the full energy range
and in all cases. This result can be read as an indication of the
fact that the smoothness of the underlying unsmeared spec-
tral density plays a crucial rôle in the precision that one can
get on ρ̂

pred
σ (E), also if the problem is approached by using a

neural network approach. Indeed, this fact had already been
observed and exploited in Ref. [21], where the authors man-
aged to perform the σ �→ 0 limit of ρ̂

O(3)
σ (E) with controlled

systematic errors by using the HLT method.

6.3 The R-ratio with mock data

The last case that we consider is that of a model spectral
density coming from a parametrization of the experimental
data of the R-ratio. The R-ratio, denoted by R(E), is defined
as the ratio between the inclusive cross section of e+e− →
hadrons and e+e− → μ+μ− and plays a crucial rôle in
particle physics phenomenology (see e.g. Refs. [40,47]).

Fig. 17 Predicted smeared spectral densities for the two-particles con-
tribution to the vector-vector correlator in the 1 + 1 dimensional O(3)

non-linear σ model for different values of the two-particle threshold: 0.5
GeV (top panel), 1 GeV (central panel) and 1.5 GeV (third panel). The
solid lines and the dashed curve correspond respectively to ρ̂

pred
σ (E)

and ρO(3)(E)

In the next section we will present results for a contribution
to the smeared R-ratio Rσ (E) that we obtained by feeding
into our ensembles of trained neural networks a lattice QCD
correlator that has been already used in Ref. [40] to calculate
the same quantity with the HLT method.

Before doing that, however, we wanted also to per-
form a test with mock data generated by starting from the
parametrization of R(E)given in Ref. [46]. This parametriza-
tion, that we use as model unsmeared spectral density by set-
ting ρ(E) ≡ R(E), is meant to reproduce the experimental
measurements of R(E) for energies E < 1.1 GeV, i.e. in the
low-energy region where there are two dominant structures
associated with the mixed ρ and ω resonances, a rather broad
peak at E � 0.7 GeV, and the narrow resonance φ(1020).
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Fig. 18 Results for the R-ratio using the parametrization of Ref. [46].
The gray dashed line is R(E) while the solid lines correspond to
R̂true

σ (E)

Table 6 ETMC gauge ensemble used in this work. See Refs. [40,48]
for more details

ID L3 × T a fm aL fm mπ GeV

B64 643 × 128 0.07957(13) 5.09 0.1352(2)

Given this rich structure, shown as the dashed grey curve
in Fig. 18, this is a much more challenging validation test
w.r.t. the one of the O(3) model discussed in the previous
subsection.

In Fig. 18, R̂pred
σ (E) is compared with R̂true

σ (E) for both
σ = 0.44 GeV (orange points and solid curve) and σ =
0.63 GeV (blue points and solid curve). In both cases the
difference R̂pred

σ (E) − R̂true
σ (E) doesn’t exceed the quoted

error for all the considered values of E .

7 The R-ratio with lattice QCD data

In this section we use our trained ensembles of neural net-
works to extract the smeared spectral density from a real
lattice QCD correlator.

We have considered a lattice correlator, measured by the
ETMC on the ensemble described in Table 6, that has already
been used in Ref. [40] to extract the so-called strange-strange
connected contribution to the smeared R-ratio by using the
HLT method of Ref. [14]. The choice is motivated by the
fact that in this case the exact answer for the smeared spectral
density is not known and we are going to compare our results
R̂pred

σ (E) with the ones, that we call R̂HLT
σ (E), obtained in

Ref. [40].

Fig. 19 The results obtained with our ensembles of neural networks
in the case of a real lattice QCD correlator are compared with those
obtained with the HLT method (grey, Refs. [14,40]). The top-panel
shows the two determinations of the strange-strange connected con-
tribution to the smeared R-ratio for σ = 0.44 GeV while the case
σ = 0.63 GeV is shown in the bottom-panel

In QCD the R-ratio can be extracted from the lattice cor-
relator

Clatt(t) = −1

3

3∑

i=1

∫

d3x T〈0|Ji (x)Ji (0)|0〉

=
∫ ∞

0
dω

ω2

12π2 e
−tωR(ω) . (64)

where Jμ(x) is the hadronic electromagnetic current. The
previous formula (in which we have neglected the term pro-
portional to e−(T−t)ω that vanishes in the T �→ ∞ limit)
explains the choice that we made in Eq. (32) to represent all
the correlators that we used as inputs to our neural networks.
In Ref. [40] all the connected and disconnected contributions
to Clatt(t), coming from the fact that Jμ = ∑

f q f ψ̄ f γμψ f

with f = {u, d, s, c, b, t}, qu,c,t = 2/3 and qd,s,b = −1/3,
have been taken into account. Here we consider only the
connected strange-strange contribution, i.e. we set Jμ =
− 1

3 s̄γμs and neglect the contribution associated with the
fermionic-disconnected Wick contraction. From Clatt(t) we
have calculated the covariance matrix �̂latt that we used to
inject noise in all the training sets that we have built and used
in this work (see Sect. 4.2).
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Fig. 20 Relative error on the smeared spectral density obtained from
our ensembles of neural networks (colored points) and the HLT method
(grey points) for σ = 0.44 GeV (top panel) and σ = 0.63 GeV (bottom
panel)

Although, as already stressed, in this case we don’t know
the exact smeared spectral density, we do expect from phe-
nomenology to see a sizeable contribution to the unsmeared
spectral density coming from the φ(1020) resonance. There-
fore, the shape of the smeared spectral density is expected
to be similar to those shown in Fig. 16 for which the results
obtained from our ensembles of neural networks turned out
to be reliable. The comparison of R̂pred

σ (E) and R̂HLT
σ (E)

is shown in Fig. 19 and, as it can be seen, the agreement
between the two determinations is remarkably good.

Some remarks are in order here. The HLT method and the
new method that we propose here are radically different and
the fact that the results obtained with the two procedures are
in such a good agreement, especially for E < 1.5 GeV where
both methods provide very small errors, is at the same time
reassuring and encouraging in view of future applications of
spectral reconstruction techniques.

Concerning the errors, there is no significant evidence that
one method has better performances than the other. This can
be better appreciated in Fig. 20 where the relative error is
shown in both cases as a function of the energy.

We want to stress that in the new proposed method, as
in the HLT case, no prior information on the expected spec-
tral density has to be provided and, therefore, the results for
R̂pred

σ (E) shown in Fig. 19 have to be considered as first-

principles model-independent determinations of the smeared
strange-strange contribution to the R-ratio that we managed
to obtain by using supervised deep-learning techniques.

We leave to future work on the subject the task of analysing
all the contributions to R(E), as done in Ref. [40], in order
to obtain a machine-learning determination of R̂σ (E) to be
compared with experiments.

8 Conclusions

In this work we have proposed a new method to extract
smeared hadronic spectral densities from lattice correlators.
The method has been built by using supervised deep-learning
techniques and is characterized by the distinctive features to
implement a model-independent training strategy and to pro-
vide a reliable estimate of both the statistical and systematic
uncertainties.

We managed to implement a model-independent training
strategy by introducing a basis in the functional space from
which we extract the spectral densities that we use to populate
our training sets. In order to obtain a reliable estimate of the
systematic errors, we introduced the ensembles of machines.

We have shown that, by studying the distribution of the
answers of the different machines belonging to an ensemble,
at fixed and finite number of neurons, dimension and com-
plexity of the training set, it is possible to quantify reliably
the systematic errors associated with the proposed method.
To do that, we presented a large number of stringent valida-
tion tests, performed with mock data, providing quantitative
evidence of the reliability of the procedure that we use to
estimate the total error on our final results (see Figs. 13, 14).

In addition to mock data, we have applied the new pro-
posed method also in the case of a lattice QCD correlator
obtained from a simulation performed by the ETM Collabo-
ration. We have extracted the strange-strange connected con-
tribution to the smeared R-ratio and compared the predictions
obtained by using our ensembles of trained machines with the
ones previously obtained by using the HLT method [14,40].
We found a remarkably good agreement between the results
obtained by using the two totally unrelated methods that pro-
vide total errors of the same order of magnitude.

The proposed method requires the training of many
machines with different architectures and dimensions of the
training sets. Admittedly, although this is a task that can be
completed in a few days on a modern desktop computer,
the procedure might end up to be computationally demand-
ing. On the one hand, we don’t exclude the possibility that
the proposed method can be simplified in order to speed up
the required computations. At the same time, on the basis
of our experience, we are firmly convinced that a careful
study of the different sources of systematic uncertainties is
mandatory when dealing with machine-learning techniques
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and when the aim is to compare theoretical predictions with
experiments. In fact, the computational cost of the proposed
method is the price that we had to pay for the reliability of
the results.

As a final remark we want to stress that in this paper
we have taught a lesson to a broad audience of learning-
machines. The subject of the lesson, the extraction of smeared
spectral densities from lattice correlators, is just a particular
topic. The idea of teaching systematically to a broad audience
of machines is much more general and can be used to estimate
reliably the systematic errors in many other applications.
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Appendix A: Results in exceptional cases

In this appendix we illustrate some additional validation tests
that we performed by using mock data designed in order
to challenge our ensembles of trained machines in extreme
situations, i.e. in the case of unsmeared spectral densities
that are very different from the ones used in the trainings.
To this end, we considered the following unsmeared spectral
densities

ρ1(E) = 0.03 · δ(E − 0.6) + 0.05 · δ(E − 1.2) ,

ρ2(E) = 0.03 · δ(E − 0.6) + 0.06 · δ(E − 1.8) ,

ρ3(E) = 0.01 · δ(E − 0.6) − 0.01 · δ(E − 1.3)

+ 0.02 · δ(E − 2.2) , (A1)

Fig. 21 Predicted smeared spectral densities for the three models of
unsmeared spectral densities given in Eq. (A1). The solid lines corre-
spond to ρ̂true

σ (E). The vertical grey lines are in correspondence of the
isolated Dirac-delta peaks and the height is proportional to the associ-
ated weights

where the arguments of the Dirac-delta functions are in GeV
units. The above spectral densities correspond to either two
or three very well separated Dirac-delta peaks and one of the
peaks of ρ3(E) has a negative coefficient. The final predicted
results, compared with the exact ones, are shown in Fig. 21
for σ = 0.44 GeV and σ = 0.63 GeV. The agreement with
ρ̂true

σ (E) is excellent in all cases. As it can be seen, a differ-
ence w.r.t. the other models considered in Sects. 5 and 6 is
the size of the errors that are much larger in these cases for
σ = 0.44 GeV. This had to be expected and is a desired fea-
ture. Indeed, the inverse problem becomes harder when one
tries to reconstruct sharp peaks with high resolution. The
presence of statistical noise in the input data prevents any
method to provide a very precise result, especially at high
energies. Our neural network strategy, in these exceptional
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situations, provides a large error and this is a further reassur-
ing evidence of the robustness of the proposed procedure.

Appendix B: Dependence on the number of input time
slices

In Sect. 3 we emphasized that the noise-to-signal ratio of
generic lattice correlators grows exponentially with the
Euclidean time (see Fig. 7) and that for this reason it might
be convenient to reduce the number NT of components of
the input vector C.

The approaches based on the Backus–Gilbert regulariza-
tion method have a built-in mechanism to suppress noisy
input data and by using these methods one can safely feed the
whole information contained in the correlator into the algo-
rithm. In general, this cannot be expected to be true when
supervised deep-learning approaches are employed. Even
though neural networks have been proven to be robust in
handling noisy data, too much noise can have a bad impact
on the performances since a big fraction of the effort in the
minimization algorithm is put in the suppression of the noise
and in learning the distinction between outliers and effective
information rather than in learning general features of the
problem.

In the following we investigate the dependence of the
training performances, obtained by injecting the noise of the
lattice correlator in the training sets as explained in Sect. 4.2,
upon NT . In Fig. 22 we show the validation loss as a function
of NT . As it can be seen, the performances of the networks
improve as NT increases but the validation loss reaches a sat-
uration point around N sat

T = 40. On the one hand, N sat
T can

be considered as the maximum number of time slices of the
correlator from which meaningful physical information can

Fig. 22 Validation losses at the end of the training for different number
of time slices in the input data and for different training set size Nρ . This
test is performed with Nb = 512 and σ = 0.44 GeV. Each point with
the associated error bar comes from the average of Nr = 20 trainings
(see Sect. 4)

be extracted. On the other hand, despite the corruption of the
input data for NT > N sat

T , including more time slices does
not compromise the quality of the trainings and we could
safely set NT = T/a = 64.

Appendix C: Analysis of the statistical uncertainties

In illustrating our method we have stressed that there are
two sources of statistical errors that contribute to �stat

σ (E,N)

defined in Eq. (52): �latt
σ (E,N), coming from the Monte

Carlo simulation, and �net
σ (E,N), coming from our ensem-

ble of trained machines. In this appendix we study the depen-

Fig. 23 Behaviour of �latt
σ (E,N) (blue) and �net

σ (E,N) (red) with
respect to N = {Nρ, Nn, Nb} at four different values of the energy. The
data refer to σ = 0.44 GeV and have been obtained by analysing the
2000 samples built on the Chebyshev basis already used in Sect. 5.2.
The central values and the associated error bars come from the average
over the 2000 samples
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dence of �latt
σ and �net

σ upon the energy E and upon N. The
investigation is carried out by collecting �latt

σ and �net
σ for the

2000 mock samples built on the Chebyshev basis and used
in Sect. 5.2 to validate our procedure. For each combination
of N the 2000 results are averaged and the standard deviation
is calculated. The results are shown in Fig. 23 at σ = 0.44
GeV and at four different energies spanning the output energy
range. We observe that both �latt

σ and �net
σ increase in magni-

tude as the energy increases. This phenomenology is a well-
known feature of the inverse Laplace transform problem in
which the contributions to the correlation function coming
from high energies are strongly suppressed by the exponen-
tial basis (see Eq. (3). Therefore, even small statistical fluctu-
ations in the correlator turn into enhanced errors in the spec-
tral density at high energy. At fixed energy the Monte Carlo
error �latt

σ does not show a significant dependence upon N.
This is a reassuring evidence that �latt

σ and �net
σ are two

decorrelated sources of uncertainties. Conversely, at fixed
energy �net

σ decreases by increasing Nρ and/or Nn, thus con-
firming our working hypothesis that an infinitely large neural
network, trained over an infinitely large dataset, is able to
provide the exact answer independently of the initialization
parameters. �net

σ is instead stable with respect to changes in
the dimension Nb of the functional-basis. This stability can
be ascribed to the fact that we are targeting the extraction
of smeared spectral densities at sufficiently large values of
σ so that the local complexity introduced in the unsmeared
spectral densities by increasing Nb is washed out. A trend
in �net

σ as a function of Nb may thus become visible when
considering smaller values of σ .
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