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Abstract
Let H be a bounded and Lipschitz continuous function. We consider discontinuous viscosity
solutions of the Hamilton–Jacobi equation Ut + H(Ux ) = 0 and signed Radon measure
valued entropy solutions of the conservation law ut + [H(u)]x = 0. After having proved
a precise statement of the formal relation Ux = u, we establish estimates for the (strictly
positive!) times at which singularities of the solutions disappear. Here singularities are jump
discontinuities in case of the Hamilton–Jacobi equation and signed singular measures in case
of the conservation law.
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1 Introduction

Consider the Cauchy problem for the first order Hamilton–Jacobi equation{
Ut + H(Ux ) = 0 in S := R × R

+

U = U0 in R × {0}, (HJ)

where

H ∈ W 1,∞(R) , (H1)

and
U0 is piecewise continuous inR, with jump points x1 < · · · < xp . (1.1)

In spite of the apparent simplicity, investigating (H J ) under the above assumptions
(as suggested by a mathematical model for the process of ion etching; see [15,24,25])
is mathematically challenging. Firstly, assumption (H1) is uncommon in the theory of
Hamilton–Jacobi equations. Secondly, in view of (1.1) discontinuous solutions of (H J )

must be considered (solutions of this kind are also important on other grounds, e.g. in opti-
mal control problems and differential games theory). Let us recall that:

– Starting from the pioneering papers [17,18], where the basis for a systematic theory
of discontinuous viscosity solutions were laid, the important issue of their uniqueness
remained open.

– Examples of nonuniqueness of solutions to the Cauchy problem for Hamilton–Jacobi
equations with discontinuous initial data are known, if the Hamiltonian is non-convex
and explicitly depends on space and/or time [2,16];

– Several concepts of discontinuous solutions of Hamilton–Jacobi equations have been
proposed [3,4,16,26], proving related existence, comparison and uniqueness results (e.g.,
if the Hamiltonian is convex). However, the relationships between these different notions
are still partially unclear (see [11,16]);

In the light of the above situation, the main result of our paper [8] was the proof of unique-
ness of discontinuous viscosity solutions (in the spirit of [18]) for problem (H J ), assuming
(H1) and (1.1). The proof, which required a detailed investigation of some qualitative features
of these solutions, can be described as follows (see Theorem 3.5):
(a) discontinuities of viscosity solutions of (H J ) cannot appear instantaneously, and dis-
continuity jumps do not increase in time. Due to the boundedness of H , the discontinuity at
each x j survives for a positive waiting time τ j (which essentially means that the disconti-
nuity at x j disappears at time τ j if τ j < ∞). Hence there exists θ > 0 such that the strip
Sθ := R × (0, θ) is the disjoint union of rectangular subdomains Q1, . . . , Qp+1 (Q1 and
Qp+1 unbounded), whose boundaries consist of segments {x j } × (0, θ) ( j = 1, . . . , p);
(b) it is proven that, ifU andV are discontinuous viscosity solutions of (H J ), their restrictions
to each Q̊k coincide and are continuous viscosity solutions of a singular Cauchy–Neumann
problem for Ut + H(Ux ) = 0, with initial data given by the proper restriction of U0 and
boundary condition ±∞, depending on the sign of the jump discontinuity of U0 at xk and
xk+1. It follows thatU = V a.e. in Sθ . If some discontinuity jump vanishes at t = θ , iterating
the procedure a finite number of times proves uniqueness.

The above overview points out the deep link between regularity and uniqueness of discon-
tinuous viscosity solutions. In fact, the nonincreasing character of discontinuities and their
persistence for a positive time are regularity features, and it is persistence that makes each
region Q̊k isolated from the others. Equivalently, following [13] we say that each segment
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{x j } × (0, θ) is a barrier for the solution - a concept to which the above use of singular
Cauchy–Neumann problems gives a sound meaning.

By formal differentiation with respect to x , problem (H J ) is transformed in the Cauchy
problem for a scalar conservation law,

{
ut + [H(u)]x = 0 in S
u = u0 in R × {0} ,

(CL)

where u0 := U ′
0 is a signed Radon measure on R such that

u0r ∈ L1(R) , u0s =
p∑

j=1

c j δx j , c j ∈ R \ {0} (p ∈ N) . (1.2)

Here u0r denotes the density of the absolutely continuous part and u0s the singular part of
u0 with respect to the Lebesgue measure on R.

In this formalway, piecewise continuous solutions of (H J ) correspond toRadonmeasure-
valued solutions of (CL). Entropy solutions of this kind to (CL) have been introduced and
investigated in [5–7] assuming (H1) and (1.2). In particular, it was proven that (see Sect.
3.1):

(a′) singularities of entropy solutions cannot appear spontaneously, and their size is nonin-
creasing in time. Since H is bounded, each Diracmass δx j survives for a positivewaiting time
(incidentally, this proves that Radon measure-valued entropy solutions must be considered);

(b′) as long as δx j persists, it acts as a barrier for the solution. Accordingly, for some θ > 0
the strip Sθ is split into a finite number of isolated regions, in each of which there exists a
unique entropy solution of a singularCauchy-Dirichlet problem for ut +[H(u)]x = 0 which
satisfies suitable compatibility conditions at the lateral boundary and the initial condition in
the sense of narrow topology;

(c′) “gluing” properly the solutions in (b′) gives a Radon measure-valued entropy solution
of (CL), whose uniqueness is proven adapting the Kružkov method of doubling variables;
in doing so, the above referred compatibility conditions play a crucial role.

The correspondence between the situations depicted for (H J ) and (CL) strongly suggests
that the formal linku = Ux canbemade rigorous.Theorem4.1belowproves that this is indeed
the case. In proving this result our mainmotivation comes from the search for estimates of the
waiting times, which are the same for both problems since their solutions are in one-to-one
correspondence.

Typically, the main tool to prove such estimates is the construction of comparison func-
tions. In particular thanks to the correspondence between (H J ) and (CL) solutions we have
two distinct tools to find estimates of the waiting times.

A comparison principle for viscosity sub- and supersolutions of problem (H J ) is known
from [8]. In Sect. 4.2 we prove a new comparison result for entropy solutions of (CL) which
satisfy the compatibility conditions. This result seems to be of independent interest: since
we compare measures with different singular parts (possibly with different supports), the
uniqueness techniques used in [6,7] need to be refined.

It is easy to prove that the waiting times τ j are always finite, if H has no limit at ±∞
(Theorem 4.4). Otherwise, it can happen that τ j = ∞. It is trivial to see that this is the case
if H(ξ) is constant for sufficiently large ξ . On the other hand, it is an open problem whether
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waiting times are finite under the following assumption:{
(i) ∃ limξ→∞ H(ξ), and � c > 0 such that H is constant in (c,∞);
(i i) ∃ limξ→−∞ H(ξ), and� d < 0 such that H is constant in (−∞, d) .

We conjecture that this is always the case, since Theorems 4.5, 4.7 give a strong indication
in this sense (see Sect. 4.3).

It is worth placing the above results in the broader context of the study of evolution
equations with singular initial data. Whether or not solutions of these equations become
function-valued for positive times depends both on the dynamics inherent to the equation and
on the properties of the initial singularity. For the conservation law in (CL) the dynamics
crucially depends on the behaviour of H at infinity. If H has superlinear growth and u0 ≥ 0
is a finite Radon measure, the unique entropy solution of (CL) is a function for all positive
times, namely the regularizing effect is instantaneous [20]. Instead, as outlined before, if
H is bounded and u0 satisfies (1.2) regularization can only take place after a positive time.
Similar phenomena occur for parabolic equations, also depending on the concentration of
the initial singularity with respect to suitable capacities related to the given equation (e.g.,
see [9,22,23] and references therein), and expectedly for scalar conservation laws in higher
space dimension.

Let us add some comments concerning Theorem 4.1, whose correspondence result is
central for the above considerations. Let assumptions (H1) and (1.2) be satisfied, and let
u be a Radon measure-valued solution of (CL) which satisfies the compatibility condition
(see Sect. 3.1). Let U be a suitably defined viscosity solution of (H J ) with initial data U0

satisfyingU ′
0 = u0 in distributional sense (see Sect. 3.2); observe that by (1.2)U ′

0 is a Radon
measure without singular continuous part:

U ′
0 =

p∑
j=1

[
U0(x

+
j ) −U0(x

−
j )

]
δx j + (U ′

0)ac . (1.3)

Then there holds

U (x, t) = −
∫ t

0
H(ur (x, s)) ds +U0(x) a.e. inR for all t ≥ 0 , (1.4)

Ux = u in D′(S) , us(·, t) =
p∑

j=1

[
U (x+

j , t) −U (x−
j , t)

]
δx j for all t ≥ 0 ;

(1.5)

here ur is the density of the absolutely continuous part and us is the singular part of u.
The proof of the above result is indirect and based on the uniqueness theory for problems

(CL) and (H J ). More precisely, choosing suitable approximating problems with smooth
initial data u0n and U0n (with U ′

0n = u0n) and smooth solutions un and Un , the relation
Unx = un is trivial. Letting n → ∞, the main tool consists in proving that the sequences un
and Un approach a measure-valued solution of problem (CL) and a discontinuous viscosity
solution of (H J ), respectively. In this way, the formal relation between constructed solutions
u andU can be made rigorous. To complete the argument, it is enough to use the uniqueness
part of Theorems 3.2 and 3.5 for both (CL) and (H J ), which were proven in [6] and [8],
respectively. Observe that the above construction of solutions to (H J ) is different from that
in [8], which is based on Perron’s method but inappropriate for our purposes.

To our knowledge, even in the non-singular case a direct proof, merely based on the
definitions of entropy and viscosity solutions, of the correspondence between (CL) and (H J )
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is not available in the literature. We refer to [19] for the indirect approach if U0 ∈ BV (R),
and to [10] for the direct approach in the stationary case. Stimulating remarks about the above
correspondence when H is convex can be found in the pioneering paper [12].

The paper is organized as follows. In Sect. 2 we introduce the basic notations. In Sect. 3
we review some known results. In Sect. 4 we present the main results, which are proven in
the remaining sections.

2 Notation

2.1 RadonMeasures

For every open subset � ⊆ R we denote by Cc(�) the space of continuous real functions
with compact support in � and by M+(�) the cone of the nonnegative Radon measures on
�. Following [14, Section 1.3] we say that μ is a (signed) Radon measure on �, if there
exists ν ∈ M+(�) and a locally ν-summable function f : � → R such that

μ(K ) =
∫
K

f dν

for all compact sets K ⊂ �. The space of (signed) Radon measures on � is denoted by
M(�). The measure μ ∈ M(�) is finite if its total variation |μ|(�) is finite.

If μ, ν ∈ M(�), we say that μ ≤ ν in M(�) if ν − μ ∈ M+(�). We denote by 〈·, ·〉�
the duality map between M(�) and Cc(�). For any open set �̃ ⊂⊂ �, M(�̃) is a Banach
space with norm ‖μ‖M(�̃) := |μ|(�̃). Similar definitions are used for Radon measures on
any subset of Q := � × (0, T ).

Every μ ∈ M(�) has a unique decomposition μ = μac + μs , with μac ∈ M(�)

absolutely continuous and μs ∈ M(�) singular with respect to the Lebesgue measure. We
denote by μr ∈ L1

loc(�) the density of μac. Every function f ∈ L1
loc(�) can be identified

to an absolutely continuous Radon measure on �; we shall denote this measure by the same
symbol f used for the function.

For every open subset � ⊆ R we denote by BV (�) the Banach space of functions of
bounded variation in �:

BV (�) := {z ∈ L1(�) | z′ ∈ M(�), ‖z′‖M(�) < ∞},
‖z‖BV (�) := ‖z‖L1(�) + ‖z′‖M(�),

where z′ is the first order distributional derivative. The total variation in� of z is T V (z;�) :=
‖z′‖M(�). We say that z ∈ BVloc(�) if z ∈ BV (�̃) for every open subset �̃ ⊂⊂ �. Similar
notions hold if z ∈ BV (Q); in this case we denote by zx , zt the first order distributional
derivatives of z.

By C([0, T ];M(�)) we denote the set of strongly continuous mappings from [0, T ] into
M(�) - namely, u ∈ C([0, T ];M(�)) if for all t0 ∈ [0, T ] and for every compact K ⊂ �

there holds ‖u(·, t) − u(·, t0)‖M(K ) → 0 as t → t0.
We denote by L∞

w∗(0, T ;M+(�)) the set of nonnegative Radon measures u ∈ M+(S)

such that for a.e. t ∈ (0, T ) there is a measure u(·, t) ∈ M+(�) such that
(i) if ζ ∈ C([0, T ];Cc(�)) the map t �→ 〈u(·, t), ζ(·, t)〉� belongs to L1(0, T ) and

〈u, ζ 〉S =
∫ T

0
〈u(·, t), ζ(·, t)〉� dt ; (2.1)
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(ii) the map t �→ ‖u(·, t)‖M(K ) belongs to L∞(0, T ) for every compact K ∈ �.
By the definition of L∞

w∗(0, T ;M+(�)), for all ρ ∈ Cc(�) the map t �→ 〈u(·, t), ρ〉� is
measurable, thus the map u : (0, T ) → M+(�) is weakly* measurable.

If u ∈ L∞
w∗(0, T ;M+(�)), then uac, us ∈ L∞

w∗(0, T ;M+(�)), ur ∈ L∞(0, T ; L1
loc(�))

and, by (2.1), for all ζ ∈ C([0, T ];Cc(�))

〈uac, ζ 〉S =
∫∫

S
ur ζ dxdt, 〈us, ζ 〉S =

∫ T

0
〈us(·, t), ζ(·, t)〉� dt .

Denoting by [u(·, t)]ac, [u(·, t)]s ∈ M+(�) the absolutely continuous and singular parts of
the measure u(·, t) ∈ M+(�), a routine proof shows that for a.e. t ∈ (0, T )

us(·, t) = [u(·, t)]s , uac(·, t) = [u(·, t)]ac , ur (·, t) = [u(·, t)]r , (2.2)

where [u(·, t)]r denotes the density of the measure [u(·, t)]ac.
We say that a (signed) Radon measure u ∈ M(S) belongs to L∞

w∗(0, T ;M(�)) if both
its positive and negative parts u+ and u− belong to L∞

w∗(0, T ;M+(�)). In particular, this
implies that the total variation |u| of the measure u belongs to L∞

w∗(0, T ;M+(�)), and that
conditions (i) and (ii) in the definition of L∞

w∗(0, T ;M+(�)) hold with u(·, t) := u+(·, t)−
u−(·, t) for a.e. t ∈ (0, T ).

Since u+ and u− are mutually singular, it follows that for a.e. t the nonnegative measures
u+(·, t) and u−(·, t) are mutually singular, whence

u±(·, t) = [u(·, t)]± , |u(·, t)| = |u|(·, t) for a.e. t ∈ (0, T ) , (2.3)

u±
s (·, t) = [u(·, t)]±s , |us |(·, t) = |[u(·, t)]s | for a.e. t ∈ (0, T ) . (2.4)

2.2 Functions and Envelopes

Let χE be the characteristic function of E ⊆ R. For every u ∈ R we set

[u]± := max{±u, 0}, sgn±(u) := ±χR±(u), sgn(u) := sgn−(u) + sgn+(u) .

Let � = (a, b) (−∞ < a < b < ∞). We say that a function f : � → R, f ∈ L∞(�),
is piecewise continuous if:
- � = ⋃p+1

j=1 I j (p ∈ N) with I1 := (a, x1), I j := (x j−1, x j ) for j = 2, . . . , p, Ip+1 :=
(xp, b);
- f j := f �I j admits a representative (denoted again f j for simplicity) which belongs to
C(I j ) ( j = 1, . . . , p + 1); f j (x j ) �= f j+1(x j ) ( j = 1, . . . , p).

If� is unbounded, f ∈ L∞
loc(�) is piecewise continuous in� if it is piecewise continuous

in every bounded interval (a0, b0) ⊂ �.
Let Q ⊆ R

2 be open, g : Q �→ R be a measurable function, (x0, t0) ∈ Q. We set

ess lim sup
Q�(x,t)→(x0,t0)

g(x, t) := inf
δ>0

(
ess sup

(x,t)∈Bδ(x0,t0)∩Q
g(x, t)

)

= lim
δ→0+

(
ess sup

(x,t)∈Bδ(x0,t0)∩Q
g(x, t)

)
,

ess lim inf
Q�(x,t)→(x0,t0)

g(x, t) := sup
δ>0

(
ess inf

(x,t)∈Bδ(x0,t0)∩Q
g(x, t)

)

= lim
δ→0+

(
ess inf

(x,t)∈Bδ(x0,t0)∩Q
g(x, t)

)
,
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where

Br (x0, t0) := {(x, t) ∈ R
2 | (x − x0)

2 + (t − t0)
2 < r2} (r > 0) .

If ess lim supQ�(x,t)→(x0,t0) g(x, t) = ess lim infQ�(x,t)→(x0,t0) g(x, t), the essential limit of
g at (x0, t0) is defined as

ess lim
Q�(x,t)→(x0,t0)

g(x, t) := ess lim sup
Q�(x,t)→(x0,t0)

g(x, t) = ess lim inf
Q�(x,t)→(x0,t0)

g(x, t) .

The quantities

ess lim sup
Q�(x,t)→(x0,t

+
0 )

g(x, t), ess lim inf
Q�(x,t)→(x0,t

+
0 )

g(x, t)

are defined by replacing Br (x0, t0) by Br (x0, t0) ∩ {(x, t) ∈ R
2 | t > t0}. Similarly,

ess lim sup
Q�(x,t)→(x±

0 ,t0)

g(x, t), ess lim inf
Q�(x,t)→(x±

0 ,t0)
g(x, t)

are defined by replacing Br (x0, t0) by Br (x0, t0) ∩ {(x, t) ∈ R
2 | x > x0}, respectively by

Br (x0, t0) ∩ {(x, t) ∈ R
2 | x < x0}.

Let g ∈ L∞(Q). By the essential upper semicontinuous envelope (shortly, upper envelope)
of g we mean the function g∗ : Q → R,

g∗(x0, t0) := ess lim sup
Q�(x,t)→(x0,t0)

g(x, t) for any (x0, t0) ∈ Q . (2.5)

Similarly, the essential lower semicontinuous envelope (shortly, lower envelope) of g is the
function g∗ : Q → R,

g∗(x0, t0) := ess lim inf
Q�(x,t)→(x0,t0)

g(x, t) for any (x0, t0) ∈ Q . (2.6)

Similar definitions hold for measurable functions f : R �→ R.

3 Definitions and Preliminary Results

3.1 Conservation Law

Definition 3.1 Let −∞ ≤ a < b ≤ ∞, � = (a, b), u0 ∈ M(�) and H ∈ W 1,∞(R). A
measure u ∈ L∞

w∗(0, T ;M(�)) is called a solution of

ut + [H(u)]x = 0 in Q := � × (0, T ), u = u0 in � × {0} (3.1)

in Q if for all ζ ∈ C1([0, T ];C1
c (�)), ζ(·, T ) = 0 in � there holds

∫∫
Q

[
ur ζt + H(ur ) ζx

]
dxdt +

∫ T

0
〈us(·, t), ζt (·, t)〉� dt = −〈u0, ζ(·, 0)〉� . (3.2)
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A solution of (3.1) in Q is called an entropy solution if it satisfies the entropy inequality: for
all k ∈ R and ζ ∈ C1([0, T ];C1

c (�)), ζ ≥ 0, ζ(·, T ) = 0 in �,∫∫
Q

{|ur − k| ζt + sgn (ur − k) [H(ur ) − H(k)] ζx } dxdt

+
∫ T

0
〈|us(·, t)|, ζt (·, t)〉� dt ≥ −

∫
�

|u0r (x) − k| ζ(x, 0) dx − 〈|u0s |, ζ(·, 0)〉� .

(3.3)

Global (entropy) solutions of (3.1) are (entropy) solutions in � × (0, T ) for all T > 0.

In particular, setting � = R, we have defined a (global) entropy solution of the Cauchy
problem (CL). Summing and subtracting (3.2) and (3.3), we find that entropy solutions u in
Q of (3.1) satisfy∫∫

Q
{[ur − k]± ζt + sgn ±(ur − k) [H(ur ) − H(k)] ζx } dxdt

+
∫ T

0

〈
u±
s (·, t), ζt (·, t)

〉
�
dt ≥ −

∫
�

[u0r (x) − k]± ζ(x, 0) dx − 〈
u±
0s, ζ(·, 0)〉

�

(3.4)

for all k ∈ R and ζ ∈ C1([0, T ];C1
c (�)), ζ ≥ 0, ζ(·, T ) = 0 in �.

Entropy solutions satisfy the following monotonicity result (see [7, Theorem 3.3]).

Theorem 3.1 Let (H1) hold, let u0 ∈ M(�) and let u be an entropy solution of (3.1) in Q.
Then for a.e. 0 ≤ t1 ≤ t2 ≤ T

[u(·, t2)]±s ≤ [u(·, t1)]±s ≤ u±
0s in M(�) . (3.5)

From now on we consider entropy solutions of (3.1) with initial data u0 which satisfy{
u0 is a Radon measure on �, finite if� is bounded;

u0s = ∑p
j=1 c jδx j with x1 < x2 < · · · < xp, c j ∈ R \ {0} for 1 ≤ j ≤ p.

(H2)

We shall indicate the support of u0s by J := {x1, x2, . . . , xp}.
Let (H1) and (H2) be satisfied. If u is an entropy solution of (3.1) in Q, it follows from

the proof of [5, Proposition 3.20] that u ∈ C([0, T ];M(�)). This implies that if u is a global
entropy solution of (3.1) in Q, then

t j = sup
{
t > 0 | us(·, t)({x j }) �= 0

}
> 0 for all x j ∈ J = {x1, x2, . . . , xp}. (3.6)

More precisely, t j can be estimated from below (see the proof of [7, Corollary 1]):

t j ≥ |u0s |
({x j })

2‖H‖∞
. (3.7)

In addition it follows from (3.5) that supp us ⊆ J × [0, T ] and, for all t ∈ (0, t j ),

us(·, t)({x j })
{

> 0 if c j = u0s({x j }) > 0

< 0 if c j = u0s({x j }) < 0.
(3.8)
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Definition 3.2 Let (H1)-(H2) hold. An entropy solution u of (3.1) in Q is said to satisfy the
compatibility condition at x j ∈ J if

ess lim
x→x+

j

∫ t j

0
sgn±(ur (x, t) − k)

[
H(ur (x, t)) − H(k)

]
β(t) dt ≤ 0 if ± c j < 0 (3.9a)

ess lim
x→x−

j

∫ t j

0
sgn±(ur (x, t) − k)

[
H(ur (x, t)) − H(k)

]
β(t) dt ≥ 0 if ± c j < 0 (3.9b)

for all k ∈ R and β ∈ C1
c (0, t j ), β ≥ 0, where t j ∈ (0, T ] is defined by (3.6).

By [7, Remark 7] the limits in (3.9a)–(3.9b) exist and are finite.
Before stating the basic well-posedness result for the Cauchy problem, we introduce the

following singular Cauchy-Dirichlet problems, where m1,m2 = ±∞:

• If � = (a, b) with −∞ < a < b < ∞,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + [H(u)]x = 0 in Q

u = m1 in {a} × (0, T )

u = m2 in {b} × (0, T )

u = u0 in � × {0} ;
(D)

• If � = (−∞, b) with b < ∞,⎧⎪⎨
⎪⎩
ut + [H(u)]x = 0 in Q

u = m2 in {b} × (0, T )

u = u0 in � × {0} ;
(D)−

• If � = (a,∞) with a > −∞,⎧⎪⎨
⎪⎩
ut + [H(u)]x = 0 in Q

u = m1 in {a} × (0, T )

u = u0 in � × {0} .

(D)+

Definition 3.3 Let � = (a, b) with −∞ < a < b < ∞. Let (H1) hold, and let u0 ∈ M(�).
An entropy solution u of (D) in Q with m1,m2 = ±∞ is an entropy solution of (3.1) in Q
such that for all k ∈ R and β ∈ C1

c (0, T ), β ≥ 0 there holds

ess lim
x→a+

∫ T

0
sgn+(ur (x, t) − k)

[
H(ur (x, t)) − H(k)

]
β(t) dt ≤ 0 ifm1 = −∞, (3.10a)

ess lim
x→a+

∫ T

0
sgn−(ur (x, t) − k)

[
H(ur (x, t)) − H(k)

]
β(t) dt ≤ 0 if m1 = ∞, (3.10b)

ess lim
x→b−

∫ T

0
sgn+(ur (x, t) − k)

[
H(ur (x, t)) − H(k)

]
β(t) dt ≥ 0 if m2 = −∞, (3.10c)

ess lim
x→b−

∫ T

0
sgn−(ur (x, t) − k)

[
H(ur (x, t)) − H(k)

]
β(t) dt ≥ 0 if m2 = ∞. (3.10d)

Entropy solutions of (D)− and (D)+ are defined by dropping conditions (3.10a)–(3.10b) at
x = a (resp. (3.10c)–(3.10d) at x = b).

Again it follows from [7, Remark 7] that the limits in (3.10) exist and are finite.
The proof of the following well-posedness result is basically the same as in the case of

problem (CL) (see [7, Theorem 3.5]; for the existence part, see also the proof of Theorem
4.2 below).
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Theorem 3.2 Let (H1) and (H2) be satisfied. Then the following problems have a unique
global entropy solution which satisfies the compatibility condition at all x j ∈ J :

(i) Problem (D), with m1 = ±∞, m2 = ±∞;
(ii) Problem (D)−, with m2 = ±∞;
(iii) Problem (D)+ with m1 = ±∞;
(iv) Problem (CL).

The following results follow from the proofs of [7, Theorem 3.5 and Proposition 5.8]. The
first one states that at the singularities, the one-sided traces of H(u) = H(ur ) at x j ∈ J
exist in a weak sense:

Proposition 3.3 Let (H1) and (H2) be satisfied and let u be the global entropy solution of
(D) satisfying the compatibility conditions at all x j ∈ J . Let t j ∈ (0,∞] be defined by (3.6).
For all x j there exists fx±

j
∈ L∞(0, t j ) such that

ess lim
x→x±

j

∫ t j

0
H(u(x, t)) β(t) dt =

∫ t j

0
fx±

j
(t) β(t) dt for all β ∈ Cc([0,∞)). (3.11)

Moreover, for a.e. t ∈ (0, t j ) there holds

lim sup
u→∞

H(u) ≤ fx+
j
(t) ≤ sup

u∈R
H(u) if c j > 0 , (3.12)

inf
u∈R H(u) ≤ fx+

j
(t) ≤ lim inf

u→−∞ H(u) if c j < 0 , (3.13)

inf
u∈R H(u) ≤ fx−

j
(t) ≤ lim inf

u→∞ H(u) if c j > 0 , (3.14)

lim sup
u→−∞

H(u) ≤ fx−
j
(t) ≤ sup

u∈R
H(u) if c j < 0 . (3.15)

Theweak traces fx±
j
determine the evolution of theDiracmasses. In fact, since the solution

u satisfies the weak formulation (3.2), we have:

Proposition 3.4 Under the assumptions of Proposition 3.3, for all x j ∈ J ,

us(t)�{x j } = C j (t)δx j , C j (t) :=
{
c j − ∫ t

0

[
fx+

j
(s) − fx−

j
(s)

]
ds if 0 ≤ t < t j

0 if t ≥ t j ,

(3.16)

C j (t) :=
{

> 0 if c j > 0

< 0 if c j < 0
for every 0 ≤ t < t j . (3.17)

Similar results hold for problems (D)− and (D)+ when � is an half-line, and for the
Cauchy problem (CL) when � = R.

3.2 Hamilton–Jacobi Equation

Definition 3.4 Let H ∈ W 1,∞(R), E ⊆ R
2 an open set and U ∈ L∞

loc(E). U is a viscosity
solution of the equation Ut + H(ux ) = 0 in E , if for all ϕ ∈ C1(E):

ϕt (x, t) + H(ϕx (x, t)) ≤ 0 if (x, t) is a local maximum point of U∗ − ϕ in E;
(3.18)

ϕt (x, t) + H(ϕx (x, t)) ≥ 0 if (x, t) is a local minimum point of U∗ − ϕ in E .

(3.19)
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Definition 3.5 Let −∞ ≤ a < b ≤ ∞, � = (a, b), U0 ∈ L∞
loc(�) and H ∈ W 1,∞(R). A

viscosity solution of{
Ut (x, t) + H(Ux (x, t)) = 0 in Q = � × (0, T )

U (·, 0) = U0 in �
(3.20)

is a viscosity solution of Ut + H(ux ) = 0 in Q such that

U∗(·, 0) = (U0)
∗ , U∗(·, 0) = (U0)∗ in� . (3.21)

Global viscosity solutions of (3.20) are viscosity solutions in � × (0, T ) for all T > 0.

In particular we have defined a viscosity solution of the Cauchy problem (H J ).
The singular Dirichlet problems for the conservation law naturally correspond to singular

Neumann problems for the Hamilton–Jacobi equation, where m1,m2 = ±∞:

• If � = (a, b) with −∞ < a < b < ∞,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ut + H(Ux ) = 0 in Q

Ux = m1 in {a} × (0, T )

Ux = m2 in {b} × (0, T )

U = U0 in � × {0} ;
(N)

• If � = (−∞, b) with b < ∞,⎧⎪⎨
⎪⎩
Ut + H(Ux ) = 0 in Q

Ux = m2 in {b} × (0, T )

U = U0 in � × {0} ;
(N )−

• If � = (a,∞) with a > −∞,⎧⎪⎨
⎪⎩
Ut + H(Ux ) = 0 in Q

Ux = m1 in {a} × (0, T )

U = U0 in � × {0} .

(N )+

Definition 3.6 Let � = (a, b) with −∞ < a < b < ∞ and Q̂ := � × (0, T ]. Let (H1)

hold, and let U0 ∈ L∞
loc(�). A viscosity solution U of (N ) with m1 = ±∞, m2 = ±∞ is a

viscosity solution of (3.20) in Q such that for all ϕ ∈ C1(Q̂) there holds:

(i) If m1 = m2 = ∞:

ϕt (a, t) + H(ϕx (a, t)) ≤ 0 if (a, t) is a local maximum point of U∗ − ϕ in Q̂,

(3.22)

ϕt (b, t) + H(ϕx (b, t)) ≥ 0 if (b, t) is a local minimum point of U∗ − ϕ in Q̂;
(3.23)

(ii) If m1 = m2 = −∞:

ϕt (a, t) + H(ϕx (a, t)) ≥ 0 if (a, t) is a local minimum point of U∗ − ϕ in Q̂,

(3.24)

ϕt (b, t) + H(ϕx (b, t)) ≤ 0 if (b, t) is a local maximum point of U∗ − ϕ in Q̂;
(3.25)
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(iii) Ifm1 = ∞ andm2 = −∞ and (a, t) and/or (b, t) are local maximum points ofU∗ −ϕ

in Q̂, then {
ϕt (a, t) + H(ϕx (a, t)) ≤ 0 ,

ϕt (b, t) + H(ϕx (b, t)) ≤ 0 ; (3.26)

(iv) Ifm1 = −∞ andm2 = ∞ and (a, t) and/or (b, t) are local minimum points ofU∗ −ϕ

in Q̂, then {
ϕt (a, t) + H(ϕx (a, t)) ≥ 0 ,

ϕt (b, t) + H(ϕx (b, t)) ≥ 0 .
(3.27)

Viscosity solutions of (N )− and (N )+ are defined as above, dropping conditions at x = a,
respectively at x = b in Definition 3.6.

The following well-posedness result holds for (N ) ([8, Theorem 3.3 and 3.4]).

Theorem 3.5 Let � = (a, b). Let (H1) hold, and let U0 ∈ L∞
loc(�) be piecewise continuous

in � with J = {x1, . . . , xp} as the set of jump discontinuities. Then there exists a unique
global viscosity solution U of problem (N ), with m1 = ±∞, m2 = ±∞. Moreover:

(a) For every j = 1, . . . , p + 1 the restriction U�S j has a continuous representative Ũ j

in S j , with S j := I j × R
+, I j := (x j−1, x j ), x0 := a, xp+1 := b;

(b) For every j = 1, . . . , p there exists a unique waiting time τ j ∈ (0,∞] such that

Ũ j (x j , t) �= Ũ j+1(x j , t) ⇔ t ∈ [0, τ j ) .

Similar statements hold for (N )− with m2 = ±∞ if � = (−∞, b) with b < ∞, for (N )+
with m1 = ±∞ if � = (a,∞) with a > −∞, and for (H J ) if � = R.

Remark 3.1 LetU be the global viscosity solution of (N )with initial datumU0 as in Theorem
3.5. For all x j ∈ J we consider the jumps

J0(x j ) := U0(x
+
j ) −U0(x

−
j ) , Jt (x j ) := U (x+

j , t) −U (x−
j , t) (t > 0) (3.28)

(hereU (x+
j , t) = Ũ j+1(x j , t) andU (x−

j , t) = Ũ j (x j , t); see Theorem 3.5(a)). By Theorem
3.5(b) the jump Jt (x j ) persists until the strictly positive waiting time

τ j = sup
{
t ∈ R

+ | Jt (x j ) �= 0
} ∈ (0,∞] . (3.29)

Moreover, as observed in [8, Remark 3.2], jumps cannot change sign,

Jt (x j )

{
> 0 if J0(x j ) > 0

< 0 if J0(x j ) < 0
for all t ∈ [0, τ j ), (3.30)

and are nonincreasing (in absolute value, [8, Theorem 3.4-(d)]): for 0 ≤ t0 < t1 < τ j

|Jt1(x j )| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|Jt0(x j )| −
[
lim sup
ξ→∞

H(ξ) − lim inf
ξ→∞ H(ξ)

]
(t1 − t0) if J0(xj) > 0

|Jt0(x j )| −
[
lim sup
ξ→−∞

H(ξ) − lim inf
ξ→−∞ H(ξ)

]
(t1 − t0) if J0(xj) < 0.

(3.31)
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4 Results

4.1 Conservation LawVersus Hamilton–Jacobi Equation

The correspondence between the solutions u of (CL) and U of (H J ), with u0 = U ′
0, is a

special case (set � = R) of the following result. Observe that, in terms of U0, hypothesis
(H2) on u0 becomes{

U0 ∈ BVloc(�); U0 ∈ C(�) or ∃ x1 < · · · < xp : U0(x
+
j ) �= U0(x

−
j ) ∀ x j ,

U0 ∈ W 1,1
loc (I j ), I j = (x j−1, x j ) (1 ≤ j ≤ p + 1; x0 = a, xp+1 = b).

(H3)

Theorem 4.1 Let � = (a, b) with −∞ < a < b < ∞, let (H1)-(H3) be satisfied and let
J = {x1, x2, . . . , xp}.
(i) Let u be the unique entropy solution of (D) with initial data u0 = U ′

0 as in (1.3), which
satisfies the compatibility condition at all x j ∈ J . Set

U (·, t) := −
∫ t

0
H(ur (·, s)) ds +U0 a.e. in� (t ∈ (0, T )) . (4.1)

Then U is the unique viscosity solution of (N ), and u and U satisfy (1.5).
(ii) Let U be the unique viscosity solution of (N ). Then the distributional derivative Ux

belongs to C([0, T ];M(�)), the measure u := Ux is the unique entropy solution of
problem (D) with initial data u0 := U ′

0 which satisfies the compatibility condition at
all x j ∈ J , and u and U satisfy (1.4) and (1.5).

Similar statements hold if � is unbounded.

4.2 Comparison

We shall prove the following:

Theorem 4.2 Let� = (a, b)with−∞ < a < b < ∞, and let (H1) hold. Let u0, v0 ∈ M(�)

satisfy{
u0s = ∑p

j=1 c jδx j with x1 < x2 < . . . xp, c j ∈ R \ {0} for 1 ≤ j ≤ p ,

v0s = ∑q
j=1 d jδx ′

j
with x ′

1 < x ′
2 < . . . x ′

q , d j ∈ R \ {0} for 1 ≤ j ≤ q ,

and let u0 ≤ v0 inM(�). Let u, v be the entropy solutions of (D)with initial data u0, v0 given
by Theorem 3.2 (in particular u and v satisfy the compatibility condition). Then u(·, t) ≤
v(·, t) in M(�) for all t ∈ [0, T ].

Similar statements hold if � is unbounded.

The companion result for solutions of (N ) is known ([8, Corollary 3.5]):

Theorem 4.3 Let � = (a, b) with −∞ ≤ a < b ≤ ∞, and let (H1) hold. Let U0, V0 ∈
L∞(�), U0 and V0 piecewise continuous in � with a finite number of discontinuities. If U
and V are viscosity solutions of problem (N ) in Q with initial data U0 ≤ V0 a.e. in �, then
U ≤ V a.e. in Q. Similar statements hold if � is unbounded.

Observe that the above assumptions on U0 and V0 are satisfied if (H3) holds.
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4.3 Waiting Time for Global Solutions of (HJ) and (CL)

The first result is an upper bound for the waiting times of solutions of problem (H J ) if the
Hamiltonian H(ξ) does not have a limit as ξ → ±∞.

Theorem 4.4 Let H ∈ W 1,∞(R) and let U0 ∈ L∞
loc(R) be piecewise continuous in R with a

finite number of discontinuities: J = {x1, . . . , xp}. Let
(H∗)± := lim sup

ξ→±∞
H(ξ) , (H∗)± := lim inf

ξ→±∞ H(ξ) ,

and let U be the unique global viscosity solution of (H J ). Let the initial jump J0(x j ) and
the waiting time τ j ∈ (0,+∞] at x j ∈ J be defined by (3.28) and (3.29). Then

τ j ≤

⎧⎪⎨
⎪⎩

J0(x j )

(H∗)+ − (H∗)+
if J0(x j ) > 0 and (H∗)+ > (H∗)+

|J0(x j )|
(H∗)− − (H∗)−

if J0(x j ) < 0 and (H∗)− > (H∗)−.

(4.2)

By assumption (H1), both (H∗)± and (H∗)± are finite.
In view of Theorem 4.4, it is natural to seek estimates of τ j from above assuming that the

limits limξ→±∞ H(ξ) exist. However, if there exist c, d ∈ R such that H is constant either
in (−∞, d), or in (c,∞), it is easy to construct examples with τ j = ∞. Hence we make the
following assumption:⎧⎨

⎩
(i) ∃ H+ := lim

ξ→∞ H(ξ); � c > 0 such that H is constant in (c,∞);
(i i) ∃ H− := lim

ξ→−∞ H(ξ); � d < 0 such that H is constant in (−∞, d).
(H4)

Theorem 4.5 Let (H1) hold. Let U0 ∈ L∞
loc(R) be piecewise continuous in R, let J be the

finite set of its discontinuities, and let A, B > 0 be such that

|U0(x)| ≤ A + B|x | for all x ∈ R . (A1)

Let U be the unique global viscosity solution of (H J ) with initial data U0. Then for every
x j ∈ J the waiting time τ j is finite if either J0(x j ) > 0 and H satisfies (H4)-(i), or
J0(x j ) < 0 and H satisfies (H4)-(i i).

In view of the correspondence between problems (H J ) and (CL) stated in Theorem 4.1,
the above results concerning the waiting time have a counterpart for global entropy solutions
of (CL). For everyU0 ∈ L∞

loc(R) andu0 ∈ M(R) as in assumptions (H2)-(H3),withU ′
0 = u0

in M(R) , let U ∈ L∞
loc(S) and u ∈ C([0,∞);M(R)) be the global viscosity solution of

(H J ), respectively the global entropy solution of (CL) satisfying the compatibility condition
at every x j ∈ J = supp u0s . Then for every x j ∈ J

J0(x j ) = u0s({x j }) = c j (4.3)

and the waiting times for the persistence of jumps in (H J ) (see (3.29)) and of the singular
part in (CL) (see (3.6)) coincide, namely

t j = τ j , (4.4)

us(·, t)({x j }) = Jt (x j ) for every 0 ≤ t ≤ t j (4.5)

(see (1.5) and (3.28)). Therefore, as a by-product of Theorems 4.1, 4.4 and 4.5 we have the
following statements.
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Corollary 4.6 Let (H1)-(H2) hold. Let u ∈ C([0,∞);M(R)) be the unique global entropy
solution of (CL)with initial data u0, which satisfies the compatibility condition at all x j ∈ J .
Let t j be the waiting time defined by (3.6). Then

t j ≤

⎧⎪⎨
⎪⎩

c j
(H∗)+ − (H∗)+

if c j > 0 and (H∗)+ > (H∗)+
|c j |

(H∗)− − (H∗)−
if c j < 0 and (H∗)− > (H∗)−.

(4.6)

In addition, if Ā, B̄ > 0 are such that

∣∣∣∣
∫ x

0
u0r (s) ds

∣∣∣∣ ≤ Ā + B̄|x | for x ∈ R , (A2)

then the waiting time t j is finite if either c j > 0 and H satisfies (H4)-(i) or c j < 0 and H
satisfies (H4)-(i i).

Remark 4.1 Clearly, assumption (A2) is satisfied if u0r ∈ L1(R) or u0r ∈ L∞(R).

By strengthening the assumptions on H , the conclusions in the second part of Corollary
4.6 still hold under very weak assumptions on the initial data. Set

M+
k := ‖H ′‖L∞(k,∞) , M−

k := ‖H ′‖L∞(−∞,k)

(observe that M±
k > 0 by (H4)). We introduce the following assumptions:

⎧⎪⎨
⎪⎩

(i) H satisfies (H4) − (i), lim
k→∞ M+

k = 0, lim sup
k→∞

|H(k)−H+|
M+

k
≥ C+

0 > 0 ;
(i i) H satisfies (H4) − (i i), lim

k→−∞ M−
k = 0, lim sup

k→−∞
|H(k)−H−|

M−
k

≥ C−
0 > 0

(H5)

(an example of function H satisfying (H5)-(i) is H(s) = e−s sin s), and

{
(i) ∃ k > 0 such that either H(ξ) > H+, or H(ξ) < H+ for any ξ ≥ k ;
(i i) ∃ k < 0 such that either H(ξ) > H−, or H(ξ) < H− for any ξ ≤ k .

(H6)

Theorem 4.7 Let (H1)-(H2) hold, and let u ∈ C([0,∞);M(R)) be the unique global
entropy solution of (CL) with initial data u0, which satisfies the compatibility condition
at all x j ∈ J . Then the waiting time t j is finite if either c j > 0 and H satisfies (H5)-(i) or
(H6)-(i), or c j < 0 and H satisfies (H5)-(i i) or (H6)-(i i).

Again, by Theorem 4.1 these results for (CL) can be translated to problem (H J ).

Corollary 4.8 Let (H1)-(H3) hold, and let U be the unique global viscosity solution of (H J )

with initial data U0. Then for every x j ∈ J the waiting time τ j is finite if either J0(x j ) > 0
and H satisfies (H5)-(i) or (H6)-(i), or J0(x j ) < 0 and H satisfies (H5)-(i i) or (H6)-(i i).
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5 (D) Versus (N): Proof of Theorem 4.1

5.1 Preliminary Definitions and Notations

Let � = (a, b), −∞ ≤ a < b ≤ ∞. Below we generalize problem (N ) to the case that
m1,m2 ∈ R := [−∞,∞] :⎧⎪⎨

⎪⎩
Ut + H(Ux ) = 0 in Q := � × (0, T )

Ux = m1 in {a} × (0, T )

Ux = m2 in {b} × (0, T ) ,

(5.1)

with initial condition
U = U0 in � × {0} . (5.2)

Definition 5.1 Let Q̂ := � × (0, T ] and m1, m2 ∈ R.
(i) By a viscosity subsolution of (5.1) in Q we mean any viscosity subsolution U of Ut +
H(Ux ) = 0 in Q such that if (a, t) and/or (b, t) are local maximum points of U∗ − ϕ in Q̂
for some ϕ ∈ C1(Q̂), then{

ϕt (a, t) + H(ϕx (a, t)) ≤ 0 if ϕx (a, t) ≤ m1,

ϕt (b, t) + H(ϕx (b, t)) ≤ 0 if ϕx (b, t) ≥ m2 .
(5.3)

(ii) By a viscosity supersolution of (5.1) in Q we mean any viscosity supersolution U of
Ut + H(Ux ) = 0 in Q such that if (a, t) and/or (b, t) are local minimum points of U∗ − ϕ

in Q̂ for some ϕ ∈ C1(Q̂), then{
ϕt (a, t) + H(ϕx (a, t)) ≥ 0 if ϕx (a, t) ≥ m1,

ϕt (b, t) + H(ϕx (b, t)) ≥ 0 if ϕx (b, t) ≤ m2 .
(5.4)

(iii) A functionU is called a viscosity solution of (5.1) in Q, if it is both a viscosity subsolution
and a viscosity supersolution.
(iv) Let U0 ∈ L∞

loc(�). A viscosity solution of (5.1) in Q with initial condition (5.2) is a
viscosity solution of (5.1) satisfying (3.21).

Remark 5.1 Formally, conditions (5.3) for viscosity subsolutions of (5.1) are void when
m1 = −∞, m2 = ∞; conditions (5.4) for viscosity supersolutions of (5.1) are void when
m1 = ∞,m2 = −∞. Analogously, the boundary conditions at x = a and x = b are dropped
if a = −∞ and b = ∞, respectively.

5.2 Parabolic Approximation

Let � = (a, b) with −∞ < a < b < ∞. Let f1,ε, f2,ε , f3,ε ∈ C∞(R) (ε ∈ (0, 1)) be a
partition of unity:⎧⎪⎪⎨

⎪⎪⎩
0 ≤ fi,ε ≤ 1 ,

∑3
i=1 fi,ε = 1 in R ,

f1,ε = 1 in (−∞, a + 2
√

ε] , supp f1,ε ⊆ (−∞, a + 3
√

ε] ,
f2,ε = 1 in [a + 3

√
ε, b − 3

√
ε] , supp f2,ε ⊆ [a + 2

√
ε, b − 2

√
ε] ,

f3,ε = 1 in [b − 2
√

ε,∞) , supp f3,ε ⊆ [b − 3
√

ε,∞) ,
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such that for i = 1, 2, 3

sup
ε∈(0,1)

‖ f ′
i,ε‖L1(R) < ∞ , sup

ε∈(0,1)

√
ε ‖ f ′′

i,ε‖L1(R) < ∞ .

Let U0 ∈ C∞(�) and m1, m2 ∈ R. For every x ∈ �, we set

u0,ε := m1 f1,ε + f2,εU
′
0 + m2 f3,ε , U0,ε(x) := U0(a) +

∫ x

a
u0,ε(s)ds (5.5)

(to keep notation as simple as possible we suppress the dependence of u0,ε onm1,m2). Then
U0,ε ∈ C∞(�), u0,ε = m1 in [a, a + √

ε], u0,ε = m2 in [b − √
ε, b],

U ′
0,ε = u0,ε in �, ‖u0,ε‖L∞(�) ≤ max

{|m1|, |m2|, ‖U ′
0‖L∞(�)

}
for ε ∈ (0, 1) ,

sup
ε∈(0,1)

‖u′
0,ε‖L1(�) < ∞ , sup

ε∈(0,1)

√
ε ‖u′′

0,ε‖L1(�) < ∞ , (5.6)

u0,ε(x) → U ′
0(x) for all x ∈ �, U0,ε → U0 in C(�) ,

u0,ε
∗
⇀ U ′

0 in L∞(�) and u0,ε → U ′
0 in L p(�) for all 1 ≤ p < ∞. (5.7)

Let H satisfy (H1). We set

Hε(u) := gε(u)
([ηε ∗ H ](u) − [ηε ∗ H ](0)) (u ∈ R) ,

where {ηε} ⊆ C∞
c (R) is a sequence of standard mollifiers and the family {gε} ⊂ C∞

c (R)

satisfies gε = 1 in (−1/ε, 1/ε), supp gε ⊆ (−2/ε, 2/ε), and 0 ≤ gε ≤ 1, |g′
ε | ≤ 1 in R. It

is easily seen that

sup
ε∈(0,1)

‖Hε‖W 1,∞(R) < ∞ , Hε → H uniformly on compact subsets ofR . (5.8)

Let m1,m2 ∈ R and let uε ∈ C2,1(Q) be the unique classical solution (e.g., see [21] of the
parabolic problem ⎧⎪⎪⎨

⎪⎪⎩
uεt + [Hε(uε)]x = εuεxx in Q
uε = m1 in {a} × (0, T )

uε = m2 in {b} × (0, T )

uε = u0,ε in � × {0} .

(Dε)

By the maximum principle and (5.5) we have

‖uε‖L∞(Q) ≤ max
{|m1|, |m2|, ‖U ′

0‖L∞(�)

}
for any ε ∈ (0, 1) . (5.9)

Moreover, there exists c > 0 such that for any ε ∈ (0, 1)

‖uεx‖L∞(0,T ;L1(�)) ≤ c , ‖uεt‖L∞(0,T ;L1(�)) ≤ c , ε ‖uεx‖L∞(Q) ≤ c . (5.10)

In fact, arguing as in the proof of [27, Proposition 3.1] (see also [1]) and using (5.6) we obtain
the first two estimates, and the third one easily follows (see [7, Lemma 6.2] for details).

By (5.10) the family {uε} is bounded in L∞(Q), and sup ε∈(0,1) ‖uε‖W 1,1(Q) ≤ M for
someM > 0. It follows from embedding theorems and the uniqueness of the entropy solution
u ∈ L∞(0, T ; L1(�)) of ⎧⎪⎪⎨

⎪⎪⎩
ut + [H(u)]x = 0 in Q
u = m1 in {a} × (0, T )

u = m2 in {b} × (0, T )

u = U ′
0 in � × {0}

, (DR)
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that
uε → u in L1(Q) as ε → 0. (5.11)

The following result will be used (see [7, Lemma 5.9]).

Lemma 5.1 Let u be given by (5.11). Then for every t ∈ (0, T ]
‖u(·, t)‖L1(�) ≤ ‖U ′

0‖L1(�) + 2 ‖H‖∞t . (5.12)

It is easily seen that the function

Uε(x, t) := −
∫ t

0
{Hε(uε(x, s)) − εuεx (x, s)} ds +U0,ε(x) ((x, t) ∈ Q) (5.13)

satisfies Uεx = uε in Q and is the unique classical solution of⎧⎪⎪⎨
⎪⎪⎩
Uεt + Hε(Uεx ) = εUεxx in Q
Uεx = m1 in {a} × (0, T )

Uεx = m2 in {b} × (0, T )

Uε = U0,ε in � × {0} .

(Nε)

Then, by (5.10), for all ε ∈ (0, 1) there holds

‖Uεx‖L∞(Q) ≤ max
{|m1|, |m2|, ‖U ′

0‖L∞(�)

}
, ‖Uεxx‖L∞(0,T ;L1(�)) ≤ c ,

‖Uεxt‖L∞(0,T ;L1(�)) ≤ c , ε ‖Uεxx‖L∞(Q) ≤ c , ‖Uεt‖L∞(Q) ≤ c + ‖H‖∞
(5.14)

(the latter estimate follows from the previous one and the equalityUεt = εUεxx − Hε(Uεx )).

Proposition 5.2 Let � = (a, b) with −∞ < a < b < ∞, m1,m2 ∈ R, and let (H1) be
satisfied. Then for every U0 ∈ C∞(�) there exists a viscosity solution of problem (5.1) with
initial condition (5.2). Moreover:
(i) U ∈ W 1,∞(Q) and

‖Ux‖L∞(Q) ≤ max
{|m1|, |m2|, ‖U ′

0‖L∞(�)

}
, (5.15a)

‖Ut‖L∞(Q) ≤ ‖H‖∞ . (5.15b)

(ii)U (x, t) = − ∫ t
0 H(u(x, s)) ds+U0(x) andUx (x, t) = u(x, t) for a.e. (x, t) ∈ Q, where

u is the unique entropy solution of problem (DR).

Proof By the estimates for Uεx and Uεt in (5.14), the family {Uε} is bounded in W 1,∞(Q).
Hence there exist {Uεk } ⊆ {Uε} and U ∈ C(Q), with Ut ,Ux ∈ L∞(Q), such that Uεk → U
in C(Q) (in particular,Uεk (0) = U0,εk → U0 in C(�); see (5.7)), and (5.15a) follows at
once from (5.14). Claim (ii) follows from (5.13), the equality Uεx = uε in Q, (5.11) and
the uniform convergence of Uεk to U in Q (observe that, by (5.11) and the last estimate in

(5.10), εkuεk x
∗
⇀ 0 in L∞(Q)).

Finally, (5.15b) will follow from (see [8, Proposition 3.2])

inf
s∈R [−H(s)] ≤ U (x, t1) −U (x, t2)

t1 − t2
≤ sup

s∈R
[−H(s)] (0 < t1 < t2 < T ) , (5.16)

as soon asweprove thatU is a (continuous) viscosity solution of the equationUt+H(Ux ) = 0
in Q. To this purpose, we shall only check conditions (3.18) and (5.3) (checking (3.19) and
(5.4) is similar). We distinguish 3 cases: (α), (β), (γ ).

123



Journal of Dynamics and Differential Equations (2023) 35:455–491 473

(α) Let (x, t) ∈ �× (0, T ] be a point whereU −ϕ, with ϕ ∈ C2(Q̂), has a local maximum.
Without loss of generality we may assume that the maximum is strict. Since Uεk → U in
C(Q), there exists a sequence {(xk, tk)} ⊆ �× (0, T ] such that (xk, tk) → (x, t) as k → ∞,
and the functionUεk −ϕ assumes a local maximum at (xk, tk) ∈ �× (0, T ]. Combined with
the regularity of Uεk , this implies that

Uεk x (xk, tk) = ϕx (xk, tk), Uεk t (xk, tk) ≥ ϕt (xk, tk) , Uεk xx (xk, tk) ≤ ϕxx (xk, tk) ,

whence
ϕt (xk, tk) + Hεk (ϕx (xk, tk)) ≤ Uεk t (xk, tk) + Hεk (Uεk x (xk, tk)) =

= εkUεk xx (xk, tk) ≤ εkϕxx (xk, tk) .
(5.17)

Letting k → ∞ and using (5.8), we obtain (3.18).
(β) Let U − ϕ (ϕ ∈ C2(Q̂)) assume a strict local maximum at (a, t), t ∈ (0, T ], and let
ϕx (a, t) ≤ m1. Suppose first that ϕx (a, t) < m1. Arguing as in (α), there exists a sequence
{(xk, tk)} ⊆ [a, b) × (0, T ] such that (xk, tk) → (a, t) as k → ∞ and Uεk − ϕ assumes a
local maximum at (xk, tk). Observe that xk > a for all k, since otherwisem1 = Uεk x (a, tk) ≤
ϕx (a, tk) < m1. So also in this case (5.17) holds, and letting k → ∞ we obtain the first
inequality in (5.3): ϕt (a, t) + H(ϕx (a, t)) ≤ 0.

Next, let ϕx (a, t) = m1. Set

ϕδ(x, t) := ϕ(x, t) − δ(x − a) ((x, t) ∈ Q̂, δ > 0) ; (5.18)

notice that ϕδt = ϕt , ϕδx = ϕx − δ, and ϕδ → ϕ in C(Q) as δ → 0+. Since U − ϕ has a
strict maximum at (a, t), there exists {(xδ j , tδ j )} ⊂ [a, b) × (0, T ] such that

(xδ j , tδ j ) → (a, t), U − ϕδ j has a local maximum at (xδ j , tδ j ) . (5.19)

If xδ j ∈ (a, b), as in (α) we obtain that

ϕt (xδ j , tδ j ) + H(ϕx (xδ j , tδ j ) − δ j ) ≤ 0 . (5.20)

On the other hand, if xδ j = a, for all sufficiently large j we get tδ j = t (recall that U − ϕ

achieves a strict local maximum at the point (a, t)), henceU − ϕδ j admits a local maximum
at the point (a, t). Since ϕδ j x (a, t) = ϕx (a, t) − δ j < m1, by the first part of case (β), we
get inequality (5.20) in (a, t), namely

ϕt (a, t) + H(ϕx (a, t) − δ j ) ≤ 0 . (5.21)

Letting j → ∞ in (5.20)–(5.21), the conclusion follows from the continuity of H .
(γ ) If U − ϕ achieves a local maximum at (b, t), with t ∈ (0, T ] and ϕx (b, t) ≥ m2, we
argue as in step (β) and distinguish the cases ϕx (b, t) > m2 and ϕx (b, t) = m2 (we omit the
details). ��

5.3 Proof of the Correspondence Between Problems (D) and (N)

We prove Theorem 4.1 first in the case that u0s = 0 and U0 ∈ W 1,1
loc (�).

Proposition 5.3 Let (H1) hold. Let � = (a, b), −∞ < a < b < ∞, U0 ∈ W 1,1(�),
u0 = U ′

0, m1 = ±∞ and m2 = ±∞. Let U ∈ C(Q) be the unique viscosity solution of
problem (N ) and let u ∈ C([0, T ]; L1(�)) be the unique entropy solution of problem (D).
Then U ∈ W 1,1(Q) and for a.e. (x, t) ∈ Q

U (x, t) = −
∫ t

0
H(u(x, s)) ds +U0(x) , Ux (x, t) = u(x, t). (5.22)
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Similar statements hold if � is unbounded and U0 ∈ W 1,1
loc (�), with U ∈ W 1,1

loc (Q).

Proof of Proposition 5.3 The proof consists of several steps.
(α1) Let −∞ < a < b < ∞,U0 ∈ C∞(�), m1 = ∞ and m2 = −∞ (if m1,m2 = ±∞ the
proof is similar). Let n, p ∈ N and let Un,p ∈ W 1,∞(Q) be the viscosity solution of⎧⎪⎨

⎪⎩
Ut + H(Ux ) = 0 in Q

Ux (a, t) = n, Ux (b, t) = −p if t ∈ (0, T )

U = U0 in � × {0}
(Nn,p)

constructed in Proposition 5.2. Then,

Un,p(x, t) = −
∫ t

0
H(un,p(x, s)) ds +U0(x) , [Un,p]x (x, t) = un,p(x, t) (5.23)

for a.e. (x, t) ∈ Q, where un,p is the unique entropy solution of⎧⎪⎨
⎪⎩

[un,p]t + [H(un,p)]x = 0 in Q

un,p(a, t) = n, un,p(b, t) = −p if t ∈ (0, T )

un,p = U ′
0 in � × {0} .

(Dn,p)

We first let n → ∞ in the above problems. Observe that

un,p → u p in L1(Q) as n → ∞ , (5.24)

where u p ∈ C([0, T ]; L1(�)) is an entropy solution ([7, proof of Theorem 6.3]) of⎧⎪⎨
⎪⎩

[u p]t + [H(u p)]x = 0 in Q

up(a, t) = ∞, u p(b, t) = −p if t ∈ (0, T )

u p = U ′
0 in � × {0}.

(D∞,p)

In view of (5.23)1 and (5.15b), {Un,p}n and {(Un,p)t }n are bounded in L∞(Q). It follows
from (5.23)2 and (5.24) that {(Un,p)x }n is bounded in L1(Q) and uniformly integrable.
Hence {Un,p}n is uniformly equicontinuous and, possibly up to a subsequence, there exists
Up ∈ W 1,1(Q) with (Up)t ∈ L∞(Q) such that

Un,p → Up in C(Q) as n → ∞ . (5.25)

Moreover, by construction, Up(·, 0) = U0 in �, (Un,p)x = un,p → u p in L1(Q),

Up(x, t) = −
∫ t

0
H(u p(x, s)) ds +U0(x) , (Up)x (x, t) = u p(x, t) (5.26)

for a.e. (x, t) ∈ Q (see (5.23)–(5.24)), and, by (5.15b),

‖(Up)t‖L∞(Q) ≤ ‖H‖∞ . (5.27)

We claim that Up is a viscosity solution of problem (5.1) with m1 = ∞, m2 = −p, i.e.⎧⎪⎨
⎪⎩

(Up)t + H((Up)x ) = 0 in Q ,

(Up)x (a, t) = ∞, (Up)x (b, t) = −p if t ∈ (0, T ) ,

Up = U0 in � × {0} .

(N∞,p)

We only check conditions (3.18) and (5.3) (for (3.19) and (5.4) the proof is similar). IfUp−ϕ

has a strict localmaximumat (x, t) ∈ �×(0, T ), by (5.25) there exists {(xn, tn)} ⊆ �×(0, T )
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such that (xn, tn) → (x, t) and Un,p − ϕ has a local maximum at (xn, tn) ∈ � × (0, T ).
Since Un,p is a viscosity solution of problem (Nn,p),

ϕt (xn, tn) + H(ϕx (xn, tn)) ≤ 0 . (5.28)

If instead Up − ϕ assume a strict local maximum at (a, t), t ∈ (0, T ), we fix a sufficiently
small δ > 0. Then there exists {(xn, tn)} ⊆ [a, b) × (0, T ) such that: (i) (xn, tn) → (a, t) as
n → ∞, 0 < t − δ ≤ tn ≤ t + δ < T for all sufficiently large n; (ii) Un,p − ϕ achieves a
local maximum at (xn, tn); (iii) ϕx (x, t) < n for all (x, t) ∈ � × [t − δ, t + δ]. Since Un,p

is a viscosity solution of (Nn,p) and ϕx (xn, tn) < n, we obtain again (5.28). Letting n → ∞
in (5.28) we obtain the claim. Finally, if Up − ϕ achieves a local maximum at (b, t), with
t ∈ (0, T ), the proof is similar.

To conclude step (α1), we argue as above and let p → ∞ in problems (D∞,p) and (N∞,p).
More precisely, it can be easily checked that u p → u in L1(Q), where u ∈ C([0, T ]; L1(�))

is the unique entropy solution of problem (D) with m1 = ∞, m2 = −∞ and u0 = U ′
0 (see

the proof of [7, Theorem 6.3]), and Up → U in C(Q), where Up is the (unique) viscosity
solution of the corresponding (singular) Neumann problem (N ) with initial condition U0.
Clearly, by (5.26) and (5.27), it follows that the limiting functions u andU satisfy both (5.22)
and the estimate in (5.15b).
(α2) Let � = (a, b) with −∞ < a < b < ∞ and U0 ∈ W 1,1(�). Let {U0,k} ⊆ C∞(�),
U0,k → U0 in C(�) as k → ∞. Let Uk be the viscosity solution of problem (N ) with
m1 = ±∞, m2 = ±∞ and initial condition Uk(·, 0) = U0,k , given in step (α1). Moreover,
let u0,k := U ′

0,k , thus {u0,k} ⊆ BV (�), u0,k → U ′
0 in L1(�) as k → ∞. Let {uk} be the

sequence of entropy solutions to problem (D)with the same boundary conditionsm1 = ±∞,
m2 = ±∞ and initial data u0,k considered in step (α1).

Arguing as in the proof of [7, Theorem 6.3], it can be seen that uk → u in L1(Q) as
k → ∞, where u is the entropy solution of problem (D) with initial data u0 = U ′

0. On the
other hand, by [8, Theorem 3.1] there holds

max
Q

|Uk −Uh | ≤ max
�

|U0,k −U0,h | for all k, h ∈ N .

Hence {Uk} is a Cauchy sequence in C(Q) and there existsU ∈ C(Q) such thatUk → U
in C(Q). Arguing as in step (α1) we conclude that U is a viscosity solution of problem (N )

with initial condition U0.
Finally we observe that (5.22) and (5.15b) are satisfied by uk , Uk and U0,k for all k ∈ N,

and so, letting k → ∞, also by u and U . In particular, there holds U ∈ W 1,1(Q). This
completes the proof of Proposition 5.3 if � is bounded.
(α3) If � is unbounded, we only the consider the case � = (a,∞), a ∈ R (the other cases
are similar). Let � j := (a, b j ), b j ≤ b j+1 for every j ∈ N, b j → ∞ as j → ∞. Let
U0 ∈ C(�), U0, j ∈ C(� j ), suppU0, j = � j , and let U0, j → U0 uniformly on compact
subsets of [a,∞). Let Uj be the viscosity solution of (N ) in Q j := � j × (0, T ) with
initial condition Uj (·, 0) = U0, j in � j , with the given boundary condition m1 = ±∞ at
{a} × (0, T ) and arbitrary boundary condition m2 = ±∞ at {b j } × (0, T ). For every b > a
set K := [a, b] × [0, T ], and let j0 ∈ N be fixed such that b j > b+ ‖H ′‖∞T for all j ≥ j0.
Applying [8, inequality (3.10) in Theorem 3.1] we obtain, for every i, j ≥ j0,

max
K

|Uj −Ui | ≤ max
[a,b+‖H ′‖∞T ]

|U0, j −U0,i | .

By the above inequality {Uj } is a Cauchy sequence, thus a converging sequence in C(K ).
Then from the arbitrariness of K , by diagonal and separability arguments, there exists a
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subsequence of {Uj } (not relabelled) and U ∈ C(Q) such that Uj → U uniformly on the
compact subsets of Q. Arguing as in step (α1) it is shown that U is a viscosity solution of
problem (N+) with initial data U0.

Similarly, let u ∈ C([0, T ]; L1(�)) be the unique entropy solution of problem (D)+
with the same m1 as in (N )+ and initial data u0 = U ′

0 ∈ L1
loc(�). Let u0, j = U ′

0, j , thus

u0, j → U ′
0 in L1

loc(�) as j → ∞. Let u j be the entropy solution of⎧⎪⎨
⎪⎩
ut + [H(u)]x = 0 in (a, b j ) × (0, T )

u(a, t) = m1, u(b j , t) = m2 if t ∈ (0, T )

u = u0, j in (a, b j ) × {0}
with m1 = ±∞ given and m2 = ±∞ fixed as above. Then (up to subsequences) u j → u in
L∞(0, T ; L1(�̃)) for all open intervals �̃ ⊂⊂ � (see the proof of [7, Theorem 6.3]). Since
�̃ is bounded, it follows from step (α2) that for all j large enough there holds

Uj (x, t) = −
∫ t

0
H(u j (x, s)) ds +U0, j (x) , (Uj )x (x, t) = u j (x, t)

for a.e. (x, t) ∈ �̃ × (0, T )), and ‖(Uj )t‖L∞(Q) ≤ ‖H‖∞. Then letting j → ∞, it is easily
seen that U ∈ W 1,1

loc (Q) and equality (5.22) follows. ��
When (H2)-(H3) hold, we set I j = (x j−1, x j ) for j = 2, . . . , p, I1 = (a, x1), Ip+1 =

(xp, b), Q j = I j × (0, T ) ( j = 1, . . . , p + 1). We denote by (Dj ) problem (D) stated in
Q j with initial data u0, j = u0�I j ∈ L1(I j ), and by (N j ) problem (N ) stated in Q j with
initial data U0, j = U0�I j ∈ C(I j ). The proof of the following result can be found in [7,
Proposition 5.8].

Proposition 5.4 Let (H1)-(H3) hold.
(i) For every j = 2, . . . , p + 1, let u j be the entropy solution of (Dj ) with m1 = ±∞. Then
there exists f ±

x+
j−1

∈ L∞(0, T ) such that for any β ∈ Cc(0, T )

ess lim
x→x+

j−1

∫ T

0
H(u j (x, t)) β(t) dt =

∫ T

0
f ±
x+
j−1

(t) β(t) dt . (5.29)

(ii) For every j = 1, . . . , p let u j be the entropy solution of (Dj ) with m2 = ±∞. Then
there exists f ±

x−
j

∈ L∞(0, T ) such that for any β ∈ Cc(0, T )

ess lim
x→x−

j

∫ T

0
H(u j (x, t)) β(t) dt =

∫ T

0
f ±
x−
j
(t) β(t) dt . (5.30)

Moreover, for a.e. t ∈ (0, T ) there holds

lim sup
u→∞

H(u) ≤ f +
x+
j−1

(t) ≤ sup
u∈R

H(u), (5.31a)

inf
u∈R H(u) ≤ f −

x+
j−1

(t) ≤ lim inf
u→−∞ H(u), (5.31b)

inf
u∈R H(u) ≤ f +

x−
j
(t) ≤ lim inf

u→∞ H(u), (5.31c)

lim sup
u→−∞

H(u) ≤ f −
x−
j
(t) ≤ sup

u∈R
H(u). (5.31d)
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Remark 5.2 By standard density arguments, from (5.29)–(5.30) we get

ess lim
x→x+

j−1

∫ T

0
H(u j (x, t))ζ(x, t) dt =

∫ T

0
f ±
x+
j−1

(t)ζ(x j−1, t) dt (5.32)

for all ζ ∈ C1([0, T ];C1
c ([x j−1, x j )), ζ(·, 0) = ζ(·, T ) = 0 in I j , and

ess lim
x→x+

j

∫ T

0
H(u j (x, t))ζ(x, t) dt =

∫ T

0
f ±
x−
j
(t)ζ(x j , t) dt (5.33)

for all ζ ∈ C1([0, T ];C1
c ((x j−1, x j ]), ζ(·, 0) = ζ(·, T ) = 0 in I j .

The following result is an easy consequence of Propositions 5.3–5.4.

Lemma 5.5 Let (H1)-(H3) hold.
(i) Let j = 2, . . . , p + 1, let U j be the viscosity solution of (N j ) with m1 = ±∞ (and
m2 = ±∞ if j = 2, . . . , p) and initial condition U j (·, 0) = U0, j . Let u j be the entropy
solution of problem (Dj ) with the same boundary conditions and initial data u0, j = U ′

0, j .

Let f ±
x+
j−1

∈ L∞(0, T ) be given by Proposition 5.4. Then

U j (x j−1, t) = −
∫ t

0
f ±
x+
j−1

(s) ds +U0, j (x j−1) for all t ∈ (0, T ]. (5.34)

(ii) Let j = 1, . . . , p, let U j be the viscosity solution of (N j )with m2 = ±∞ (andm1 = ±∞
if j = 2, . . . , p) and initial condition U j (·, 0) = U0, j . Let u j be the entropy solution
of problem (Dj ) with the same boundary conditions and initial data u0, j = U ′

0, j . Let

f ±
x−
j

∈ L∞(0, T ) be given by Proposition 5.4. Then

U j (x j , t) = −
∫ t

0
f ±
x−
j
(s) ds +U0, j (x j ) for all t ∈ (0, T ]. (5.35)

Proof We only prove (i) with m1 = ∞. Since U0, j ∈ C(I j ) and u0, j ∈ L1(I j ), (5.34)
follows from Proposition 5.3, (5.29) and the essential limit x → x+

j−1 in (see (5.22))

Uj (x, t) = −
∫ t

0
H(u j (x, s)) ds +U0, j (x) for a.e. x ∈ (x j−1, x j ).

��
Proof of Theorem 4.1 We rewrite (H2) as follows:

u0s =
p+∑
j=1

c+
j δx ′

j
−

p−∑
j=1

c−
j δx ′′

j
(c±

j ≡ [c j ]± > 0, p+ + p− = p) .

Since u0 = U ′
0, by (H3) there holds (see (1.3))

c j = J0(x j ) := U0(x
+
j ) −U0(x

−
j ) = U0, j+1(x j ) −U0, j (x j ) ( j = 1, . . . , p) .

For every j = 1, . . . , p such that c j = J0(x j ) > 0 set

C+
j (t) :=

[
c j −

∫ t

0

(
f +
x+
j
(s) − f +

x−
j
(s)

)
ds

]
+ (t ∈ [0, T ]) , (5.36)
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with f +
x+
j
satisfying (5.29) and f +

x−
j
satisfying (5.30); observe that by (5.31a) and (5.31c)

f +
x+
j
(s) − f +

x−
j
(s) ≥ 0 for a.e. s ∈ (0, T ) . (5.37)

Similarly, for every j = 1, . . . , p such that c j = J0(x j ) < 0 set

C−
j (t) :=

[
c j −

∫ t

0

(
f −
x+
j
(s) − f −

x−
j
(s)

)
ds

]
− (t ∈ [0, T ]) , (5.38)

with f −
x+
j
satisfying (5.29) and f −

x−
j
satisfying (5.30); observe that by (5.31b) and (5.31d)

f −
x+
j
(s) − f −

x−
j
(s) ≤ 0 for a.e. s ∈ (0, T ) . (5.39)

Moreover, by Proposition 5.3 and (5.34)–(5.35) there holds

C±
j (t) = [

Uj+1(x j , t) −Uj (x j , t)
]
± (t ∈ [0, T ]) . (5.40)

Let j = 1, . . . , p and set

τ1 := min {t̄1, . . . , t̄ p} , where t̄ j := sup{t ∈ [0, T ] |C±
j (t) > 0}. (5.41)

Then τ1 > 0, since t̄ j > 0 and C±
j (0) = c±

j > 0. By (5.37)–(5.39) C±
j is nonincreasing in

(0, T ), whence C±
j > 0 in [0, t̄ j ) and, if t̄ j < T , there holds C±

j = 0 in [t̄ j , T ].
Set Qτ1 := � × (0, τ1), Q j,τ1 := I j × (0, τ1). Arguing as in the proof of Theorem 3.2

(see [7, Theorem 3.5]) shows that the unique entropy solution u ∈ C([0, τ1]; M(�)) of
problem (D) in Qτ1 has the following features:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

in Q1,τ1ur is the entropy solution of (D1)with m2 = ±∞ if c1 ≷ 0 ;
in Q j,τ1( j = 2, . . . , p)ur is the entropy solution of (Dj ) :
- with m1 = m2 = ∞ if min{c j−1, c j } > 0,

- with m1 = m2 = −∞ if max{c j−1, c j } < 0,

- with m1 = ∞,m2 = −∞ if c j−1 > 0 > c j ,

- with m1 = −∞,m2 = ∞ if c j−1 < 0 < c j ;
in Qp+1,τ1ur is the entropy solution of (Dp+1) with m1 = ±∞ if cp ≷ 0 ;

us(·, t) =
r∑
j=1

C+
j (t)δx ′

j
−

s∑
j=1

C−
j (t)δx ′′

j
=

p∑
j=1

[
Uj+1(x j , t) −Uj (x j , t)

]
δx j (5.42)

(see (5.40)). Similarly, by the proof of [8, Theorem 3.4] (see also [8, Lemma 5.2]), the
unique viscosity solution U of problem (N ) in Qτ1 with the same boundary conditions has
the following features:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

in Q1,τ1U is the viscosity solution of (N1) with m2 = ±∞ if J0(x1) ≷ 0 ;
in Q j,τ1( j = 2, . . . , p)U is the viscosity solution of (Dj ) :
- withm1 = m2 = ∞ if min{J0(x j−1), J0(x j )} > 0,

- with m1 = m2 = −∞ if max{J0(x j−1), J0(x j )} < 0,

- with m1 = ∞,m2 = −∞ if J0(x j−1) > 0 > J0(x j ),

- with m1 = −∞,m2 = ∞ if J0(x j−1) < 0 < J0(x j );
in Qp+1,τ1U is the viscosity solution of (Dp+1) with m1 = ±∞ if J0(xp) ≷ 0 .
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Then, by Proposition 5.3 and (5.42),

– Equality (1.4) holds a.e. in � for any t ∈ [0, τ1],
– The second equality in (1.5) holds for any t ∈ [0, τ1].

Let ρ ∈ C1
c (�) and t ∈ (0, τ1). Since∫

�

U (x, t)ρ′(x) dx = −
∫ t

0

∫
�

H(ur (x, s))ρ
′(x) dxds − 〈u0, ρ〉�

(see (1.4)) and

〈u0 − u(t), ρ〉� = −
∫ t

0

∫
�

H(ur (x, s))ρ
′(x) dxds

(the above equality easily follows by a proper choice of the test function ζ in the weak
formulation (3.2)), we get

∫
�
U (x, t)ρ′(x) dx = −〈u(t), ρ〉�. Hence∫∫

Qτ1

U (x, t)ρ′(x)h(t) dxdt = −
∫ τ1

0
h(t) 〈u(t), ρ〉� dt = −〈u, hρ〉Qτ1

for all h ∈ C1
c ((0, τ1)), which implies that Ux = u in D′(Qτ1). If τ1 = T , the proof is com-

plete. Otherwise, we can repeat the above argument with a lesser number of discontinuities
(possibly zero). Hence the conclusion follows. ��

6 Comparison: Proof of Theorem 4.2

The proof of Theorem 4.2 relies on some preliminary definitions and results.

6.1 Sub- and Supersolutions of (D)with Regular Initial Data

We introduce the notions of sub and supersolutions of problem (D) if u0 is a summable
function. If� = (a, b) and−∞ < a < b < ∞, problem (D) stands for four different initial-
boundary value problems, which we denote by (D++), (D−−), (D−+) and (D+−) according to the
four choices m1 = m2 = ∞, m1 = m2 = −∞, m1 = ∞,m2 = −∞ and m1 = −∞,m2 =
∞.

Definition 6.1 Let −∞ < a < b < ∞, � = (a, b) and u0 ∈ L1(�), and let (H1) hold. Let
u ∈ C([0, T ]; L1(�)) satisfy

lim
t→0+

∫
�

[u(x, t) − u0(x)]+ dx = 0

and, for all k ∈ R and ζ ∈ C1
c (Q), ζ ≥ 0 in Q,∫∫

Q

{[u − k]+ζt + sgn+(u − k) [H(u) − H(k)]ζx
}
dxdt ≥ 0.

Then u is an entropy subsolution of:
(i) problem (D++);
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(ii) problem (D−−) if for all k ∈ R, β ∈ C1
c (0, T ), β ≥ 0,

ess lim
ξ→a+

∫ T

0
sgn +(u(ξ, t) − k)

[
H(u(ξ, t)) − H(k)

]
β(t) dt ≤ 0 , (6.1a)

ess lim
η→b−

∫ T

0
sgn +(u(η, t) − k)

[
H(u(η, t)) − H(k)

]
β(t) dt ≥ 0 ; (6.1b)

(iii) problem (D−+) if (6.1b) holds for all k ∈ R, β ∈ C1
c (0, T ), β ≥ 0;

(iv) problem (D+−) if (6.1a) holds for all k ∈ R, β ∈ C1
c (0, T ), β ≥ 0.

Definition 6.2 Let −∞ < a < b < ∞, � = (a, b) and u0 ∈ L1(�), and let (H1) hold. Let
u ∈ C([0, T ]; L1(�)) satisfy

lim
t→0+

∫
�

[u(x, t) − u0(x)]+ dx = 0

and, for all k ∈ R and ζ ∈ C1
c (Q), ζ ≥ 0 in Q,∫∫

Q

{[u − k]−ζt + sgn−(u − k) [H(u) − H(k)]ζx
}
dxdt ≥ 0.

Then u is an entropy supersolution of:
(i) problem (D−−);
(ii) problem (D++) if for all k ∈ R and β ∈ C1

c (0, T ), β ≥ 0,

ess lim
ξ→a+

∫ T

0
sgn −(u(ξ, t) − k)

[
H(u(ξ, t)) − H(k)

]
β(t) dt ≤ 0 , (6.2a)

ess lim
η→b−

∫ T

0
sgn −(u(η, t) − k)

[
H(u(η, t)) − H(k)

]
β(t) dt ≥ 0 ; (6.2b)

(iii) problem(D−+) if (6.2a) holds for all k ∈ R, β ∈ C1
c (0, T ), β ≥ 0;

(iv) problem (D+−) if (6.2b) holds for all k ∈ R, β ∈ C1
c (0, T ), β ≥ 0.

If u ∈ C([0, T ]; L1(�)) is both an entropy subsolution and supersolution of (D), it is an
entropy solution in the sense of Definition 3.3. In fact u satisfies the entropy inequalities and
it is also a weak solution (see [7, Remark 5]).

Similar definitions hold when � is a half-line and u0 ∈ L1
loc(�) (see [7]).

For problem (D) with locally L1-initial data the following comparison result holds (see
[7, Theorem 5.7]).

Theorem 6.1 Let (H1) hold and let u0 ∈ L1
loc(�). Let u, u ∈ C([0, T ]; L1

loc(�)) be an
entropy sub- and supersolution of (D) with the same boundary conditions. Then u ≤ u
a.e. in Q. In particular, there exists at most one entropy solution of (D).

6.2 Proof of theMain Result

We prove Theorem 4.2 for problem (D). The proofs for problems (D)± and (CL) are similar.

Proposition 6.2 Let (H1) hold. Let u0, v0 ∈ M(�) satisfy (H2), and let supp u
±
0s = supp v±

0s .
Let u, v ∈ C([0, T ];M(�)) be the entropy solutions of (D) with initial data u0, v0 which
satisfy the compatibility condition and given by Theorem 3.2. Let τ ∈ (0, T ] be so small that

supp u±
s (·, t) = supp v±

s (·, t) = supp u±
0 = supp v±

0 if 0 ≤ t < τ. (6.3)
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(i) If u0r ≤ v0r a.e. in �, then ur ≤ vr a.e. in Qτ = � × (0, τ ).
(ii) Let fx±

j
, gx±

j
∈ L∞(0, τ ) be the functions in Proposition 3.3, related to u and v, respec-

tively. If u0r ≤ v0r a.e. in I j ( j = 1, . . . , p + 1), then

fx+
j−1

≥ gx+
j−1

for j = 2, . . . , p + 1 , fx−
j

≤ gx−
j
for j = 1, . . . , p, a.e. in (0, τ ) . (6.4)

Proof (i) By the compatibility conditions (3.9), in each Q j,τ := I j × (0, τ ), with I j =
(x j−1, x j ) ( j = 1, . . . , p+1; x0 = a, xp+1 = b), ur , j := ur�Q j,τ (resp. vr , j := vr�Q j,τ )
is the unique entropy solution of (D)with initial data u0r , j := u0r�I j (resp. v0r , j := v0r�I j )
and m1 = ±∞,m2 = ±∞ according to the sign of the initial Dirac masses at x j−1 and
x j ( j = 2, . . . , p). Since, by (6.3), ur , j and vr , j satisfy the same boundary conditions and
u0r , j ≤ v0r , j a.e. in I j , the conclusion follows from Theorem 6.1.
(ii) First we prove that fx+

j−1
≥ gx+

j−1
a.e. in (0, τ ). Let ζ ∈ C1([0, τ ];C1

c ([x j−1, x j )),

ζ(·, 0) = ζ(·, τ ) = 0 in I j . Arguing as in the proof of [6, Lemma 4.4], we find that

∫∫
Q j,τ

{
(ur − k) ζt + [H(ur ) − H(k)]ζx

}
dxdt = −

∫ τ

0

[
fx+

j−1
(t) − H(k)

]
ζ(x j−1, t)dt .

(6.5)
Similarly, if ζ ≥ 0 in Q j,τ it follows from the entropy inequality that

∫∫
Q j,τ

{|ur − k| ζt + sgn (ur − k) [H(ur ) − H(k)] ζx } dxdt ≥

≥ −ess lim
x→x+

j−1

∫ τ

0
sgn (ur (x, t) − k) [H(ur (x, t)) − H(k)] ζ(x, t) dt . (6.6)

for all k ∈ R. Analogous inequalities hold for vr .
Since sgn (u) = 1+ 2 sgn −(u) and sgn (u) = −1+ 2 sgn +(u), summing (6.5) and (6.6)

it follows from Remark 5.2 that∫∫
Q j,τ

{ [ur − k]+ ζt + sgn +(ur − k)[H(ur ) − H(k)] ζx } dxdt ≥

≥ −1

2

(
ess lim

x→x+
j−1

∫ τ

0
sgn (ur (x, t) − k) [H(ur (x, t)) − H(k)] ζ(x, t) dt +

+
∫ τ

0

[
fx+

j−1
(t) − H(k)

]
ζ(x j−1, t) dt

)
=

= − ess lim
x→x+

j−1

∫ τ

0
sgn −(ur (x, t) − k) [H(ur (x, t)) − H(k)] ζ(x, t) dt −

−
∫ τ

0

[
fx+

j−1
(t) − H(k)

]
ζ(x j−1, t) dt . (6.7)

Similarly, using again that sgn (u) = −1 + 2sgn +(u), we obtain∫∫
Q j,τ

{ [ur − k]+ ζt + sgn +(ur − k)[H(ur ) − H(k)] ζx } dxdt

≥ − ess lim
x→x+

j−1

∫ τ

0
sgn +(ur (x, t) − k) [H(ur (x, t)) − H(k)] ζ(x, t) dt . (6.8)
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On the other hand, if we subtract (6.5) from (6.6), we get∫∫
Q j,τ

{ [ur − k]− ζt + sgn −(ur − k)[H(ur ) − H(k)] ζx } dxdt

≥ − ess lim
x→x+

j−1

∫ τ

0
sgn −(ur (x, t) − k) [H(ur (x, t)) − H(k)] ζ(x, t) dt , (6.9)

and ∫∫
Q j,τ

{ [ur − k]− ζt + sgn −(ur − k)[H(ur ) − H(k)] ζx } dxdt ≥

≥ − ess lim
x→x+

j−1

∫ τ

0
sgn +(ur (x, t) − k) [H(ur (x, t)) − H(k)] ζ(x, t) dt +

+
∫ τ

0

[
fx+

j−1
(t) − H(k)

]
ζ(x j−1, t) dt . (6.10)

Now let c j−1 > 0. From (6.7), (6.9) and the compatibility condition (3.9a) (with j − 1
instead of j) we get∫∫

Q j,τ

{ [ur − k]+ ζt + sgn +(ur − k)[H(ur ) − H(k)] ζx } dxdt

≥ −
∫ τ

0

[
fx+

j−1
(t) − H(k)

]
ζ(x j−1, t) dt , (6.11a)∫∫

Q j,τ

{ [ur − k]− ζt + sgn −(ur − k)[H(ur ) − H(k)] ζx } dxdt ≥ 0 . (6.11b)

Suppose instead that c j−1 < 0. Then from (6.8), (6.10) and the compatibility condition (3.9a)
(with j − 1 instead of j) we get∫∫

Q j,τ

{ [ur − k]+ ζt + sgn +(ur − k)[H(ur ) − H(k)] ζx } dxdt ≥ 0 , (6.12a)

∫∫
Q j,τ

{ [ur − k]− ζt + sgn −(ur − k)[H(ur ) − H(k)] ζx } dxdt

≥
∫ τ

0

[
fx+

j−1
(t) − H(k)

]
ζ(x j−1, t) dt . (6.12b)

Obviously, analogous inequalities hold for vr and gx+
j−1

.

Nowwe proceed as in the proof of [6, Theorem 3.2] using theKružkovmethod of doubling
variables. If c j−1 > 0 we use (6.11a) and the inequality for vr = vr (y, s) analogous to
(6.11b), namely∫∫

Q j,τ

{ [vr − l]− ξs + sgn −(vr − l)[H(vr ) − H(l)] ξy
}
dyds ≥ 0 (6.13)

with l ∈ R and ξ ∈ C1([0, τ ];C1
c ([x j−1, x j )), ξ(·, 0) = ξ(·, τ ) = 0 in I j , ξ ≥

0 in Q j,τ . Choose ψ = ψ(x, t, y, s), ψ ≥ 0 such that ψ(·, ·, y, s), ψ(x, t, ·, ·) ∈
C1([0, τ ];C1

c ([x j−1, x j )), and ψ(·, 0, ·, ·) = ψ(·, τ, ·, ·) = ψ(·, ·, ·, 0) = ψ(·, ·, ·, τ ) = 0

123



Journal of Dynamics and Differential Equations (2023) 35:455–491 483

in I j . Setting in (6.11a) k = vr (y, s), ζ = ψ(·, ·, y, s) we have
∫∫

Q j,τ

{
sgn +(ur (x, t) − vr (y, s))[H(ur (x, t)) − H(vr (y, s))]ψx (x, t, y, s)

+[ur (x, t) − vr (y, s)]+ ψt (x, t, y, s)
}
dxdt

≥ −
∫ τ

0

[
fx+

j−1
(t) − H(vr (y, s))

]
ψ(x j−1, t, y, s)dt ,

whereas from (6.13) with l = ur (x, t), ξ = ψ(x, t ·, ·), using the identities [u]− = [−u]+,
sgn −(−u) = −sgn +(u) we get

∫∫
Q j,τ

{
sgn +(ur (x, t) − vr (y, s))[H(ur (x, t)) − H(vr (y, s))]ψy(x, t, y, s)

+[ur (x, t) − vr (y, s)]+ ψs(x, t, y, s)
}
dyds ≥ 0 .

Now choose
ψ(x, t, y, s) = η

( x + y

2
,
t + s

2

)
ρε(x − y) ρε(t − s)

where η ∈ C1([0, τ ];C1
c ([x j−1, x j )), η ≥ 0, η(·, 0) = η(·, τ ) = 0 in I j , and ρε (ε > 0)

is a symmetric mollifier in R. Arguing as in the proof of [6, Theorem 3.2], from the above
inequalities we get

∫∫
Q j,τ

{
sgn +(ur (x, t) − vr (x, t))[H(ur (x, t)) − H(vr (x, t))] ηx

+[ur (x, t) − vr (x, t)]+ ηt
}
dxdt ≥ −1

2

∫ τ

0

[
fx+

j−1
(t) − gx+

j−1
(t))

]
η(x j−1, t)dt .

(6.14)

Recalling that if u0r , j+1 ≤ v0r , j+1 a.e. in I j then, by part (i), ur , j+1 ≤ vr , j+1 a.e. in Q j,τ ,
we obtain from (6.14) and the arbitrariness of η that fx+

j−1
≥ gx+

j−1
a.e. in (0, τ ).

If c j−1 < 0 we use (6.12a) and the inequality for vr = vr (y, s) analogous to (6.12b),

∫∫
Q j,τ

{ [vr − l]− ξs + sgn −(vr − l)[H(vr ) − H(l)] ξy
}
dyds

≥
∫ τ

0

[
gx+

j−1
(s) − H(l)

]
ξ(x j−1, s) ds (6.15)

with l ∈ R and ξ as above. Choosing in (6.12a) k = vr (y, s), ζ = ψ(·, ·, y, s) with ψ as
above gives

∫∫
Q j,τ

{
sgn +(ur (x, t) − vr (y, s))[H(ur (x, t)) − H(vr (y, s))]ψx (x, t, y, s)

+[ur (x, t) − vr (y, s)]+ ψt (x, t, y, s)
}
dxdt ≥ 0 .

123



484 Journal of Dynamics and Differential Equations (2023) 35:455–491

On the other hand, from (6.15) with l = ur (x, t), ξ = ψ(x, t ·, ·), using again the identities
[u]− = [−u]+, sgn −(−u) = −sgn +(u) we get∫∫

Q j,τ

{
sgn +(ur (x, t) − vr (y, s))[H(ur (x, t)) − H(vr (y, s))]ψy(x, t, y, s)

+[ur (x, t) − vr (y, s)]+ ψs(x, t, y, s)
}
dyds

≥
∫ τ

0

[
gx+

j−1
(s) − H(ur (x, t))

]
ψ(x j−1, t, y, s) ds .

Then arguing as in the proof of (6.14) we get inequality (6.14) for any η as above, whence
fx+

j−1
≥ gx+

j−1
a.e. in (0, τ ).

Concerning the inequalities fx−
j

≤ gx−
j

( j = 1, . . . , p) a.e. in (0, τ ), the proof relies on

the following counterpart of (6.5)–(6.6):∫∫
Q j,τ

{
(ur − k) ζt + [H(ur ) − H(k)] ζx

}
dxdt =

∫ τ

0

[
fx−

j
(t) − H(k)

]
ζ(x j , t) dt ,∫∫

Q j,τ

{|ur − k| ζt + sgn (ur − k) [H(ur ) − H(k)] ζx } dxdt

≥ ess lim
x→x−

j

∫ τ

0
sgn (ur (x, t) − k) [H(ur (x, t)) − H(k)] ζ(x, t) dt

where ζ ∈ C1([0, τ ];C1
c ((x j−1, x j ]), ζ ≥ 0, ζ(·, 0) = ζ(·, τ ) = 0 in I j , and on the

compatibility condition (3.9b). We leave the details to the reader. ��
Now we can prove Theorem 4.2.

Proof of Theorem 4.2 Let

τ = sup{t ∈ (0, T ); supp us(t) = supp u0s, supp vs(t) = supp v0s}.
Set

supp u0s ∪ supp v0s ≡ {y1, . . . , yr } with y1 < y2 < . . . < yr ,

u0s =
r∑

k=1

ĉkδyk , v0s =
r∑

k=1

d̂kδyk

with ĉk, d̂k ∈ R, at least one of ĉk, d̂k different from zero, ĉk ≤ d̂k ; observe that

ĉk d̂k �= 0 ⇔ yk ∈ supp u0s ∩ supp v0s (k = 1, . . . , r) .

Also set Ik = (yk−1, yk), with y0 = a, yr+1 = b, Qk,τ = Ik × (0, τ ), and u0r ,k = u0r�Ik ,
v0r ,k = v0r�Ik , ur ,k = ur�Qk,τ , vr ,k = vr�Qk,τ (k = 1, . . . , r + 1).

By assumption there holds u0r ≤ v0r a.e. in Ik for any k. We claim that

ur ≤ vr in Qk,τ for all k = 1, . . . , r + 1. (6.16)

Observe that at each point yk there holds either ĉk d̂k ≤ 0, or ĉk d̂k > 0. If ĉk d̂k =
u0s({yk}) v0s({yk}) ≤ 0, by (3.5) there holds us(·, t)({yk}) ≤ 0 ≤ vs(·, t)({yk}) for any
t ∈ (0, τ ), thus in this case

us(·, t)�{yk} ≤ vs(·, t)�{yk} for any t ∈ (0, τ ) . (6.17)
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On the other hand, if ĉk d̂k > 0, there holds either ĉk > 0, d̂k > 0, or ĉk < 0, d̂k < 0. By
Proposition 3.4, for any t ∈ (0, τ ) there holds

us(·, t)�{yk} = Ck(t)δyk , vs(·, t)�{yk} = Dk(t)δyk , (6.18)

whereCk are defined by (3.16), and Dk are the analogous quantities for vs . Assuming ur ≤ vr
in Qk,τ and arguing as in the proof of Proposition 6.2(i i), it is easily seen that inequalities
(6.4) hold (with x+

k instead of x+
j−1) for any t ∈ (0, τ ), whence in both cases ĉk, d̂k > 0 or

ĉk, d̂k < 0 we get
Ck(t) ≤ Dk(t) for all t ∈ [0, τ ) . (6.19)

From (6.18) and (6.19) we obtain (6.17) also in this case. Then by (6.16) and (6.17) there
holds u(·, t) ≤ v(·, t) in M(�) for any t ∈ [0, τ ].

If τ = T the proof is complete.Otherwise,we can repeat the above arguments in�×[τ, T ],
since we proved that u(·, τ ) ≤ v(·, τ ) in M(�). In a finite time of steps the conclusion
follows.

It remains to prove the claim (6.16). We only consider the case that k = 2, . . . , r , the
proof being simpler for k = 1 or r + 1. We distinguish the following cases:

(a) ĉk−1d̂k−1 > 0, ĉk d̂k > 0. In this case ur and vr are solutions of the same problem
(Dk) ≡ (D) in Qk,τ . Since by assumption there holds u0r ≤ v0r a.e. in Ik , (6.16)
follows from Proposition 6.2.

(b) ĉk−1d̂k−1 > 0, ĉk d̂k ≤ 0. We consider two subcases:

(b1) ĉk < 0, d̂k ≥ 0. In this case ur solves problem (D−±) in Qk,τ , depending on±ĉk−1 >

0. Since in both cases d̂k > 0 or d̂k = 0 it can be easily checked that vr is an entropy
supersolution of problem (D−±) in Qk,τ , depending on ±ĉk−1 > 0 (see Definition
6.2(i i) and (i i i)), hence (6.16) follows from Theorem 6.1.

(b2) ĉk ≤ 0, d̂k > 0. In this case vr solves problem (D+±) in Qk,τ , depending on±ĉk−1 >

0. In both cases ĉk < 0 or ĉk = 0, we get that ur is an entropy subsolution of problem
(D+±) in Qk,τ , depending on ±ĉk−1 > 0 (see Definition 6.1(i) and (iv)), and (6.16)
follows from Theorem 6.1.

(c) ĉk−1d̂k−1 ≤ 0, ĉk d̂k > 0. This case is analogous to (b); we omit the details.
(d) ĉk−1 < 0, d̂k−1 = 0, ĉk = 0, d̂k > 0. It is easily checked that ur is an entropy subsolution

and vr is an entropy supersolution of problem (D+−) in Qk,τ (see Definitions 6.1(iv)

and 6.2(iv)). Again (6.16) follows from Theorem 6.1.
(e) ĉk−1 = 0, d̂k−1 > 0, ĉk < 0, d̂k = 0. This case is analogous to (d).

��

7 Waiting Time for Global Solutions of (HJ) and (CL): Proofs

In this section we prove the results about the waiting times listed in Sect. 4.3. We observe
that Theorem 4.4 is an immediate consequence of (3.31).

Proof of Theorem 4.5 We only address the case that J0(x j ) > 0. As outlined in the Intro-
duction, until the waiting time τ j ∈ (0,+∞], the jump discontinuity at x j has a barrier
effect in the following sense: by [8, Lemma 5.2], U1 = U�((x j ,∞) × (0, τ j )) and
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U2 = U�((−∞, x j ) × (0, τ j )) are the viscosity solutions of the problems⎧⎪⎨
⎪⎩
U1t + H(U1x ) = 0 in (x j ,∞) × (0, τ j )

U1x = ∞ in {x j } × (0, τ j )

U1 = U0�(x j ,∞) in (x j ,∞) × {0}
(7.1)

and ⎧⎪⎨
⎪⎩
U2t + H(U2x ) = 0 in (−∞, x j ) × (0, τ j )

U2x = ∞ in {x j } × (0, τ j )

U1 = U0�(−∞, x j ) in (−∞, x j ) × {0}.
(7.2)

In view of assumption (H4)-(i), we consider the case that for all M > 0 there exists
kM > M such that H(kM ) > H+ (if H(kM ) < H+ the proof is similar). By (A1) we have
that |U0(x)| ≤ A j + B|x − x j |, where A j = A + B|x j |). We set, for all k > B such that
H(k) > H+,

v(x, t) := Ck + k(x − x j ) − H(k)t for (x, t) ∈ (x j ,∞) × (0, τ j ) ,

where Ck is chosen such that

v(x, 0) ≥ A j + B(x − x j ) ≥ (U0)
∗(x) for all x ≥ x j . (7.3)

By (3.21) and the envelope properties we have that (U0)
∗(x) = U∗(x, 0) ≥ U∗

1 (x, 0) for all
x ≥ x j , thus inequality (7.3) gives

v(x, 0) ≥ U∗
1 (x, 0) for all x ≥ x j . (7.4)

Since v is a viscosity supersolution of (7.1) (see [8, Definition 3.2]), by the comparison
principle in [8, Theorem 3.1] and (7.4) we get

(U1)
∗(x, t) ≤ v(x, t) for all (x, t) ∈ [x j ,∞) × [0, τ j ) . (7.5)

Next, observe that Theorem 3.5(a) ensures thatU∗
1 (x, t) = U (x, t) for all x > x j sufficiently

close to x j ; here, as in Remark 3.1, we have identified U with its continuous representative
Ũ j+1 in the rectangle Q j+1 = (x j , x j+1) × (0, τ j ). Therefore letting x → x+

j in (7.5) gives

U (x+
j , t) ≤ Ck − H(k)t for any t ∈ (0, τ j ) . (7.6)

For all t as above there also holds

U (x−
j , t) ≥ U0(x

−
j ) − H+t (7.7)

(see inequalities (5.21) in [8] for details). Then from (7.6)–(7.7) we obtain

(H(k) − H+)t ≤ U (x−
j , t) −U (x+

j , t)︸ ︷︷ ︸
<0 by (3.30)

+Ck −U0(x
−
j ) for any t ∈ (0, τ j ) .

Therefore, letting t → τ−
j , the claim follows from the estimate τ j ≤ Ck −U0(x

−
j )

H(k) − H+ . ��

Proof of Corollary 4.6 Wefirst prove (4.6). For every x ∈ R, setU0(x) = u0([0, x]), and letU
be the global viscosity solution of (H J )with initial datumU0. SinceU0 satisfies assumption
(H3), we can apply the correspondence between u and U stated in Theorem 4.1. Then (4.6)
follows from (4.2) and the identifications in (4.3)–(4.4).
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It remains to prove that the waiting time is finite if (A2) is satisfied. Observe thatU0(x) =
u0([0, x]) (x ∈ R) satisfies (H3) and (A1), as ‖u0s‖M(R) ≤ C (see (H2)) and u0r satisfies
(A2). Applying Theorem 4.5 to the global viscosity solution U of (H J ) with initial datum
U0, the desired results follow from (4.3)–(4.4). ��

It remains to prove Theorem 4.7, which immediately implies Corollary 4.8. In the proof
we distinguish the two different hypotheses, (H5) and (H6).

Proof of Theorem 4.7 the case of hypothesis (H5). We only address the case that c j > 0 and
(H5)-(i) is satisfied (when c j < 0 and (H5)-(i i) holds the proof is similar). Let {kn} be a
sequence diverging to ∞ such that

lim
n→∞

|H(kn) − H+|
Mkn

= lim sup
k→∞

|H(k) − H+|
Mk

≥ C+
0 > 0 . (7.8)

Since Mk = ‖H ′‖L∞(k,∞) → 0 as k → ∞, we have that

lim
n→∞ Mkn = 0 , (7.9)

whereas by assumption (H4)-(i), possibly up to a subsequence (not relabeled), there holds
either H(kn) > H+ or H(kn) < H+ for every n. Without loss of generality, we may assume
that H(kn) > H+ for all n.

Let supp u+
0s ≡ {x1, . . . , xq} (x1 < x2 < · · · < xq). Below we prove that the waiting

time tq associated to xq is finite. By a recursive argument, it follows that all Dirac masses of
u+
0s disappear in finite time.
By contradiction, suppose that tq = ∞. Let T > 0 be fixed arbitrarily. Arguing as

in the proof of Proposition 6.2(i i) (in particular, see (6.11a)), for every k > 0 and ζ ∈
C1([0, T ];C1

c ([xq ,∞)), ζ ≥ 0, ζ(·, T ) = 0, we get∫ T

0

∫ ∞

xq

{[uq − k]+ζt + sgn+(uq − k)[H(uq) − H(k)]ζx
}
dxdt ≥

≥ −
∫
R

[u0r − k]+ζ(x, 0) dx −
∫ T

0
[ fx+

q
− H(k)]ζ(xq , t) dt . (7.10)

Let γ > xq be arbitrarily fixed. For every k > 0 and p ∈ N large enough we set

βp(t) := χ[0,T−1/p](t) + p(T − t)χ(T−1/p,T ](t) (t ∈ (0, T ))

ζk,p(x, t) =

⎧⎪⎨
⎪⎩
1 if xq ≤ x ≤ γ + Mk(T − t) − 1

p ,

p
[
γ + Mk(T − t) − x

]
if γ + Mk(T − t) − 1

p < x < γ + Mk(T − t),
0 if x ≥ γ + Mk(T − t)

for (x, t) ∈ R × (0, T ). One easily sees that, by the definitions of Mk and ζk,p ,∫ T

0

∫ ∞

xq

{[uq − k]+∂tζk,p + sgn+(uq − k)[H(uq) − H(k)]∂xζk,p
}

︸ ︷︷ ︸
≤0

βp(t) dxdt ≤ 0.

Choosing ζ(x, t) = ζk,p(x, t)βp(t) in (7.10) and letting p → ∞, this implies that∫ T

0
[ fx+

q
(t) − H(k)] dt +

∫ γ+MkT

xq
[u0r − k]+ dx ≥

∫ γ

xq
[uq(x, T ) − k]+ dx ≥ 0 ,
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whence, by the second inequality in (3.14),∫ T

0

[
fx+

q
(t) − fx−

q
(t)

]
dt +

∫ γ+MkT

xq
[u0r − k]+ dx ≥

≥
∫ T

0

[
H(k) − fx−

q
(t)

]
dt ≥ [H(k) − H+] T . (7.11)

Since tq = ∞, it follows from (3.16)–(3.17) that∫ T

0

[
fx+

q
(t) − fx−

q
(t)

]
dt ≤ u+

0s({xq}) for all T > 0. (7.12)

Let {kn} be any sequence satisfying (7.8)–(7.9) and H(kn) > H+ for all n. From (7.11)–
(7.12) (written with k = kn), for every T > 0 and γ > xq we get

[H(kn) − H+]T ≤ u+
0s({xq}) +

∫ γ+Mkn T

xq
[u0r − kn]+ dx . (7.13)

Set Tn := 2u+
0s({xq})
C+
0 Mkn

. Then from (7.8) we obtain

lim
n→∞[H(kn) − H+]Tn = lim

n→∞
2u+

0s({xq})|H(kn) − H+|
C+
0 Mkn

≥ 2u+
0s({xq}) . (7.14)

Moreover, there holds

lim
n→∞

∫ γ+Mkn Tn

xq
[u0r − kn]+ dx = 0 , (7.15)

since γ + Mkn Tn = γ + 2u+
0s({xq})/C+

0 and u0r ∈ L1
loc(R). By (7.14)–(7.15), choosing

T = Tn in (7.13) and letting n → ∞ we obtain u+
0s({xq}) ≤ 0, a contradiction. ��

Proof of Theorem 4.7 the case of hypothesis (H6). Let (H6)-(i) be satisfied and

H(k) < H+ for k ≥ k (k > 0) (7.16)

(in case of (H6)-(i i) the proof is similar). Fix x j ∈ supp u+
0s and letw ∈ C([0,∞);M+(R))

be the global entropy solution of problem (CL) with initial data

w0 := max{u0r , k} + u+
0s ,

satisfying the compatibility conditions in suppw0s = supp u+
0s = {x1, . . . , xq}. By the

comparison principle (see Theorem4.2), it suffices to prove that thewaiting time t̃ j associated
to each x j ( j = 1, . . . , q) is finite.

Since w0r ≥ k a.e. in R and w0s ≥ 0 in M(R), it follows from (3.4), using a proper
sequence of test functions, that wr ≥ k a.e. in S. Hence w also is the global entropy solution
of the Cauchy problem {

wt + [H̃(w)]x = 0 in S = R × R
+

w = w0 in R × {0} ,

where H̃(w) := H
(
(w − k)+ + k

)
, satisfying the compatibility conditions at every x j ∈

suppw0s = supp u+
0s . By the definition of H̃ and assumption (7.16), there holds

lim
u→∞ H̃(u) = sup

u∈R
H̃(u) = H+ . (7.17)
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For every j = 1, . . . , q let hx±
j

∈ L∞
loc(0,∞) be the functions relative to w given by

Proposition 3.3. Then by (3.12) and (7.17) we get

hx+
j
(t) = H+ for a.e. t ∈ (0, t j ). (7.18)

By contradiction, let t̃ j = ∞. Then by (3.16) and (7.18) we get∫ ∞

0
[H+ − hx−

j
(t)] dt ≤ c j . (7.19)

Fix any γ < x j such that u+
0s�I = 0, where I ≡ (γ, x j ). Consider the singular Cauchy-

Dirichlet problem ⎧⎪⎨
⎪⎩

vt + [H̃(v)]x = 0 in I × (0,∞)

v = ∞ in {γ, x j } × (0,∞)

v = w0r in I × {0} .

(7.20)

By Definition 6.1(i) the restriction w�(I × (0,∞)) is a subsolution of (7.20), whereas by
Theorem 3.2(i) there exists a unique global entropy solution v ∈ C([0,∞); L1(I )), v ≥ 0
of (7.20). Then by Theorem 6.1 we get

w ≤ v a.e. in I × (0,∞) . (7.21)

Let gx−
j
, gγ + ∈ L∞

loc(0,∞) be the functions relative to v given by Proposition 5.4. Arguing

as for (7.18), from (5.31a) we get

gγ +(t) = H+ ≥ gx−
j
(t) for a.e. t > 0 . (7.22)

On the other hand, in view of (7.21), arguing as in the proof of Proposition 6.2(i i) gives

hx−
j
(t) ≤ gx−

j
(t) for a.e. t > 0 ,

whence by inequality (7.19) ∫ ∞

0
[H+ − gx−

j
(t)] dt ≤ c j . (7.23)

Fix any T > 0. From the weak formulation (3.2), by a standard argument we get∫
I
v(x, T )ρ(x) dx =

∫
I
w0r (x)ρ(x) dx +

∫∫
I×(0,T )

H̃(v(x, t))ρ′(x) dxdt (7.24)

for every ρ ∈ C1
c (I ). By a proper choice of ρ = ρn → χI as n → ∞, we get

‖v(·, T )‖L1(I ) =
∫
I
w0r (x) dx +

∫ T

0
[H+ − gx−

j
(t)] dt ≤ ‖w0r‖L1(I ) + c j =: D0 ; (7.25)

here we used inequalities (7.22)–(7.23) and the fact that for all β ∈ Cc(0,∞) (see (5.29)–
(5.30)) there holds

lim
x→x−

j

∫ ∞

0
H̃(v(x, t))β(t) dt =

∫ ∞

0
gx−

j
(t)β(t) dt ,

lim
x→γ +

∫ ∞

0
H̃(v(x, t))β(t) dt =

∫ ∞

0
gγ +(t)β(t) dt .
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Similarly, for a.e. y ∈ (γ, x j ), a suitable choice of ρ = ρn → χ(γ,y) in (7.24) implies∫ y

γ

v(x, T ) dx =
∫ y

γ

w0r (x) dx +
∫ T

0

[
H+ − H̃(v(y, t))

]
dt ,

whence, by integration with respect to y and (7.25),∫ T

0

(∫
I

[
H+ − H̃(v(y, t))

]
dy

)
dt ≤

∫
I

(∫ y

γ

v(x, T ) dx

)
dy ≤ D0 |I | .

By (7.17), this implies that∫ T

0
‖H̃(v(·, t)) − H+‖L1(I ) dt ≤ D0 |I | .

By the arbitrariness of T , there exists a sequence Tk → ∞ such that

‖H̃(v(·, Tk)) − H+‖L1(I ) → 0 ,

whence (possibly up to a subsequence, not relabeled)

H̃(v(x, Tk)) → H+ for a.e. x ∈ I .

In view of (7.17), this implies that

v(x, Tk) → ∞ for a.e. x ∈ I ,

whence ‖v(·, Tk)‖L1(I ) → ∞. However, this contradicts estimate (7.25). ��
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