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We present the first calculation of the Mellin moments of the transverse quark spin densities in the
nucleon using lattice QCD simulations with physical values of the pion mass and in the continuum limit.
Specifically, we use three Nf ¼ 2þ 1þ 1 twisted mass fermion gauge ensembles each at different lattice
spacings. The densities are extracted from the unpolarized and transversity generalized form factors. The
first moment of transversely polarized quarks in an unpolarized nucleon shows an interesting distortion,
which can be traced back to the sharp falloff of the transversity generalized form factor B̄Tn0ðQ2Þ. The
isovector tensor anomalous magnetic moment is determined to be κT ¼ 1.051ð94Þ, which confirms a
negative and large Boer-Mulders function, h⊥1 , in the nucleon.
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I. INTRODUCTION

Understanding the spin content of the nucleon from its
fundamental constituents, the quarks, and the gluons is a
key milestone of nuclear and particle physics. While
significant progress has been made in recent years revealing
the longitudinal spin structure of the nucleon [1–3], the
transverse spin structure remains less known from phenom-
enology [4–6]. In fact, one of the major goals of the
electron-ion collider (EIC) [7], a key experimental facility
for nuclear physics being built at Brookhaven, will be to
improve the measurements of such quantities. Therefore, an
ab initio calculation of the transverse spin of the nucleon
provides essential information for the EIC physics, as well

as input for other planned experiments, such as the SoLID
experiment at Jefferson Laboratory that will measure the
transverse momentum structure of the nucleon [8,9]. In
addition, evaluating quantities like the tensor charge may
reveal physics beyond the Standard Model (SM).
In this paper, we use lattice QCD simulations to study the

transverse spin properties of the nucleon. The novelty of
this work is composed of the following:

(i) Avoiding the need of chiral extrapolations that for
the nucleon sector can introduce uncontrolled sys-
tematic errors by using simulations generated with
physical mass values for two mass-degenerate light,
strange, and charm quarks, referred to as Nf ¼
2þ 1þ 1 physical point ensembles;

(ii) Development of innovative algorithms for the Mar-
kov Chain Monte Carlo [10] without which the
simulations of such ensembles would not have been
possible, as well as for the analysis of the gauge
configurations [11]. An example is the multigrid
solver adapted for the twisted mass fermion discre-
tization scheme used in this work [12,13] that
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drastically improves both the simulations and the
analysis;

(iii) The current work is the first to use three physical
point ensembles of Wilson-type fermions to take the
continuum limit for these quantities;

(iv) A detailed analysis to eliminate the contribution of
excited states to the nucleon matrix elements is
performed. This is very important, especially when
analyzing physical point ensembles. We use a large
number of statistics to keep the statistical errors
constant as we search for convergence to the ground
state matrix element; and

(v) Subtraction of lattice artifacts from the required
renormalization constants, to all orders in the lattice
spacing and to one loop in perturbation theory.

We consider the first two Mellin moments of the three-
dimensional (3D) probability densities ρðx; b⃗⊥; s⃗⊥; S⃗⊥Þ,
where x is the longitudinal momentum fraction, s⃗⊥ the

transverse quark spin, b⃗⊥ the transverse vector from the
center of momentum of the nucleon, and S⃗⊥ the transverse
spin of the nucleon. As discussed in Ref. [14], to access the
transverse spin densities one needs to compute the twist-two
matrix elements of the chiral-even unpolarized and chiral-
odd transversity generalized parton distributions (GPDs).
The probability density [14] is given as

ρðx; b⃗⊥; s⃗⊥; S⃗⊥Þ

¼ 1

2

�
Hðx; b2⊥Þ þ

b⃗j⊥ϵji
mN

ðS⃗i⊥E0ðx; b2⊥Þ þ s⃗i⊥Ē0
Tðx; b2⊥ÞÞ

þ s⃗i⊥S⃗
i⊥
�
HTðx; b2⊥Þ −

δb⊥H̃Tðx; b2⊥Þ
4m2

N

�

þ s⃗i⊥ð2b⃗i⊥b⃗j⊥ − δijb2⊥ÞS⃗j⊥
H̃00

Tðx; b2⊥Þ
m2

N

�
; ð1Þ

where mN is the nucleon mass, ϵij is the antisymmetric
tensor, and the derivatives are denoted as F0 ≡ ∂F

∂b2⊥
and

δb⊥F≡ 4 ∂

∂b2 ðb2⊥ ∂

∂b2ÞF. The GPDs, H, E, HT , ET , and H̃T

parametrize the generalized quark distributions of twist two
and are in general functions of the momentum transfer (x),
skewness (ξ), and squared momentum transfer (Q2) [15].
For the probability density of Eq. (1), the GPDs are needed
in impact parameter space at zero skewness (ξ ¼ 0)
obtained via

Hðx; b2⊥Þ ¼
Z

d2Δ2⊥
ð2πÞ2 e

ib⃗⊥Δ⃗⊥Hðx; ξ ¼ 0; Q2Þ; ð2Þ

with Δ⃗⊥ the transverse momentum transfer and −Q2 ≡ Δ2.
Equation (2) for H generalizes to the other GPDs, and the
GPD ĒT in Eq. (1) is defined as ĒT ¼ ET þ 2H̃T .

The moments are then computed as an integral over the
momentum fraction as

hxn−1iρðb⃗⊥; s⃗⊥; S⃗⊥Þ≡
Z

1

−1
dx xn−1ρðx; b⃗⊥; s⃗⊥; S⃗⊥Þ; ð3Þ

where n is a positive nonzero integer corresponding to the
nth moment. The GPDs reduce to the generalized form
factors (GFFs) if integrated over x. For the unpolarized
case, we have

An0 ¼
Z

dx xn−1H;

Bn0 ¼
Z

dx xn−1E;

Ãn0 ¼
Z

dx xn−1H̃; ð4Þ

and analogously, for the tensor GFFs,

ATn0 ¼
Z

dx xn−1HT;

BTn0 ¼
Z

dx xn−1ET;

ÃTn0 ¼
Z

dx xn−1H̃T: ð5Þ

In this work, we are interested in GFFs that parametrize
off-forward nucleon matrix elements of local vector and
tensor quark operators, defined as

Oμ
V ¼ q̄ðxÞγμqðxÞ; Oμν

V ¼ q̄ðxÞγfμiD↔ νgqðxÞ; ð6Þ

Oμν
T ¼ q̄ðxÞσμνqðxÞ; Oμνρ

T ¼ q̄ðxÞσ½μfν�iD↔ ρgqðxÞ; ð7Þ

where D
↔

is the symmetrized covariant derivative,
f� � �g denotes symmetrization and subtraction of the
trace, and ½� � �� antisymmetrization of the enclosed indices.
In what follows, we restrict ourselves to the flavor nonsinglet
isovector combination, i.e.,Oμ

V ¼ ūðxÞγμuðxÞ − d̄ðxÞγμdðxÞ
for the local vector current and, similarly, for the other
three currents defined in Eqs. (6) and (7), where u and d are
up- and down-quark fermion fields, respectively.

II. NUCLEON MATRIX ELEMENTS

The relevant quantities entering in the definition of the
moments of the transverse densities are the two lowest
Mellin moments of the vector and tensor operators given in
Eqs. (6) and (7). The nucleon matrix elements of these
operators are expanded in terms of GFFs as given below [15]
converted to Euclidean space:
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(a) The vector operatorOμ
V that yields the electromagnetic

Pauli and Dirac form factors

hNðp0; s0ÞjOμ
V jNðp; sÞi ¼ ūNðp0; s0Þ

�
γμF1ðQ2Þ

−
iσμνQν

2mN
F2ðQ2Þ

�
uNðp; sÞ;

ð8Þ
where in the notation of the previous section, A10 ≡ F1

and B10 ≡ F2.
(b) The tensor operator Oμν

T , yielding the first Mellin
moments of the tensor GFFs

hNðp0; s0ÞjOμν
T jNðp; sÞi

¼ ūNðp0; s0Þ
�
σμν AT10ðQ2Þ þ i

γ½μΔν�

2mN
BT10ðQ2Þ

þ P̄½μΔν�

m2
N

ÃT10ðQ2Þ
�
uNðp; sÞ; ð9Þ

with P̄μ ¼ p0μþpμ

2
. In the forward limit, AT10ð0Þ gives

the tensor charge gT which wewill denote with gu−dT for
the isovector case considered here. The combination
B̄T10ðQ2Þ≡ BT10ðQ2Þ þ 2ÃT10ðQ2Þ is also quoted in-
stead of BT10ðQ2Þ, with B̄T10ð0Þ≡ κT the anomalous
tensor magnetic moment which is related to the Boer-
Mulders function h⊥ ∼ −κT .

(c) The vector one-derivative operator Oμν
V , yielding the

second Mellin moments of the unpolarized GFFs

hNðp0; s0ÞjOμν
V jNðp; sÞi

¼ ūNðp0; s0Þ
�
A20ðQ2ÞγfμP̄νg þB20ðQ2Þ iσ

fμαqαP̄νg

2mN

þC20ðQ2Þq
fμqνg

mN

�
uNðp;sÞ: ð10Þ

In the forward limit, A20ð0Þ gives the quark momen-
tum fraction, and specifically hxiu−d in the isovector
case. The nucleon spin contributed by the quarks is
J ¼ 1

2
½A20ð0Þ þ B20ð0Þ� in general, and we will use

Ju−d to refer to the isovector case, i.e., the isovector
quark contribution to the nucleon spin.

(d) The tensor one-derivative operator Oμνρ
T , yielding the

tensor GFFs

hNðp0;s0ÞjOμνρ
T jNðp;sÞi

¼uNðp0;s0Þ
�
iσμνP̄ρAT20ðQ2Þþγ½μΔν�

2mN
P̄ρBT20ðQ2Þ

þ i
P̄½μΔν�

m2
N

P̄ρÃT20ðQ2Þþγ½μP̄ν�

mN
ΔρB̃T21ðQ2Þ

�
uNðp;sÞ;

ð11Þ

with the transversity moment given by AT20ð0Þ that for
the isovector case yields hxiδu−δd. As in the local
tensor case, the combination B̄T20 ≡ BT20 þ 2ÃT20
may be used instead of BT20.

The decomposition of the matrix elements for the
unpolarized and polarized projectors is given in the
Appendix.

III. LATTICE METHODOLOGY

A. Gauge ensembles

We employ the twisted-mass fermion discretization
scheme [16,17], which provides automatic OðaÞ improve-
ment [18]. The bare light quark mass is tuned to reproduce
the isosymmetric pion mass mπ ¼ 0.135 MeV [10,19],
while the heavy quark masses are tuned with inputs given
by the physical kaon and D-meson masses as well as the
D-meson decay constant, following the procedure of
Refs. [10,19]. The action also includes a clover term that
reduces isospin breaking effects. The parameters of the
ensembles analyzed in this work can be found in Table I.
The lattice spacing is determined from the nucleon mass,
as discussed in Ref. [20].

B. Correlation functions

To evaluate the nucleon matrix elements of the operators
in Eqs. (6) and (7), we compute three- and two-point
correlation functions. The three-point functions are given by

CμνðΓ; q⃗; p⃗0; ts; tins; t0Þ ¼
X
x⃗ins;x⃗s

eiðx⃗ins−x⃗0Þ·q⃗e−iðx⃗s−x⃗0Þ·p⃗0

×Tr½ΓhJNðts; x⃗sÞ
×Oμν

H ðtins; x⃗insÞJ̄Nðt0; x⃗0Þi�; ð12Þ

where q ¼ p0 − p is the momentum transfer andOμν
H is one

of the operators given in Eqs. (6) and (7) with the under-
standing that for the tensor operator there is an additional
index ρ, while for the electromagnetic current only one
index. The initial coordinate x0 is referred to as the source
position, xins as the insertion, and xs as the sink. Γ is a
projector acting on spin indices, and we will use either
the unpolarized Γ0 ¼ 1

2
ð1þ γ0Þ or the three polarized

TABLE I. Parameters for the Nf ¼ 2þ 1þ 1 ensembles used
in this work. In the first column we give the name of the
ensemble, in the second the lattice volume, in the third β ¼ 6=g2

with g the bare coupling constant, in the fourth the lattice spacing,
and in the fifth the value of mπL.

Ensemble V=a4 β a [fm] mπL

cB211.072.64 643 × 128 1.778 0.07975(32) 3.62
cC211.06.80 803 × 160 1.836 0.06860(20) 3.78
cD211.054.96 963 × 192 1.900 0.05686(27) 3.90
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Γk ¼ Γ0iγ5γk combinations and JN the standard nucleon
interpolating operator JNðxÞ ¼ ϵabcuaðxÞ½ub⊺ðxÞCγ5dcðxÞ�,
where u and d are up- and down-quark spinors and C ¼ γ0γ2
is the charge conjugation matrix.
To increase the overlap of the interpolating operator JN

with the proton state and decrease overlap with excited
states, we use Gaussian smeared quark fields [21,22]
given by

ψa
smearðt; x⃗Þ ¼

X
y⃗

Fabðx⃗; y⃗;UðtÞÞψbðt; y⃗Þ; ð13Þ

where F ¼ ð1þ αGHÞnG and Hðx⃗; y⃗;UðtÞÞ ¼P
3
i¼1½UiðxÞδx;y−{̂ þ U†

i ðx − {̂Þδx;yþ{̂� with APE smearing
[23] applied to the gauge fields Uμ entering the Gaussian
smearing hopping matrix H. The parameters used for
Gaussian and APE smearing for each ensemble are given
in Table II, tuned separately for each ensemble. Namely, we
tune the source root-mean-squared (rms) radius, defined as

hr2iψ ¼
P

r⃗
r⃗2ψ†

smearðr⃗;tÞψ smearðr⃗;tÞP
r⃗
ψ†
smearðr⃗;tÞψ smearðr⃗;tÞ

to be ∼ð0.5 fmÞ2, with the

precise values obtained listed in Table II.
The connected three-point functions are computed using

sequential propagators inverted through the sink, i.e., using
the so-called fixed-sink method. This requires new sequen-
tial inversions for each sink momentum, and we therefore
restrict to p⃗0 ¼ 0, meaning the source momentum p⃗ is
determined via momentum conservation by the momentum
transfer as p⃗ ¼ −q⃗. For the twisted-mass formulation
employed here, the disconnected quark loop contributions
are order a2 for finite a and vanish in the continuum
limit [16].

C. Analysis of excited states

Connected three-point functions are computed using
several time separations, ts, between the application of
the creation and annihilation nucleon interpolating oper-
ators, namely ts ∈ ½0.64; 1.6� fm for the cB211.072.64,
ts ∈ ½0.55; 1.51� fm for the cC211.06.80, and ts ∈
½0.46; 1.14� fm for the cD211.054.96 ensemble, as shown

in Table III. This broad range of separations is necessary for
a thorough investigation and elimination of excited state
contributions. At constant statistics, the noise-to-signal ratio
increases exponentially with ts and the increase is exacer-
bated at the physical point. We, thus, increase the number of
measurements with increasing ts in physical units by
increasing the number of source positions (nsrc), as shown

TABLE II. The number of Gaussian smearing iterations nG and
the Gaussian smearing parameter αG used for each ensemble. We
also provide the number of APE-smearing iterations nAPE and
parameter αAPE applied to the links that enter the Gaussian
smearing hopping matrix. The resulting source rms radius
obtained is given in the last column where the error is due to
the uncertainty in the lattice spacing.

Ensemble nG αG nAPE αAPE

ffiffiffiffiffiffiffiffiffiffiffi
hr2iψ

q
[fm]

cB211.072.64 125 0.2 50 0.5 0.461(2)
cC211.060.80 140 1.0 60 0.5 0.516(2)
cD211.054.96 200 1.0 60 0.5 0.502(3)

TABLE III. Statistics for computing the isovector matrix
elements for the cB211.072.64 (left table), the cC211.060.80
(middle table), and the cD211.054.96 (right table) ensemble. In
each table, we provide the sink-source separations used in lattice
(first column) and physical (second column) units and the number
of source positions per configuration (third column). For each
ensemble, the bottom row indicates the number of source
positions used for the two-point functions.

cB211.072.64

750 configurations

ts=a ts [fm] nsrc

8 0.64 1
10 0.80 2
12 0.96 4
14 1.12 6
16 1.28 16
18 1.44 48
20 1.60 64

Nucleon 2pt 264

cC211.060.80

400 configurations

ts=a ts [fm] nsrc

6 0.41 1
8 0.55 2
10 0.69 4
12 0.82 10
14 0.96 22
16 1.10 48
18 1.24 45
20 1.37 116
22 1.51 246

Nucleon 2pt 650

cD211.054.96

500 configurations

ts=a ts [fm] nsrc

8 0.46 1
10 0.57 2
12 0.68 4
14 0.80 8
16 0.91 16
18 1.03 32
20 1.14 64

Nucleon 2pt 368
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in Table III, to keep an approximately constant error for all
ts. Also we point out that for a given ts we increase statistics
as we decrease a. Indicatively, for ts ¼ 0.96 fm we use a
total of 750 × 4 ¼ 3; 000 and 400 × 22 ¼ 8; 800 measure-
ments for the cB211.072.64 and cC211.060.80 ensembles,
respectively, and for ts ¼ 1.03 fm 500 × 32 ¼ 16; 000
measurements for the cD211.054.96 ensemble. As regards
autocorrelations, in our setup and for the quantities con-
sidered, we observe no increase in autocorrelation for the
involved correlators when going from the coarsest to the
finest ensemble.
To obtain the desired ground state matrix element, we

take an appropriate ratio of three- to two-point functions as
done in our previous studies, e.g., in Refs. [24–26],

RμνðΓ; p⃗; ts; tinsÞ

¼ CμνðΓ; p⃗; ts; tinsÞ
CðΓ0; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΓ0; p⃗; ts − tinsÞCðΓ0; 0; tinsÞCðΓ0; 0; tsÞ
CðΓ0; 0; ts − tinsÞCðΓ0; p⃗; tinsÞCðΓ0; p⃗; tsÞ

s
; ð14Þ

where from now on ts and tins are taken to be relative to the
source t0, i.e., we assume t0 ¼ 0 without loss of generality,
and we drop the sink momentum (p⃗0) as an argument to the
three-point function since as mentioned in our setup we use
p⃗0 ¼ 0 throughout. The two-point functions appearing in
the ratio are given by

CðΓ0; p⃗; ts; t0Þ ¼
X
x⃗s

e−iðx⃗s−x⃗0Þ·p⃗

× Tr½Γ0hJNðts; x⃗sÞJ̄Nðt0; x⃗0Þi�: ð15Þ

In the limit of large time separations, ðts − tinsÞ ≫ a and
tins ≫ a, the lowest state dominates, and the ratio becomes
time independent:

RμνðΓ; p⃗; ts; tinsÞ ⟶
ts−tins≫a

tins≫a
ΠμνðΓ; p⃗Þ: ð16Þ

An essential step in any analysis of lattice QCD matrix
elements is to ensure that contributions from excited states
to the ground state matrix elements are sufficiently sup-
pressed. To this end we compare results from the following
three methods.

1. Plateau method

In this method we use the ratio in Eq. (14) in search of a
time-independent window (plateau) and extract a value by
fitting to a constant. We then seek convergence of the
extracted plateau value as we increase ts that then produces
the desired matrix element.

2. Two-state method

Within this method, we fit the two- and three-point
functions keeping terms up to the first excited state, as
detailed in Ref. [27]. Briefly, we use

CðΓ0; q⃗; tsÞ ¼ c0ðq⃗Þe−ENðq⃗Þts þ c1ðq⃗Þe−E�ðq⃗Þts ; ð17Þ

CμνðΓ; q⃗; ts; tinsÞ ¼ Aμν
00ðΓ; q⃗Þe−mNðts−tinsÞ−ENðq⃗Þtins

þ Aμν
01ðΓ; q⃗Þe−mNðts−tinsÞ−E�ðq⃗Þtins

þ Aμν
10ðΓ; q⃗Þe−m

�
Nðts−tinsÞ−ENðq⃗Þtins

þ Aμν
11ðΓ; q⃗Þe−m

�
Nðts−tinsÞ−E�ðq⃗Þtins ; ð18Þ

wheremN (m�
N) and ENðq⃗Þ (E�ðq⃗Þ) are the mass and energy

of the ground (first excited) state with momentum q⃗,
respectively. The ground state corresponds to a single
particle, so its energy at finite momentum is given by
the continuum dispersion relation, ENðq⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

N

p
,

where q⃗ ¼ 2π
L n⃗ with n⃗ a lattice vector with components

ni ∈ ð− L
2a ;

L
2a�. By modeling the ground and first excited

state explicitly, the leading correction to the two-state fit
method is expected to be due to the second excited state
energy.

3. Summation method

Summing over tins in the ratio of Eq. (14) yields a
geometric sum [28,29] from which we obtain

SμνðΓ; q⃗; tsÞ ¼
Xts−2a
tins¼2a

RμνðΓ; q⃗; ts; tinsÞ

¼ cþ ΠμνðΓ; q⃗Þts þOðe−m�
NtsÞ; ð19Þ

where the ground state contribution, ΠμνðΓ; q⃗Þ, is extracted
from the slope of a linear fit with respect to ts. The
advantage of the summation method compared with the
plateau method is that, despite the fact that it still assumes a
single state dominance, the excited states are suppressed
exponentially with respect to ts instead of ts − tins.
For all three methods, we carry out correlated fits to the

data, i.e., we compute the covariance matrix Cij between
jackknife samples.
We illustrate our analysis in Fig. 1 by considering the

extraction of gu−dT for the ensemble cC211.060.80 (see
Table I). As can be seen, from the first and second columns,
for gu−dT there are large excited state contributions that would
require ts > 2 fm to suppress in the ratio [30]. Including the
first excited state yields results that are consistent while
varying tlows , which indicate that contributions from the
second excited state are suppressed. Note that the approx-
imately constant two-state fit errors as we increase tlows are
due to the fact that we have higher statistics at large values of
ts, such that statistical errors in the ratio are approximately
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constant with increasing ts. The summation method, on the
other hand, shows slower convergence as compared with the
two-state fit, which indicates contributions from the first
excited state are not sufficiently suppressed at the smaller
values of tlows considered. A similar analysis is performed for
the second Mellin GFFs. As an example, we show hxiδu−δd
for ensemble cC211.060.80 in the lower panel of Fig. 1. As
can be seen, the ratio also shows sizeable excited-state
contamination. Including the first excited state in a two-state
fit leads to a ground state matrix element that is significantly
lower compared with the plateau method. For increasing tlows
the summation fit agrees with the two-state fit. The latter
yields consistent results for all tlows . Given the stability
observed when using the two-state fit for varying tlows , we
take this result as the best determination of the ground state
matrix element. This is done throughout our analysis of
the GFFs.
Unlike forward matrix elements, in general, the nucleon

matrix elements of the operators in Eqs. (6) and (7) yield
linear combinations of the GFFs in the nonforward limit
depending on the insertion operator quantum numbers, the
nucleon spin projection, and components of the momentum
transfer. As mentioned previously, the expressions for the
linear combinations of ΠμνðΓ; p⃗Þ, for the different oper-
ators, are given in the Appendix. We construct an over-
constrained system of equations that is inverted through a
singular value decomposition to obtain the individual
GFFs. For more details, see, e.g., Refs. [24,27,31].
The excited states’ analysis for finite momentum transfer

squared Q2 follows the same procedure as for Q2 ¼ 0. In
Fig. 2 we show examples of the relevant ratios for the
derivative operators for the case of the cC211.060.80
ensemble and for the first nonzero momentum, namely
for Q2 ¼ 0.05 GeV2.

IV. RENORMALIZATION FUNCTIONS

The isovector operators considered here are multiplica-
tively renormalized.We obtain the renormalization functions
(Z factors) nonperturbatively in the Rome-Southampton
method (RI0 scheme) [32], which is a mass-independent
regularization. Thus, to appropriately take the chiral limit
we use five ensembles of Nf ¼ 4 twisted mass quarks at
different values of the pion mass. These ensembles are
specifically generated for the renormalization program using
the same β value as the three ensembles considered. For the
calculation of the vertex functions we employ the momen-
tum source method introduced in Ref. [33] and employed in
Refs. [34–36] for twisted mass fermions. This method offers
high statistical accuracy using a small number of gauge
configurations. In the RI0 scheme, the vertex momentum, p,
is set equal to the renormalization scale μ0

ZOðμ0Þ ¼
Zqðμ0Þ

1
12
Tr½VOðpÞðΛtree

O ðpÞÞ−1�

����
p2¼μ2

0

; ð20Þ

where VO is the amputated vertex function of the operator
under study. We define the renormalization functions for
the quark field and quark operator as ψR ¼ Zq ψ

B and
OR

Γ ¼ ZO OB
Γ , respectively. Zq is given by matching the

propagator to its tree level value Λtree
q ðpÞ

Zqðμ0Þ ¼
1

12
Tr½S−1ðpÞΛtree

q ðpÞ�jp2¼μ2
0
: ð21Þ

We extract ZO at several values of the renormalization
scale, and each estimate is improved by subtracting finite
lattice artifacts [37], which are calculated in perturbation
theory. The chirally extrapolated values are then converted

FIG. 1. We show the analysis of the ratio from which we extract gu−dT ≡ AT10ð0Þ (upper) and hxiδu−δd ≡ AT20ð0Þ (lower) for the
cC211.060.80 ensemble. The left panels show the ratio versus the insertion time tins shifted by half the sink-source time ts=2. The middle
panels show the value of the central point of the ratio of Eq. (14), i.e., for tins ¼ ts=2. In the right panel, we show the values obtained
when we perform a two-state fit (black squares) and the summation method (green triangles), as we vary the lower fit range, tlows used in
the fits. The open symbol and horizontal gray band spanning the three panels show the value we take. The gray curved band in the
middle panels shows the two-state fit prediction for the ratio for tins ¼ ts=2 using the parameters determined by the open symbols.
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to the MS scheme at a scale of 2 GeV. For details on our
approach, see Refs. [34–36]. In Table IV we provide the
MS estimates for the local and one-derivative tensor
operators. Also, in Fig. 3 we show ZT in the MS scheme
as a function of the initial RI0 scale. We plot the purely
nonperturbative estimates, as well as the improved ones,
obtained by subtracting lattice artifacts computed in
perturbation theory.

V. RESULTS

A. Fits of the Q2-dependence of GFFs

To fit the Q2-dependence of the GFFs we use the p-pole
ansatz [14,38],

FðQ2Þ ¼ Fð0Þ
ð1þQ2=m2

pÞp
: ð22Þ

This generalization of the more commonly used dipole
ansatz allows the Mellin moments of the quark densities to
fall off faster than 1=Q2 whenQ2 → ∞, as is expected from
an explicit evaluation of the spinor products that relate the
densities to the matrix elements [39]. Furthermore, the
Fourier transform to impact parameter space, needed to
obtain the moments of the transverse densities, can be
carried out analytically for general p, as can the derivatives
required in Eq. (1), yielding the modified Bessel functions.
For more details on the motivation for using the p-pole
ansatz and the expected values of p for each GFF, we refer
to Ref. [14].

FIG. 2. The same analysis as Fig. 1 but for the two GFFs of the vector derivative operator, A20 and B20, and the three GFFs of the tensor
derivative operator AT20, BT20, and ÃT20 for the first nonzero momentum transfer Q2 ¼ 0.05 GeV2 of the cC211.060.80 ensemble.

TABLE IV. Renormalization functions for the local tensor operator and one-derivative vector and tensor operators used in this work.
The results are given in the MS scheme at an energy scale of 2 GeV. The number in the first parentheses is the statistical error, while the
number in the second parentheses corresponds to the systematic error obtained by varying the fit range in the ðaμ0Þ2 → 0 extrapolation
or the systematic error coming from truncation effects in the perturbative conversion factors.

β ZT Zμ¼ν
DV Zμ≠ν

DV Zμ≠ν¼ρ
DT Zμ≠ν≠ρ≠μ

DT Zμ¼ν≠ρ
DT

1.778 0.847(1)(1) 1.151(1)(4) 1.160(1)(3) 1.182(1)(2) 1.198(1)(5) 1.154(1)(9)
1.836 0.863(1)(2) 1.137(1)(11) 1.169(1)(11) 1.215(1)(13) 1.240(1)(14) 1.171(1)(7)
1.900 0.887(1)(2) 1.173(1)(11) 1.195(1)(12) 1.257(1)(14) 1.277(1)(14) 1.198(1)(7)
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We perform a separate fit to each of the ten GFFs for
each of the three ensembles. In general, there are three
parameters in each fit, namely Fð0Þ, the value of the GFF in
the forward limit; mp, the pole mass; and p, the exponent.
Varying all three parameters leads to significant instabil-
ities, as also observed in Refs. [40,41]. We therefore use
Gaussian priors for p centered at p ¼ 2 with a width of 0.5.
An exception is the case of A10ðQ2Þ, B10ðQ2Þ, A20ðQ2Þ,
and AT20ðQ2Þ, for which we restrict to dipole fits, i.e., we
fix p ¼ 2. Furthermore, for the case of the Dirac form
factor, A10ðQ2Þ, we fix A10ð0Þ ¼ 1, i.e., the proton charge.

An example of the Q2 dependence of the GFFs is shown
in Fig. 4 for the case of AT10ðQ2Þ and B̄T20ðQ2Þ. Similar fits
are carried out for all GFFs, yielding the five vector and five
tensor GFFs for each ensemble.

B. Continuum extrapolation

Our lattice formulation provides for automatic OðaÞ
improvement of all physical observables, and therefore we
perform a linear fit in a2 to extrapolate the GFFs to a ¼ 0.
In Fig. 5, we show the continuum limit of a selection of

GFFs in the forward limit. As can be seen, for most of the
cases the extrapolation is rather mild, and within the current
statistical precision the extrapolation is well captured by a
single term linear in a2 with a slope that in most cases is not
very large.
In Table V, we quote the values of the GFFs shown in

Fig. 5 at Q2 ¼ 0 and in the continuum limit. Of particular
interest is the continuum extrapolation of AT10 in the
forward limit which yields the isovector tensor charge.
This quantity plays a crucial role in the search for beyond
the SM interactions [42] by experiments such as DUNE [43]
and IsoDAR [44]. In Fig. 6, we compare our result, gu−dT ¼
0.924ð54Þ [45], with those from other lattice QCD collab-
orations, all of which have used ensembles simulated with
larger than physical pion mass thus requiring a chiral
extrapolation to obtain their final value at the physical
point. Phenomenological determinations of gT are also
compared in Fig. 6, obtained through the transversity
(parton distribution function) PDF. The most recent result
is obtained via a global analysis of electron-proton and
proton-proton data yielding a value of gT ¼ 0.53ð25Þ [6],
somewhat lower and with larger uncertainty than lattice

FIG. 4. The GFF AT10 (top) and B̄T20 (bottom) for the
cB211.072.64 (blue circles), cC211.060.80 (orange squares),
and cD211.054.96 (green triangles) ensembles. Fits to the p-
pole form of each ensemble are shown with the bands of same
color. The continuum limit is also shown (red band), obtained as
described in the text.

FIG. 5. Continuum limit of selected unpolarized and tensor
GFFs in the forward limit as a function of a2. The lines with their
associated error bands are linear fits in a2. Results for B20ð0Þ,
A20ð0Þ, B̄T20ð0Þ, B̄T10ð0Þ, AT20ð0Þ, and AT10ð0Þ are presented
with the name of each case being the closest to the corresponding
band. We have scaled some of the quantities as indicated in the
plot to avoid overlaps and improve presentation. Results are given
in the MS scheme at 4 GeV2.
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FIG. 3. The renormalization function ZT for the local tensor
operator at β ¼ 1.778. The unimproved (improved) estimates are
shown with black (magenta) points. The dashed line is the
extrapolation to ðaμ0Þ2 → 0, and the filled magenta point is the
final estimate.
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QCD determinations. Planned measurements aim to reduce
the error of the phenomenological value and allow for better
comparison with the predicted lattice QCD value.
Beyond gT , another challenging quantity that is poorly

known is the anomalous tensor magnetic moment
κT ≡ B̄T10ð0Þ. It is a fundamental quantity, perhaps more
than ET and H̃T [14], in describing the deformation of the
transverse polarized quark distribution in an unpolarized
nucleon. First lattice results were presented in the pioneering
work of the QCDSF/UKQCD collaboration [40], where a
value κT ¼ 1.03ð16Þ was reported obtained using chiral
extrapolations from ensembles with pion masses of
mπ > 400 MeV. Our much improved analysis confirms
their value using physical point ensembles and after taking
the continuum limit. Having confirmed this value without
the need of uncontrolled chiral extrapolations and at higher
accuracy in the continuum limit, we can conclude that the
phenomenological values κT ¼ 0.81 and 1.24 from two
approaches using the constituent quark model [55] and κT ¼
1.73 using the quark-soliton model [56] are incompatible
and need to be revisited. Since κT ∼ −h⊥1 [57], our value
confirms that the Boer-Mulders function, h⊥1 , is negative and
sizeable and corroborates the result found in a lattice QCD
study of the transverse momentum dependent PDFs [58]
computed using a mixed action scheme of domain wall
valence fermions on staggered sea quarks with pion masses
mπ ¼ 369 and 518 MeV.
The average momentum fraction, hxi≡ A20ð0Þ, is com-

puted for the first time in the continuum limit without any
chiral extrapolations. For the isovector momentum fraction,

hxiu−d, we find a value that is in agreement with the precise
values extracted from phenomenology [59–61]. While the
momentum fraction is well-known, this is not the case for
B20ð0Þ, which is needed for the determination of the nucleon
spin [62], J ¼ ½A20ð0Þ þ B20ð0Þ�=2. With the isovector
combinations of hxiu−d and our prediction for B20ð0Þ, we
can compute the quark isovector contribution, i.e., the u − d
contribution, to the spin of the nucleon (Ju−d). From the
values of A20ð0Þ and B20ð0Þ from Table V we find
Ju−d ¼ 0.156ð46Þ. Note, however, that A20ð0Þ and B20ð0Þ
exhibit dependence on the lattice spacing but with opposite
slopes so that the resulting value of Ju−d in the continuum is
compatible with our previous determination of Ju−d ¼
0.161ð24Þ [2,27] obtained using only the cB211.072.64
ensemble.
For the second moment of the isovector transversity PDF

hxiδu−δd ≡ AT20ð0Þ, as well as for B̄T20ð0Þ there are no
phenomenological results, and lattice QCD, thus, provides a
prediction. We find a very mild dependence on the lattice
spacing and, thus, a value in agreement with our previous
study using the cB211.072.64 ensemble [27]. On the other
hand and unlike the case for κT, QCDSF/UKQCD [40],
using ensembles with pion masses mπ > 400 MeV found a
value of B̄T20ð0Þ ¼ 0.160ð39Þ, which is lower than our
value. This highlights the need to study these quantities with
physical point ensembles. The RQCD collaboration [41],
which included in their analysis one gauge ensemble with
pion mass of 160 MeV, found a value compatible with ours.
For a review of lattice QCD results for gu−dT , we refer the

reader to the 2021 FLAG review [52]. In addition to gu−dT ,
lattice QCD results for hxiu−d and hxiδu−δd are summarized
in a recent community white paper, Ref. [63], and in the
review of Ref. [64]. These reviews include our result
obtained on the cB211.072.64 ensemble and from other
collaborations which include ensembles at heavier than
physical pion masses. As mentioned, the present work is
the first to extract these quantities with three values of a at
the physical point, thus eliminating the need for a chiral
extrapolation.
After fitting the Q2 dependence of GFFs for each

ensemble to the p-pole form as described above, the
GFFs are available at any value of Q2. We perform a linear
fit in a2 at each of 50 common Q2 values, extrapolating to
a ¼ 0. While the ensembles at different values of a are
independent, the GFFs evaluated at the 50 Q2 values are
correlated within the same ensemble, and this correlation is
propagated to the continuum GFF by performing the linear
extrapolation within a superjackknife [65]. The resulting

FIG. 6. We show lattice QCD results (green symbols for Nf ¼
2þ 1þ 1 and yellow for Nf ¼ 2þ 1 ensembles) for gu−dT from
ETMC [46,47] using only physical mass point ensembles;
PNDME [48], χQCD [49], NME [50], and CLS-Mainz [51].
The PNDME and Mainz results are those cited as final results in
the recent FLAG [52] report forNf ¼ 2þ 1þ 1 andNf ¼ 2þ 1,
respectively. Open green and yellow symbols denote lattice QCD
results without continuum extrapolation. Results from phenom-
enology are shown with the black circles [5,6,53,54].

TABLE V. Our values of the forward limit of GFFs presented in Fig. 5 in the continuum limit. Ju−d is the isovector light quark
contribution to the nucleon spin.

gu−dT ≡ AT10ð0Þ κT ≡ B̄T10ð0Þ hxiu−d ≡ A20ð0Þ B20ð0Þ Ju−d ¼ 1
2
½A20ð0Þ þ B20ð0Þ� hxiδu−δd ≡ AT20ð0Þ B̄T20ð0Þ

0.924(54) 1.051(94) 0.126(32) 0.186(67) 0.156(46) 0.168(44) 0.267(19)
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GFFs in the continuum limit are shown in Fig. 7. As can be
seen, the GFFs are determined with good precision,
especially for the n ¼ 1 case. As expected, for the higher
moment, n ¼ 2, the GFFs have smaller values as compared
with the n ¼ 1 GFFs. In addition, we observe that A20ðQ2Þ
and AT20ðQ2Þ have a rather flat behavior.
Having the ten GFFs for 50 values of Q2 in the

continuum limit, we perform fits to the p-pole form. We
obtain the continuum fits for the ten GFFs shown in Fig. 7.
The parameters of the fits to the Q2 dependence in the
continuum are given in Table VI. The error in the
parameters is estimated via superjackknife, obtained using
the superjackknife samples from the a ¼ 0 extrapolation
described above. Having determined the continuum form of
the GFFs we can compute the first two moments of the
transverse quark spin densities given in Eq. (1).
The Fourier transform to impact parameter space for a

p-pole form is known [14] and given by

Fðb2⊥Þ ¼
m2

pFð0Þ
2pπΓðpÞ ðmpb⊥Þp−1Kp−1ðmpb⊥Þ; ð23Þ

where ΓðxÞ is the Euler gamma function, KnðxÞ ¼ K−nðxÞ
the modified Bessel functions, and b⊥ ¼

ffiffiffiffiffiffi
b2⊥

p
. Fðb2⊥Þ is

obtained for each GFF using the parameters in Table VI.
The first and second moment of the probability density
ρðx; b⃗⊥; s⃗⊥; S⃗⊥Þ are then constructed via Eq. (1) for four

combinations of the transverse quark spin (s⃗⊥) and the
transverse spin of the nucleon (S⃗⊥).
The first moment of the probability density,

h1iρðx; b⃗⊥; s⃗⊥; S⃗⊥Þ is shown in Fig. 8. It is very interesting
that for all cases we observe a sizeable deformation. We
consider four cases: (i) For unpolarized quarks in a
transversely polarized nucleon, we observe a large distortion
toward the positive by direction. This can be traced back to
the GFF B10, contributing to the term for E0 of Eq. (1) that,
as seen in Fig. 7, is large and decreases fast yielding a large
derivative. The origin of this behavior is related to the Sivers
effect [66], a connection that was made in Ref. [67]. (ii) For
transversely polarized quarks in an unpolarized nucleon, we
can also observe a distortion; however, it is much milder
compared with the previous case. This is because in the
isovector combination the B̄T10ðb2⊥Þ term contributing
here has a milder Q2 dependence. This behavior is in
contrast to that of the stronger Q2 dependence of the
individual quark contributions to B̄T10ðb2⊥Þ observed in
Ref. [40]. (iii) Another interesting case is when both quarks
and the nucleon are transversely polarized. In this situation,
all the terms in Eq. (1) contribute leading to a significant
deformation of the density. (iv) If one chooses the polari-
zation to be perpendicular between the quarks and the
nucleon, the third term of Eq. (1) drops out, and the fourth
one creates a significant impact, leading to a distortion also
in the bx direction.
In Fig. 9, we show the second moment of the probability

densities, hxiρðx; b⃗⊥; s⃗⊥; S⃗⊥Þ, for the same four cases
discussed in Fig. 8. A general observation is that the
distortion is milder and the densities are more localized

around b⃗⊥ ¼ 0⃗. One reason is that A20ðQ2Þ is relatively flat
compared with A10ðQ2Þ, leading to a rather localized
density.

FIG. 7. Results for GFFs for n ¼ 1 (top) and n ¼ 2 (bottom) in
the continuum limit as a function of the momentum transfer
squared (Q2). Results for An0, Bn0, ATn0, ÃTn0, and B̄Tn0 are
presented with the name of each case being the closest to the
corresponding band. We scale some GFFs as indicated in the plot
to avoid overlaps and improve presentation. Results are given in
the MS at 2 GeV.

TABLE VI. The parameters obtained from fitting the Q2

dependence to the p-pole form after taking the continuum limit
of the GFFs. Errors are obtained via a superjackknife analysis
over the three ensembles used. Parameters with no errors were
fixed for the corresponding fit.

GFF Fð0Þ mp [GeV] p

A10 1 1.253(56) 2
B10 2.691(99) 1.337(82) 2
AT10 0.924(54) 1.45(19) 1.45(35)
B̄T10 1.039(93) 1.01(11) 1.93(28)
ÃT10 −1.60ð15Þ 0.90(12) 2.16(34)
A20 0.126(32) 4.52(46) 2
B20 0.195(59) 1.61(27) 1.63(26)
AT20 0.168(44) 3.66(51) 2
B̄T20 0.272(18) 1.39(10) 2.04(10)
ÃT20 0.427(54) 1.38(17) 1.872(70)
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VI. CONCLUSIONS

We present the first lattice QCD calculation of the first
two Mellin moments of the isovector transverse quark spin
densities in the nucleon in the continuum limit directly at
the physical point. The calculation is performed using
three twisted-mass fermion gauge ensembles with lattice
spacings a ≃ 0.057, 0.069, 0.080 fm enabling for the
first time a controlled continuum extrapolation directly at
the physical point avoiding uncontrolled errors due to the
chiral extrapolation. We confirm the existence of a
sizeable Sivers and Boer-Mulders effect determining the

anomalous tensor magnetic moment κT ¼ 1.051ð94Þ. The
results for the transverse quark spin densities demonstrate
that significant deformations exist in the nucleon that are
more prominent for the first moment. For the second
moment the densities are more localized around the center
of momentum of the proton.
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APPENDIX: PARAMETRIZATION
OF MATRIX ELEMENTS

We present the decomposition of the nuclear matrix
elements of the operators of interest employing different
projectors in terms of Lorenz-invariant GFFs. The expres-
sions are given in Euclidean space. We focus on the rest
frame for the final state, p0 ¼ iE0 ¼ im and p⃗ ¼ −Q⃗,
which is what is used in this work. For simplicity in the
presentation we use m≡mN . The normalization of the
states is given by C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2=EðEþmÞ

p
.

The local vector operator decomposes into the Dirac and
Pauli form factors,

hNðp0; s0ÞjOμ
V jNðp; sÞi

¼ ūNðp0; s0Þ
�
γμF1ðQ2Þ − iσμνΔν

2m
F2ðQ2Þ

�
uNðp; sÞ; ðA1Þ

where uNðp; sÞ is the nucleon spinor. The parametrization
for the ground state of the vector matrix elements, Πμ

V ,
projected with the unpolarized and polarized parity pro-
jectors, becomes

Πμ
VðΓ0; p⃗Þ ¼ C

Eþm
2m

�
F1ðQ2Þ þ Q2

4m2
F2ðQ2Þ

�
; ðA2Þ

Πj
VðΓ0; p⃗Þ ¼ C

pj

2m

�
F1ðQ2Þ þ Q2

4m2
F2ðQ2Þ

�
; j ≠ 0

ðA3Þ

Πj
VðΓk; p⃗Þ ¼C

ϵjρkpρ

2m
ðF1ðQ2ÞþF2ðQ2ÞÞ; j≠ 0; ðA4Þ

where repeated indices are summed over.
The local tensor operator decomposes into three form

factors, that is

hNðp⃗0; s0jOμν
T jNðp⃗; sÞi ¼ ūNðp⃗0; s0Þ

�
σμνAT10 þ i

γ½μΔν�

2m
BT10 þ

P̄½μΔν�

m2
ÃT10

�
uNðp; sÞ; ðA5Þ

and, thus,

Πμν
T ðΓ0; p⃗Þ ¼ AT10C

�
iðpμδ0ν − pνδ0μÞ

2m

�
þ BT10C

�
iðpμδ0ν − pνδ0μÞ

2m

�
þ ÃT10C

�
iðmþ EÞðpμδ0ν − pνδ0μÞ

2m2

�
; ðA6Þ

Πμν
T ðΓk; p⃗Þ ¼ AT10C

�
imϵμνk0 þ pσϵμνkσ

2m

�
þ BT10C

�ðmðδ0μ þ δ0νÞϵμνkσ þ iðpμϵνk0σ − pνϵμk0σÞÞpσ

4m2

�
: ðA7Þ

For the vector one-derivative operator we have three GFFs, given by

hNðp0; s0ÞjOμν
V jNðp; sÞi ¼ ūNðp0; s0Þ

�
A20ðQ2ÞγfμP̄νg þ B20ðQ2Þ iσ

fμαQαP̄νg

2m
C20ðQ2Þ q

fμQνg

m

�
uNðp; sÞ; ðA8Þ

and we obtain

Π00
V ðΓ0; p⃗Þ ¼ A20C

�
−
3E
8

−
E2

4m
−
m
8

�
þ B20C

�
−
E
8
þ E3

8m2
þ E2

16m
−

m
16

�
þ C20C

�
E
2
−

E3

2m2
þ E2

4m
−
m
4

�
; ðA9Þ

Πjj
V ðΓ0; p⃗Þ ¼ A20C

�
E
8
þm

8
þ p2

j

4m

�
þ B20C

�
−

E2

16m
þ m
16

−
p2
jE

8m2
þ p2

j

8m

�
þ C20C

�
−
E2

4m
þm

4
þ p2

jE

2m2
þ p2

j

2m

�
; ðA10Þ

Πjj
V ðΓk; p⃗Þ ¼ A20C

�
−i

ϵjk0ρpjpρ

4m

�
þ B20C

�
−i

ϵjk0ρpjpρ

4m

�
; ðA11Þ
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Πj0
V ðΓ0; p⃗Þ ¼ A20C

�
i
pj

4
þ i

pjE

4m

�
þ B20C

�
i
pj

8
− i

pjE2

8m2

�
þ C20C

�
−i

pj

2
þ i

pjE2

2m2

�
; ðA12Þ

Πj0
V ðΓk; p⃗Þ ¼ A20C

�
−ϵjk0ρ

�
−
pρ

8
−
pρE

8m

��
þ B20C

�
−ϵjk0ρ

�
−
pρ

8
−
pρE

8m

��
ðA13Þ

Πjl
V ðΓ0; p⃗Þ ¼ A20C

pjpl

4m
þ B20C

�
−
pjplE

8m2
þ pjpl

8m

�
þ C20C

�
pjplE

2m2
þ pjpl

2m

�
; ðA14Þ

Πjl
V ðΓk; p⃗Þ ¼ A20C

�
−i

ϵjk0ρplpρ

8m
− i

ϵlk0ρpjpρ

8m

�
þ B20C

�
−i

ϵjk0ρplpρ

8m
− i

ϵlk0ρpjpρ

8m

�
: ðA15Þ

According to Refs. [15,39,68] the one-derivative tensor operator decomposes into four GFFs, namely AT20, BT20, ÃT20,
and B̃T21 as Eq. (11):

hNðp0; s0ÞjOμνρ
T jNðp; sÞi ¼ ūNðp0; s0Þ

�
iσμνP̄ρ AT20 þ

γ½μΔν�

2m
P̄ρBT20 þ i

P̄½μΔν�

m2
P̄ρÃT20 þ

γ½μP̄ν�

m
Δρ B̃T21

�
uNðp; sÞ: ðA16Þ

Depending on the projector Γ0 or Γk used we obtain

Πμνρ
T ðΓ0; p⃗Þ ¼ AT20C

�
iððmþ EÞpμ δνρ − 6mpμδ0νρ − pνððmþ EÞδμρ − 6mδ0μρÞÞ

16m

þ δ0μðmðmþ EÞδνρ þ 6pνpρÞ − δ0νðmðmþ EÞδμρ þ 6pμpρÞ
16m

�

þ ÃT20C

�
iðmþ EÞððmþ EÞpμδνρ − 6mpμδ0νρ − pνððmþ EÞδμρ − 6mδ0μρÞÞ

16m2

−
ðmþ EÞðδ0νðmðmþ EÞδμρ þ 6pμpρÞ − δ0μðmðmþ EÞδνρ þ 6pνpρÞÞ

16m2

�

þ BT20C

�
iððmþ EÞpμ δνρ − 6mpμδ0νρ − pνððmþ EÞδμρ − 6mδ0μρÞÞ

16m

þ δ0μðmðmþ EÞδνρ þ 6pνpρÞ − δ0νðmðmþ EÞδμρ þ 6pμpρÞ
16m

�
ðA17Þ

Πμνρ
T ðΓk; p⃗Þ ¼ iAT20C

�
i
ðpσð2δ0ρϵμνkσ þ δ0νϵμρkσ − δ0μϵνρkσÞ þ pμð−ϵνρk0Þ þ pνϵμρk0 þ 2pρϵμνk0Þ

8

þ pσðpμð−ϵνρkσÞ þ pνϵμρkσ þ 2pρϵμνkσÞ −m2ðδ0μ þ δ0ν − 2δ0ρÞϵμνρk
8m

�

þ iBT20C

�
3ipσðm2ðδ0μρ þ δ0νρÞϵμνkσ þ pρðpμϵνk0σ − pνϵμk0σÞÞ

16m2

þ pσð−2pμδ0νϵνρkσ þ pμδ0ρϵνρkσ þ 2pνδ0μϵμρkσ − pνδ0ρϵμρkσ þ pρðδ0μ þ δ0νÞϵμνkσÞ
16m

�

þ iB̃T21C

�
3ipσðm2ðδ0μρ þ δ0νρÞϵμνkσ þ pρðpμϵνk0σ − pνϵμk0σÞÞ

8m2

−
pσð−2pμ δ0νϵνρkσ þ pμδ0ρϵνρkσ þ 2pνδ0μϵμρkσ − pνδ0ρϵμρkσ þ pρðδ0μ þ δ0νÞϵμνkσÞ

8m

�
: ðA18Þ
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