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ABSTRACT

The network formation process in the Bitcoin protocol is designed
to hide the global network structure: while most of the nodes of the
network can be easily discovered, the existence of an edge between
two nodes is only known by the two endpoints. In [Becchetti et al.,
SODA2020] the authors propose a dynamic random graph model
inspired by the network formation process in the Bitcoin protocol
and they prove that the evolution of the graph quickly terminates
and that the resulting graph is an expander, with high probability.

In this paper we extend the model in [Becchetti et al., SODA2020]
to obtain dynamic random graph models that evolve forever: in
the first model, edges can be faulty, i.e., each edge at each round
disappears with some probability; in the second one, at every round
new nodes join the network according to a Poisson process and each
node currently in the network disappears with certain probability;
in the third one, we consider a combination of the two models
above, in which edges can be faulty and nodes can join and leave
the network. We run extensive simulations to measure the “flooding
time” in the threemodels, i.e., how long it takes amessage starting at
a random node to reach all, or almost all, the nodes. The simulations
show that, for large ranges of the parameters of the models, the
flooding time is short, i.e., compatible with a logarithmic growth, as
a function of the number of nodes in the network. Our results also
suggest that the default values of the network formation parameters
used in the main implementation of the Bitcoin protocol seem
overwhelmingly safe with respect to the stability of the network,
and they might safely be tuned to reduce network traffic.
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1 INTRODUCTION

Bitcoin is a cryptocurrency proposed in 2008 by an unknown person
or group of people under the pseudonym of Satoshi Nakamoto [23].
The system is built using a clever combination of a few classical
cryptographic concepts: cryptographic hash functions [12], digital
signature schemes [14], and hash-cash style proof-of-work [15].
Nodes participating in the Bitcoin system are connected toward
an unstructured peer-to-peer network [7] running on top of the
Internet. The first version of the software was released by Satoshi
Nakamoto in January 2009. The most widely used implementation
coming from that initial release, Bitcoin-core [24], is currently under
active development. In this paper we are concerned with dynamic
graph models inspired by the network formation process of the
Bitcoin P2P network. We refer the reader interested in a complete
description of the Bitcoin system to [2, 25].

After an initial bootstrap in which they rely on DNS seeds for
node discovery, nodes running the Bitcoin-core implementation
turn to a fully-decentralized policy to regenerate their neighbors
when their degree drops below the configured threshold [11]. Each
node has a “target out-degree value” and a “maximum degree value”
(respectively 8 and 125, in the default configuration) and it locally
stores a large list of (ip addresses of) “active” nodes. Every time
the number of current neighbors of a node is below the configured
target value it tries to create new connections with nodes sampled
from its list. The list stored by a node is initially started with nodes
received in response to queries to DNS seeds, then it is periodically
advertised to its neighbors and updated with the lists advertised
by the neighbors. Hence, in the long run each node samples its
out-neighbors from a list formed by a “sufficiently random” subset
of all the nodes of the network.

While most of the nodes of the network can be easily discov-
ered [36], the existence of an edge between two nodes is only
known by the two endpoints. The topology of the Bitcoin network
is thus hidden by the network formation protocol. Indeed, discov-
ering the network structure has been recently an active research
topic [13, 27].

1.1 Our contribution.

RAES (Request a link, then Accept if Enough Space) [8] is a directed
random graph model defined by three parameters 𝑛 ∈ N, 𝑑 ∈
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{1, . . . , 𝑛 − 1}, 𝑐 > 1, in which each one of 𝑛 nodes has out-degree
exactly 𝑑 and in-degree at most 𝑐𝑑 . The random graph is generated
according to the following discrete random process: The graph
starts with no edges, and at every round each node 𝑢 with out-
degree 𝑑out𝑢 < 𝑑 picks 𝑑 − 𝑑out𝑢 nodes uniformly at random (u.a.r.)
(with repetitions) and, for each such node 𝑣 , 𝑢 “requests” a directed
link (𝑢, 𝑣); If a node 𝑣 receives a number of link-requests that would
make its in-degree larger than 𝑐𝑑 , then 𝑣 rejects all requests re-
ceived in the current round, otherwise 𝑣 accepts all requests of the
round. The process terminates when all nodes have out-degree 𝑑
(and in-degree at most 𝑐𝑑).

The RAES model can be seen as a simplified version of the
network-formation process implemented in Bitcoin-core [11]. How-
ever, it lacks one of the crucial aspects of the real network: the
dynamics, i.e., the fact that nodes can join and leave the network
at any time and edges can be faulty. In this paper we consider an
undirected version of RAES and we extend the random graph model
in two ways, both of them generating dynamic random graphs that
perpetually evolve. We run extensive simulations of both models to
grasp the “stationary” structural properties of the dynamic random
graphs and to measure the time it takes a message generated from
one node to reach all (or almost all) the nodes.

In the first model, edge-dynamic RAES (E-RAES), we add an “edge-
evolution” parameter 𝑝 ∈ [0, 1] with the following role: At every
round, each accepted edge disappears with probability 𝑝 . A detailed
description of this model is presented in Section 2.1. Since the set of
nodes of the graph is fixed while the set of edges evolve in discrete
rounds, the dynamic random graph is a sequence {𝐺𝑡 = (𝑉 , 𝐸𝑡 ) :
𝑡 ∈ N} where the distribution of the edges at round 𝑡 only depends
on the set of edges at round 𝑡 − 1. In order to empirically measure
when the dynamic random graph can be considered stable, we
compute the sequence of spectral gaps 𝛾𝑡 of the transition matrices
𝑃𝑡 of the snapshots 𝐺𝑡 of the dynamic graph and we consider
that the dynamic graph is in a stable regime when 𝛾𝑡 remains
in a sufficiently small interval for a sufficiently large window of
consecutive rounds. The spectral gap of the transition matrix is also
a measure of how “well-connected” a graph is and the results of the
simulations show that the model generates, on average, sequences
of graphs that are well-connected even with large values for the
edge disappearing rate 𝑝 . Indeed, even when a large fraction of
edges disappear at any round, one single step of the RAES procedure
is typically sufficient to rebuild a well-connected graph.

In the second model, vertex-dynamic RAES (V-RAES), we add
two “node-evolution” parameters, _ ∈ R+ and 𝑞 ∈ [0, 1], with
the following roles: At every round 𝑡 , 𝑁_ (𝑡) new nodes enter the
network, where 𝑁_ (𝑡) is a Poisson random variable with rate _, and
each node leaves the network with probability 𝑞, independently of
the other nodes. As soon as a new node joins the network, it starts
requesting links to the nodes already in the network; one round later,
i.e., when the presence of the new node has been revealed to the
network, the node also starts receiving incoming link requests from
other nodes; when a node leaves the network, all its incident links
disappear. A detailed description of this model is given in Section 2.2.
In the V-RAESmodel the network evolution is a sequence of random
graphs {𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) : 𝑡 ∈ N} in which both the set of nodes and
the set of edges are random sets at any round. It is easy to see that
the expected number of nodes in the graph converges to _/𝑞, if we

consider it before the node-leaving step, and to _(1 − 𝑞)/𝑞 if we
consider it after the node-leaving step.

The dissemination protocol in Bitcoin-core is a gossip-based
flooding: When a node receives a valid transaction, it announces
it to all its neighbors (see, e.g., https://en.bitcoin.it/wiki/Network#
Standard_relaying). As far as we know there are recent proposals to
modify the dissemination mechanism aiming at improving network
bandwidth usage [26] or limiting de-anonymization attacks [18],
but to the best of our knowledge they have not been implemented
in Bitcoin-core so far (see, e.g., https://github.com/bitcoin/bips/
blob/master/bip-0330.mediawiki). In both our models, E-RAES and
V-RAES, we simulate the flooding process and we measure the
flooding time, i.e., how long it takes a message starting at a random
node to reach all (or almost all) the nodes of the graph.

For the E-RAES model, the results of the simulations show that
the flooding time is short (i.e., compatible with a logarithmic growth,
as a function of the number of nodes), for every value of the edge-
disappearance rate 𝑝 . For the V-RAES model, the results of the
simulations show that, as long as the fraction of nodes that leave
the network at any round is not too large, e.g., if it stays below
70%, a message starting at a random node typically quickly reaches
nearly all of the nodes.

We also simulate a combination of the two models, in which
nodes join and leave the network as in the V-RAES and edges can
be faulty as in the E-RAES. In this paper we present the set of
results obtained by simulating the models with only a few repre-
sentative ranges for parameters 𝑑 and 𝑐 that determine the neigh-
borhood size of the nodes: the smallest possible values for which
the underlying graph turns out well-connected and the default
values used in the main Bitcoin implementation. However, we
remark that simulations with different values of 𝑑 and 𝑐 exhibit
similar qualitative behavior. The interested reader can find the li-
braries developed to run the simulations on the github repository
of the first author (https://github.com/Antonio-Cruciani/dynamic-
random-graph-generator).

Notice that the topology of the evolving random graphs gener-
ated according to our models is almost surely quite far from the
evolving topology of the real Bitcoin network, since each node of
the real network can autonomously decide how many neighbors
it wants to have and how to try to connect to them, and typically
nodes choose different strategies based on their different needs.
However, the topology of the evolving random graphs generated
according to our models is probably close to the topology that the
Bitcoin network would have if all full-nodes used the Bitcoin-core
implementation with the default parameters. The study of our mod-
els thus allows us to give evidence of the long-term stability of the
network generation process implemented in Bitcoin-core. This, in
turn, gives an indication about the long-term stability of a large
part of the real network without revealing its topology.

As noted in [28], most design decisions implemented at the
network layer of permissionless blockchains imply some tradeoffs
that typically are not yet well-understood. In this respect, the results
of our simulations suggest that the default values used in the main
Bitcoin implementation that determine the size of the neighborhood
of a full-node could be safely reduced by most of the full-nodes to
save network bandwidth without compromising the stability of the
network.
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1.2 Related work

The topology of the Bitcoin network is hidden by the network
formation protocol. However several approaches in the last decade
proved effective in revealing some portion of the network. Miller
et al. [22] developed a set of tools and an infrastructure to discover
the public Bitcoin network. Their approach was subsequently made
ineffective by an update in the Bitcoin protocol. Neudecker et al. [27]
proposed a timing analysis that is able to infer the network topology
with a sufficient degree of precision. Delgado-Segura et al. [13]
proposed a new approach to reconstruct the network structure and
tested it on the Bitcoin testnet network revealing a network with
733 nodes and 6090 edges, with an average degree of 16.6 and with
most of the nodes having between 7 and 14 neighbors. As far as we
know it has never been tested on the Bitcoin main network.

Peer-to-Peer (P2P) networks received a lot of attention in the
last twenty years and several (static and dynamic) network models
have been proposed so far. A random network model for unstruc-
tured P2P networks was introduced and analyzed by Panduragan
et al. [30]. Their model was inspired by the Gnutella P2P network
and is based on the existence of a host server that maintains a cache
of constant size with addresses of nodes accepting connections
that can be reached at any time by other nodes. In [5] the authors
introduced a class of dynamic graphs called Dynamic Networks
with Churn (in short, DNC) where both node insertion/deletion
and edge evolution are considered. The authors assume that the
dynamic graph consists of a sequence of 𝑑-regular expander graphs;
for the purpose of that paper, such an assumption is justified by the
results in [4], where the authors presented a distributed protocol
that guarantees the maintenance of a bounded degree topology
that, with high probability, contains an expander subgraph whose
set of vertices has size 𝑛 − 𝑜 (𝑛), where 𝑛 is the “stable” network
size. In [10] the authors defined two churn processes: in the first
one, at every round a new node is added to the network while no
node leaves it; in the second one, the size of the vertex set is 𝑛
and when a new node joins the network the oldest node leaves it.
The authors designed a protocol where each node 𝑢 starts 𝑐 ·𝑚
independent random walks (containing the ID-label of the node)
until they are picked up by new nodes joining the network, that
connects to the peers that contributed to the tokens. The resultant
dynamic topology is shown to keep diameter O (log𝑛) and to be
fault-tolerant against adversarial deletion of both edges and ver-
tices. The tokens in the graphs must be circulating at each time step
in order to ensure that they are well-mixed; this implies that the
rate at which new nodes can join the system is limited, as they must
wait while the existing tokens mix before they can use them. Bagchi
et al. [6] studied the number of adversarial and random faults that
an expander graph can tolerate while preserving approximately
the same expansion factor and a linear number of nodes. Becchetti
et al. [8] introduced and analyzed the RAES network formation
model, in which after a logarithmic number of rounds the network
evolution terminates in a state in which every node has a specified
out-degree and in-degree upper bounded by a constant. In a recent
work Becchetti et al. [9] introduced and studied a similar model in
which nodes can also join and leave the network, but the in-degree
of the nodes is not upper bounded by a constant.

Several well known problems have been studied in the context
of dynamic networks: (byzantine) agreement, search and storage,
(byzantine) leader election, expander maintenance, information
spreading, membership management (we refer the reader to [3]
for a survey). For information spreading, early works considered
gossip-based broadcast algorithms (see, e.g., [16]). However, for
privacy oriented P2P networks, such as the Bitcoin P2P network,
some of these algorithms have been shown to expose the network
to privacy vulnerabilities [19] and motivated the design of more
sophisticated information spreading algorithms with low overhead
as well as strong resistance to de-anonymization attacks [18, 26,
33]. Being able to randomly select other peers as new neighbors
to maintain a random-graph like overall structure (low diameter,
bounded degree, etc.) is another critical issue in such networks that
has been extensively studied (see, e.g., [20, 31, 34]).

1.3 Roadmap

In Section 2 we give the formal description of the two dynamic
random graph models and of the parameters that we are measuring
with the simulations. In Sections 3 and 4 we describe the results
obtained from the simulations of the two models and in Section 5
we consider a combination of the two models. Finally, in Section 6
we draw some conclusions.

2 THE MODELS AND THE PROBLEM

A dynamic graph G is a sequence of graphs G = {𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) :
𝑡 ∈ N} where the sets of nodes and edges can change at any discrete
round. If they change randomly, we call the corresponding random
process a dynamic random graph. In this section we introduce two
dynamic random graph models, that we call Edge-dynamic RAES
(E-RAES) and Vertex-dynamic RAES (V-RAES), that extend the RAES
model introduced in [8].

2.1 Edge-dynamic RAES (E-RAES)

The E-RAES model is defined by four parameters, 𝑛,𝑑, 𝑐 , and 𝑝 ,
where 𝑛 ∈ N is the number of nodes, 𝑑 ∈ N is the minimum
target degree, 𝑐 · 𝑑 with 𝑐 ⩾ 1 is the maximum acceptable degree,
and 𝑝 ∈ [0, 1] is the edge-failure probability. The set of 𝑛 nodes is
fixed, while the set of edges evolves, at each round, in three steps.
In the first step, each node with less than 𝑑 neighbors connects
with randomly chosen nodes in order to reach its minimum target
degree; in the second step, each node with more than 𝑐 ·𝑑 neighbors,
disconnects from randomly chosen neighbors in order to remain
within its maximum acceptable degree; in the third step, each edge
disappears with probability 𝑝 , independently of the other edges.

Starting from an arbitrary initial graph𝐺0 = (𝑉 , 𝐸0 ) .
At each round 𝑡 ∈ N:

Step 1: For each node 𝑢 ∈ 𝑉 , let 𝑁 1
𝑢 be the set of neighbors

of 𝑢 at the beginning of Step 1. If |𝑁 1
𝑢 | < 𝑑 then 𝑢 samples

𝑑 − |𝑁 1
𝑢 | nodes from the set𝑉 \ 𝑁 1

𝑢 , independently and u.a.r.
with replacement, and connects to them.
Step 2: For each node 𝑢 ∈ 𝑉 , let 𝑁 2

𝑢 be the set of neighbors
of 𝑢 at the beginning of Step 2. If |𝑁 2

𝑢 | > 𝑐 · 𝑑 then 𝑢 samples
|𝑁 2

𝑢 | − (𝑐 · 𝑑 ) neighbors from the set 𝑁 2
𝑢 , independently and

u.a.r. with replacement, and disconnects from them.
Step 3: Each edge {𝑢, 𝑣} currently in the graph disappears
with probability 𝑝 , independently of the other edges.
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The E-RAES model defines a Markov chain with the set of all
graphs with 𝑛 nodes as state space. It is not difficult to see that the
chain is aperiodic and that the empty graph is a recurrent state (see,
e.g., Chapter 1.5 in [29] for some background). Hence, if we con-
sider the recurrent class containing the empty graph, the Markov
chain defined by the E-RAES model starting at the empty graph
will converge to a stationary distribution 𝜋 . From a theoretical
point of view, it would be interesting to analyze the expansion
properties of the stationary random graph (i.e., a random graph
sampled according to the stationary distribution) and to estimate
the mixing time of the Markov chain, i.e., the time it takes the dis-
tribution of the chain starting at the empty graph to get close to
the stationary distribution. However, a theoretical analysis of the
mixing time appears quite challenging due to the complexity of
the Markov chain: for example, in Appendix A we observe that the
chain is not reversible, thus it not possible to apply the large body of
tools developed for the analysis of reversible chains (see, e.g., [1]).
In Section 3 we propose an empirical convergence criterion, we
present the results on the expansion properties of the snapshots
of the dynamic graph obtained by simulating the E-RAES, and the
results on the time it takes a message starting at a random node to
reach all the nodes.

2.2 Vertex-dynamic RAES (V-RAES)

The V-RAES model is defined by four parameters, _, 𝑑, 𝑐 , and 𝑞,
where _ > 0 is the arrival rate of new nodes, 𝑑 and 𝑐 · 𝑑 are the
minimum target degree and the maximum acceptable degree as de-
scribed in the E-RAES model, and 𝑞 ∈ [0, 1] is the node-leaving
probability. At each round 𝑡 the graph evolves in four steps. In step
zero 𝑁_ (𝑡) new nodes join the graph, where 𝑁_ (𝑡) is a Poisson
random variable with rate _. In step one, each node with less than 𝑑
neighbors (hence, including the𝑁_ (𝑡) newly arrived ones) connects
with randomly chosen nodes among those that are in the graph at
the current round and were also present in the graph at the previous
round (hence, excluding the 𝑁_ (𝑡) newly-arrived nodes). In step
two, each node with more than 𝑐 · 𝑑 neighbors, disconnects from
randomly chosen neighbors in order to remain within its maximum
acceptable degree. In step three, each node 𝑢 disappears with prob-
ability 𝑞, independently of the other nodes (all edges incident to 𝑢
disappear as well).

Starting from an arbitrary initial graph𝐺0 = (𝑉0, 𝐸0 ) .
At each round 𝑡 ∈ N:

Step 0: 𝑁_ (𝑡 ) new nodes join the graph, where 𝑁_ (𝑡 ) is a
Poisson random variable with rate _.
Step 1: For each node 𝑢, let 𝑁 1

𝑢 be the set of neighbors of 𝑢 at
the beginning of Step 1. If |𝑁 1

𝑢 | < 𝑑 then 𝑢 samples 𝑑 − |𝑁 1
𝑢 |

nodes from the set (𝑉𝑡 \𝑁_ (𝑡 ) ) \𝑁 1
𝑢 , independently and u.a.r.

with replacement, and connects to them.
Step 2: For each node 𝑢, let 𝑁 2

𝑢 be the set of neighbors of 𝑢
at the beginning of Step 2. If |𝑁 2

𝑢 | > 𝑐 · 𝑑 then 𝑢 samples
|𝑁 2

𝑢 | − (𝑐 · 𝑑 ) neighbors from the set 𝑁 2
𝑢 , independently and

u.a.r. with replacement, and disconnects from them.
Step 3: Each node 𝑢 disappears with probability 𝑞, indepen-
dently of the other nodes, together with its incident edges.

The size of the vertex set 𝑉𝑡 in the V-RAES model converges to
_(1 − 𝑞)/𝑞, if measured at the end of the round, and it converges
to _/𝑞 if measured at the end of step two of the round, i.e., before
the node-leaving step. Indeed, consider the following informal ar-
gument: Let us name 𝑓𝑡 the expected number of nodes at round 𝑡 ,
then 𝑓𝑡 = (𝑓𝑡−1 + _) (1 − 𝑞), if computed at the end of the round,
since in expectation _ new nodes join the network at round 𝑡 and
each node in the graph remains in the network with probability
(1 − 𝑞). Solving the recurrence with initial condition 𝑓0 = 0 gives
𝑓𝑡 = _

∑𝑡
𝑖=1 (1 − 𝑞)𝑖 = _

(
1 − 𝑞 − (1 − 𝑞)𝑡+1

)
/𝑞, that converges to

_(1 − 𝑞)/𝑞 for 𝑡 that goes to infinity. More formally, the size of the
vertex set is actually a Markovian queue𝑀\𝐺\∞ and it converges
to a Poisson random variable of rate _/𝑞 (see, e.g., [30]). In Section 4
we present the results of the simulations of the V-RAES model.

2.3 Preliminaries

Spectral gap. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with no
self-loops. The transition matrix of a simple random walk on 𝐺

(we will refer to it as the transition matrix of 𝐺) is the |𝑉 | × |𝑉 |
matrix 𝑃 = 𝐷−1𝐴, where 𝐴 is the adjacency matrix of 𝐺 and 𝐷 is
the diagonal matrix whose entries are the degrees of the nodes (for
each node 𝑢 ∈ 𝑉 , 𝐷 (𝑢,𝑢) is the degree of 𝑢 in 𝐺). It is well-known
that 𝑃 is reversible, all its eigenvalues are real and they belong to the
interval [−1, 1] and the largest eigenvalue is _1 = 1. Moreover, the
second largest eigenvalue _2 < 1 if and only if 𝐺 is connected. In
this case the spectral gap 𝛾 = 1−_2 is a measure of how quickly the
random walk converges to its stationary distribution (the largest
the spectral gap the fastest the convergence rate). In the following
paragraph we recall that the spectral gap is also a measure of how
“well-connected” the underlying graph 𝐺 is.

Expanders and spectral gaps. A graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛

nodes is a (1 + 𝛿)-vertex expander, for some 𝛿 > 0, if for every set
𝑆 of size at most 𝑛/2, the neighborhood 𝑁 (𝑆) = {𝑣 ∈ 𝑉 : {𝑢, 𝑣} ∈
𝐸 for some 𝑢 ∈ 𝑆} has size at least (1 + 𝛿) |𝑆 |. It is known that, for a
regular graph 𝐺 , if we define 𝛾 = 1 −max{_2, |_𝑛 |}, where _2 and
_𝑛 are respectively the second-largest eigenvalue and the smallest
eigenvalue of the transition matrix 𝑃 , then the graph𝐺 is a (1 + 𝛾)-
vertex expander (see e.g. Chapter 4 in [32]). Thus, larger values of
the spectral gap 𝛾 of the transition matrix 𝑃 correspond to better
expansion of the underlying graph 𝐺 .

Let G = {𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) : 𝑡 ∈ N} be a dynamic (random) graph.
For the purpose of this paper, we measure how well-connected are
the snapshots 𝐺𝑡 of the dynamic graph by computing the spectral
gaps of their transition matrices.

Flooding. To measure the time it takes a message sent by a node
to reach all (or a large fraction of) nodes we use the following
flooding process. Let G = {𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) : 𝑡 ∈ N} be a dynamic
random graph. The flooding process over G starting at round 𝑡0
from the initiator𝑢0 ∈ 𝑉𝑡0 is the sequence of (random) sets of nodes
{𝐼𝑡 : 𝑡 ∈ N} such that: 𝐼𝑡 = ∅ for 𝑡 < 𝑡0; 𝐼𝑡0 = {𝑢0}; and for 𝑡 > 𝑡0

𝐼𝑡 = (𝐼𝑡−1 ∪ 𝑁 (𝐼𝑡−1)) ∩𝑉𝑡

where 𝑁 (𝐼𝑡−1) is the set of nodes in 𝑉𝑡−1 \ 𝐼𝑡−1 that in graph𝐺𝑡−1
have at least one neighbor in 𝐼𝑡−1

𝑁 (𝐼𝑡−1) = {𝑣 ∈ 𝑉𝑡−1 \ 𝐼𝑡−1 : {𝑢, 𝑣} ∈ 𝐸𝑡−1 for some 𝑢 ∈ 𝐼𝑡−1}
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We say that 𝐼𝑡 is the subset of informed nodes at round 𝑡 . If at some
round 𝑡 all nodes currently in the network are informed, i.e. 𝐼𝑡 = 𝑉𝑡 ,
we say that the flooding is complete. The flooding time is the number
of rounds between 𝑡0 and the first round 𝑡 such that 𝐼𝑡 = 𝑉𝑡 .

3 E-RAES SIMULATIONS

In this section, we present the results of the simulations of the
E-RAES model. On the one hand we are interested in the structural
properties of the snapshots of the evolving graphs, on the other
hand we want to measure how long it takes a message starting at
one node to reach all the others. To evaluate the structural prop-
erties, we use the spectral gap of the transition matrix; to evaluate
the speed of information spreading we use the flooding time (see
Section 2.3).

In Section 3.1 we define an empirical converge criterion that we
will use to decide the starting round for the simulations computing
the average spectral gap of the snapshots of the evolving graph
and the average duration of the flooding process. In Section 3.2 we
present the results of the simulations for the spectral gap and in
Section 3.3 those for the flooding process.

We present only the results for some representative parameters
𝑑 and 𝑐: the minimum target degree 𝑑 = 4 is small enough to
guarantee that the resulting snapshots of the evolving graph are
quite “sparse”; the value 𝑐 = 1.5 makes the nodes quite “inflexible”
about their target degree (each node only accepts to have degree 4,
5, or 6). Despite these strict requirements about the graph structure,
our simulations show that the random process quickly stabilizes
on a stationary regime, where the snapshots of the graph are often
very good expanders, even for large values of the edge-failure
probability 𝑝 . We remark that results qualitatively very similar
to those presented for 𝑑 = 4 and 𝑐 = 1.5 appear for different values
of 𝑑 and 𝑐 .

3.1 Convergence criterion

We want to study how fast the information spreads from a node
to all the other nodes when the network evolution is stationary.
In order to decide the starting round for the flooding process, we
need a criterion to establish when the network evolution reaches
stationarity. In principle, it would be possible to give theoretical
bounds on the number of rounds needed to reach stationarity by
analyzing the mixing time of the Markov chain induced by the
E-RAES model; however, as we mentioned in Section 2, the analysis
of such a Markov chain appears far from easy. For the purpose of
this paper, we use a heuristic criterion based on the stabilization
of the spectral gap. We set an Y > 0 and we declare that the graph
stabilizes when the spectral gap remains in a range of width 2Y
for log𝑛 consecutive rounds. More formally, at the generic round
𝑡 ⩾ log𝑛, if all spectral gaps 𝛾𝑡−log𝑛, 𝛾 (𝑡−log𝑛)+1, . . . , 𝛾𝑡 differ from
𝛾𝑡 for at most Y then we declare that the dynamic random graph
mixed. The choice of Y is dynamically computed by the following
rule: we simulate a long-run of the evolving graph for 100 rounds
and we set Y as the mean absolute deviation [17] of the non-zero
values.

Figure 1 shows a representative sample of the evolution of the
spectral gap during the first rounds of the E-RAES model with
𝑛 = 215 nodes, 𝑑 = 4, 𝑐 = 1.5, and edge-failure probability 𝑝 = 0.1,
starting from the empty graph. The spectral gap of the snapshots

Figure 1: The initial evolution of the spectral gap and its

stabilization for the dynamic graph with 215 nodes, 𝑑 = 4,
𝑐 = 1.5, and starting from the empty graph. The spectral gap

at each round is computed before the edge-failure step. Each

line in the picture plots one out of one hundred executions.

The bold black line plots the average of the spectral gaps

computed at each round, over all the executions.

of the evolving graph is computed before the edge failure step. The
picture shows that, after about 15 rounds, the spectral gap stabilizes
with very small oscillations, from round to round in each execution
and with little difference from one execution to another.

3.2 Average spectral gap in the long run

To measure the expansion properties of the typical snapshot of the
evolving graph, we simulate the E-RAES model and compute the
average of the spectral gaps of the snapshots. The table and the plot
in Figure 2 show the results of the simulations for different values
for the number of nodes 𝑛 and edge-failure probability 𝑝 . Each
number in the table is the average over 100 runs of 100 rounds each.
We computed the spectral gap both before and after the edge-failure
step.

For small values of 𝑝 , e.g., 𝑝 = 0.1, the first column of the table
in Figure 2 shows that the snapshots are on average connected (the
spectral gap is non-zero) even after the edge failure step. Although
the differences between the spectral gaps computed before and
after the edge-failure step, that increases with the number of nodes,
indicates that after the edge-failure step the resulting graph tend
to become a much weaker expander, even when only 10% of the
edges disappear on average.

For larger values of 𝑝 the snapshots of the graph after the edge
faults turn out to be mostly disconnected (spectral gap equals to
zero), however the spectral gap computed before the edge-failure
step indicates that every time the graph becomes disconnected,
just one more step of the RAES process is sufficient to rebuild a
connected graph with good expansion properties.

In Figure 2 it is also interesting to notice the unimodal trend
of the spectral gap as a function of the edge-failure probability:
it decreases for 𝑝 from 0 to 0.1 and it increases for 𝑝 > 0.1. This
indicates that the snapshots of highly-dynamic graphs, in which
nodes are forced to frequently regenerate their neighborhoods, are
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Average spectral gap

Nodes

p

0.0 0.1 0.3 0.5 0.7 0.9 1.0

1024

B 0.345 0.19 0.208 0.234 0.269 0.317 0.345
A 0.345 0.157 0.0 0.0 0.0 0.0 0.0

2048

B 0.342 0.189 0.206 0.232 0.268 0.315 0.342
A 0.342 0.155 0.0 0.0 0.0 0.0 0.0

4096

B 0.341 0.187 0.204 0.231 0.267 0.314 0.341
A 0.341 0.144 0.0 0.0 0.0 0.0 0.0

8192

B 0.341 0.186 0.204 0.23 0.266 0.313 0.341
A 0.341 0.09 0.0 0.0 0.0 0.0 0.0

16384

B 0.34 0.186 0.203 0.23 0.265 0.313 0.34
A 0.34 0.053 0.0 0.0 0.0 0.0 0.0

32768

B 0.34 0.185 0.203 0.23 0.265 0.313 0.34
A 0.34 0.006 0.0 0.0 0.0 0.0 0.0

Figure 2: Average spectral gap for E-RAES of 100 runs of

100 rounds each, for 𝑑 = 4, 𝑐 = 1.5, and increasing values

for number of nodes 𝑛 and edge-failure probability 𝑝. The

spectral gap is computed before (B) and after (A) the edge-

failure step.

better expanders than the snapshots of less dynamic graphs, in
which the connections between nodes are more stable.

3.3 Flooding Time Analysis

We here present the results of the simulations of the flooding pro-
cess (see Section 2.3) on the E-RAES model (see Section 2.1). The
simulation proceeds as follows: Starting from the empty graph,
we wait for the first round 𝑡0 in which the dynamic graph {𝐺𝑡 =

(𝑉 , 𝐸𝑡 ) : 𝑡 ∈ N} meets the criterion defined in Section 3.1, then we
pick a node 𝑢0 ∈ 𝑉 uniformly at random, we simulate the flooding
process with initiator 𝑢0, and we measure the number of rounds
until the flooding is complete.

Figure 3 shows the results of the simulations obtained by setting
in the E-RAES model the parameters 𝑑 = 4, 𝑐 = 1.5 and different
values for number of nodes 𝑛 and edge-failure probability 𝑝 . Each
point in the plot is the average, over 100 runs, of the number of
rounds required by the flooding process to complete.

The picture quite clearly highlights that the flooding time, as a
function of the number of nodes, is compatible with a logarithmic
growth, for every value of the edge-failure probability 𝑝 . The value
of 𝑝 seems to determine the multiplicative constant of the logarithm.
We remark that in the simulations the message-passing step of the
flooding process is scheduled after the edge-failure step of the E-
RAES model, i.e., when for values of 𝑝 larger than 0.1 the snapshot
of the graph is typically disconnected. Thus it is interesting to notice
that, even for large value of 𝑝 , e.g. when 90% of the edges disappear
at each round, the time required to get all nodes informed is quite
short. These results suggest that a new message rapidly “floods”

Figure 3: Semi-log-plot of the average flooding time of

G(𝑛, 4, 1.5, 𝑝) with 29 ⩽ 𝑛 ⩽ 215, 𝑝 ⩽ 0.9.

the dynamic network even if every snapshot of the dynamic graph
is completely sparse and disconnected.

4 V-RAES SIMULATIONS

In this section, we present the results of the simulations of the
V-RAES model. As for the structural properties, we recall that (see
Section 2.2) when new nodes arrive they can connect to nodes
currently in the graph, but they cannot be asked for connections
from other nodes. At each round thus the snapshot of the evolving
graph is formed by a core, i.e., the nodes that were present in the
graph in the previous round as well, and a periphery, i.e., the nodes
arrived in the current round, that are connected only to nodes in
the core. Hence, the snapshots of the evolving graph are not good
expanders. Nevertheless, our simulations show that the “flooding
time” in the V-RAES model is fast.

The definition of “flooding time” as described in Section 2.3
needs to be appropriately adapted in the V-RAES model to take
into account the fact that new nodes join the network at any round
and thus the process could (and typically does) never reach a state
in which all nodes currently in the network are informed.

As we did for the E-RAES model, we want to start simulating
the flooding process when the network evolution is “stationary”. In
Section 4.1 we thus define an heuristic convergence criterion and
in Section 4.2 we present the results on the flooding process. We
remark that we here present the results only for some representative
parameters 𝑑 and 𝑐 , other choices for those parameters produce
similar results.

4.1 Convergence criterion

Since in the V-RAES model new nodes arrive at any round with
rate _ and each node leaves the network with probability 𝑞, the
stationary expected number of nodes in the network is _/𝑞 and the
actual number of nodes is concentrated around its expected value.
We thus consider the network evolution for the V-RAES model to
have reached a stationary regime when the number of nodes in the
network is close to _/𝑞.

Figure 4 shows the evolution of the number of nodes in the graph
during the first rounds of the V-RAES, with parameters 𝑑 = 4 and
𝑐 = 1.5, starting from the empty graph. All plots in the picture
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Figure 4: The evolution of the number of nodes for some sam-

ple runs with 𝑑 = 4, 𝑐 = 1.5, and _/𝑞 = 215 and 𝑞 = 0.05, 0.1, 0.3

refer to the ratio _/𝑞 = 215, each plot with a different value for the
node-leaving probability 𝑞 (and with the corresponding value for
_). The number of nodes is considered before the node-leaving step.

4.2 Flooding Time Analysis

Since nodes join and leave the network at any round, in the V-
RAES model a message sent from an initiator node might not reach
neither all the nodes in the graph nor a large fraction of them.
For example, if the initiator node and all its neighbors leave the
network one round after the message departure, then the message
will never reach any of the other nodes. In order to measure the
speed of information spreading in the V-RAES model, we thus run
the simulations as follows: Starting from the empty graph, we wait
for the first round 𝑡0 in which the dynamic graph {𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) :
𝑡 ∈ N} meets the criterion defined in Section 4.1, then we pick
a node 𝑢0 ∈ 𝑉𝑡0 uniformly at random, we simulate the flooding
process (see Section 2) with initiator𝑢0, and wemonitor the fraction
of informed nodes 𝛼𝑡 := |𝐼𝑡 |/|𝑉𝑡 | at each round.

Figure 5: Percentage of the failed flooding executions. Each

bar of the histogram indicates the number of times in which

all the informed nodes left the network at the corresponding

round. The ratio _/𝑞 is fixed to 215.

Fig. 5 shows the fraction of simulations in which, at some round
after 𝑡0, all the informed nodes disappeared simultaneously, thus
leaving the network without any informed node. The first observa-
tion emerging from the histograms is that all the times this event
happened, it was within five rounds from 𝑡0.

For 𝑞 = 0.9, i.e. when about 90% of the nodes disappear at every
round, in about 60% of the simulations all the informed nodes left
at the second round of the flooding process. On the other hand, for
𝑞 = 0.5, i.e when about half of the nodes disappear at every round,
the fraction of times in which the message of the initiator node 𝑢0
fails to spread in the network is very small.

Figure 6: Average over 100 runs of the evolution of the frac-

tion of informed nodes 𝛼𝑡 , at each time step. In the plots the

ratio _/𝑞 is fixed to 215.

In Fig. 6 we plot the evolution of the fraction 𝛼𝑡 of informed
nodes, for all the simulations in which the message of the initiator
node 𝑢0 does spread in the network. The plots show that, when the
set of informed nodes do not disappear during the very first rounds,
the fraction of informed nodes quickly stabilizes over precise values
that depend on the node-leaving probability 𝑞: for 𝑞 ⩽ 0.7 the
number of informed nodes reaches a stationary phase in which
almost all the nodes in the network are informed; even for larger
values of the node-leaving probability, e.g., when 𝑞 = 0.9, in all
simulations in which the informed nodes do not simultaneously
disappear within the first five rounds, the fraction of informed
nodes stabilizes around 80%.

Figure 7: Semi-log-plot of the average flooding time trend of

G(_, 𝑞, 4, 1.5) with 29 ⩽ _/𝑞 ⩽ 215

As a measure of flooding time in the V-RAES model, we thus
can consider the number of rounds required to reach the stable
value 𝛼𝑡 , as it is determined by the node-leaving probability 𝑞. For
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example, in Figure 7 we plot the number of rounds required by the
flooding process to reach a fraction 𝛼𝑡 of informed nodes of at least
90%, for all the values of the node-failure probability 𝑞 such that
the fraction of informed nodes stabilizes above 90%. The picture
clearly highlights that such number of rounds is compatible with a
logarithmic growth, as a function of _/𝑞.

5 EV-RAES AND THE PARAMETERS OF THE

REAL BITCOIN NETWORKS

In this section we present a combination of the E-RAES and V-RAES
models, that we call EV-RAES model, in which nodes join and leave
the network as in the V-RAES and edges can be faulty as in the E-
RAES. We simulate the flooding process on such a model first using
the same values for 𝑑 and 𝑐 that we used in the V-RAES section
and then using the default values of the main implementation of
Bitcoin.

Starting from an arbitrary initial graph𝐺0 = (𝑉0, 𝐸0 ) .
At each round 𝑡 ∈ N:

Step 0: 𝑁_ (𝑡 ) new nodes join the graph, where 𝑁_ (𝑡 ) is a
Poisson random variable with rate _.
Step 1: For each node 𝑢, let 𝑁 1

𝑢 be the set of neighbors of 𝑢 at
the beginning of Step 1. If |𝑁 1

𝑢 | < 𝑑 then 𝑢 samples 𝑑 − |𝑁 1
𝑢 |

nodes from the set (𝑉𝑡 \𝑁_ (𝑡 ) ) \𝑁 1
𝑢 , independently and u.a.r.

with replacement, and connects to them.
Step 2: For each node 𝑢, let 𝑁 2

𝑢 be the set of neighbors of 𝑢
at the beginning of Step 2. If |𝑁 2

𝑢 | > 𝑐 · 𝑑 then 𝑢 samples
|𝑁 2

𝑢 | − (𝑐 · 𝑑 ) neighbors from the set 𝑁 2
𝑢 , independently and

u.a.r. with replacement, and disconnects from them.
Step 3: Each edge {𝑢, 𝑣} currently in the graph disappears
with probability 𝑝 , independently of the other edges.
Step 4: Each node 𝑢 disappears with probability 𝑞, indepen-
dently of the other nodes, together with its incident edges.

We first observe the impact of the edge failures on the fraction of
nodes reached in the flooding procedure and on the flooding time.

Figure 8 shows the results of the simulations on the fraction of
informed nodes and the flooding time for the EV-RAES model, with
the same values for 𝑑 and 𝑐 used in Section 4 in the simulations
of the V-RAES. A comparison of Figure 8 with Figures 6 and 7
highlights that the impact of the edge failures on the final fraction
of informed nodes and on the flooding time is quite negligible. For
example, for node-leaving probability 𝑞 up to 0.3, even with edge-
disappearance rate 𝑝 = 0.3 all nodes receive the message within the
same amount of rounds needed when the edges do not disappear.
For larger values of 𝑞, e.g. 𝑞 = 0.5, the fraction of nodes that receive
the message turns out smaller for 𝑝 = 0.3 with respect to the case
in which edges do not disappear. Notice that such large values
for 𝑞 and 𝑝 are only useful to test the limits of model, since they
generate dynamic networks in which 50% of the nodes join and
leave the network and 30% of the edges disappear at every round.
In any realistic scenario, the fraction of nodes that join and leave
the network at any round and the number of connections that fail
is likely to be much smaller. In those scenarios, our simulations
indicate that all nodes receive the message, within a number of
rounds that is compatible with a logarithmic growth as a function
of the number of nodes in the network.

(a) Evolution of the fraction of informed nodes 𝛼𝑡 . The ratio _/𝑞 is fixed

to 215.

(b) Semi-log-plot of the average flooding time of the EV-RAES with

29 ⩽ _/𝑞 ⩽ 215, node disappearance rate 𝑞 = 0.1, 0.3, 0.5, and edge disap-

pearance rate 𝑝 = 0.1, 0.3.

Figure 8: EV-RAESwith𝑑 = 4 and 𝑐 = 1.5, fraction of informed

nodes and flooding time

5.1 The degree of the full-nodes and network

traffic

In the Bitcoin network currently there are approximately 14 · 103
reachable nodes (see https://bitnodes.io/ for periodic crawls of the
Bitcoin P2P Network) and several hidden ones [35]. In the default
configuration of the main implementation, lower and upper bounds
on the number of connections that a full-node can have are set
to 8 and 128, respectively. We thus also simulated the EV-RAES
model with values for parameters 𝑑 and 𝑐 corresponding to the
above values of the real Bitcoin P2P Network: namely, _/𝑞 = 214
and 𝑑 = 8 and 𝑐 = 15.625.

On the one hand, a comparison of Figures 9 and 8 shows that the
advantage of having such a large number of neighbors, i.e. up to
128 in Figure 9 as opposed to up to 6 in Figure 8, is limited in terms
of fraction of informed nodes and flooding time. On the other hand,
the number of neighbors of a full-node is directly proportional
to the amount of network traffic going through the node. Indeed,
“it’s common for full nodes on high-speed connections to use 200 gi-
gabytes upload or more a month” (see https://bitcoin.org/en/full-
node#minimum-requirements). In order to measure the impact of
the number of neighbors on the network traffic, we installed a
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(a) Evolution of the fraction of informed nodes 𝛼𝑡 . The ratio _/𝑞 is fixed

to 215.

(b) Semi-log-plot of the average flooding time of the EV-RAES with

29 ⩽ _/𝑞 ⩽ 215, node disappearance rate 𝑞 = 0.1, 0.3, 0.5, and edge disap-

pearance rate 𝑝 = 0.1, 0.3.

Figure 9: EV-RAES with 𝑑 = 8 and 𝑐 = 15.625: Fraction of

informed nodes and flooding time

Bitcoin-core full-node, we reduced the default number of connec-
tions of the node from 125 to 25 and, after the completion of the
initial block download, we monitored the upload network traffic
observing an average upload traffic between 400 and 500MB per
day, hence less than 15 GB per month.

6 CONCLUSIONS

In this paper we introduced two models of dynamic random graphs
inspired by the network formation protocol of the Bitcoin P2P net-
work. We simulated the models to evaluate the structural properties
of the snapshots of the dynamic graphs and to measure the time
it takes a message starting at a random node to reach all, or al-
most all, the nodes. The results of our simulations show that the
network structure generated by the E-RAES, by the V-RAES, and
by a combination of the two models is globally very robust, in the
sense that the network can quickly rebuild itself after node and
edge failures. Moreover, the simulations of the flooding procedure
show that the information spreading in the two models is fast and
reliable, for the E-RAES essentially at any edge-failure rate, and for
the V-RAES up to a node-failure rate as high as 70%. The outcomes
of the simulations on the combined model EV-RAES are similar

to those obtained in the V-RAES model for a large range of the
parameters.

Since the degree of a full-node in the Bitcoin network is directly
correlated to the amount of traffic going through the node, our
results suggest that it is quite safe, for full-nodes of the Bitcoin
network that need to reduce the bandwidth usage, to change the
default value of the maximum number of connections from 125 to
much smaller values. On the one hand this significantly reduces the
upload network traffic and, on the other hand, our simulations sug-
gest that it does not compromise the overall stability and reliability
of the network.
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A E-RAES NON-REVERSIBILITY

AMarkov chain {𝑋𝑡 }𝑡 with state space Ω and transition matrix 𝑃 is
reversible if a probability distribution 𝜋 over Ω exists such that for
every pair of states 𝑥,𝑦 ∈ Ω the following detailed balanced equa-
tion holds: 𝜋 (𝑥)𝑃 (𝑥,𝑦) = 𝜋 (𝑦)𝑃 (𝑦, 𝑥). The analysis of reversible
Markov chains can take advantage of several mathematical tools
(see, e.g., [1]) that typically are not available for non-reversible
chains. In this appendix we observe that the Markov chain defined
by the E-RAES model is non-reversible.

The E-RAES model defines a Markov chainM where the state
space Ω is formed by all the graphs with 𝑛 nodes and, for two
states/graphs 𝑥,𝑦 ∈ Ω, 𝑃 (𝑥,𝑦) is the probability to reach state 𝑦
from state 𝑥 following the three steps of the E-RAES model, as
defined in Section 2.1. Observe that, given two arbitrary states
𝑥,𝑦 ∈ Ω, in general it is not possible to reach state 𝑦 starting from
state 𝑥 with a sequence of states 𝑥 = 𝑧0, 𝑧1, . . . , 𝑧𝑘 = 𝑦 such that
𝑃 (𝑧𝑖 , 𝑧𝑖+1) > 0 for every 𝑖 = 0, 1, . . . , 𝑘 − 1. However, if we restrict
the state space to the subset Ω̂ ⊆ Ω of all the states that can be
reached starting from the empty graph𝐺0 = (𝑉 , ∅), it is easy to see
that the Markov chain restricted to state space Ω̂ is irreducible and
aperiodic (see, e.g., Chapters 1.5-1.7 in [21] for some background).
Hence, there is a unique stationary distribution 𝜋 over Ω̂ such that,

starting from any state 𝑥 ∈ Ω̂, 𝑃𝑡 (𝑥, ·) converges to 𝜋 as 𝑡 goes to
infinity (see, e.g., Theorem 4.9 in [21]).

If, by contradiction, there was a probability distribution 𝜋

over Ω̂ satisfying the detailed balanced equation 𝜋 (𝑥)𝑃 (𝑥,𝑦) =

𝜋 (𝑦)𝑃 (𝑦, 𝑥), then 𝜋 would be stationary for 𝑃 (see, e.g., Proposi-
tion 1.20 in [21]) and, for the uniqueness of the stationary distribu-
tion, we would have 𝜋 = 𝜋 . Notice that, since 𝜋 is the stationary
distribution of an irreducible Markov chain with state space Ω̂,
then 𝜋 (𝑥) > 0 for every 𝑥 ∈ Ω̂. However, it is not difficult to find
two states 𝑥,𝑦 ∈ Ω̂ such that 𝑃 (𝑥,𝑦) > 0 and 𝑃 (𝑦, 𝑥) = 0. Indeed,
consider two graphs 𝑥 and 𝑦 such that in both of them each node
has degree between 𝑑 and 𝑐𝑑 , and the set of edges in 𝑦 is a subset of
the set of edges in 𝑥 . Clearly 𝑃 (𝑥,𝑦) > 0, since 𝑃 (𝑥,𝑦) is at least as
large as the probability that exactly all the edges in 𝑥 that are not
in 𝑦 disappear during Step 3 of the E-RAES, and 𝑃 (𝑦, 𝑥) = 0, since
in 𝑦 every node has degree between 𝑑 and 𝑐𝑑 thus no new edges
are created during Steps 1 and 2 of the E-RAES model. Hence for
such two states it must be 0 < 𝜋 (𝑥)𝑃 (𝑥,𝑦) ≠ 𝜋 (𝑦)𝑃 (𝑦, 𝑥) = 0.
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