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Abstract Laser-induced fluorescence (LIF) provides the ability to distinguish organic mate-
rials by a fast and distant in situ analysis. When detecting the substances directly in the
environment, e.g., in an aerosol cloud or on surfaces, additional fluorescence signals of other
fluorophores occurring in the surrounding are expected to mix with the desired signal. We
approached this problem with a simplified experimental design for an evaluation of clas-
sification algorithms. An upcoming question for enhanced identification capabilities is the
case of mixed samples providing different signals from different fluorophores. For this work,
mixtures of up to four common fluorophores (NADH, FAD, tryptophan and tyrosine) were
measured by a dual-wavelength setup and spectrally analyzed. Classification and regression
are conducted with neural networks and show an excellent performance in predicting the
ratios of the selected ingredients.

1 Introduction

Environmental monitoring of biological agents is a key issue in the safety and security fields.
It aims at avoiding the natural, accidental and intentional spreads of hazardous agents, with
dangerous or even lethal consequences for the local community. Nowadays, the environmen-
tal biomonitoring is frequently performed by sampling and successive laboratory analyses,
which make the monitoring discontinued, sporadic and usually ineffective (especially time-
consuming). Living organisms ubiquitously contain numerous fluorophores such as coen-
zymes and amino acids that tend to fluoresce when excited by electromagnetic radiation of a
certain wavelength [1,2]. Hence, agents of different fluorophore compositions emit different
fluorescent spectra. This property makes laser-induced fluorescence (LIF) spectroscopy a

a e-mail: marian.kraus@dlr.de (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-021-02019-1&domain=pdf
http://orcid.org/0000-0002-1359-0260
http://orcid.org/0000-0002-5385-9420
http://orcid.org/0000-0002-4377-9152
http://orcid.org/0000-0002-1809-0257
http://orcid.org/0000-0003-2778-6624
http://orcid.org/0000-0003-4935-9893
http://orcid.org/0000-0003-4414-6119
http://orcid.org/0000-0002-1687-7996
http://orcid.org/0000-0002-4123-1716
http://orcid.org/0000-0003-0861-558X
mailto:marian.kraus@dlr.de


 1122 Page 2 of 6 Eur. Phys. J. Plus        (2021) 136:1122 

valid technique for the detection and classification of biological agents like pathogenic bac-
teria, allowing developing a specific instrument for the continuous biomonitoring by standoff
detection. Since not all fluorescent matter is dangerous, a proper classification of the agents
must be achieved by a spectroscopic approach, in order to distinguish between dangerous
and safe cases.

When detecting biological threats without prior sample preparation, fluorescence from
other organic material occurring in the environment is expected. Although the classification
of pure samples of bacteria [3] and viruses [4] is highly performant, algorithms able to clas-
sify the presence of different classes in a mixed sample have not been deeply investigated.
The capability to discriminate agents in mixtures or in the environment with fluorescent
background is fundamental to develop an instrument which works under realistic conditions,
avoids false alarms and guarantees a high sensitivity [5]. Because biological agents fre-
quently have similar spectra, their discrimination may be challenging, even in pure samples
[1–3,6,7]. In mixed samples, the measured spectrum is a combination of the emission of
all fluorescent matter and possible interactions (e. g. quenching), making the discrimination
of single classes even more challenging. In the last decades, machine learning approaches
have become powerful tools for problems and are the state-of-the-art technology to analyze
complex systems with large quantities of data. For LIF spectroscopy, machine learning algo-
rithms, such as neural networks and decision trees, have been successfully applied to the
classification of pure biological agents. High classification performances (more than 90%)
have been obtained in the most of applications, remote sensing included. On the contrary, no
results and detailed investigations about the concentration measurements and classification
of mixture samples are available in the literature [4,8–10].

The present work is a resumption of a previous article [11] where samples of different
bacteria could be distinguished by using their LIF signals. In this context, two of the most
frequently asked questions address the ambiguity in handling either mixed samples or sub-
stances on unknown surfaces. A solution of the latter one has already been applied for a patent
[12]. And here, seizing the first question, the classification and prediction of concentrations
of different agents in mixed samples is investigated with LIF data. The algorithm for mixture
classification is based on a neural network (NN) approach [13–19]. The algorithm is tested
with four bio-fluorophores in different ratios and concentrations: nicotinamide adenine dinu-
cleotide (NADH), flavin adenine dinucleotide (FAD), tyrosine (TYR) and tryptophan (TRP).
To avoid metabolic variations of living biological samples, these defined substances have
been chosen for this first investigation. To the authors’ knowledge, the results have validated
for the first time the applicability of LIF to classify and predict the relative concentration of
each agent contained in a mixed sample.

2 Materials and methods

Fluorescence spectra were recorded with a dual-wavelength setup described by Gebert et
al. [11], providing with alternating pulses of a Nd:YAG laser at 266 nm and 355 nm with a
repetition rate of 100 Hz and pulse lengths of 0.7 ns. Pulse energies are adjusted for each
sample up to 250 µJ depending on the fluorescence intensity. A Newtonian telescope with
diameter of 400 mm is used to collect the fluorescence emission from 22 m standoff distance.
The signal is guided to a spectrometer with 32 channels covering the optical range from
250 nm to 680 nm. Each record includes 100 times the spectral response for both excitation
wavelengths. All measurements (see Fig. 1) were taken starting with stock solutions of TYR,
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Fig. 1 Scaled fluorescence
spectra of tyrosine (green),
tryptophan (purple), NADH
(turquoise) and FAD (red) after
excitation with 266 nm

Fig. 2 Schematic illustration of the developed algorithm. After splitting the data into two primary sets, the
final prediction models are tested only with the test set excluded

TRP, NADH and FAD. These have been diluted and mixed to 159 different samples, and
between 100 and 800 fluorescence spectra have been recorded.

From the acquired data, channels with misleading information (e.g., spectral regions which
are below excitation or blocked by optical filters) are discarded. For both excitation wave-
lengths, spectra are scaled from 0 to 1 for a comparative usage and as a necessary for later
data processing. The overall data set consists of 88100 spectra containing information of 43
fluorescence features.

The algorithm developed in this work consists of an ensemble of feed forward neural
networks. Being the algorithm supervised, the spectra have been divided into primary training
set and “primary” test set. The primary training set is the effective training set of the ensemble.
For each neural network, it is randomly divided into “secondary” training set, validation set
and test set (Fig. 2). Each neural network solves a regression problem and is trained to predict
the relative concentration of each agent. Then, the mean and the standard deviation of each
relative concentration are calculated using the output of each neural network. The mean
concentration is the concentration predicted by the algorithm, and the standard deviation
is its uncertainty. The presence of one agent (classification problem) is then calculated by
a hypothesis test (t-test), where the null hypothesis is that there is not the agent. Thus, the
t-score is calculated as the mean concentration divided by its standard deviation. If the t-score
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is higher than a specific threshold (which is optimized according to the acceptable type-1
error), the algorithm rejects the null hypothesis and classifies the agent as “present.” Then,
the ensemble is applied to the primary test set (which has never been included for training
the model) as required.

3 Results

Figure 3 shows the combined results after classification and regression of the test data set.
The scatter plots in the top panels of each subfigure show for each substance the relative
concentration as function of the measurements sorted in ascending concentration. The bar
plots (bottom) show the false positives (red) and the false negatives (blue). The generated
models are applied to the primary test set. The grids show the combined results after classifi-
cation and regression. The measurement indices are sorted according to the true ratios. Blue
lines represent the actual, and the red dots are the predicted values. For each substance, the
coefficient of determination R2 is found to be larger than 0.99. The bar plots (bottom) show
the false positives in red and the false negatives in blue. The goodness of the regression fit
and the classification performance given by sensitivity and specificity are given in Table 1.
The average goodness of the regression fit is given by the coefficient of determination R2

and found to be higher than 99.4 %, and the calculated classification performances in terms
of sensitivity and specificity are 99.3 % and 99.65 %, respectively.

Fig. 3 Relative concentration as a function of the measurements. FAD (a), NADH (b), TRP (c) and TYR (d)
sorted in ascending concentration (blue line: actual value, red dots: predicted value. The lower panels highlight
false negative or false positive predictions for each substance)

123



Eur. Phys. J. Plus        (2021) 136:1122 Page 5 of 6  1122 

Table 1 Fit results for regression model (R2) and sensitivity and specificity of the classification model

Substance R2 Sensitivity Specificity

FAD 0.994 0.995 1.000

NADH 0.993 0.991 0.986

TRP 0.992 0.986 1.000

TYR 0.998 1.000 1.000

4 Summary

In this evaluation, substances have been selected with clearly different fluorescence signatures
(Fig. 1). It is to be expected that a discrimination of samples with higher similarity in their
fluorescence features will become more challenging. However, the approach in this work,
combining classification and regression, demonstrates the ability to predict the presence of
an agent in a mixture of substances and to predict ratios of mixed fluorophores by LIF. These
findings are of high importance in the development of an instrument for biological detection.
For that, one may distinguish firstly between hazardous and non-hazardous agents. Moreover,
the disturbing influence of background materials may be strongly decreased. Since it is
expected that the classification performances of one agent will strongly drop if its fluorescence
intensity is in the order of the background signal, a sensitivity analysis is recommended
regarding the maximum of the fluorescence signal ratios. Detailed analyses and discussions
about performance, potential and limitation are still in progress and will be fully presented
in a future work.
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