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Abstract
We study the effect of Feigin’s flat degeneration of the type A flag variety on the defin-
ing ideals of its Schubert varieties. In particular, we describe two classes of Schubert
varieties which stay irreducible under the degenerations and in several cases we are
able to encode reducibility of the degenerations in terms of symmetric group com-
binatorics. As a side result, we obtain an identification of some degenerate Schubert
varieties (i.e. the vanishing sets of initial ideals of the ideals of Schubert varieties with
respect to Feigin’s Gröbner degeneration) with Richardson varieties in higher rank
partial flag varieties.

Keywords Schubert varieties · Gröbner degenerations · Feigin’s degeneration

1 Introduction

Let G be a complex simple Lie group and let P ⊂ G be a parabolic subgroup. In
[10], Feigin introduced a flat degeneration of the flag variety G/P , which is equipped
with an action of the M-fold product of the additive group of the field (M being the
dimension of a maximal unipotent subgroup of G).1

1 Feigin’s degeneration should not be confused with the toric degeneration of the flag variety that is
associated to the Feigin–Fourier–Littelmann–Vinberg polytope. In fact, the degenerate flag variety studied
in this paper is not toric, but does admit a degeneration to the toric variety associatedwith the FFLVpolytope.
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These degenerations of flag varieties (and some generalizations in type A) have
been intensively studied in the past years from many different perspectives (see, for
example, [4–6, 9, 11, 18]).

In this paper, we deal with the effect of Feigin’s degeneration on the Schubert
varieties insideF�n := SLn/B, for B the Borel subgroup of upper triangular matrices.
In [10] it is shown that in type A the degeneration F�a

n of F�n can be embedded into
a product of projective spaces, exactly as F�n , and that the defining ideal is generated
by degenerate Plücker relations. More precisely, the defining ideal IF�n of F�n is
generated by Plücker relations and the defining ideal Ia

F�n
is obtained as the initial ideal

inw(IF�n )with respect to aweight vectorw (whose components are indexed byPlücker
coordinates), as described in Sect. 2.2.1. Moreover, if v ∈ Sn is a permutation, it is
well-known that the ideal Iv of the Schubert variety Xv = BvB/B ⊆ F�n is generated
by the Plücker relations together with vanishing of certain Plücker coordinates (see
Sect. 2.3 for a more precise formulation). Thus it is natural to ask what happens to Iv

under Feigin’s degeneration, that is to investigate inw(Iv).
From the first non-trivial example, it is already clear that not all Schubert varieties

under Feigin’s degeneration will stay irreducible: for n = 3, indeed, one of the six
Schubert varieties degenerates to a reducible variety. Therefore, a considerable part of
this paper is directed towards understanding this reducibility phenomenon.

We recall that the cohomology ring of F�n can be identified (after doubling the
degree) with its Chow ring, and the latter is generated by Schubert classes. Moreover,
it is shown in [5] that F�a

n admits an affine paving and hence its cohomology ring
can be identified (up to doubling the degree) with its Chow ring. Therefore we expect
the above mentioned reducibility phenomenon to be related to the surjectivity of the
cohomology ring map ψ : H∗(F�a

n, Z) → H∗(F�n, Z) proven in [18]. It would be
interesting to investigate this relationship, and in particular deduce a description of
the kernel of ψ in terms of Schubert classes.

We should mention here that what we refer to as Feigin’s degeneration is in fact
a modified version of his original construction, which was coming from Lie theory.
The version we deal with in this paper is the one which has been studied in [6]. The
variety one obtains in this way is isomorphic to Feigin’s original degeneration, but
in some sense it behaves better with respect to Schubert varieties. In fact, Caldero
noticed in [2] that there does not exist a (flat) toric degeneration of the flag variety
under which all Schubert varieties degenerate to toric varieties. For n = 3 (which is
the only case, apart from n = 2, in whichF�a

n is toric) our version of the degeneration
preserves irreducibility of all but one Schubert variety, while two Schubert varieties
would become reducible under Feigin’s original definition. This is why we feel that
in this setting the definition we use is sort of optimal.

Before focusing on Schubert varieties which become reducible after degenerating,
we first describe some cases in which they stay irreducible (see Sect. 3). In particular,
we prove that there is a class of Schubert varieties (indexed by permutations which
are less or equal than a distinguished Coxeter element) whose defining ideals are not
affected by the degeneration (see Proposition 2).

Section 4 is devoted to sufficient conditions on the permutation v such that the initial
ideal inw(Iv) is not prime. The strategy is as follows: we look for Plücker relations
whose initial term is a (degree 2) monomial when considered modulo the Plücker
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coordinates vanishing on Xa
v := V (inw(Iv)), or, equivalently, vanishing on Xv . The

efficiency of some of the conditions we give is then tested by looking at the n = 4 and
n = 5 examples, for which we can detect all initial ideals containing monomials (see
Tables 1 and 2).

In previous joint work with Cerulli Irelli [6], the second author proved that the
degenerate flag variety F�a

n can be embedded in the flag variety SL2n−2/P of partial
flags in C

2n−2 consisting of odd dimensional spaces (that is, P = Pω1+ω3+...+ω2n−3 ).
Under this embedding, it was shown in [6] that F�a

n is isomorphic to a Schubert
variety. From this fact (together with classical results) one could obtain a new proof
of projective normality, Frobenius splitting, and rationality of the singularities ofF�a

n .
In Sect. 5 we further exploit such an isomorphism and study the effect of Feigin’s
degeneration on Schubert varieties inside SL2n−2/P . The idea is to show irreducibility
of the degeneration of some Schubert variety by proving that the above-mentioned
embedding sends it to a Richardson variety. Although our main focus is the analysis
of Plücker relations (cf. Sects. 4 and 3), for which there is no need to move to a
higher rank (partial) flag variety, we decided to dedicate a section to the connection
with Richardson varieties. By comparing Proposition 2 with Lemma 7 we obtain a
realization of some Richardson varieties inside SL2n−2/P as Schubert varieties in a
lower rank (complete) flag variety.

The last section of the paper deals with Schubert divisors, that is Schubert varieties
of codimension one in F�n . By applying our reducibility criteria from Sect. 4, we are
able to prove that if n is even all Schubert divisors become reducible, while for n
odd this happens for all but one. In this case, the remaining divisor is shown to be
isomorphic to a Richardson variety inside SL2n−2/P , and hence irreducible.

We want to point out that our paper is very different in spirit from [11], where
irreducible flat degenerations of Schubert varieties corresponding to some special
Weyl group elements (triangular elements) are produced by considering PBW-
degenerations ofDemazuremodulesVw(λ) and then realizing the desired degeneration
as the closure of an appropriateG

M
a -orbit insideP(Vw(λ)). So for any Schubert variety

which is indexed by a triangular element (see [11, Definition 1]) one can construct
a flat irreducible degeneration via Fourier’s procedure, while in this article we fix
the degeneration (Feigin’s) of the whole flag variety and study its effect on Schubert
varieties (which are hence simultaneously degenerated).

Since a first draft of this paper appeared on the arxiv more research has been done
regarding degenerations of Schubert varieties.Among them [7],where similarmethods
are employed to study Gröbner degenerations of Schubert varieties, and [3, 15] which
are very different in flavour and closely related to [11].

2 Preliminaries and notation

2.1 Symmetric group combinatorics

The combinatorics of the symmetric group control many geometric properties of F�n

and its Schubert varieties, therefore we spend a little time here introducing the notation
we will need later on.
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For any two positive integers i, j ∈ Z≥1, with i ≤ j we denote by [i, j] := {a ∈
Z | i ≤ a ≤ j}. Moreover, we use the short hand notation [ j] := [1, j]. We write([n]

k

)
for the set of subsets of cardinality k inside [n].

Let n ≥ 2 and denote by Sn the symmetric group. Recall that the symmetric
group Sn admits a presentation as a Coxeter group, with set of simple reflections
{si | i = 1, . . . , n − 1}, where si denotes the transposition (i, i + 1). We will use
the standard terminology and say that a product si1 . . . sir is a reduced expression
for w ∈ Sn if w = si1 . . . sir and all other expressions of w as a product of simple
reflections w = s j1 . . . s jt are such that t ≥ r . In this case r = �(w) is called the
length ofw.We denote by≤ the Bruhat order on Sn and recall the following equivalent
characterization (see, for example, [1, Theorem 2.1.5]): For v ∈ Sn and i, j ∈ [n] set

wi, j = #{a ∈ [i] | w(a) ≥ j}. (2.1)

Then

v ≤ u ⇔ vi, j ≤ ui, j for all i, j . (2.2)

Below we will also need that if v ∈ Sn and i ∈ [n − 1], then
vsi < v ⇔ v(i) > v(i + 1),

or, equivalently,

siv < v ⇔ v−1(i) > v−1(i + 1).

The symmetric group Sn acts on
([n]

k

)
for any k: if I = {i1, . . . , ik} ∈ ([n]

k

)
then

v(I ) := {v(i1), . . . v(ik)}.
This action is transitive, so that

([n]
k

)
is identifiedwith the Sn-orbit of [k] and hencewith

the set of minimal length coset representatives in Sn/〈s1, . . . , sk−1, sk+1, . . . , sn−1〉.
In this way the Bruhat order on Sn induces a partial order on

([n]
k

)
(see, for instance, [1,

Proposition 2.5.1]) that we also denote by≤. Such an order has an explicit description
if we arrange the elements of the subsets in increasing order: let I = {i1 < i2 < . . . <

ik}, J = { j1 < j2 < . . . < jk} ∈ ([n]
k

)
, then

I ≤ J ⇔ it ≤ jt for all t ∈ [k].
We will sometimes write elements v ∈ Sn as [v(1), v(2), . . . , v(n)]. This is referred
to as the one-line notation.

2.1.1 Sequences

In the following sections, we will often need to deal with sequences (i1, . . . , ik) rather
than sets {i1, . . . , ik}. We denote by S(n, k) the set of sequences of k pairwise distinct
numbers between 1 and n.
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Given two sequences I1 = (i (1)1 , . . . , i (1)k ) ∈ S(n, k), I2 = (i (2)1 , . . . , i (2)l ) ∈
S(n, l) such that I1 ∩ I2 = ∅, we denote by (I1, I2) := (i (1)1 , . . . , i (1)k , i (2)1 , . . . i (2)l ) ∈
S(n, k + l) the sequence obtained by concatenation.

If d ≥ k, L ∈ S(n, d) and J = ( j1, . . . , jk) ∈ S(n, k), then the sequence
L ′ = (L\(lr1 , . . . , lrk )) ∪ ( j1, . . . jk) ∈ S(n, d) is obtained from L by replacing the
subsequence (lr1, . . . , lrk ) with ( j1, . . . , jk), that is l ′a = la if a /∈ {r1, . . . , rk} and
l ′a = jb if a = rb. There is a forgetful map

F : S(n, k) →
([n]

k

)
, (i1, . . . , ik) �→ {i1, . . . ik}.

By abuse of notation, if I ∈ S(n, k) and v ∈ Sn , we will write I ≤ v([k]) instead of
F(I ) ≤ v([k]) (and I ≥ v([k]), I � v([k]), etc., will have an analogous meaning).

2.1.2 A special Coxeter element

The Coxeter element c = sn−1sn−2 · · · s2s1 ∈ Sn will play an important role later on.
Observe that in the one-line notation

c = [n, 1, 2, 3 . . . , n − 1].

Thus, by [1, Proposition 2.4.8], for a subset I ∈ ([n]
d

)
the following holds

I ≤ c([d]) ⇔ I = [d − 1] ∪ {b} for d ≤ b ≤ n. (2.3)

2.2 Basics on the flag variety

Let n ≥ 2. We denote by F�n the variety of complete flags in C
n . Let (ei )1≤i≤n be

the standard basis of C
n . Let B ⊂ SLn be the Borel subgroup of upper triangular

matrices. The group SLn acts transitively on F�n and we can identify the flag variety
with the quotient SLn/B by looking at the SLn-orbit of the standard flag E• = ({0} ⊂
E1 ⊂ · · · ⊂ En−1 ⊂ C

n) ∈ F�n with

Ei := spanC{e1, . . . , ei } (i = 1, . . . n − 1).

Recall that under the left action of B, the flag variety decomposes as a union of Schubert
cells indexed by the elements of the symmetric group Sn :

SLn/B =
⊔

v∈Sn

BvB/B

where, by abuse of notation, v in BvB/B denotes the corresponding permutation
matrix in SLn . Finally, let Xv be the Schubert variety, that is the closure BvB/B of a
Schubert cell.
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Analogously, also B−, the Borel subgroup of lower triangular matrices, acts by left
multiplication on SLn/B, providing the decomposition:

SLn/B =
⊔

u∈Sn

B−u B/B.

We denote by Xu the opposite Schubert variety B−u B/B. In Sect. 5, we will also
consider Richardson varieties Xu

v := Xv ∩ Xu .

2.2.1 Plücker relations

Our main reference for Plücker coordinates and relations is [12], while we refer to
[10] for the degenerate Plücker relations.

We start by recalling the Plücker embedding of a Grassmannian. Recall that
(ei )1≤i≤n is the standard basis of C

n , so that

{ei1 ∧ · · · ∧ eik | 1 ≤ i1 < i2 < . . . < ik ≤ n}

is a basis of ∧k
C

n . Let (∧k
C

n)∗ be the dual vector space, then the Plücker coordinate
pi1,...,ik ∈ (∧k

C
n)∗ for 1 ≤ i1 < i2 < . . . < ik ≤ n is defined to be the basis element

dual to ei1 ∧ . . . ∧ eik . For i1, . . . , ik ∈ [n] pairwise distinct, but not necessarily
increasing, the Plücker coordinate pi1,...,ik has the following property

pσ(i1),...,σ (ik ) = (−1)�(σ ) pi1,...,ik for all σ ∈ Sn .

Denote by pI the Plücker coordinate corresponding to a sequence I = (i1, . . . , ik) ∈
S(n, k). In the following sections it will be sometimes convenient to simplify notation
and index some Plücker coordinates by a set instead of a sequence. This has to be
interpreted as being indexed by the sequence obtained by arranging the elements of
the set in an increasing order.

The Plücker embedding is the map

Gr(k, C
n) ↪→ P(∧k

C
n) (2.4)

which sends a k-dimensional subspace V of C
n to the collection of the images of V

under the Plücker coordinates.
The flag variety is embedded into the product of Grassmannians

F�n ↪→ Gr(1, C
n) × Gr(2, C

n) × · · · × Gr(n − 1, C
n).

By composing the latter embedding with the embedding (2.4) for each Grassmannian
in the product, we get

F�n ↪→ PC
n × P(∧2

C
n) × · · · × P(∧n−1

C
n).
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Denote by IF�n the (homogeneous) ideal of F�n in C[pi1,...,ik | 1 ≤ i1 < i2 < . . . <

ik ≤ n, k ∈ [n − 1]] with respect to this embedding. Then IF�n is generated by
elements in

{Rk
( j1,..., je),(l1,...,ld ) | e ≤ d, k ∈ [e]}

given by

Rk
J ,L = pJ pL −

∑

1≤r1<···<rk≤d

pJ ′ pL ′ , (2.5)

where L = (l1, . . . , ld) ∈ S(n, d), J = ( j1, . . . , je) ∈ S(n, e), L ′ =
(L\(lr1 , . . . , lrk )) ∪ ( j1, . . . , jk) and J ′ = (J\( j1, . . . , jk)) ∪ (lr1 , . . . , lrk ). The ele-
ments Rk

J ,L will be referred to as Plücker relations. To simplify notation we set

Lk
J ,L =

{

(J ′, L ′) |
∃1≤r1<···<rk≤#L,

J ′=(J\( j1,..., jk ))∪(lr1 ,...,lrk ),

L ′=(L\(lr1 ,...,lrk ))∪( j1,..., jk )

}

. (2.6)

The weight vector w ∈ R
(n
1)+···+( n

n−1) is defined componentwise by setting for
I = {i1, . . . , ik} ∈ ([n]

k

)

wI = #{r | k ≤ ir ≤ n − 1}.

If I1, . . . , Ir ∈ ([n]
k

)
, the w-weight of the monomial

∏r
t=1 pIt is

∑r
t=1wIt , while the

initial form of a polynomial f consists of the sum of thosemonomials whosew-weight
is minimal among the weights of all monomials in f . Given an ideal I ⊂ C[pi1,...,id |
1 ≤ i1 < i2 < · · · < id ≤ n, d ∈ [n − 1]] its initial ideal is inw(I) = (inw( f ) |
f ∈ I). A (finite) set of elements in I whose initial forms generate inw(I) is called
a Gröbner basis. A Gröbner basis for IF�n whose elements are the Plücker relations
(2.5) is computed in [10, Theorem 3.13]. The initial forms of its elements are given
by

inw(Rk
J ,L) = pJ pL −

∑

(J ′,L ′)∈Lk
J ,L

{lr1 ,...,lrk }∩[e,d−1]=∅

pJ ′ pL ′ ,

where the leading term is non-zero, only if

{ j1, . . . , jk} ∩ [e, d − 1] = ∅. (2.7)

We can choose J , L in such a way that (2.7) holds. Observe that for e = d, we always
have inw(Rk

J ,L) = Rk
J ,L since the condition (2.7) is empty.
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Definition 1 ([10]) The degenerate flag variety is the vanishing of the ideal inw(IF�n ),
that is

F�a
n := V (inw(IF�n )) ⊂ PC

n × P(∧2
C

n) × · · · × P(∧n−1
C

n).

Remark 1 Feigin’s original definition, valid for any simple Lie group, was different
from the one we have just given, which is an equivalent characterization of the type A
degenerate flag variety by [10, Theorem 3.13]. Explicitly, to obtain our degeneration
from Feigin’s original one, a global shift by −1 (modulo n) to all indices is needed.
As already mentioned in the introduction, we modify Feigin’s definition to match the
one considered in [6], since we believe that it exhibits a better behavior with respect
to Schubert varieties. Indeed, by [2] in any (flat) toric degeneration of the flag variety,
under which all Schubert varieties degenerate to toric varieties, at least one of them
becomes reducible. For n = 3 (which, together with n = 2, is the only case in which
F�a

n is toric) the version from [6] of the degeneration preserves irreducibility of all
but one Schubert variety. Certainly, by this choice we loose some symmetry, as with
Feigin’s original definition we would have two Schubert varieties becoming reducible
(thus a symmetry exchanging 1 and 2).

2.3 Ideals for Schubert varieties and their degeneration

For v ∈ Sn the defining ideal of the Schubert variety Xv ⊂ F�n is given by the
vanishing of (pI )I �≤v([#I ]). It is shown in [17, §10.12] (see also [16, Theorem 3]) that
by embedding Xv ↪→ PC

n × P(∧2
C

n) × · · · × P(∧n−1
C

n), we obtain the ideal

Iv := IF�n + (pI )I �≤v([#I ]) (2.8)

of C[pi1,...,id | 1 ≤ i1 < i2 < . . . < id ≤ n, d ∈ [n − 1]]. Feigin’s degeneration of
the flag variety induces a degeneration Xa

v ⊂ F�a
n of any Schubert variety Xv ⊂ F�n :

Xa
v := V (inw(Iv)) ⊂ PC

n × P(∧2
C

n) × · · · × P(∧n−1
C

n). (2.9)

In what followswe study the initial ideals inw(Iv) in detail. Note that inw(pI ) = pI

for all I ∈ S(n, d), for all d ∈ [n − 1]. Moreover, we have an inclusion:

inw(Iv) ⊇ (inw(Rk
J ,L))k,J ,L + (pI )I �≤v([#I ]). (2.10)

The following example shows that this inclusion may be strict. In the proof of
Theorem 1 instead we will encounter examples of (2.10) being an equality.

Example 1 Consider the ideal IF�4 . Among its Plücker relations we have

p4 p123 − p3 p124 + p2 p134 − p1 p234.

The first two terms have w-weight 1 while the last two have w-weight 2, so its initial
form is p4 p123 − p3 p124. Now consider v = s1s2s3 ∈ S4, which in the one-line
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notation is [2, 3, 4, 1]. Hence, {pI }I �≤v([#I ]) = {p3, p4, p14, p24, p34}. In particular,
this implies that f := p2 p134 − p1 p234 ∈ Iv and by definition its initial form lies
in inw(Iv). As both monomials have the same w-weight, f is equal to its initial
form. Notice however that f does not lie in (inw(Rk

J ,L))k,J ,L + (pI )I �≤v([#I ]). This
demonstrates that the containment in (2.10) is strict in general.

3 Two classes of irreducible Xa
v

We investigate two classes of Schubert varieties which degenerate to irreducible vari-
eties. In this section we use some basics on Gröbner bases which we summarize for
completeness. For more details we refer to [14, 20].

A term order on C[x1, . . . , xn] is a total order < on the set of monic monomials in
C[x1, . . . , xn] such that for every α, β, γ in Z

n≥0 we have that

(i) 1 ≤ xα, and (ii) if xα < xβ, then xα+γ < xβ+γ .

The initial monomial of an element f = ∑
α∈Z

n≥0
cαxα ∈ C[x1, . . . , xn] with respect

to< is in<( f ) := max<{xα | cα �= 0}. The initial ideal of an ideal J ⊆ C[x1, . . . , xn]
with respect to < is defined as in<(J ) := (in<( f ) | f ∈ J ).

Let in<(J ) be a monomial initial ideal of the ideal J for some term order < on
C[x1, . . . , xn]. Then the set B< := {x̄α | xα /∈ in<(J )} is a vector space basis of
C[x1, . . . , xn]/J (and C[x1, . . . , xn]/ in<(J )) called standard monomial basis, see
e.g. [20, Proposition 1.1].

Let < be a term order on C[x1, . . . , xn] and G = {g1, . . . , gs} a finite generating
set of an ideal J . Then the S-polynomial of gi and g j is defined as

S(gi , g j ) := lcm(in<(gi ), in<(g j ))

in<(gi )
gi − lcm(in<(gi ), in<(g j ))

in<(g j )
g j .

Buchberger’s criterion says thatG is aGröbner basis if and only if for all 1 ≤ i < j ≤ s
the S-polynomial S(gi , g j ) reduces to zero with respect to {g1, . . . , gs}, see e.g [14,
Theorem 2.3.2].

3.1 Small flag varieties

The main result of this section is the following.

Theorem 1 Let v ∈ Sn be the minimal representative of the longest word in
Sn/〈s1, . . . , si , si+r , . . . , sn−1〉 for suitable i and r. Then

Xa
v

∼= F�a
r .

In particular, Xa
v is irreducible.
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Before we prove the result, let us establish some useful lemmata. Note that written
in one-line notation v is of form

v = [1, 2, . . . , i, i + r , i + r − 1, . . . , i + 1, i + r + 1, . . . , n].

So v( j) = j for j ∈ [i] ∪ [i + r + 1, n] and v(i + k) = i + r − k + 1 for k ∈ [r ].
Lemma 1 For the Schubert variety we have Xv

∼= F�r . In particular, the only non-
vanishing Plücker coordinates besides p[s] for s ≤ n −1 are associated with the index
sets in

Jv = {I | I = [i] ∪ {l1, . . . , ls}, s ∈ [r − 1], l j ∈ [i + 1, i + r ] ∀ j}. (3.1)

Proof There is a bijection

ρ : Jv →
r−1⋃

s=1

([r ]
s

)
, I �→ Ĩ ,

where if I = [i]∪ {l1, l2 . . . , ls}, we set Ĩ = {l1 − i, l2 − i, . . . , ls − i}. This induces a
bijection between the set of Plücker coordinates �= p[s], s ∈ [n−1]\[i+1, i+r ], which
are non-vanishing on Xv (that is, the ones involved in the relevant Plücker relations) and
Plücker coordinates ( p̃K ) which generate the coordinate ring of F�r . Notice that for
J , L with F(J ), F(L) ∈ Jv , the Plücker relation Rk

J ,L is not identically 0 if and only if

Rk
J̃ ,L̃

is not identically 0 (since this happens for k ∈ [#(L\(L∩J ))] = [#(L̃\(L̃∩ J̃ ))]).
In particular, Iv is generated by {Rk

J ,L}k,J ,L∈Jv
∪ {pI }I /∈Jv∪{[s]|s∈[n−1]}. We extend

the bijection to a map

ρ : C[pI | I ⊂ [n]] → C[pĨ | Ĩ ⊂ [r ]], pI �→
{

pĨ if I ∈ Jv

0 otherwise .
(3.2)

Then ρ((Rk
J ,L)k;J ,L∈Jv

) = IF�r . ��
Remark 2 Note that one could also prove the previous lemma geometrically, since the
Schubert variety is the closure of the Borel orbit.

Next, we establish a connection between the defining ideal of the degenerate flag
variety F�a

r and the initial ideal defining Xa
v . We keep the notation introduced in (3.2)

and (3.1).

Lemma 2 Let w̃ be the weight for F�r , then ρ(inw((Rk
J ,L)k,J ,L∈Jv

)) = inw̃(IF�r ).

Proof Let L = ((1, . . . , i), (l1, . . . , ld)) > J = (( j1, . . . , je), (1, . . . , i)). Consider
the relation Rk

J̃ ,L̃
. Without loss of generality we can assume that J and L are chosen in

such a way that inw(Rk
J ,L) contains the monomial pJ pL . All other monomials pJ ′ pL ′

in inw(Rk
J ,L) are obtained from pJ pL by choosing 1 ≤ r1 < · · · < rk ≤ i + d,

such that {lr1, . . . , lrk } ∩ [i + e, i + d − 1] = ∅. This is the case if and only if
{l̃r1, . . . , l̃rk } ∩ [e, d − 1] = ∅. ��
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In what follows we use Feigin’s standard monomial basis given by semistandard
PBW-tableaux. As we work throughout the paper with conventions for the weight
vector w as in [6] a global shift in the indices of all Plücker variables is needed before
we can use Feigin’s basis in our setting. Whenever we use the combinatorics from
[10] in this section we assume we have applied the global shift to our index sets.

Recall that by [10, Theorem 4.10] there exists a standard monomial basis (indexed
by semistandard PBW-tableaux) for C[pĨ | Ĩ ⊂ [r ]]/ inw̃(IF�r ) (and C[pĨ | Ĩ ⊂
[r ]]/IF�r ), denote it by BPBW.

Lemma 3 There exists a term order ≺ on C[pĨ | Ĩ ⊂ [r ]] such that BPBW equals the
standard monomial basis given by monomials not contained in in≺(IF�r ). Moreover,
the set {Rk

J̃ ,L̃
} is a Gröbner basis for IF�r with respect to ≺.

Proof In [10, Lemma 4.9] Feigin introduces a partial order≤ on C[pĨ | Ĩ ⊂ [r ]] such
that for every monomial paT ∈ C[pĨ | Ĩ ⊂ [r ]] corresponding to a non-semistandard
PBW-tableau T there exists an element f ∈ inw̃(IF�r ) that contains p

aT in its support
and further satisfies

paT ≥ pa for all pa non zero monomial in f .

Moreover, f = pv Rk
J̃ ,L̃

for a fixed monomial pv that divides paT and certain k, J̃ , L̃ .

Given w̃ and the partial order ≤ we define a term order on C[pĨ : Ĩ ⊂ [r ]] as follows:
pu ≺ pv if and only if

(1) w̃ · u > w̃ · v, or 2

(2) w̃ · u = w̃ · v, and pu ≤ pv , or
(3) w̃ · u = w̃ · v, pu and pv are not comparable with respect to ≤, and pu <lex pv .

Here <lex denotes the lexicographic order on C[pĨ : Ĩ ⊂ [r ]] with underlying lexico-
graphic order on the variables corresponding to their index sets. Our term order ≺ is a
refined version of a term order induced by a weight (see, for example the order ≺w in
[20, page 4]). In particular, [20, Proposition 1.8] holds also in our case and we have

in≺(inw̃(IF�r )) = in≺(IF�r ). (3.3)

From [10, Proof of Lemma 4.9] it follows that for paT and f as above we have

in≺( f ) = paT ∈ in≺(IF�r ). (3.4)

In particular, the cosets of the standard monomials, i.e. pu /∈ in≺(IF�r ), form a
(standard monomial) basis for C[pĨ : Ĩ ⊂ [r ]]/IF�r . By (3.3) they also form a basis
for C[pĨ : Ĩ ⊂ [r ]]/ inw̃(IF�r )), denote it by B≺. In particular, we deduce from (3.4)
that every standard monomial corresponds to a semistandard PBW-tableaux. Hence,

2 Note the switch here: pu ≺ pv if w̃ · u > w̃ · v. This is because we have chosen to use the minimum
convention for initial ideals with respect to weight vectors while for initial ideals with respect to term orders
the maximum is considered.
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B≺ ⊂ BPBW. But as both are bases for the same algebra they have to be equal. This
implies the first claim. The second follows as f = pv Rk

J̃ ,L̃
, and so in particular

paT ∈ (in≺(Rk
J̃ ,L̃

))k, J̃ ,L̃ . ��
Proposition 1 The set {Rk

J ,L}k,J ,L∈Jv
∪ {pI }I /∈Jv

is a Gröbner basis for Iv and w,
denoted by Gv;w.

Proof We use≺ as defined in the proof of Lemma 3 and the map ρ from (3.2) to define
a term order on C[pI : I ⊂ [n]]:

pu < pt ⇔ pu /∈ (pI )I /∈Jv
� pt , or pt ,pu /∈ (pI )I /∈Jv

and ρ(pu) ≺ ρ(pt ).

By definition of < and Lemma 2 we have in<(inw(Rk
J ,L)k;J ,L∈Jv

) =
in<((Rk

J ,L)k;J ,L∈Jv
). Moreover, as the Rk

J̃ ,L̃
constitute a Gröbner basis for IF�r and

≺ by Lemma 3, it follows from Buchberger’s criterion that the S-polynomials of
pairs of these elements reduce to zero. Given the map ρ, the same must be true for
S-polynomials of elements Rk

J ,L with J , L ∈ Jv with respect to the term order <.
Hence, in order to verify the claim we only need to compute S-polynomials of the
relevant Plücker relations and the vanishing Plücker variables. Consider Rk

J ,L with

J , L ∈ Jv and pI with I /∈ Jv . Then in<(Rk
J ,L) and in<(pI ) are relatively prime.

So by [14, Lemma 2.3.1] their S-polynomials reduces to zero over Rk
J ,L and pI . As

the same is true for the S-polynomials of variables pI , pI ′ with I , I ′ /∈ Jv , the claim
follows by Buchberger’s criterion. ��
Proof of Theorem 1 We need to show that the isomorphism of Xv and F�r induced by
ρ is induces an isomorphism between the corresponding degenerations. This is true as
by Lemma 2 and Proposition 1 ρ maps the initial ideal defining Xa

v to the ideal defining
F�a

r . Lastly, by [10, §5.1] the degenerate flag variety is the closure of a homogeneous
space and therefore irreducible. As Xa

v
∼= F�a

r by the above, the claim follows. ��
Let i = {i1, . . . , ir } � [n − 1]. We set m := min{i}, M := max{i}, and r := M −

m +1. Let v ∈ 〈si1 , · · · , sir 〉 ⊂ Sn and denote by ṽ the element s̃i1−m+1 · · · s̃ir −m+1 ∈
Sr . In this notation, from the proof of Theorem 1 we can deduce the following result,
which in this case allows one to reduce to smaller rank flag varieties.

Corollary 1 Let i = {i1, . . . , ir } � [n] and v ∈ 〈si1 , · · · , sir 〉 ⊂ Sn. Then for Xa
v ⊂

F�a
n we have

Xa
v

∼= Xa
ṽ ⊂ F�a

r .

3.2 Isomorphic degenerate and original Schubert varieties

In the following we present another instance in which a Schubert variety stays irre-
ducible under Feigin’s degeneration of F�n . In fact, for the class of varieties we deal
with in this section a stronger property holds: the degeneration process does not deform
them, that is Xa

v is isomorphic to the original Schubert variety Xv .
Recall that we denote by c ∈ Sn the special Coxeter element c = sn−1sn−2 · · · s2s1.
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Proposition 2 Let v ≤ c. Then Iv = inw(Iv).

Proof Recall that Iv = ({pI }I �≤v([#I ]) ∪ {Rk
J ,L}k,J ,L) We will show that Rk

J ,L −
inw(Rk

J ,L) ∈ (pI )I �≤v([#I ]) for all k, J , L . If Rk
J ,L = inw(Rk

J ,L) we are done. Other-
wise we have

Rk
J ,L − inw(Rk

J ,L) =
∑

(J ′,L ′)∈Lk
J ,L

{lr1 ,...,lrk }∩[e,d−1]�=∅

pJ ′ pL ′ �= 0.

We claim that in this case L ′ �≤ v([d]) holds. Note that {lr1 , . . . , lrk } ∩ [e, d − 1] �= ∅
implies in particular that there exists x ∈ [e, d −1]with x /∈ L ′ = (L\(lr1 , . . . , lrk ))∪
( j1, . . . , jk). By (2.3),

v ≤ c ⇔ v([d]) = [d − 1] ∪ {b} with d ≤ b ≤ n

it follows that pL ′ ∈ (pI )I �≤v([#I ]). And further, Rk
J ,L − inw(Rk

J ,L) ∈ (pI )I �≤v([#I ]).
Hence,

Iv = (Rk
J ,L)k,J ,L + (pI )I �≤v([#I ]) = (inw(Rk

J ,L))k,J ,L + (pI )I �≤v([#I ]) ⊆ inw(Iv).

Consider any term order < so that in<(Iv) = in<(inw(Iv)). Such a term order exists
as Iv is homogeneous. Then the reduced Gröbner basis for Iv with respect to< is also
a reduced Gröbner basis for inw(Iv) with respect to <. As reduced Gröbner bases are
unique the claim follows. ��

4 Criteria for reducibility

In this section we examine when Schubert varieties become reducible after being
degenerated.Wegive a number of sufficient conditions for certainmonomials of degree
two to be contained in the initial ideal inw(Iw) for w ∈ Sn by repeated applications
of (2.10).

Definition 2 Let w ∈ Sn . A monomial f = ∏
J⊂[n] pεJ

J ∈ inw(Iw), where εJ ∈
{0, 1}, is called an honest monomial if f has degree at least 2 and f /∈ (pI )I �≤w([#I ]).

The following Lemma is straightforward:

Lemma 4 Let w ∈ Sn. If inw(Iw) contains an honest monomial then it fails to be
prime.

4.1 Relations between Gr(1,C
n) and Gr(2,C

n)

We start the discussion by focusing on very special Plücker relations, namely those
between Plücker coordinates on Gr(1, C

n) and on Gr(2, C
n). In this case, we can

classify thew ∈ Sn for which inw(Iw) contains an honest monomial of type p{i} p{ j,k}.
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Fig. 1 The Bruhat posets of
Gr(1, C

4) and Gr(2, C
4) with

intervals given by s1 ≤ v̄ ≤ s2s1
and s3s2 ≤ ¯̄v as in Theorem 2
for j = 2, k = 4

For v ∈ Sn denote by v the minimal length representative of the coset of v in
Sn/〈s2, s3. . . . sn−1〉 and v the minimal length representative of the coset of v in
Sn/〈s1, s3, s4, . . . , sn−1〉.
Theorem 2 Let v ∈ Sn and 1 < j < k ≤ n. Then inw(Iv) contains the honest
monomial p{ j} p{1,k} if and only if v satisfies

s j−1s j−2 · · · s2s1 ≤ v ≤ sk−2sk−3 · · · s2s1 and sk−1sk−2 · · · s3s2 ≤ v.

The conditions on v and v in Theorem 2 are depicted for S4 with j = 2, k = 4 in
Fig. 1.

Proof To simplify notation, for a ∈ [n] we denote pa := p(a), and for a, b ∈ [n] we
write pa,b instead of p(a,b). We will only consider Plücker coordinates corresponding
to increasing sequences in this proof and hence adapt the signs.

Consider for 1 ≤ i < j < k ≤ n the Plücker relation R1
(i),( j,k) = pi p j,k −

p j pi,k + pk pi, j . Note that if inw(R1
(i),( j,k)) = R1

(i),( j,k) the relation will not produce

an honest monomial in inw(Iw) for any w ∈ Sn as Iw is prime. Note that R1
(i),( j,k) �=

inw(R1
(i),( j,k)) only if i = 1. In this case

inw(p1 p j,k − p j p1,k + pk p1, j ) = −p j p1,k + pk p1, j .

As j < k, if p j vanishes on the Schubert variety Xv , then so does pk . Hence, both
monomials are zero on Xv . Similarly, if p1, j vanishes on Xv , then so does p1,k . Our
aim is to determine v ∈ Sn such that one of the two terms of inw(R1

(i),( j,k)) lies in
(pI )I�v([#I ]) but the other does not as in this case, the ideal inw(Iv) contains an honest
monomial. A priori, there are two cases for the restriction of pk and p1,k to Xv:

(1) p1,k �= 0 and pk = 0,
(2) p1,k = 0 and pk �= 0.

Wewill show that in fact the second case can never happen. Both cases yield conditions
on v and v (keeping also in mind that we do not want p j and p1, j to vanish). In the
first case we have the following conditions

s j−1s j−2 · · · s2s1 ≤ v ≤ sk−2sk−3 · · · s2s1 and sk−1sk−2 · · · s3s2 ≤ v, (4.1)
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respectively, in the second case we have

sk−1sk−2 · · · s2s1 ≤ v and s j−1s j−2 · · · s3s2 ≤ v ≤ sk−2sk−3 · · · s3s2. (4.2)

Assume v ∈ Sn is chosen such that the minimal length representatives of the cosets
fulfill the inequalities in (4.2). Then

sk−1sk−2 · · · s2s1 ≤ v ≤ sk−2 · · · s2x

for some x ∈ 〈s1, s3, . . . , sn−1〉. Observe that sk−1 · · · s1(1) = k and

sk−2 · · · s2x(1) =
{
1 if s1x > x
k − 1 if s1x < x .

With the notation as in (2.1) this implies (sk−1 · · · s1)1,k = 1 > (sk−2 · · · s2x)1,k = 0.
But sk−1 · · · s1 ≤ sk−2 · · · s2x , contradicting (2.2). Hence, case (4.2) never applies. ��
Remark 3 Theorem 2 is enough to detect all Schubert varieties inF�3 ↪→ Gr(1, C

3)×
Gr(2, C

3)which become reducible under Feigin’s degeneration. In fact, the only Schu-
bert variety having this property is the one indexed by s1s2. All the other permutations
but the longest element (which indexes the Schubert variety corresponding to the
irreducible variety F�a

n) are ≤ c = s2s1 and hence, by Proposition 2, are irreducible.

4.2 Monomials from other relations

Items (1) to (5) of Theorem 3, formulated below, provide sufficient conditions on w ∈
Sn for the initial ideal inw(Iw) to contain a degree two honest monomial originating
from a Plücker relation between Plücker coordinates on adjacent Grassmannians,
that is Gr(k, C

n) and on Gr(k + 1, C
n) for suitable k. Notice that here we are only

producing sufficient conditions, so that for k = 1we clearly obtain aweaker result than
Theorem 2. Theorem 3 (6) and (7) deal with Plücker relations between not necessarily
adjacent Grassmannians.

Table 1 (resp. Table 2 in the appendix) show to which permutations w ∈ S4 (resp.
S5) each one of the points of Theorem 3 applies. The computations were performed
in Sage [8] and Macaulay2 [13].

Let w ∈ Sn . In the following, it will be convenient to set w([0]) := ∅. Moreover,
since inw(Ie) = Ie, we can exclude the case w = e right away in the following
theorem.

Theorem 3 Let w ∈ Sn \ {e}. If one of the following conditions holds for w, then
inw(Iw) contains an honest monomial of degree 2:

(1) there exist i ∈ [n − 1] with wsi > w and j ∈ [n] such that

i, j ≤ w(i), i �= j and i, j /∈ w([i − 1]) ∪ {w(i + 1)};
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(2) there exist i ∈ [3, n − 1] with wsi > w and l, x ∈ [n] with x �= i − 1, l ≤ w(i)
and w(i + 1) ≤ x, i − 1, such that

i − 1, x ∈ w([i − 1]) ∪ {w(i + 1)} and l /∈ w([i − 1]) ∪ {w(i + 1)};

(3) there exist j ∈ [2, n − 1] with s jw > w and i ∈ [n − 1], i < j such that

j ∈ w([i]), i /∈ w([i]), and j + 1 ≤ w(i + 1);

(4) there exists i ∈ [n − 2] with siw < w and j ∈ [n] such that

i, j /∈ w([i + 1]), j ≤ w(i + 2), i + 1 ∈ w([i + 1]) and i + 1 < j;

(5) there exist i ∈ [2, n − 1] and l ∈ [2, n], l > i with

i /∈ w([i + 1]), l ∈ w([i]), l > w(i + 1) and i > w(i + 1);

(6) for i ∈ [n], minimal with w(i) �= i , it holds w(i) < n and, for the minimal
j ∈ [i + 1, n − 1] such that w( j) > w(i), it holds w(i) /∈ [ j − 1];

(7) for i ∈ [n], minimal with w(i) �= i , it holds w(i) = n and, for the minimal
j ∈ [i + 2, n − 1], such that w( j) > w(i + 1), it holds i /∈ w([i + 1, j − 1]).

Proof (1) Assume there exist i, j fulfilling the conditions above. Let J be any
sequence such that F(J ) = w([i − 1]) ∪ { j} and j1 = j , and let L be any
sequence such that F(L) = w([i − 1]) ∪ {i, w(i + 1)}. Then the Plücker relation
R1

J ,L equals

pJ pL − p(J\( j))∪(i) p(L\(i))∪( j) − p(J\( j))∪(w(i+1)) p(L\(w(i+1)))∪( j).

Taking the initial form with respect to w we obtain

inw(R1
J ,L) = pJ pL − p(J\( j))∪(w(i+1)) p(L\(w(i+1)))∪( j).

Restricting to Xw, we have p(J\( j))∪(w(i+1)) = p(w([i−1]),w(i+1)) = 0 aswsi > w

and so inw(Iw) contains the monomial pJ pL .
(2) Assume such i, l, x exist. Let J be any sequence such that F(J ) = (w([i −

1]) ∪ {w(i + 1)})\{i − 1} and j1 = x , and let L be any sequence such that
F(L) = (w([i − 1]) ∪ {w(i + 1), l}) \ {x} the Plücker relation R1

J ,L , i.e.

pJ pL − p(J\(x))∪(i−1) p(L\(i−1))∪(x) − p(J\(x))∪(l) p(L\(l))∪(x).

Taking the initial form with respect to w we obtain

inw(R1
J ,L) = pJ pL − p(J\(x))∪(l) p(L\(l))∪(x).

Note that (F(L) \ {l}) ∪ {x} = w([i − 1]) ∪ {w(i + 1)} and so restricting to Xw

we have p(L\(l))∪(x) = 0 as wsi > w. So inw(Iw) contains the monomial pJ pL .
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(3) Assume such i and j exist and take J any sequence such that F(J ) = w([i]) and
j1 = j , and L any sequence such that F(L) = (w([i]) ∪ {i, j + 1}) \ { j}. Note
that j ∈ w([i]) and s jw > w imply j + 1 /∈ w([i + 1]). Then

R1
J ,L = pJ pL − p(J\( j))∪(i) p(L\(i))∪( j) − p(J\( j))∪( j+) p(L\( j+1))∪( j).

Taking the initial form with respect to w we obtain

inw(R1
J ,L) = pJ pL − p(J\( j))∪( j+1) p(L\( j+1))∪( j).

As (J \( j))∪( j +1) � w([#J ]) restricting to Xw we have p(w([i])\( j))∪( j+1) = 0.
Hence, inw(Iw) contains the monomial pJ pL .

(4) Assume such i and j exist and consider L any sequence such that F(L) =
w([i + 1]) ∪ { j}, and J any sequence such that F(J ) = siw([i + 1]) = (w([i +
1]) \ {i + 1}) ∪ {i} and j1 = i . Then

R1
J ,L = pJ pL − p(J\(i))∪(i+1) p(L\(i+1))∪(i) − p(J\(i))∪( j) p(L\( j))∪(i)

Taking the initial form with respect to w yields

inw(R1
J ,L) = pJ pL − p(J\(i))∪( j) p(L\( j))∪(i)

Now (J \ (i)) ∪ ( j) = (w([i + 1]) \ (i + 1)) ∪ ( j), but restricting to Xw we have
p(J\(i))∪( j) = 0 as j > i + 1. Hence, inw(Iw) contains the monomial pJ pL .

(5) Assume such i, l exist, take J = w([i]) and L = (w([i +1])\{l})∪{i}. Consider
the relation R1

J ,L :

pJ pL − p(J\(l))∪(i) p(L\(i))∪(l) − p(J\(l))∪(w(i+1)) p(L\(w(i+1)))∪(l).

Taking the initial form with respect to w yields

inw(R1
J ,L) = pJ pL − p(J\(l))∪(w(i+1)) p(L\(w(i+1)))∪(l).

Restricting to Xw we have (F(L) \ {w(i + 1)}) ∪ {l} = (F(w([i + 1]) \ {w(i +
1)}) ∪ {i} and p(w([i+1])\(w(i+1)))∪(i) = 0 as i > w(i + 1). So inw(Iw) contains
the monomial pJ pL .

(6) First note that as w �= e we have that w(i) �= i in particular implies i < n.
Consider J any sequence such that F(J ) = w([i]) = [i − 1] ∪ {w(i)} with
j1 = w(i). Let L be any sequence such that F(L) = [ j − 1] ∪ {w( j)}. As
w(i) /∈ [ j − 1] implies w(i) > j − 1 and so w( j) > w(i) > j − 1, then the set
[ j − 1] ∪ {w( j)} has cardinality j . So,

R1
J ,L = pJ pL − p(w( j),[i−1]) p(L\(w( j)))∪(w(i)) −

∑

r∈[i, j−1]
p(r ,[i−1]) p(L\(r))∪(w(i)).

123



Journal of Algebraic Combinatorics (2024) 59:971–1004 989

Taking the initial form with respect to w yields

inw(R1
J ,L) = pJ pL − p(w( j),[i−1]) p(L\(w( j)))∪(w(i)).

Since w( j) > w(i), the coordinate p(w( j),[i−1]) vanishes in the coordinate ring
of Xw, so that inw(R1

J ,L) ∈ inw(Iw) is a monomial.
(7) Consider J any sequence such that F(J ) = [i]∪{n} = w([i])∪{i} such that j1 =

i , and let L be any sequence such that F(L) = [i −1]∪[i +1, j −1]∪{w( j), n}.
Note that L ≤ w([ j]) as i /∈ w([i + 1, j − 1]), and hence we get

R1
J ,L = pJ pL − p(w( j),w([i])) p(L\(w( j)))∪(i) −

∑

r∈[i+1, j−1]
p(r ,w([i])) p(L\(r))∪(i)

with initial term inw(R1
J ,L) = pJ pL − p(w( j),w([i])) p(L\(w( j)))∪(i). Further

observe that w( j) > w(i + 1) ≥ i , which implies that p(w( j),w([i])) vanishes
in the coordinate ring of Xw. Then R1

J ,L produces a monomial.
��

Remark 4 In principle, we could have assumed i ∈ {2, 3, . . . , n −1} in Theorem 3 (2).
Instead, we exclude the case i = 2, since it never happens under the other assumptions,
for which we would have w(3) ≤ 1 and ws2(2) = w(3) > w(2) contradicting each
other.

Remark 5 In points (6) and (7) of Theorem 3, such a j need not exist, in which case
the criterion would simply not apply.

4.2.1 Efficiency of the various criteria from Theorem 3

Wewant to comment here on how efficient the various criteria of Theorem 3 are, based
on the data we have collected for S4 (see Table 1) and S5 (see Table 2). The data can
be found at the homepage: https://www.matem.unam.mx/~lara/schubert/.

For n = 4, there are 11 permutations w such that at least one Plücker relation
degenerates to a monomial. In the S5-case, this happens for 85 permutations.

Among the criteria collected in Theorem 3, point (6) seems to be themost powerful:
it detects 9 out of 11 permutations for S4, and 65 out of 85 for S5. To cover the missing
two permutations for S4 it is enough to combine Theorem 3 (6) with one of the points
(1),(4),(7) and one between (2) and (5). So that it is enough to apply three of our criteria
to find all w ∈ S4 such that inw(Iw) contains a Plücker relation which degenerates to
a monomial.

Theorem 3 (1) picks 9 out of 11 permutations in S4, and 64 out of 85 for S5.
Theorem 3 (3) covers 8 out of 11 permutations yielding monomial initial ideals for

S4 and 57 out of 85 for S5.
Theorem 3 (4) detects 4 permutations for S4 and 36 permutations for S5.
Theorem 3 (2) and (5) both finds 2 permutations for n = 4 and 22 for n = 5, but

the elements they see are different.
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Finally, Theorem 3 (7) applies to only one permutation, resp. 8 permutations, in
the n = 4, resp. n = 5, case, but it is necessary to cover all the permutations in S5
containing monomial degenerate Plücker relations. For example, it is the only one
among our criteria which can be applied to s1s2s3s4s3s1s2s1.

4.3 Plücker relations not degenerating tomonomials

In this section we study some cases in which none of the Plücker relations produces
a monomial in the defining ideal inw(Iw). Clearly, this does not have to be equivalent
to the irreducibility of the degeneration, but it turns out to be the case for n = 3 (by
Remark 3) and n ∈ {4, 5} (by Macaulay2 computations). We do not know whether
such an equivalence holds in general.

We have seen in Sect. 3.2 that if w ≤ c = sn−1sn−2 · · · s2s1, then the initial ideal
inw(Iw) coincides with Iw. In the following proposition we will show that if we
multiply c on the right by simple reflections sk1 , . . . , skr which commute pairwise and
each appear at most once, then none of the Plücker relations degenerates to amonomial
in inw(Icsk1 ···skr

).
Table 1 (resp. Table 2 in the appendix) show which statements apply to which

elements of S4 (resp. S5).

Proposition 3 For any h ∈ [n − 1], none of the Plücker relations degenerates to a
monomial in inw(Icsh ).

Proof First of all notice that if h = 1, then cs1 < c and the claim follows from
Proposition 2, which says that inw(Ic) = Ic.

If h ∈ [2, n − 1], then csh > c. In this case, if J ≤ c([#J ]) and L ≤ c([#L]), then
inw(Rm

J ,L) being a monomial on Xa
csh

implies that it is a monomial on Xa
c too. But this

is not possible, again by Proposition 2. Therefore we can assume that L � c([#L]) or
J � c([#J ]). We set k := h − 1 ∈ [n − 2] for convenience.

Recall that for any i ∈ [k] ∪ [k + 2, n − 1]

csk+1/〈s1, . . . , si−1, si+1, . . . , sn−1〉 = sr · · · si/〈s1, . . . , si−1, si+1, . . . , sn−1〉
= c/〈s1, . . . , si−1, si+1, . . . , sn−1〉.

In one-line notation csk+1 = [n, 1, . . . , k − 1, k + 1, k, k + 2, . . . , n − 1]. Hence, if
I ≤ csk+1([#I ]), but I � c([#I ]), then #I = k + 1 and it must hold

F(I ) = [k − 1] ∪ {k + 1, i} with i ∈ [k + 2, n]. (4.3)

Therefore a Plücker Rm
J ,L can produce a monomial in inw(Icsh ) only if J is a sequence

such that F(J ) = [k − 1] ∪ {k + 1, j} with j1 = j or F(L) = [k − 1] ∪ {k + 1, l}
for j, l ∈ [k + 2, n]. If #J = #L , then inw(Rm

J ,L) = Rm
J ,L , hence we only have to

consider the case #J < #L .
Let #L = p > k + 1, then by (4.3) we have F(J ) = [k − 1] ∪ {k + 1, j} and

F(L) = [p − 1] ∪ {l} for j1 = j ∈ [k + 2, n] and l ∈ [p, n]. Note that j ∈ J is
the only possible element to swap for elements in L non-trivially, so that we impose
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j /∈ L (otherwise Rm
J ,L = 0 for any m). Remember that we may assume j ∈ [p, n].

Then

inw(R1
J ,L) = pJ pL − p(J\( j))∪(l) p(L\(l))∪( j) − p(J\( j))∪(k) p(L\(k))∪( j). (4.4)

As [k − 1] ∪ {k + 1, l} ≤ csk+1([k + 1]) and [k − 1, p − 1] ∪ { j} ≤ csk+1([p]) at
least two terms are non-zero on Xcsk+1 .

Now, assume #L = k + 1 and #J = q < k + 1. Then we have

F(L) = [k − 1] ∪ {k + 1, l} and F(J ) = [q − 1] ∪ { j},

for j = j1, l ∈ [k + 2, n] and j /∈ L in order for the relation to be non-trivial. We
obtain

inw(R1
J ,L) = pJ pL − p(J\( j))∪(k+1) p(L\(k+1))∪( j) − p(J\( j))∪(l) p(L\(l))∪( j).(4.5)

As [q − 1] ∪ {l} ≤ csk+1([q]) and [k − 1] ∪ {k + 1, j} ≤ csk+1([k + 1]), the relation
R1

J ,L does not degenerate to a monomial. ��
Corollary 2 Let h ∈ [n − 1]. Then inw(Icsh ), as an ideal in the quotient C[pI ]/(pI |
I � csh([#I ])), admits a set of generators of type pI pJ − pI ′ p′

J for appropriate
I , I ′, J , J ′ ⊂ [n].
Proof First note that if h = 1, then by Proposition 2 inw(Ics1) = Ics1 . The Plücker
relations involving non-vanishing Plücker coordinates on Xcs1 are for q < p ≤ j <

l ≤ n the following pure differences (i.e. a sums of two monomials, one of which with
coefficient 1 the other with coefficient −1)

p[q−1]∪{ j} p[p−1]∪{l} − p[q−1]∪{l} p[p−1]∪{ j}.

Notice that the index sets of the Plücker coordinates in the above equation (as well
as in the rest of this proof) are sets, and hence by convention, as sequences they are
arranged in an increasing order, while in the proof of the previous result we always
had j = j1. This only affect the relation by a global sign.

If h ∈ [2, n − 1], we can set again k := h − 1. In the proof of Proposition 3 we
have seen in equations (4.4) and (4.5) the form of the additional relations for csk+1.
Note that in (4.4) we have [k − 1] ∪ [k + 1, p − 1] ∪ { j, l} �≤ csk+1([p]) and hence,
the middle term vanishes on Xcsk+1 . Similarly observe for (4.5) that [k − 1] ∪ { j, l} �≤
csk+1([k + 1]) as j, l ≥ k + 2. So all generators of inw(Icsk+1) are pure differences
in C[pI |]/(pI | I � csk+1(#I )). ��
Remark 6 Note that while inw(Iw) and Iw have the same generators for w ≤ c, this is
not true for csk+1 with k ≥ 1. Here taking the initial ideal with respect to w modifies
the generators.

The following proposition generalizes Proposition 3 to a product of pairwise distinct
commuting simple reflections.

123



992 Journal of Algebraic Combinatorics (2024) 59:971–1004

Proposition 4 Take k1, . . . , kr ∈ [n − 1] with |ki − k j | > 1 for all i �= j , then none
of the Plücker relations degenerates to a monomial in inw(Icsk1 ···skr

).

Proof Wemay assume k1 < k2 < . . . < kr without loss of generality. Moreover, since
we aremultiplying by pairwise distinct commuting reflections, and as Plücker relations
only involve pairs of Grassmannians, it is enough to consider the cases r = 1, 2. The
case r = 1 was dealt with in Proposition 3, so we are left with r = 2.

We consider two cases: firstly, we deal with the case k1 = 1, and then we suppose
k1 �= 1.

If k1 = 1, cs1 < c can be identified with the Coxeter element c̃ = s̃n−2 . . . s̃1 in
Sn−1 (via si �→ s̃i−1 for i ∈ [2, n − 1]). In this case, cs1sk2 ∈ 〈s2, . . . , sn−1〉 and, by
Corollary 1, we have inw(Ics1sk2

) = inw(Ic̃s̃k2
). We then apply Proposition 3 to obtain

the claim.
Now denote k1 := k + 1 and k2 := g + 1 and recall, that by assumption k < g + 1.

As in the proof of Proposition 3, we only have to deal with Plücker relations Rm
J ,L

with #J �= #L , where J � csk+1sg+1([#J ]) or L � csk+1sg+1([#L]). We can further
reduce to the case #J = k + 1, j1 = j , and #L = g + 1, otherwise the Plücker
relations are the same as the ones considered in Proposition 3, and the result has been
proven above.

Consider relations Rm
J ,L with #J = k + 1, #L = g + 1 and J ≤ csk+1sg+1([k +

1]), J �≤ c([k + 1]) and L ≤ csk+1sg+1([g + 1]), L �≤ c([g + 1]). We have shown in
Proposition 3 that in this case it must hold

F(J ) = [k − 1] ∪ {k + 1, j}, F(L) = [g − 1] ∪ {g + 1, l}

with j ∈ [k + 2, n] and l ∈ [g + 2, n]. In order for the relation to be non-trivial we
may assume j /∈ L . Since k + 1 ∈ [g − 1], the only relation to be considered is

R1
J ,L = pJ pL − p(J\( j))∪(l) p(L\(l))∪( j) − p(J\( j))∪(g+1) p(L\(g+1))∪( j)

−
∑

r∈[k+1,g−1]
p(J\( j))∪(r) p(L\(r))∪( j).

It degenerates to

inw(R1
J ,L) = pJ pL − p(J\( j))∪(l) p(L\(l))∪( j) − p(J\( j))∪(g+1) p(L\(g+1))∪( j).

The monomial p(J\( j))∪(l) p(L\(l))∪( j) does not vanish on the coordinate ring of
Xcsk+1sl+1 (and thus of Xcsk1 ...skr

). Hence, inw(R1
J ,L) is not monomial and this fin-

ishes the proof. ��
Lemma 5 below shows that the Coxeter word c = sn−1 · · · s2s1 is in fact special

among all Coxeter words regarding the degeneration.

Lemma 5 Let w ∈ Sn have a reduced expresion w = sir · · · si1 with ik �= il for all
k �= l. Then none of the Plücker relations degenerates to a monomial in inw(Iw) if
and only if w ≤ c.
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Proof “⇐” by Proposition 2.
“⇒” Assume w = sir . . . si1 is a product of pairwise distinct simple reflections. First
note that w �≤ c implies there exists an ik ∈ {i1, . . . , ir } such that ik + 1 = il for
l < k. We choose i = ik , such that k is minimal with this property. In particular, if
there exists t with it + 1 = i then t < k. Since si commutes with all reflections sim

with m > k, as in this case im �= i ± 1 by minimality of k, we observe

w = si sir . . . sik+1sik−1 . . . si1 ∈ si 〈s1, s2 . . . , si−1, si+1, . . . sn−1〉.

We deduce that w([i]) = [i − 1] ∪ {i + 1}. Moreover, notice w(i + 1) ≥ i + 2, since
i + 1 is moved only by si and si+1, but we apply si+1 first and by hypothesis there
are no other occurrences of si+1. We can now produce the degree two monomial in
inw(Iw) by choosing as J any sequence such that F(J ) = w([i]) and j1 = i + 1, and
as L any sequence with F(L) = [i] ∪ {i + 2}, so that

R1
J ,L = pJ pL − p(J\(i+1))∪(i+2) p(L\(i+2))∪(i+1) − p(J\(i+1))∪(i) p(L\(i))∪(i+1),

inw(R1
J ,L) = pJ pL − p(J\(i+1))∪(i+2) p(L\(i+2))∪(i+1).

As [i − 1] ∪ {i + 2} �≤ w([i]) the second term vanishes on Xw. ��

4.4 More andmoremonomials

If we can write a permutation u ∈ Sn as a product of two permutations v, w belonging
to two distinct parabolic subgroups which centralize each other, then we can check
how a Plücker relation degenerates on Iu by looking at the ideals Iv and Iw. Lemma 6
concerns defining ideals for Schubert varieties and allows us to deduce Corollary 3,
which suggests an inductive procedure on n to find Schubert varieties that become
reducible under Feigin’s degeneration.

Lemma 6 For v,w ∈ Sn assume there exist two sets of simple reflections Sv =
{si1, . . . , sir } and Sw = {s j1, . . . , s js } such that |ih − jl | > 1 for all h ∈ [r ], l ∈ [s]
with v ∈ 〈Sv〉 and w ∈ 〈Sw〉. Then for all sequences J , L with k ≤ #J we have

Rk
J ,L |Xvw = Rk

J ,L |Xv or Rk
J ,L |Xvw = Rk

J ,L |Xw .

Corollary 3 Let v,w ∈ Sn assume there exist two sets of simple reflections Sv =
{si1, . . . , sir } and Sw = {s j1, . . . , s js } such that |ih − jl | > 1 for all h ∈ [r ], l ∈ [s]
with v ∈ 〈Sv〉 and w ∈ 〈Sw〉. Then

(1) None of the Rk
J ,L degenerates to a monomial nor in inw(Iw) neither in inw(Iv), if

and only if none of the Rk
J ,L degenerates to a monomial in inw(Ivw).

(2) If inw(Iw) or inw(Iv) contains a monomial degenerate Plücker relation, then so
does inw(Ivw).

Remark 7 From the previous corollary we see that the bigger n is, the more Schubert
varieties become reducible after degenerating them à la Feigin, since there are several
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ways of embedding Sm into Sn for m < n as a parabolic subgroup. Indeed, the
number of permutations v ∈ Sn such that at least one Plücker relation degenerates
to a monomial in inw(Iv) is 0,1,11,85 for n = 2, 3, 4, 5, respectively. We would like
to mention here the observation that there is exactly one sequence in the On-Line
Encyclopedia of Integer Sequences [19, Sequence A129180] whose first four terms
are 0, 1, 11, 85, namely the Total area below all Schroeder paths of semilength n.

Example 2 From Table 1 we see that there are three permutation to which none of
our results apply, namely s3s1, s2s3s2s1 and s3s1s2s1. In the first case the initial ideal
coincides with the ideal defining the Schubert variety. The latter two though are exam-
ples of permutations w where inw(Iw) �= Iw but nonetheless inw(Iw) is prime. In
these cases we don’t know if the degenerate Schubert varieties are (up to isomorphism)
Schubert varieties in some other flag variety or if they are genuinely different varieties.

5 Degenerate Schubert and Richardson varieties

In this section we explore how degenerate Schubert varieties behave under the embed-
ding of the degenerate flag varietyF�a

n into a larger partial flag variety given by Cerulli
Irelli and the second author in [6].

5.1 Degenerate flag varieties and flag varieties of higher rank

We start by introducing some notation and recalling the main result of [6].
Let ωi denote the i-th fundamental weight for SL2n−2 and consider the parabolic

subgroup P := Pω1+ω3+···+ω2n−3 of SL2n−2. Then, SL2n−2/P is the variety of (partial)
flags in C

2n−2 whose points are flags of vector spaces of odd dimensions. Its Schubert
varieties X̃w are indexed by minimal length coset representatives w ∈ S2n−2/WP ,
where WP is the Weyl group of the Levi of P . More precisely, if s̃i ∈ S2n−2 denotes
the simple transposition (i, i + 1), then WP = 〈̃s2, s̃4, . . . s̃2n−4〉. Let wn ∈ S2n−2 be
defined by

wn(i) =
{

r if i = 2r , r ≥ 1,
n + r − 1 if i = 2r − 1, r ∈ [n − 1].

The following Theorem can be found in [6].

Theorem 4 ([6]) The degenerate flag varietyF�a
n is isomorphic to the Schubert variety

X̃wn ⊂ SL2n−2/P.

5.1.1 Translation into Plücker coordinates

We describe here the isomorphism of Theorem 4 in terms of Plücker coordinates.
Recall that whenever we index Plücker coordinates by a set, we really mean the
associated sequence obtained by increasingly ordering the elements of the given set.

Let J ∈ ([2n−2]
2k−1

)
, with k ∈ [n−1], then J ≤ wn([2k −1]) = [k −1]∪[n, n+k −1]

if and only if
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[k − 1] ⊂ J ⊂ [k + n − 1]. (5.1)

In order to give the translation of the isomorphism in terms of coordinate rings, we
need to set some notation. Let k ∈ [n − 1], we denote by {≤ wn}(2k−1) the set of
J ∈ ([2n−2]

2k−1

)
, with J ≤ wn([2k − 1]). There is hence a bijection

{≤ wn}(2k−1) →
([n]

k

)
, J �→ τk(J \ [k − 1]) (5.2)

where τk : [n + k − 1] → [n] is given by

τk( j) �→
{

j if j ∈ [k, n],
j − n if j ∈ [n + 1, n + k − 1].

For a sequence I = (i1, . . . , ik) ∈ S(n, k) we set τk(I ) := (τk(i1), . . . τk(ik)) ∈
S(n, k). If ρk : [n] → [k, n + k − 1] is given by

ρk( j) �→
{

j if j ∈ [k, n],
j + n if j ∈ [k − 1],

then the inverse map to (5.2) is given by

([n]
k

)
→ {≤ wn}(2k−1), I �→ [k − 1] ∪ ρk(I ).

On the level of sequences, this lifts to a map

S(n, k)
ρ̃k→ {

J ∈ S(2n − 2, 2k − 1) | F(J ) ∈ {≤ wn}(2k−1)
}
,

(i1, . . . , ik) �→ (1, 2, . . . , k − 1, ρk(i1), . . . , ρk(ik))

Fix an ordered basis (ẽ j ) j∈[2n−2] of C
2n−2, then the linear algebraic description of

X̃wn is

X̃wn =
⎧
⎨

⎩
{0} ⊂ W1 ⊂ W3 ⊂ . . . ⊂ W2n−3

∣∣∣∣
∣∣

W2k−1 ∈ Gr(2k − 1, C
2n−2)

spanC{̃e j | j ∈ [k − 1]} ⊂ W2k−1,

W2k−1 ⊂ spanC{̃e j | j ∈ [n + k − 1]}.

⎫
⎬

⎭

Denote by (ei )i∈[n] an ordered basis for C
n . For k ∈ [n − 1] define the projection

operator (which we also denote by πk as in [6])

πk : spanC{̃e j | j ∈ [n + k − 1]} → C
n = spanC{ei | i ∈ [n]},

ẽ j �→
{

eτk ( j) if j ∈ [k, n + k − 1],
0 otherwise

Then there is an isomorphism, which we denote by the same symbol, of algebraic
varieties
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X̃ (2k−1)
wn

:=
⎧
⎨

⎩
U

∣∣∣∣∣
∣

U ∈ Gr(2k − 1, C
2n−2)

spanC{̃e j | j ∈ [2i − 2]} ⊂ U ,

U ⊂ spanC{̃e j | j ∈ [n + 2k − 2]}.

⎫
⎬

⎭
πk−→ Gr(k, C

n),

U �→ πk(U )

and the desired isomorphism (cf. [6]) is given by

ξ : X̃wn → F�a
n, (W2k−1)k∈[n−1] �→ (πk(W2k−1))k∈[n−1]. (5.3)

Remark 8 In [6], an embedding of ζ : F�a
n ↪→ SL2n−2/P is given, and hence the

isomorphism from Theorem 4 is rather the inverse of the isomorphism ξ we consider
here. We prefer to work with ξ instead of ζ since in this way we obtain an induced
map from the coordinate ring of F�a

n to the coordinate ring of X̃wn , which we make
explicit in the following.

For SL2n−2/P we also have an embedding into the product of Grassmannians

SL2n−2/P ↪→ Gr(1, C
2n−2) × Gr(3, C

2n−2) × · · · × Gr(2n − 3, C
2n−2),

and hence a Plücker embedding. Plücker coordinates for Gr(2k − 1, C
2n−2) with

k ∈ [n − 1] are denoted by p̃J , J ∈ S(2n − 2, 2k − 1). Let I = (i1, . . . , ik) then

π∗
k : C[Gr(k, n)] → C[X̃ (2k−1)

w ], pI �→ p̃ρ̃k (I ).

As π∗
k is compatible with Plücker relations, we have an isomorphism

ξ∗ : C[F�a
n] → C[X̃wn ], pI �→ π∗

#I (pI ).

Notice that even if I is ordered increasingly, ρ̃k(I )needs not be ordered increasingly.
To get an increasing sequence we have to multiply by some sign. While keeping track
of the sign is fundamental to check that Plücker relations are satisfied, it is not relevant
to us, as we only deal with vanishing of certain Plücker coordinates, which of course
vanish independently of their sign.

5.2 Richardson varieties in SL2n−2/P

Let u, v ∈ S2n−2 be minimal length coset representatives of S2n−2/WP and assume
that u ≤ v.We denote by X̃u

v := X̃v ∩ X̃u ⊆ SL2n−2/P the corresponding Richardson
variety. Recall that its defining ideal in C[pI | #I ≡ 1(mod 2), I ⊂ [2n − 2]] is

Iu
v = (Rk

J ,L) + (pI )I �≤v([#I ]) + (pI )I �≥u([#I ]). (5.4)

In the following we will show that for appropriate permutations x ∈ Sn , u, v ∈
S2n−2 with u ≤ v ≤ wn , the isomorphism ξ∗ induces an isomorphism between the
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coordinate rings

C[Xa
x ] → C[X̃u

v ].

To stress out the fact that such an isomorphism really comes from the embedding ζ ,
we will express it as ζ(Xa

x ) = X̃u
v .

Since C[Xa
x ] = C[F�a

n]/(pI | I � x([#I ])) and C[X̃u
v ] = C[SL2n−2/P]/(pK |

K � v([#K ]), K � u([#K ])), the claim will be proven by verifying that

((K ≤ v([#K ]) and K ≥ u([#K ])) ⇒ τk(K \ [k − 1]) ≤ x([k]), (5.5)

where k := #K+1
2 , and the opposite direction

I ≤ x(#I ) ⇒
( [k − 1] ∪ ρ#I (I ) ≤ v([n − 1 + #I ])

[k − 1] ∪ ρ#I (I ) ≥ u([n − 1 + #I ])
)

. (5.6)

An important role will be played by the following permutation yn ∈ S2n−2:

yn(i) =
⎧
⎨

⎩

1 if i = 1,
r + 1 if i = 2r , r ∈ [n − 1],
n + r − 1 if i = 2r − 1, r ∈ [n − 1].

Notice that for any m ∈ [n − 1]

s̃m s̃m−1 . . . s̃1yn(i) =

⎧
⎪⎪⎨

⎪⎪⎩

m + 1 if i = 1,
r if i = 2r , r ∈ [m],
r + 1 if i = 2r , r ∈ [m + 1, n − 1],
n + r − 1 if i = 2r − 1, r ∈ [n − 1],

and, by (2.2), yn < s̃m s̃m−1 . . . s̃1yn ≤ wn .

Lemma 7 Let m ∈ [n − 1] and x := smsm−1 . . . s1 ∈ Sn. Then,

ζ(Xa
x ) = X̃ yn

s̃m s̃m−1...s̃1yn
.

Proof Let I ∈ ([n]
k

)
. Then, by (2.3), I ≤ x([k]) if and only if

I =
{ [k − 1] ∪ {i}, i ∈ [k, m + 1] if k ≤ m,

[k] if k > m.

On the other hand, let K ∈ (2n−2
2k−1

)
, then both K ≤ s̃m s̃m−1 . . . s̃1yn([2k − 1]) and

K ≥ yn([2k − 1]) hold if and only if

K =
{ [k − 1] ∪ [n + 1, n + k − 1] ∪ {i}, i ∈ [k, m + 1] if k ≤ m,

[k] ∪ [n + 1, n + k − 1] if k > m.

These two facts imply (5.5) and (5.6). ��
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Combining Lemma 7 with Proposition 2 we obtain the following corollary.

Corollary 4 Let x = smsm−1 · · · s1 ≤ c and consider the Schubert variety Xx ⊂ F�n.
Then there is an isomorphism

Xx ∼= X̃ yn
s̃m s̃m−1...s̃1yn

⊂ SL2n−2/P.

6 Schubert divisors

In this section we focus on Schubert divisors and apply the results from previous
sections to them. In this case we can completely answer the question whether or not
they stay irreducible under the degeneration.

Let w0 ∈ Sn be the longest element, then all Schubert divisors are indexed by
permutations of the form w = w0si for i ∈ [n − 1]. Note that

w(k) =
⎧
⎨

⎩

n − k + 1 if k �= i, i + 1,
n − i if k = i,
n − i + 1 if k = i + 1.

The following Theorem 5 is an application of Theorem 3 (1) and (2).

Theorem 5 Let n > 2 and w ∈ Sn be such that wsi = w0. If n is odd assume i �= n+1
2 ,

for even n there is no additional assumption. Then Xa
w is reducible.

Proof We consider four cases separately: i < n
2 , i = n

2 , i ≥ n+3
2 , and i = n+2

2 . Notice
that they cover all possiblities, since i > n

2 together with the assumption i �= n+1
2

implies i > n+1
2 , hence i ≥ n+2

2 . We will deal with the first two cases by applying
Theorem 3 (1), while we will use Theorem 3 (2) for the remaining two.

First of all, notice that w0 = wsi > w.
Case 1: If i < n

2 , then

w(k) = n − k + 1 ≥ n − i + 2 >
n

2
+ 2 > i, for any k ≤ i − 1, (6.1)

w(i) = n − i >
n

2
> i,

and

w(i + 1) = n − i + 1 >
n

2
+ 1 > i . (6.2)

We conclude that i /∈ w([i +1]) andwe can hence apply Theorem 3 (1) with j = w(i).
Case 2: If i = n

2 , then (6.1) and (6.2) still hold, but w(i) = i , so that i /∈ w([i − 1]) ∪
{w(i + 1)}, but we cannot choose j = w(i). Nevertheless, (6.1) and (6.2) imply that
any j with j ≤ i − 1 < i = w(i) (which exists, since n > 2) fulfills the hypotheses
of Theorem 3 (1).
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Case 3:Let i ≥ n+3
2 , so thatn ≤ 2i−3 andn−i+2 ≤ 2i−3−i+2 = i−1.Note further

thatw(i +1) = n + i −1 ≤ n+3
2 −1 ≤ i −1. Thusw(n − i +2) = i −1 ∈ w([i −1])

and we can apply Theorem 3 (2) with l = w(i) and x = w(i + 1).
Case 4: Consider i = n

2 + 1. In this case, w(i + 1) = n − i + 1 = n
2 = i − 1 ∈

w([i − 1]) ∪ {w(i + 1)} and we can apply Theorem 3 (2) with x any element in
w([i − 1]) and l = w(i). ��

For flag varietiesF�n with n odd, the next proposition explains why the case ofw0si

for i = n+1
2 is special. This is another instance, of a degenerate Schubert variety being

isomorphic to a Richardson variety in SL2n−2/P . However, unlike the degenerate
Schubert varieties of form Xa

v , for v ≤ c, this one is not isomorphic to the original
Schubert variety.

Proposition 5 Let i ≥ 2 and n = 2i − 1. Then ζ(Xa
w0si

) = X̃ s̃2i−1
wn .

Proof First note that w0si ([i]) = {n − i} ∪ [n − i + 2, n] = {i − 1} ∪ [i + 1, n] and
w0([i]) = [n − i + 1, n] = [i, n]. Let J ∈ (n

k

)
, then J � w0si ([k]) = [n − k + 1, n]

if and only if k = i and J = [i, n].
On the other hand, recall that wn([2k − 1]) = [k − 1] ∪ [n + k − 1, n] and

s̃2i−1([2k − 1]) =
{ [2k − 1] if k �= i,

[2i − 2] ∪ {2i} if k = i .

If K ∈ (2n−2
2k−1

)
is such that K ≤ wn([2k − 1]), then K � s̃2i−1([2k − 1]) if and only

if k = i and K = [2i − 1] = [n].
At this point the claim follows from π∗

i (p[i,n]) = p̃[i−1]∪ρi ([i,n]) = p̃[n]. ��
Corollary 5 (1) If n is even, then all Schubert divisors Xw0si ⊂ F�n become reducible

under Feigin’s degeneration.
(2) If n is odd, then the Schubert divisor Xw0s n+1

2
⊂ F�n stays irreducible under

Feigin’s degeneration, while all the others become reducible.
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Table 2 Initial ideals inw(Iw) (see Sect. 2.3) for w ∈ S5 and which criteria to detect initial monomials
from Theorem 3 apply

w one-line w reduced word mono (1) (2) (3) (4) (5) (6) (7)

[1, 2, 3, 4, 5] 1 − − − − − − − −
[1, 2, 3, 5, 4] s4 − − − − − − − −
[1, 2, 4, 3, 5] s3 − − − − − − − −
[1, 2, 4, 5, 3] s3s4 × × − × − − × −
[1, 2, 5, 3, 4] s4s3 − − − − − − − −
[1, 2, 5, 4, 3] s3s4s3 − − − − − − − −
[1, 3, 2, 4, 5] s2 − − − − − − − −
[1, 3, 2, 5, 4] s4s2 − − − − − − − −
[1, 3, 4, 2, 5] s2s3 × × − × − − × −
[1, 3, 4, 5, 2] s2s3s4 × × − × × − × −
[1, 3, 5, 2, 4] s4s2s3 × × − × − − × −
[1, 3, 5, 4, 2] s2s3s4s3 × × − × × − × −
[1, 4, 2, 3, 5] s3s2 − − − − − − − −
[1, 4, 2, 5, 3] s3s4s2 × − − × − − × −
[1, 4, 3, 2, 5] s2s3s2 − − − − − − − −
[1, 4, 3, 5, 2] s2s3s4s2 × × − − × − × −
[1, 4, 5, 2, 3] s3s4s2s3 × × × × − × × −
[1, 4, 5, 3, 2] s2s3s4s2s3 × × − × − − × −
[1, 5, 2, 3, 4] s4s3s2 − − − − − − − −
[1, 5, 2, 4, 3] s3s4s3s2 − − − − − − − −
[1, 5, 3, 2, 4] s4s2s3s2 − − − − − − − −
[1, 5, 3, 4, 2] s2s3s4s3s2 × × − − × − − ×
[1, 5, 4, 2, 3] s3s4s2s3s2 × − × − − × − −
[1, 5, 4, 3, 2] s2s3s4s2s3s2 − − − − − − − −
[2, 1, 3, 4, 5] s1 − − − − − − − −
[2, 1, 3, 5, 4] s4s1 − − − − − − − −
[2, 1, 4, 3, 5] s3s1 − − − − − − − −
[2, 1, 4, 5, 3] s3s4s1 × × − × − − − −
[2, 1, 5, 3, 4] s4s3s1 − − − − − − − −
[2, 1, 5, 4, 3] s3s4s3s1 − − − − − − − −
[2, 3, 1, 4, 5] s1s2 × × − × − − × −
[2, 3, 1, 5, 4] s4s1s2 × × − × − − × −
[2, 3, 4, 1, 5] s1s2s3 × × − × × − × −
[2, 3, 4, 5, 1] s1s2s3s4 × × − × × − × −
[2, 3, 5, 1, 4] s4s1s2s3 × × − × × − × −
[2, 3, 5, 4, 1] s1s2s3s4s3 × × − × × − × −
[2, 4, 1, 3, 5] s3s1s2 × × − × − − × −
[2, 4, 1, 5, 3] s3s4s1s2 × × − × − − × −
[2, 4, 3, 1, 5] s1s2s3s2 × × − × × − × −
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Table 2 continued

w one-line w reduced word mono (1) (2) (3) (4) (5) (6) (7)

[2, 4, 3, 5, 1] s1s2s3s4s2 × × − × × − × −
[2, 4, 5, 1, 3] s3s4s1s2s3 × × × × × × × −
[2, 4, 5, 3, 1] s1s2s3s4s2s3 × × − × × − × −
[2, 5, 1, 3, 4] s4s3s1s2 × × − × − − × −
[2, 5, 1, 4, 3] s3s4s3s1s2 × × − × − − × −
[2, 5, 3, 1, 4] s4s1s2s3s2 × × − × × − × −
[2, 5, 3, 4, 1] s1s2s3s4s3s2 × × − × × − × −
[2, 5, 4, 1, 3] s3s4s1s2s3s2 × × × × × × × −
[2, 5, 4, 3, 1] s1s2s3s4s2s3s2 × × − × × − × −
[3, 1, 2, 4, 5] s2s1 − − − − − − − −
[3, 1, 2, 5, 4] s4s2s1 − − − − − − − −
[3, 1, 4, 2, 5] s2s3s1 × − − × − − × −
[3, 1, 4, 5, 2] s2s3s4s1 × − − × × − × −
[3, 1, 5, 2, 4] s4s2s3s1 × − − × − − × −
[3, 1, 5, 4, 2] s2s3s4s3s1 × − − × × − × −
[3, 2, 1, 4, 5] s1s2s1 − − − − − − − −
[3, 2, 1, 5, 4] s4s1s2s1 − − − − − − − −
[3, 2, 4, 1, 5] s1s2s3s1 × × − − × − × −
[3, 2, 4, 5, 1] s1s2s3s4s1 × × − − × − × −
[3, 2, 5, 1, 4] s4s1s2s3s1 × × − − × − × −
[3, 2, 5, 4, 1] s1s2s3s4s3s1 × × − − × − × −
[3, 4, 1, 2, 5] s2s3s1s2 × × × × − × × −
[3, 4, 1, 5, 2] s2s3s4s1s2 × × − × × × × −
[3, 4, 2, 1, 5] s1s2s3s1s2 × × − × − − × −
[3, 4, 2, 5, 1] s1s2s3s4s1s2 × × − × − − × −
[3, 4, 5, 1, 2] s2s3s4s1s2s3 × × × × − − × −
[3, 4, 5, 2, 1] s1s2s3s4s1s2s3 × × − × − − × −
[3, 5, 1, 2, 4] s4s2s3s1s2 × × × × − × × −
[3, 5, 1, 4, 2] s2s3s4s3s1s2 × × − × × × × −
[3, 5, 2, 1, 4] s4s1s2s3s1s2 × × − × − − × −
[3, 5, 2, 4, 1] s1s2s3s4s3s1s2 × × − × − − × −
[3, 5, 4, 1, 2] s2s3s4s1s2s3s2 × × × × − − × −
[3, 5, 4, 2, 1] s1s2s3s4s1s2s3s2 × × − × − − × −
[4, 1, 2, 3, 5] s3s2s1 − − − − − − − −
[4, 1, 2, 5, 3] s3s4s2s1 × − − × − − × −
[4, 1, 3, 2, 5] s2s3s2s1 − − − − − − − −
[4, 1, 3, 5, 2] s2s3s4s2s1 × × − − × − × −
[4, 1, 5, 2, 3] s3s4s2s3s1 × − × × − × × −
[4, 1, 5, 3, 2] s2s3s4s2s3s1 × − − × − − × −
[4, 2, 1, 3, 5] s3s1s2s1 − − − − − − − −
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Table 2 continued

w one-line w reduced word mono (1) (2) (3) (4) (5) (6) (7)

[4, 2, 1, 5, 3] s3s4s1s2s1 × − − × − − × −
[4, 2, 3, 1, 5] s1s2s3s2s1 × × − − × − − −
[4, 2, 3, 5, 1] s1s2s3s4s2s1 × × − − × − × −
[4, 2, 5, 1, 3] s3s4s1s2s3s1 × × × − × × × −
[4, 2, 5, 3, 1] s1s2s3s4s2s3s1 × × − − × − × −
[4, 3, 1, 2, 5] s2s3s1s2s1 × − × − − × − −
[4, 3, 1, 5, 2] s2s3s4s1s2s1 × − − − × × × −
[4, 3, 2, 1, 5] s1s2s3s1s2s1 − − − − − − − −
[4, 3, 2, 5, 1] s1s2s3s4s1s2s1 × − − − − − × −
[4, 3, 5, 1, 2] s2s3s4s1s2s3s1 × × × × − − × −
[4, 3, 5, 2, 1] s1s2s3s4s1s2s3s1 × × − × − − × −
[4, 5, 1, 2, 3] s3s4s2s3s1s2 × × × × − × × −
[4, 5, 1, 3, 2] s2s3s4s2s3s1s2 × × − × − × × −
[4, 5, 2, 1, 3] s3s4s1s2s3s1s2 × × × × − × × −
[4, 5, 2, 3, 1] s1s2s3s4s2s3s1s2 × × − × − − × −
[4, 5, 3, 1, 2] s2s3s4s1s2s3s1s2 × × × × − − × −
[4, 5, 3, 2, 1] s1s2s3s4s1s2s3s1s2 × × − × − − × −
[5, 1, 2, 3, 4] s4s3s2s1 − − − − − − − −
[5, 1, 2, 4, 3] s3s4s3s2s1 − − − − − − − −
[5, 1, 3, 2, 4] s4s2s3s2s1 − − − − − − − −
[5, 1, 3, 4, 2] s2s3s4s3s2s1 × × − − × − − −
[5, 1, 4, 2, 3] s3s4s2s3s2s1 × − × − − × − −
[5, 1, 4, 3, 2] s2s3s4s2s3s2s1 − − − − − − − −
[5, 2, 1, 3, 4] s4s3s1s2s1 − − − − − − − −
[5, 2, 1, 4, 3] s3s4s3s1s2s1 − − − − − − − −
[5, 2, 3, 1, 4] s4s1s2s3s2s1 × × − − × − − ×
[5, 2, 3, 4, 1] s1s2s3s4s3s2s1 × × − − × − − ×
[5, 2, 4, 1, 3] s3s4s1s2s3s2s1 × × × − × × − ×
[5, 2, 4, 3, 1] s1s2s3s4s2s3s2s1 × × − − × − − ×
[5, 3, 1, 2, 4] s4s2s3s1s2s1 × − × − − × − −
[5, 3, 1, 4, 2] s2s3s4s3s1s2s1 × − − − × × − −
[5, 3, 2, 1, 4] s4s1s2s3s1s2s1 − − − − − − − −
[5, 3, 2, 4, 1] s1s2s3s4s3s1s2s1 × − − − − − − ×
[5, 3, 4, 1, 2] s2s3s4s1s2s3s2s1 × × × × − − − ×
[5, 3, 4, 2, 1] s1s2s3s4s1s2s3s2s1 × × − × − − − ×
[5, 4, 1, 2, 3] s3s4s2s3s1s2s1 × − × − − × − −
[5, 4, 1, 3, 2] s2s3s4s2s3s1s2s1 × − − − − × − −
[5, 4, 2, 1, 3] s3s4s1s2s3s1s2s1 × − × − − × − −
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Table 2 continued

w one-line w reduced word mono (1) (2) (3) (4) (5) (6) (7)

[5, 4, 2, 3, 1] s1s2s3s4s2s3s1s2s1 − − − − − − − −
[5, 4, 3, 1, 2] s2s3s4s1s2s3s1s2s1 × − × − − − − −
[5, 4, 3, 2, 1] s1s2s3s4s1s2s3s1s2s1 − − − − − − − −
120 85 64 22 57 36 22 65 8

Appendix

Table 2 shows which of the criteria for inw(Iw) to contain a monomial apply to which
elementsw ∈ S5. It has to be read as follows: the first column containsw ∈ S5 written
in one-line notation, the second as a reduced word. In the third column “×” indicates
that inw(Iw) contains a monomial, resp. “−” that it does not. The last columns labeled
(1) to (7) indicate which of the points of Theorem 3 apply to w. The last row indicates
how often × appears in the corresponding column.

References

1. Björner, Anders, Brenti, Francesco: Combinatorics of Coxeter Groups. Graduate Texts inMathematics,
vol. 231. Springer, New York (2005)

2. Caldero, P.: Toric degenerations of Schubert varieties. Transform. Groups 7(1), 51–60 (2002)
3. Chirivì, R., Fang, X., Fourier, G.: Degenerate Schubert varieties in type A. Transform. Groups 26(4),

1189–1215 (2021)
4. Irelli, G.C., Fang, X., Feigin, E., Fourier, G., Reineke, M.: Linear degenerations of flag varieties. Math.

Zeitschrift 287, 615–654 (2017)
5. Irelli, G.C., Feigin, E., Reineke, M.: Quiver grassmannians and degenerate flag varieties. Algebra

Number Theory 6(1), 165–194 (2012)
6. Irelli, G.C., Lanini, M.: Degenerate flag varieties of type A and C are Schubert varieties. Int. Math.

Res. Not. IMRN 15, 6353–6374 (2015)
7. Clarke, O., Mohammadi, F.: Standard monomial theory and Toric degenerations of Schubert varieties

from matching field tableaux. J. Algebra 559, 646–678 (2020)
8. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 7.2) (2016). http://

www.sagemath.org
9. Feigin, E.: Degenerate flag varieties and the median genocchi numbers. Math. Res. Lett. 18(6), 1163–

1178 (2011)
10. Feigin, E.: G

M
a degeneration of flag varieties. Selecta Math. (N.S.) 18(3), 513–537 (2012)

11. Fourier, G.: PBW-degenerated Demazure modules and Schubert varieties for triangular elements. J.
Combin. Theory Ser. A 139, 132–152 (2016)

12. Fulton, W.: Young tableaux, Volume 35 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge (1997). (With applications to representation theory and geometry)

13. Grayson, Daniel R., Stillman, Michael E.: Macaulay2, a software system for research in algebraic
geometry. http://www.math.uiuc.edu/Macaulay2/

14. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260. Springer, London
(2011)

15. Kambaso, K.: Homogeneous bases for Demazure modules. Commun. Algebra 50(7), 2934–2953
(2022)

16. Kempf, G.R., Ramanathan, A.: Multi-cones over Schubert varieties. Inventiones mathematicae 87,
353–364 (1987)

123

http://www.sagemath.org
http://www.sagemath.org
http://www.math.uiuc.edu/Macaulay2/


1004 Journal of Algebraic Combinatorics (2024) 59:971–1004

17. Lakshmibai, V., Littelmann, P., Magyar, P.: Standard monomial theory and applications. In: Broer,
A., Daigneault, A., Sabidussi, G. (eds.) Representation Theories and Algebraic Geometry. Nato ASI
Series (Series C: Mathematical and Physical Sciences), vol. 514. Springer, Berlin (1998)

18. Lanini, M., Strickland, E.: Cohomology of the flag variety under PBW degenerations. Transform.
Groups 24(3), 835–844 (2019)

19. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. http://oeis.org
20. Sturmfels, B.: Gröbner Bases and Convex Polytopes, Volume 8 of AmericanMathematical Soc. (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://oeis.org

	Following Schubert varieties under Feigin's degeneration of the flag variety
	Abstract
	1 Introduction
	2 Preliminaries and notation
	2.1 Symmetric group combinatorics
	2.1.1 Sequences
	2.1.2 A special Coxeter element

	2.2 Basics on the flag variety
	2.2.1 Plücker relations

	2.3 Ideals for Schubert varieties and their degeneration

	3 Two classes of irreducible Xva
	3.1 Small flag varieties
	3.2 Isomorphic degenerate and original Schubert varieties

	4 Criteria for reducibility
	4.1 Relations between Gr(1,mathbbCn) and Gr(2,mathbbCn)
	4.2 Monomials from other relations
	4.2.1 Efficiency of the various criteria from Theorem 3

	4.3 Plücker relations not degenerating to monomials
	4.4 More and more monomials

	5 Degenerate Schubert and Richardson varieties
	5.1 Degenerate flag varieties and flag varieties of higher rank
	5.1.1 Translation into Plücker coordinates

	5.2 Richardson varieties in SL2n-2/P

	6 Schubert divisors
	Acknowledgements
	Appendix
	References




