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Abstract A large variety of time series observation-driven models for binary and

count data are currently used in different contexts. Despite the importance of station-

arity and ergodicity to ensure suitable results, for many of these models stationarity

is not yet proved. We specify a general class of observation-driven models for dis-

crete valued processes, which encompasses the most frequently used models. Then,

we show strict stationarity by means of Feller properties and establish easy-to-check

stationarity conditions.

Abstract Modelli observation-driven per serie storiche di dati binari e di con-
teggio sono correntemente utilizzati in diversi contesti. In alcuni casi, tuttavia, le
proprietà di stazionarietà ed ergodicità non sono state dimostrate. In questo paper,
viene specificata una classe generale di modelli observation driven per dati discreti,
che comprende i modelli maggiormente utilizzati in letteratura. Tramite le proprietà
di Feller, si derivano condizioni di stazionarietà semplici da verificare.

Key words: Generalized linear ARMA, Time series of counts, Binary variables,

Drift conditions

1 Introduction

Observation-driven models were originally introduced by Cox [2] and they have

nowadays received new interest. There is an heterogeneous literature about such

models for binary data [12, 17, 11] and for count data [3, 7, 9]; other general models
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were introduced in [1] and [19]. More recently, various attempts have been done to

study the probabilistic properties of these models. Stationarity and ergodicity were

proved for a very general model in [5] and in [4], but these results do not directly

apply to the models mentioned above; the results of [5] and [4] provide a basis

for proofs which one needs to develop from time to time, depending on different

models and specific distributions. In practical applications, directly applicable sta-

tionarity condition are needed to guarantee the reliability and validity of the results

obtained. Strict stationarity results have been directly derived by [13] solely for the

Generalized Autoregressive Moving Average (GARMA) model of [1].

Our contribution extends the argument of [13] and provides stationarity and

ergodicity conditions directly verifiable and applicable for a class of observation-

driven models that encompasses the models mentioned so far and for data coming

from a large family of distributions.

In Section 2 we formulate the general framework, with some examples. In Sec-

tion 3 we establish stationarity and ergodicity for the model. In Section 4 we apply

the results to some specific models. In Section 5, concluding remarks and future

developments are highlighted.

2 The framework

Let us consider the stochastic process {Yn}n∈N and the filtration Fn−1 = σ(Ys, s ≤
n−1, X0 = x), the information set up to time n−1 and the starting value for Xn. An

observation-driven model for Yn has the form

Yn|Y0:n−1 ∼ f (·;μn) (1)

μn = qθ ,n(Y0:n−1) (2)

where qθ ,n is some function parametrized by θ and f (·;μn) is a density (or mass)

function whose dynamic is captured by μn; usually, but not necessarily, this distri-

bution is assumed to belong to the exponential family with μn as conditional expec-

tation. We focus on models where the observation process {Yn}n∈N is integer-valued

and find conditions under which there exists a stationary and ergodic version of it

via Markov chain theory. However, since {Yn}n∈N is not itself a Markov chain, a

classical approach is to prove the existence of a stationary ergodic process {Yn}n∈N
as a function of an ergodic Markov chain X = {Xn}n∈N, on a state space S with σ -

algebra F and n-step transition kernel P(x,A) = Pn(Xn ∈ A|X0 = x) for A ∈ F and

starting from X0 = x.

In the present case, the chain is specified as Xn = g(μn) where g is a bijective

increasing function, the link function; an explicit formulation for (2) is defined as

follows

g(μn) = α+
k

∑
j=1

γ jg(μn− j)+
p

∑
j=1

φ jh(Yn− j)+
q

∑
j=1

θ j

[
h(Yn− j)− ḡ(μn− j)

νn− j

]
(3)
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where νn is some scaling sequence. The function h(Yn) is called y-link function
because it is applied only to the observations Yn whereas ḡ(μn) is said mean-link
function because it is applied only to the expected value μn. Both link functions are

monotone and could be different from the link g(·). In general, it is useful to choose

the mean-link function as follows:

ḡ(μn) = E[h(Yn) |Fn−1 ] , (4)

so that εn = h(Yn)− ḡ(μn) is a martingale difference sequence (MDS) and can be

interpreted as a prediction error.

For sake of clarity we focus the attention on the first order model

g(μn) = α+ γ g(μn−1)+φ h(Y ∗
n−1)+θ

[
h(Y ∗

n−1)− ḡ(μn−1)

νn−1

]
, (5)

where Y ∗
n is some mapping of Yn to the domain of h(·).

The general class of models (5) has a large flexibility in that it encompasses many

time series models of interest. The GARMA model [1, 13] is easily obtained when

γ = 0, by setting g ≡ ḡ ≡ h and νn = 1, such as, by equivalence of the three link

functions and no scaling applied, one has

g(μn) = α+φ g(Y ∗
n−1)+θ

[
g(Y ∗

n−1)−g(μn−1)
]
. (6)

Note that, in this case, εn = g(Y ∗
n−1)−g(μn−1) is a MDS only in the special case in

which g ≡ h, the identity function.

The Binomial ARMA (BARMA) model, developed in [12, 17] is obtained by (5)

when γ = 0, h is the identity (ḡ(μt) reduces to μt ) and Y ∗
n = Yn. Then,

g(μn) = α+φ Yn−1 +θ [Yn−1 −μn−1] . (7)

Another promising branch of the literature has been developed by [16] and [3],

under the name of Generalized Linear ARMA (GLARMA) models. This class is

recovered here by setting φ = 0 and h the identity,

g(μn) = α+ γ g(μn−1)+θ
[

Yn−1 −μn−1

νn−1

]
(8)

where ḡ(μn) reduces to μn and Y ∗
n = Yn.

Other models are contained in this general class, such as those in [8, 9, 11, 19].

3 Strict stationarity for the general model

In this section we present results for stationarity conditions of the chain {Xn}n∈N
and the process {Yn}n∈N coming from (5).
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The usual practical condition for establishing stationarity and ergodicity in a

Markov chain is by showing that it is positive Harris recurrent, via a drift condition

in “small set”. Positive Harris recurrent chains possess a unique stationary proba-

bility distribution π . However, this does not work if the chain is not ϕ-irreducible,

as for the case of {Yn}n∈N integer-valued (for the details, see [14]). Nevertheless,

as suggested by [13], one can still use the drift condition combined with the weak
Feller property to show existence of a stationary distribution. Then, by applying

the asymptotic strong Feller condition, one can derive uniqueness of the stationary

distribution (for the definitions, see [18, 10, 13]).

Let Ex(·) denote the expectation under the probability Px(·) induced on the path

space of the chain when the initial state is X0 = x.

We handle three separate cases:

1. f (·;μ) is defined for any μ ∈ R. In this case the domain of g and h is R and

Y ∗
n = Yn is taken;

2. f (·;μ) is defined for only μ ∈R
+(or μ on any one-sided open interval by anal-

ogy). In this case the domain of g and h is R+ and Y ∗
n = max{Yn,c} for some

c ≥ 0 is taken;

3. f (·;μ) is defined for only μ ∈ (0,a) where a > 0 (or any bounded interval by

analogy). In this case the domain of g and h is (0,a) and for some c ∈ [0,a/2)
Y ∗

t = min{max(Yn,c) ,(a− c)} is taken.

Let Y0(x) denote the random variable Y0 conditional on μ0 = x.

Definition 1. The Lipschitz condition

|g̃(z)− g̃(w)| ≤ L|z−w| (9)

with L ≤ 1, is satisfied in the following different scenarios:

1. ḡ ≡ h 	= g
2. ḡ 	= g and h : identity
3. E[h(Y ∗

t )|Ft−1] = ḡ(μt) 	= g(μt)

under the assumption that the link functions g−1, h, ḡ are Lipschitz with constant

smaller or equal than 1.

Theorem 1. The process {μn}n∈N specified by the model (5) has a stationary dis-
tribution, and thus is stationary for an appropriate initial distribution for μ0 (then,
{Yn}n∈N is stationary), under the conditions below.

1. Y0(x)⇒ Y0(x′) as x → x′.
2. E(Yn | μn) = μn.
3. There exist δ > 0, r ∈ [0,1+δ ) and nonnegative constants d1,d2 such that

E(|Yn −μn|2+δ | μn)≤ d1 |μn|r +d2.

4. g and h are bijective and increasing, and

• If ḡ(μt) = g(μt),
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a. h : R �→ R concave on R
+ and convex on R

−, g : R �→ R concave on R
+

and convex on R
−, and |φ |+ |γ|< 1

b. h : R+ �→ R concave on R
+, g : R+ �→ R concave on R

+, and
(|γ|+ |φ |)∨|θ + γ|< 1

c. |θ + γ|< 1; no additional conditions on h : (0,a) �→R and g : (0,a) �→R.
• If ḡ(μt) 	= g(μt) and g̃ satisfies the Lipschitz condition (9),

a. h : R �→ R concave on R
+ and convex on R

−, g : R �→ R concave on R
+

and convex on R
−, and |φ |+ |γ|< 1

b. h : R+ �→ R concave on R
+, g : R+ �→ R concave on R

+, and
|γ|+(|φ |∨ |θ |)< 1

c. |θ |+ |γ|< 1; no additional conditions on h : (0,a) �→R and g : (0,a) �→R.

Let Xn = g(μn). For X0 = x and g(μ) = x we have that

X1(x) = α+φh(Y ∗
0 (g

−1(x)))+θ [h(Y ∗
0 (g

−1(x)))− g̃(x)]+ γx

where g̃(x) = (ḡ◦g−1)(x) = ḡ(g−1(x)) = ḡ(μ).
Since g−1 is continuous, Y0(g−1(x)) ⇒ Y0(g−1(x′)) as x → x′. Since the ∗ that

maps Y0 to the domain of h is continuous, it follows that Y ∗
0 (g

−1(x))⇒Y ∗
0 (g

−1(x′))
as x → x′. Since h is continuous, we have that h(Y ∗

0 (g
−1(x))) ⇒ h(Y ∗

0 (g
−1(x′))).

Since g̃(x) is continuous, we have that g̃(x) ⇒ g̃(x′). So X1(x) ⇒ X1(x′) as x →
x′, showing the weak Feller property. So by combining this fact and Theorem 1,

Theorem in [18] is satisfied and, then, a stationary distribution for {μn}n∈N and

{Yn}n∈N exists.

Assume that the distribution πz(·) of g(Y ∗
n ) conditional on g(μt) = z has the Lip-

schitz property

sup
w,z∈R:w	=z

‖πw(·)−πz(·)‖TV
|w− z| < B < ∞ (10)

where ‖·‖TV is the total variation norm (see [14], pag. 315).

Theorem 2. Suppose that the conditions of Theorem 1 and the Lipschitz condition
(10) hold, and that there is some x ∈ R that is in the support of Y0 for all values of
μ0. Then, there is a unique stationary distribution for {μn}n∈N.

Proof. A sketch of the proofs of Theorems 1 and 2 is postponed to the Appendix.

4 Strict stationarity of specific models

In this section, the results obtained in Theorems 1 and 2 are applied to specific

models of potential interest.

We first remark that for the GARMA model (6), Theorems 1 and 2 reduce exactly

to the results of [13].

For the BARMA model, Theorem 1 and 2 reduce to the following proposition.
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Proposition 1. Suppose that conditional on μn, Yn is Binomial(n,μn), with fixed
number of trials n, the link function g : (0,a) �→ R is bijective and increasing, g−1

is Lipschitz and |θ | < 1. Then, the process {μn}n∈N defined in (7) has a unique
stationary distribution π . Hence, when μ0 is initialized according to π , the process
{Yn}n∈N is strictly stationary.

In [13] (pag. 820-821) is proved that, for Poisson and Binomial distributions, the

Lipschitz conditions (10) holds when g−1 is Lipschitz. We proved that the same

holds for the Negative Binomial distribution. Note that the conditions on g and g−1

are clearly satisfied for the usual link, like logit or probit.

For GLARMA models, no stationarity results are available, apart form the sim-

plest case when k = 0, q = 1 (see [3], [7], [4]). Our Theorems 1 and 2 imply the

following proposition.

Proposition 2. The process {μn}n∈N specified by the model (8), has a unique sta-
tionary distribution π , and thus is stationary when μ0 is initialized according to π ,
under the conditions below. This implies that {Yn}n∈N is strictly stationary when μ0

is initialized according to π . The conditions are:

1. E(Yn | μn) = μn.
2. (2+ δ moment condition): There exist δ > 0, r ∈ [0,1+δ ) and nonnegative

constants d1,d2 such that

E(|Yn −μn|2+δ | μn)≤ d1 |μn|r +d2.

3. g is bijective and increasing, and

a. g : R �→ R concave on R
+ and convex on R

−, and |γ|< 1

b. g : R+ �→ R concave on R
+, and |γ|+ |θ |< 1

c. |γ|+ |θ |< 1; no additional conditions on g : (0,a) �→ R.

4. g−1 is Lipschitz with constant not greater than 1.
5. If {Yt}t∈N is discrete-valued, then (10) need to hold.

Note that, in the GLARMA model, the conditional distribution of {Yt}t∈N belongs

to the exponential family, thus the first two moment conditions are satisfied. As

mentioned above, for usual choices of discrete distributions (Poisson, Binomial, or

Negative Binomial) the Lipschitz conditions (10) holds when g−1 is Lipschitz.

Finally, the conditions on g and g−1 clearly hold for the usual link functions.

In practical applications, one just needs to verify the condition on the coefficients

to establish the stationarity of the model.

5 Concluding remarks and further developments

This paper provides a framework for proving the existence of stationarity end er-

godic solutions for a wide class of observation-driven time series models. For many

models in the class, no such results were available in the literature.
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The Lipschitz assumption (10) is not satisfied when the y-link function h is the

logarithmic function. In [5], different assumptions are considered to weaken the

Lipschitz condition. We shall investigate them in the future.

All the models encompassed are often used with covariates. Extending our results

to accomplish for covariates would be a further aspect to investigate.

Finally, our stationarity results could be used for proving consistency and asymp-

totic normality of estimators in discrete-valued models. The results of [5] and [6]

could be used in future work with the aim to develop the asymptotic theory for the

class of models considered in this paper.

Appendix

The proof for Theorem 1 and 2 follows the line of Theorems 5 and 15 in [13]. We

provide a sketch the proof here in the following.

Having showed that the set A = [−M;M], M > 0, is a small set, it is possible to

prove a drift condition by taking the energy function V (x) = |x| for the model (5):

ExV (X1) = Ex|α+ γx+φh(Y ∗
0 )+θ [h(Y

∗
0 )− ḡ(μ)]| (11)

and find that it is bounded under certain conditions on the coefficients, in the same

fashion of Theorem 5 of [13]. For sake of brevity, we omit the details.

The last step required for completing the proof it to show that the Markov chain

{Xt}t∈N is asymptotically strong Feller. This is accomplished by a modification of

the proof for Theorem 15 of [13]: set g ≡ ḡ, then, the random variables g(Y ∗
0 (z))

and g(Y ∗
0 (w)) have marginal distributions πz and πw, and P(g(Y ∗

0 (w)) = g(Y ∗
0 (z))) =

1−‖πw(·)−πz(·)‖TV > 1−B|z−w|.
If h(Y ∗

0 (w)) = h(Y ∗
0 (z)) then |Z1(w)−Z1(z)|= |−θ(g̃(w)− g̃(z))+ γ(z−w)|=

|θ + γ||z−w| and so
∥∥πZ1(z)(·)−πZ1(w)(·)

∥∥
TV < B|Z1(z)− Z1(w)| < B|θ + γ||z−

w|. Then we can construct g(Y ∗
1 (z)) and g(Y ∗

1 (w)) so that they have the correct

marginal distributions and that P(g(Y ∗
1 (w)) = g(Y ∗

1 (z))|g(Y ∗
0 (w)) = g(Y ∗

0 (z))) =
P(g(Y ∗

1 (w)) = g(Y ∗
1 (z))|h(Y ∗

0 (w)) = h(Y ∗
0 (z))) > 1 − ∥∥πZ1(z)(·)−πZ1(w)(·)

∥∥
TV >

1−B|θ + γ||z−w| where the first equality works because g and h are one-to-one

functions

g(Y ∗
0 (w)) = g(Y ∗

0 (z)) ⇐⇒ Y ∗
0 (w) = Y ∗

0 (z) ⇐⇒ h(Y ∗
0 (w)) = h(Y ∗

0 (z)).
If h(Y ∗

1 (z)) = h(Y ∗
1 (w)) then we can continue to “couple” the chains as above.

Notice that the probability that the chains couple for all times 0,1, . . . is at least

1−B|z−w|
∞

∑
t=0

(|θ + γ|)t = 1− |z−w|B
1−|θ + γ| ,

where the inequality applies by imposing |θ + γ|< 1. Thus, we combine this coef-

ficient condition with those obtained from the drift condition (11) into Theorem 1.

The remaining follows as in [13].
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If g 	= ḡ is it possible to adapt the previous proof in the following way

|Z1(w)−Z1(z)|= |−θ(g̃(w)− g̃(z))+γ(z−w)| ≤ |θ ||g̃(w)− g̃(z)|+ |γ||z−w| and,

under the Lipschitz condition (9) we obtain |Z1(w)− Z1(z)| ≤ |θ ||g̃(w)− g̃(z)|+
|γ||z−w| ≤ (|θ |+ |γ|)|z−w|. Hence, the proof for the former case ḡ ≡ g works

also for other shapes of ḡ, by substituting the condition |θ + γ| with |θ |+ |γ| and

by combining it in Theorem 1. Clearly, the condition (9) depends on the shape of

g̃. However, it is easy to show that it works for all the specific shapes of the link

functions considered in Definition 1. We omit the details.
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