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Deep-Manager: a versatile tool for optimal feature
selection in live-cell imaging analysis
A. Mencattini 1,2,5, M. D’Orazio1,2,5, P. Casti1,2, M. C. Comes1,2, D. Di Giuseppe1,2, G. Antonelli1,2, J. Filippi1,2,

F. Corsi2,3, L. Ghibelli3, I. Veith4, C. Di Natale1, M. C. Parrini 4 & E. Martinelli 1,2✉

One of the major problems in bioimaging, often highly underestimated, is whether features

extracted for a discrimination or regression task will remain valid for a broader set of similar

experiments or in the presence of unpredictable perturbations during the image acquisition

process. Such an issue is even more important when it is addressed in the context of deep

learning features due to the lack of a priori known relationship between the black-box

descriptors (deep features) and the phenotypic properties of the biological entities under

study. In this regard, the widespread use of descriptors, such as those coming from pre-

trained Convolutional Neural Networks (CNNs), is hindered by the fact that they are devoid

of apparent physical meaning and strongly subjected to unspecific biases, i.e., features that do

not depend on the cell phenotypes, but rather on acquisition artifacts, such as brightness or

texture changes, focus shifts, autofluorescence or photobleaching. The proposed Deep-

Manager software platform offers the possibility to efficiently select those features having

lower sensitivity to unspecific disturbances and, at the same time, a high discriminating

power. Deep-Manager can be used in the context of both handcrafted and deep features. The

unprecedented performances of the method are proven using five different case studies,

ranging from selecting handcrafted green fluorescence protein intensity features in

chemotherapy-related breast cancer cell death investigation to addressing problems related

to the context of Deep Transfer Learning. Deep-Manager, freely available at https://github.

com/BEEuniroma2/Deep-Manager, is suitable for use in many fields of bioimaging and is

conceived to be constantly upgraded with novel image acquisition perturbations and

modalities.
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Reproducibility is a major concern in biomedical research,
especially when it aims at building robust basis for future
clinical therapies to improve human health. The biological

data are often highly variable, mainly due to uncontrollable
experimental parameters. This is particularly dramatic in the case
of bioimage acquisitions for quantitative analysis. If images are
not acquired on the same microscope, with the same setting,
using the same light source and the same cell support, these
images are not easily comparable unless standardization methods
are implemented which, however, can alter the expected
dynamics of the signals. This is a huge limitation in the appli-
cation to biology of computational science methods, such as the
powerful AI-based image analysis tools.

In this regard, identifying a subset of image features that
optimally relate to a specific disease or, more in general, to an
aspect under investigation1,2 is still a frontier issue, often
underestimated, especially in image-based classification tasks. The
performance of classifiers run on a subset of handcrafted or
black-box features is generally not scalable and usually sharply
declines when used on datasets other than those used for classifier
construction, lacking reproducibility and generalizability3. The
main reason is that the experimental samples available for the
feature selection step are usually scarce or not so general to cover
possible admissible variations, even occurring within the same
biological conditions. In practice, when the results obtained on a
smaller set of experiments are extended to a more general and
independent plethora of cases, the performance is expected to
degrade dramatically, as shown in Fig. 1 (left, red branch). No
matter if in the context of handcrafted or Deep Transfer Learning
(DTL) features4,5 (i.e., descriptors coming from pre-trained
Convolutional Neural Network (CNN)), it is essential to select
the features that assure a very large validity over heterogeneous
biological experiments, with appropriate representativeness and
generalizability of the results. This aspect has been under-
estimated, especially in the context of DTL features, where two
other major issues must be addressed: features dimensionality
(thousands of features for a given image) and redundancy (many
features are strongly correlated). The attention has been focused
mainly on how to decrease the number of features to be extracted
rather than on how to select the most general (i.e., valid) ones.
The selection of the most representative descriptors, both hand-
crafted and DTL, in biomedical images is far from being an easy
process and is highly prone to the risk that the features do not
depend on the cell phenotypes but rather on brightness, texture
artifacts, focus changes, autofluorescence, and other unpredict-
able disturbances. To solve this problem, we present here a
platform, named Deep-Manager (DM) (the blue branch in Fig. 1),
that allows to identify and practically select the best features for a
given classification task after extraction by customized functions
or after transfer by a given user-defined pre-trained DL network.
The term deep refers explicitly to deep features, for which the
problem of efficient feature selection is unsolved, and the risk of
bias is huge3. However, as demonstrated in this work the platform
may also run on handcrafted intensities and texture features
commonly quantified in biomedical images. DM can therefore
greatly help biologists in their everyday practice to verify the
general validity of the rationally selected features. The DM plat-
form identifies the extracted features that specifically represent
the characteristics of the cell/tissue objects, discarding the non-
specific macroscopic variations that unintentionally occur in the
training dataset. This is crucial when the image acquisition pro-
cess is very complex and at a practical limit of repeatability (e.g.,
does the measured green emission intensity correlate with a specific
event or simply with autofluorescence phenomena? At the low-
intensity level, the answer is not trivial). For example, in living
cell biological experiments6, the acquisition process can be long

(e.g., days), and the acquisition conditions are difficult to control
for the entire period, both when using phase-contrast transmis-
sion light or fluorescence time-lapse (TM) microscopy7,8. The
intra-experiment heterogeneity of video sequences, as well as the
inter-experiment variation due to uncontrolled changes in the
acquisition set-up9, also lead to high risks of wrong conclusions
because of the low validity of the extracted features. These effects
induce errors in the recognition model and misleading biological
or clinical conclusions (e.g., not-true drug response). In this
regard, the DM platform allows efficiently selecting, among all the
features extracted from a DTL neural network or by customized
handcrafted descriptors, those that have a lower sensitivity to
disturbances and, at the same time, a high discriminating power
(Fig. 1 blue branch). After the application of the different
degradation tests to the training dataset (Fig. 1 right expansion),
features are characterized in terms of their discriminant power
(DP) and sensitivity to the degradations (SENS), measured as the
relative difference in DP values before and after degradation
injection (see Methods for the details). A multi-threshold
approach is then used to separate features with high DP and
low SENS (cyan dots in Fig. 1 blue branch) from the other groups
of features (low DP or/and high sensitivity, green and blue dots in
Fig. 1 blue branch). Selected features can then be used in a
classification task proposed by the user, where it is asked to
upload an independent test set of labeled images, the test dataset,
to verify the validity of the selected features by evaluating their
DP over a different set (Fig. 1).

The proposed approach is general and can be applied to any
Deep Neural Network-based processing architecture by simply
selecting a network among a proposed set of existing ones or, for
users with programming skills, by modifying the Python software
to integrate proprietary networks, new features, or also new
perturbation tests. To demonstrate the usefulness of DM, we
apply the software to five distinct case studies. Case study #1:
Fluorescence microscopy videos of chemotherapy-induced death of
MDA-MB 231 breast cancer cells in the presence of a green
fluorescent apoptosis reporter10. Case study #2: TL microscopy
videos of PC3 human prostate cancer cells, moving in a 2D
environment in the presence of the chemotherapeutic drug
etoposide11. Case study #3: phase-contrast TL microscopy videos of
immune cells moving in a 3D collagen gel inside microfluidic
tumor-on-chip devices that mimic the tumor microenvironment12.
Case study #4: fluorescence microscopy videos of cancer cells forced
to undergo apoptosis by cytotoxic T cells in 3D tumor-on-chip;10

Case study #5: Phase contrast TL microscopy static images of BT-
474 breast cancer cells from the recently presented public dataset
LIVECell13. In the following, we will refer to each case study
simply using the case study number. In addition, for increased
readability, we refer to the imaging modalities considered in the
actual version of DM-tool as: IM-ACQ-1 (2D TL time-lapse
microscopy), IM-ACQ-2 (3D phase-contrast TL time-lapse micro-
scopy), IM-ACQ-3 (3D fluorescence time-lapse microscopy). Each
modality identifies specific tests related to the equipment and
experimental conditions used as described below.

For all the five case studies considered, we obtained very good
performance. In particular, when comparing the average sensi-
tivity and the average discriminant power (DP) values of the
features selected by DM with those obtained by the best com-
parative approach14,15 such as two-sample t-test with pooled
variance estimate, Kullback-Leibler divergence, Chernoff bound,
Mann–Whitney, area between the empirical receiver operating
characteristic (ROC) curve, and stepwise linear regression fit, we
obtained an improvement in DP and sensitivity values in the
range 6–10% and 56–69% respectively with the additional
strength of automatically providing a reduced set of selected
features rather than a simple feature ranking. In addition, in case
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study 5, we also tested the discrimination capability of the
selected features in an independent binary classification problem
obtaining an average AUC of classification of 0.82 with an
average AUC improvement with respect to a no-selection mod-
ality of 33%. The perturbation tests implemented are typical for
each imaging modality (see Fig.1 right expansion) and can be

further expanded according to additional perturbations of interest
amp brightness drift, etc..). It is important to stress the fact that
although real images present their own native artifacts due to the
naturally imperfect acquisition protocol and sample hetero-
geneity, we need a controlled scenario in which we may quantify
the effect of known source of image perturbations.

Fig. 1 Architecture of the Deep-Manager platform. The red branch identifies the common practice in biomedical image analysis for feature selection. From
top to bottom: extract intensity and texture descriptors, select features having the highest discrimination capability in terms of AUC, construct a
classification model, test the performance over an external validation dataset. Blue branch identifies the Deep-Manager working flow. From top to bottom:
modify the training dataset generating the optical imaging artifacts according to the imaging modality (right expansion), extract intensity, texture, or CNN
features (deep features) from the modified dataset, calculate discrimination capability in terms of AUC (or DP) and evaluate the sensitivity of each feature
by comparing the DP value before and after the perturbation, select those features with higher DP and lower sensitivity (cyan markers), construct a
classification model over the selected features, and test on an external dataset of images. The robustness imposed in the feature selection step avoids a
failure in the validation step and assures the construction of a more generally valid classification model.
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Results and discussion
To demonstrate the effectiveness of the proposed Deep-Manager
software platform, we selected five different use cases. The first use
case concerns the exploitation of DM in extracting information
from live-cell imaging, which is a common everyday practice
among biologists. The clinical case refers to handcrafted intensity
features related to GFP emission intensity in discriminating natural
death from chemotherapy-induced death in MDA-MB 231 breast
cancer cells12. The second use case concerns the extraction of robust
deep features by DTL in TL microscopy videos of PC3 human
prostate cancer cells in a 2D environment in the presence of the
chemotherapeutic drug etoposide11. The third use case concerns
deep features extraction in phase-contrast TL microscopy videos of
immune cells moving in a 3D collagen gel inside microfluidic
tumor-on-chip devices that mimic the tumor microenvironment12.
The fourth use case considers the problem of extracting deep fea-
tures in 3D fluorescence microscopy videos of cancer cells going
into apoptosis due to the killing by cytotoxic T cells in 3D tumor-
on-chip12. Finally, the fifth use addresses a classification task by
using the deep features extracted using the DM platform. More
specifically, we acquire phase contrast TL microscopy static images
of BT-474 breast cancer cells from the recently published public
dataset LIVECELL13, with the task to recognize the cancer growth
factor after 4 h of culturing in a dish in a 5-day experiment. Details
of each use case are provided in the next sections.

Scores plot and classification results of the handcrafted fea-
tures extracted (Case study #1). In this case study, we compared
the individual discrimination performance of handcrafted features
GFP derived in terms of the p-value of the Student t-test with and
without the selection using DM-tool. For the task of characterizing
and discriminating between natural and chemotherapy-induced
death, we selected four independent videos for each condition (8 in
total), with a duration of 70 h, acquired at a time point of 1 h. We
then automatically identified 431 crops, each containing a dying cell
(i.e., a cell that is going to die within 70 h) through the use of the
STAMP code10, downloadable at https://cloudstore.bee.uniroma2.
it/index.php/s/LEpHYTsPnDj4Ajt (password: STAMP2021).

In particular, 96 crops are from natural death, and 335 crops
are from cytotoxic T-cell death. Further details of the image
processing step can be found in10. Each crop has been
characterized in terms of the following handcrafted features:
average green emission in the crop, gmean, the total green emission
in the crop gtot, the top 75th percentile of the green emission in
the crop g75, the bottom 25th percentile green emission in the
crop g25. Usually, the percentiles 25th and 75th values are
preferred to max and min that are unpredictably subjected to
occasional disturbances. The discrimination capability of the
features computed on the available crops is evaluated in terms of
the individual DP (max(1-AUC,AUC)) and in terms of the p-
value of a paired two-sample Student t-test (see Eqs. (6), (7) in
the Supplementary Information). Results are shown in Fig. 2,
panel A. Preliminary evidence demonstrated the discriminability
of the two death phenomena by using all four descriptors. A DP
value was equal to or higher than 0.70, and the p-value was below
0.005. To be more confident of the results, we then applied DM
platform to the crops in the training set. By selecting the right
scenario (3D fluorescence microscopy), we applied perturbation
tests related to autofluorescence, photobleaching, and saturation
and calculated the four descriptors {gmean, gtot, g75, and g25} over
the modified images. The DP values of the descriptors are then
compared with those obtained before image alterations, and the
sensitivity SENS is calculated for each feature. Figure 2 panel b
shows the new boxplots of the four descriptors computed over the
modified set of images, with the corresponding DP, SENS, and

p-value indicated. As it is immediately evident, while descriptors
{gmean, gtot} still remain acceptably robust, DP decreases (but over
the limit threshold of 0.6) but with a percentage change (SENS)
that is less than the limit value of 0.1. On the contrary, descriptors
{g75, and g25} that are often used in the discrimination of death
events, present a strong decrease in the DP values: g25 DP values
goes from 0.75 to 0.61 with a percentage sensitivity SENS equal to
0.18 far beyond the limit value of 0.1 and g75 DP values goes from
0.70 to 0.62 with a percentage sensitivity SENS equal to 0.11 still
beyond the limit value of 0.1. One of the most astonishing fact is
also the permanence of statistical significance in terms of p-value
for descriptor g75. In other words, the DM platform allows the use
of realizing which descriptors have chances to be valid for a larger
plethora of experiments and with an increased complexity of
biological phenomena, relaxing the absolute trust in the training
set but rather as a subset of a wider and representative set.

Scores plot result for the extracted features for Case studies
2–4. In this task, we demonstrated the working principle of the
DM-tool over case studies 2–4, by splitting, for each imaging
modality and each test applied, the deep features extracted
according to the sensitivity and DP values. In Fig. 3a–c, we show
the scores plots (SENS, DP) for each feature extracted: red markers
indicate the DP of the features without the sensitivity test (assumed
SENS= 0), cyan markers indicate the score plot of the selected
features, blue and green ones are those rejected (high SENS and low
DP respectively). The orange lines indicate the threshold values for
DP (horizontal line) and for the SENS (vertical line). Plots (a) to (c)
indicate the three case studies respectively, for each test (from left to
right). The number of selected features is also indicated.

Comparison with standard feature selection approaches. In this
task, we compared the DM-tool feature selection performance with
other existing selection methods. To avoid the compensation effect
with a classification model trained over the selected features and to
appreciate the robustness of the features selected using the pro-
posed tool, we only compared the sensitivity and DP values of the
features selected using the approaches. With the aim of comparing
different standard feature selection approaches with DM selection,
we proceed as follows. First, we extracted the features from the
original training dataset of images by performing transfer learning
from a given CNN and related pooling layer. Then, we ranked the
features according to a comparative method among those listed
below and kept the first Nsel where Nsel is the number of features
selected by DM. We then extract the DP and the SENS values for
the selected features when computed over the artifacted dataset and
use them for comparison. In this way, we verify the potential of
selecting features using the sensitivity criterion in addition to the
DP. For clarity, also METHOD 5 uses the DP criterion for ranking
but without the evaluation of feature sensitivity. As it will be shown
below the DP criterion obtains very low performance if used alone.
In particular, we compared with the following methods: rankfea-
ture based on features ranking by class separability criteria15 and
stepwise regression model14.

More in details, we consider:

● METHOD 1: rank feature by using criteria such as: t-test,
namely the absolute value two-sample t-test with pooled
variance estimate15.

● METHOD 2: rank feature by using criteria such as: entropy,
namely relative entropy (Kullback–Leibler divergence)15.

● METHOD 3: rank feature by using criteria such as:
Bhattacharyya, namely the minimum attainable classifica-
tion error or Chernoff bound15.

● METHOD 4: rank feature by using criteria such as:
Wilcoxon, namely absolute value of the standardized
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u-statistic of a two-sample unpaired Wilcoxon test, also
known as Mann-Whitney15.

● METHOD 5: rank feature by using criteria such as: ROC,
area between the empirical ROC curve and the random
classifier slope15.

● METHOD 6: stepwise linear regression fit for feature
selection14.

For each subset of selected features, we evaluate the score plot
(SENS, DP) by calculating the same features over the artifacted

Fig. 2 Case study #1. a A Standard feature extraction and discrimination capability evaluation using p-value for four handcrafted GFP intensity features
{gmean, gtot, g25, and g75} computed over images acquired using fluorescence. n= 431 biologically independent samples have been considered. b Applying
the DM platform to the four intensity features {gmean, gtot, g25, and g75} some descriptors reveal to be no more valid for the analysis, e,g,, g75, and g25
because too sensitive (SENS= 0.18 > thSENS (0.1) and SENS= 0.11 > thSENS (0.1) respectively) to perturbations (autofluorescence, photobleaching,
saturation). Nevertheless, descriptor g75, still remains significant in terms of t-test analysis (p-value < ***) but presents a sensitivity value SENS larger than
the threshold due to an unacceptable worsening in the DP performance after perturbation injection. n= 1293 biologically independent samples have been
considered.
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set of images. Figures 4–6 illustrate boxplot (orange boxes for
SENS, green boxes for DP values) for the selected features
according to the method used for the selection. Paired boxplots
indicated the (SENS,DP) distribution values for each method. As
it can be observed, METHOD 1 (t-test) and METHOD 4
(Wilcoxon test) often demonstrate to reach good performance
but exhibit a spreader distribution of values for DP (green boxes)
and for SENS (orange boxes). On the other hand, METHOD 2
(entropy), METHOD 3 (Bhattacharyya), METHOD 5 (ROC),
and METHOD 6 (stepwise linear fit) exhibit unacceptably low DP
values even if at very low SENS values. The results are confirmed
for all the tests (TESTS 1–3) and for all the case studies (case
studies 2, 3, and 4).

Comparison of different Deep Learning networks. In order to
furthermore demonstrate the effectiveness of Deep-Manager
feature selection approach, we compare different Deep Learning
network architectures among those most used. Again, we did not
implement a classification step over the selected features to avoid
masking the robustness of the features selected. Comparison will
be performed in terms of sensitivity and DP values. In particular,
we considered ResNET10116, VGG1917, NasNETLarge18, and
DenseNET20119. Layers used for each architecture are selected as
a trade-off between memory storage and time-consuming (deeper
layers provide a coarser representation of the image, therefore,
extracting less descriptors) and discrimination performance.
Table 1 lists the layers used and the number of descriptors

considered for the analysis. Tables 2–4 show the numerical results
of DP and SENS of the features selected by each comparative
method (columns 2–7) and the DM tool (first column), by using
the networks and the layers listed in Table 1, for case studies
#2–#4. METHODS 1–6 are applied as follows. First, features are
extracted by applying a given network and layer over the original
dataset of training images. Then, features are ranked according to
the criterion included in methods (1–5) or directly selected using
method 6. After ranking, features are selected by taking the first
Nsel ranked features, where Nsel is the number of features
selected using DM tool. By extracting also the same features over
the modified dataset of images (obtained after applying the
proper tests according to the imaging modality), we then com-
puted the SENS and the new DP that are listed in Table 2. In this
way, we may directly evaluate the importance of using the sen-
sitivity criterion in conjunction with the DP value, especially in
comparing DM approach with the METHOD 5 that actually uses
a DP-like ranking criterion, but evaluate on the original dataset
and without the support of the sensitivity evaluation procedure.
Average values of SENS and DP are listed in the table, while
values in brackets represent the standard deviation computed
over the set of features selected. Best results for each test are
bolded. As it can be seen, in all the 36 tests, Deep-Manager
achieves higher or equivalent DP values for the selected features.
Noteworthy is the fact that METHODS 1–5 do not autonomously
provide a subset of selected features but rather a feature ranking
result. Therefore, METHODS 1–5 would require a further opti-
mization step for feature selection. On the contrary, METHOD 6

Fig. 3 SENS vs DP plot. Score plots (SENS, DP) of the feature extracted using transfer learning (‘Resnet101’ is used in the example) for a–c Case study #2,
d–f Case study #3, g–I Case study #4 and for the three tests for each modality, a, d, g test 1, b, e, h test2, c, f, i test3. Cyan markers locate the (SENS, DP)
values for each selected descriptor (high DP and low SENS). Blue markers locate the (SENS, DP) values for each descriptor rejected due to a too high SENS.
Green markers locate the (SENS, DP) values for rejected descriptors due to a too low DP.
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Fig. 4 Boxplots of the SENS values (orange boxes) and DP values (green boxes) for 6 comparative approaches, METHODS 1–6, and the proposed
Deep-Manager approach (first result). Yellow asterisks identify the average values and the horizontal black line identifies the median value. Results are
for Case study #2, IM-ACQ-1, tests 1(a)−3(c). n= 200 biologically independent samples have been considered.
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Fig. 5 Boxplots of the SENS values (orange boxes) and DP values (green boxes) for 6 comparative approaches, METHODS 1–6, and the proposed
Deep-Manager approach (first result). Yellow asterisks identify the average values and the horizontal black line identifies the median value. Results are
for Case study #3, IM-ACQ-2, tests 1(a)−3(c). n= 200 biologically independent samples have been considered.
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Fig. 6 Boxplots of the SENS values (orange boxes) and DP values (green boxes) for 6 comparative approaches, METHODS 1–6, and the proposed
Deep-Manager approach (first result). Yellow asterisks identify the average values and the horizontal black line identifies the median value. Results are
for Case study #4, IM-ACQ-3, tests 1(a)−3(c). n= 200 biologically independent samples have been considered.
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(stepwise linear regression) that actually returns a subset of
selected features never provides acceptable results in terms of the
DP of the extracted features when performances are calculated
over the features extracted in the modified set of images.

Performances comparison of different layers for the same
network. Convolutional Neural networks are composed of repeated
nested convolution operations alternated with nonlinear operations
and pooling layers. It is quite unpredictable which layers to use for
optimal transfer learning implementation. Usually, pooling layers are
preferred due to the fact that they return a more compact set of
information with respect to any previous convolutional layers. With
the aim to presenting a further potential of Deep-Manager platform,
we compare the DP values for features selected from different layers
of diverse CNNs. Results are provided for the case study 2 (2D
culture) using networks ResNET101 (max-pool1 and avg-pool5),
VGG19 (max-pool1, max-pool2, max-pool3, max-pool4, max-pool5)
and DenseNET201 (max-pool1, avg-pool2, avg-pool3, avg-pool4,
avg-pool5). NasNetLarge is not represented here since it presents a
unique pooling layer (i.e., global_average pool5). Figure 7 compares
the DP distribution of features selected from each layer. Previous
experiments highlight the importance of selecting the correct pooling
layer. As it can be seen the DP values of the selected features depend
on the layer and on the test applied. On average, it may be noticed
that a middle layer (pool3 for DenseNET201 and for VGG19)
reaches the highest DP values for test 1 and test 2 (case study 2). On
the contrary, pool5 reaches the best performance in the average DP
values for test 3 (case study 2). However, this fact should be corre-
lated with a highly lower number of features to manage as long as the
layer gets deeper and with consequently lower time-consuming.

Classification of cancer cells growth factor through DM-feature
selection (Case study #5). In this task, we reinforced the potential
of using the DM-tool by implementing a classification task based
on Support Vector Machine (SVM) trained over the deep features
selected by the DM-tool. With this in mind, we selected a case
study from the recently published LIVEcell labelled dataset13. In
particular, with the aim to present a practical application in line
with the examples used in this work, we selected BT-474 cells,
breast cancer cells grown in rafts. The task was to recognize the
cancer growth factor after 4 h. We then compared cells at day 0
with cells visualized after 4 h and applied the DM platform to
select most discriminant and robust deep features for the task.
Figure 8 shows five examples of cells from each group.

The annotations allow us to locate each cell and extract a
Region of Interest (ROI) around it. According to the simulation
results shown in Fig. 7, we selected the CNN Densenet201 with
average pooling layer ‘average_pool5′ that exhibited the highest
average DP values for all three tests. In order to create a
challenging scenario, we performed the classification task of
discriminating cells at day 0, hour 0 from cells at day 0, hour 4.
To make the task realistic, avoiding overtraining of the model, we
applied the perturbation tests 1–3 (luminance, movement, and
out-of-focus) to the images in the test set, as provided by the

LIVEcell dataset. We extracted all the 5554 ROIs annotated in the
training dataset and test the 1912 ROIs from the test set after
applying the random perturbations described in the method. The
features extracted through the DM toolbox were then fed to an
SVM with a linear kernel20 classification model with the aim to
recognize cells morphology changes at the 4th hour of culture.
Being the number of features selected very low (from 2 to 5 over
1920 extracted by the net), we also performed simulations by
lowering the threshold value thDP used for the selection of
features according to their DP values over the training set. We
considered the interval of values for thDP equal to [0.5 ÷ 0.7] at a
step of 0.05. Figures 9–11 (panel a) show the accuracy of
classification (ACC) and the Area Under Curve (AUC) values
and Figs. 9–11 (panel b) show the F1-score values related to the
three variational tests for 2D transmission light environment. The
independent test set of images has been modified according to
Fig. 9a, b the brightness test for the 2D scenario, Fig. 10a, b the
movement test for the 2D scenario, Fig. 11a, b the out-of-focus
test for the 2D scenario. Blue lines denote performance results
calculated over the training set, red lines denote performance
results calculated over the modified test set, and green lines
represent the performance results achieved by not selecting
features. As it can be clearly noted, the opportunity to select the
features, not only allows higher classification performance in
terms of ACC, F1-score, and AUC but also strongly reduces the
time required by the model to be trained. In both the three tests,
training accuracy of classification, F1-score values, and AUC
values decrease with a smaller number of features selected (higher
thDP). At the same time, testing accuracy of classification, F1-
score values, and AUC values increase. This phenomenon
demonstrates a decreasing overtraining trend and an increasing
system robustness to image variations. The low results achieved
by not selecting the features (green lines) furthermore proved the
importance of the use of the DM tool. As a final comparison, we
fine-tuned the pre-trained DENSENET201 network over the
same training set of images after the application of perturbations
test1-test3 for IM-ACQ-1 images. Training options for Stochastic
Gradient Descent with Momentum (SGDM) optimization
method were 10 epochs (1000 iterations per epoch), data shuffle
at every epoch, mini-batch size equal to 10, 0.001 initial learning
rate. Training took about 33 h on Matlab 2022b, using the GPU
NVIDIA GeFORCE RTX and Intel Core i7, 9th generation. Also,
we randomly selected 5000 training data from 16662 for
computational time constraints. We then applied the tuned
network to the test set used in the previous experiments. Results
achieved in terms of ACC are shown in Figs. 9–11 as the cyan
line. In addition, we also applied the DM feature selection
criterion to the deep features extracted by the fine-tuned
DENSENT201 network. Results are represented by the black
lines. As it can be noted, the fine-tuned network is not sensible to
the feature selection procedure, probably due to the tuning step.
On the other hand, the generalization capability of the fine-tuned
network remains quite low. Although results are comparable in
terms of ACC and F1 scores, a training time of 33 h and the need
to retrain the network in the presence of new perturbation tests,

Table 1 Lists of deep learning architectures selected for the validation and related characteristics: layers used and total number
of features extracted.

ResNET101 He et al., 2016 VGG19 A Bhandary
et al., 2020

NasNETLarge Zoph et al., 2018 DenseNET201 Huang
et al, 2017

Layer ‘average-pool5’ ‘max-pool5’ ‘global_average_pool5’ ‘average_pool5’
N. of features 2048 25088 4032 1920
Input Layer size 224 × 224 × 3 224 × 224 × 3 331 × 331 × 3 224 × 224 × 3
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as needed, make DM tool the outperforming approach consider-
ing also that its reduced set of features with respect fine-tuned
network is utilized as input for the classification models.

Conclusions
The greatest goal for all those who develop data analysis tech-
niques for medical applications is to see their work used in a real
context. Unfortunately, the transition from the excellent results
obtained in the laboratory, for example, in a hospital, is anything
but easy. In the real measurement scenario, many variables are
not controlled, and their variations can lead to not acceptable
performances. Such an issue is even more critical when it is
addressed in the context of deep learning features due to the lack
of a priori known relationship between the black-box descriptors
(deep features) and the phenotypic properties of the biological
entities under study. In this work, we have introduced a software
platform called Deep-Manager, that counteracts this limitation by
analyzing the performance and sensibility of each feature to dif-
ferent disturbances. The potentiality of the proposed approach
has been validated in five different case studies and different
simulated artifacts, evidencing superior performances with
respect to the standard solutions.

Methods
Deep-Manager platform allows users to perform specific sensitivity tests to their own
images dataset to select the most appropriate features for the specific classification
task. Sensitivity tests aim to detect which features extracted from ad hoc algorithms
(handcrafted) or from a pre-specified Deep Learning network through transfer
learning approach are more sensitive to external quantities and phenomena that are
acquisition-specific. Among the existing vast panorama of acquisition devices and
experimental set-up, with the aim to prove the effectiveness of the proposed method,
we selected three of the most used practical contexts in the field of biological image
analysis: 2D transmission light time-lapse microscopy, 3D phase-contrast time-lapse
microscopy, and 3D fluorescence time-lapse microscopy. The implemented sensi-
tivity tests are therefore thought for those contexts. However, the list of possible tests
of the Deep-Manager platform could be enlarged in the future to other fields such as
histopathological imaging or indirect immunofluorescence. For this reason, in the
remainder, we will indicate the present release as Deep-Manager 1.0 version. Link:
https://github.com/BEEuniroma2/Deep-Manager. All the data required to reproduce
the figures are in the Supplementary Data 1 file.

Deep-Manager 1.0 considered imaging modality. Regarding the imaging mod-
ality the actual version of DM-tool considered three distinct imaging modalities
(Supplementary Notes 1.1): IM-ACQ-1 (2D TL time-lapse microscopy, Supple-
mentary Notes section), IM-ACQ-2 (3D phase-contrast TL time-lapse microscopy),
IM-ACQ-3 (3D fluorescence time-lapse microscopy). Each modality identifies spe-
cific tests related to the equipment and experimental conditions used.

Deep-Manager 1.0 available artifacts. For the modality IM-ACQ-1 we imple-
mented “Brightness artifact”, “Stage multi-positioning artifact”, “Out-of-focus
artifact”. Case studies #2 and #5 refer to this scenario. For the modality IM-ACQ_2
we included tests “Brightness variation”, “Local-out of focus”, and “Gel texture
variation”. Case study #3 refers to such scenario. Finally, for the modality IM-
ACQ-3, we included “culture medium autofluorescence”, “photobleaching”, and
“fluorescence saturation”. Case studies #1 and #4 refer to such modality. Additional
mathematical details can be found in the Supplementary Notes (Sections 1.1, IM-
ACQ-1 – IM-ACQ-2, Supplementary Figs. 1–9).

Features available. The DM platform allows two distinct modalities: 1. hand-
crafted intensity and texture features 2. Deep-features from Deep Transfer
Learning (DTL) algorithm. Users with programming skills may also add custo-
mized functions with specific additional features. A geometric descriptors extractor
would require a preliminary segmentation step in order to extract the shape of each
cell. By default, the platform proposes some well-known intensity and texture
descriptors that are computed over the original image (or the image subjected to
perturbations). The list of available intensity descriptors is: average intensity,
median intensity, the standard deviation of the intensity, minimum intensity, 10th
percentile of the intensity, 25th percentile of the intensity, 75th percentile of the
intensity, 90th percentile of the intensity, maximum intensity, entropy of the
intensity21. Regarding the texture descriptors, DM platform includes Haralick
features22 and Histogram of Oriented Gradient features (HoG)23. Further details
can be found in the references and in Section 1.2 of Supplementary Notes
“Handcrafted features”. By selecting different deep layers, the input image is
encoded into a different number of descriptors from detailed representationT
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Fig. 7 Performance in terms of DP values by changing the deep layer for transfer learning. a ResNET101, max-pool1, avg-pool5. b VGG19, map-pool1,
max-pool2, max-pool3, max-pool4, max-pool5. c DenseNET201, max-pool1, avg-pool2, avg-pool3, avg-pool4, and avg-pool5. n= 46770 independent
data have been used for panel (a), n= 127667 independent data have been used for panel (b), n= 26675 independent data have been used for panel
(c).
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(higher layers) to coarser encoding (very deep layers). By default, the DM platform
includes several well-known deep learning architectures: ResNET10116, VGG1917,
NasNETLarge18, and DenseNET20119. Each network presents so-called pooling
layers, that reduce the dimensions of data by combining the outputs of neuron
clusters at one layer into a single neuron in the next layer16,24.

Software design and utilization. The Deep-Manager platform has been realized in
Python 3.8 open-source language in Anaconda framework. The overall platform
architecture has been thought for different levels of expertise. A text file is fed the DM
software including a list of parameters and related range values to be used in the
artifacts implementation and application. A unique text file is available for all the tests
so that the user may repeatedly run the platform by modifying a unique SETTING
file. Advanced users may also modify the tests or add a new one by properly including
the setting parameters in the SETTING file. The main steps of the DM functionalities
are: (1) the user is first asked to select the practical scenario to work (such selection
allows the platform to save final selection results into a specific file numbered
according to the test number (e.g., 2D TL microscopy, 3D Phase Contrast TL
microscopy, or 3D Fluorescence). All the tests available for the selected modality are
applied; (2) the user is then asked to select the SETTING text file to load the DM
configuration. The parameters used are listed in the Supplementary Notes, Section
Algorithm Parameter. The file also includes the name of the network used for the
transfer learning and the layer used to extract the features, if applicable. Specific
details are provided in the Methods for each test. (3) the user is then asked to select

the path where the training dataset of images is stored. Details can be found in the
DM Guide https://github.com/BEEuniroma2/Deep-Manager; (4) the user is asked to
select the handcrafted or the DTL modality. As a consequence, if the handcrafted
selection is chosen, the platform automatically calculates a set of texture and intensity
features. If DTL is selected, the platform reads the setting information regarding
which network and layer to choose in the SETTING file mentioned above. DM
applies the perturbations according to the tests described above and computes the
features before and after the perturbation; (5) The user may visualize perturbation
effects on images selected at random. It is also possible to visualize in a 2D plot values
of DP vs SENSITIVITY for the selected and for unselected features; finally, (6) the
user is then asked to select a directory containing two validation datasets on which to
select the features for a discrimination task. All the image formats are allo-
wed,.jpeg,.tiff,.png etc. Selected features are then computed for the validation dataset
and saved in separate repository variable to be used in a classification task. The user
may also save the modified set of training images for further usage. The selection
process works as follows; using the two values achieved for each descriptor fi, i.e., fi0
and fimod, before and after the perturbations, the software derives the individual
Discriminant Power (DP) values as follows:

DPi0 ¼ max 1� AUC ð f i0Þclass2class1;AUC ð f i0Þclass2class1

� � ð1Þ

DPimod ¼ max 1� AUC ð f imodÞclass2class1;AUC ð f imodÞclass2class1

� � ð2Þ
and then, it computes the Sensitivity (SENS) of descriptor fi to the added perturbation

Fig. 8 BT-474 cell images. Some examples of crops of BT-474 cells acquired at a day 0, hour 0 (top row), b BT-474 cells acquired at day 0, hour 4. Scale
bar corresponding to 40 mm.

Fig. 9 DM performance with brightness test. Classification performance of DM selection in combination with SVM classification model in terms of ACC (left
y-axis panel a) and F1-score (left y-axis panel b) vs AUC (right y-axis) in recognizing BT-474 cells morphological changes across 4 h of culture at day 0. The
independent test set of images has been modified according to the brightness test for the 2D scenario. Blue lines denote performance results calculated over
the training set, red lines denote performance results calculated over the modified test set, green lines represent the performance results achieved by not
selecting features, cyan line identifies the performance of the fine-tuned DENSENET201 network, black lines represent the performance of applying DM feature
selection procedure to the features extracted by the fine-tuned DENSENET201 network. n = 10 repetitions were used to extract boxplot.
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as follows:

SENS ð f iÞ ¼
DPimod � DPi0

DPi0

����

���� ð3Þ

where AUCðf i0Þclass2class1 indicates the Area Under the Receiving Operating Characteristic
(ROC) curve25 of feature fi0 in discriminating class1 from class2. We consider here DP
equal to themaximum value between 1-AUC and AUC, being AUC a way to quantify
the discrimination capability of a descriptor in a binary classification problem17. With
respect to the AUC value, the DP of each feature has been chosen due to its invariance
to the “feature-to-label” direct or inverse relationship. In other words, either high or

low AUC values (both indicative of highly discriminant capability) correspond to
high DP values.

The software applies a threshold value thDP to classify descriptors according to
the DP values and a threshold value thSENS to classify descriptors according to the
sensitivity values. In light of this, descriptors are classified into different regions:
high DP and low SENS (those selected) having DP higher than thDP and sensitivity
lower than thSENS (cyan markers in Fig. 12), high SENS, i.e., those rejected due to
the high sensitivity larger than thSENS to the artifact (blue markers in Fig. 12), and
low DP smaller than thDP, i.e., those rejected because of their low discriminant
power (green markers in Fig. 12).

The threshold values are loaded in the SETTING text file and may be modified
by the user since they strongly depend on the application. A sketch of the possible

Fig. 11 DM performance with out-of-focus test. Classification performance of DM selection in combination with SVM classification model in terms of ACC
(left y-axis panel a) and F1-score (left y-axis panel b) vs AUC (right y-axis) in recognizing BT-474 cells morphological changes across 4 h of culture at day 0.
The independent test set of images has been modified according to the out-of-focus test for the 2D scenario. Blue lines denote performance results calculated
over the training set, red lines denote performance results calculated over the modified test set, green lines represent the performance results achieved by not
selecting features, cyan line identifies the performance of the fine-tuned DENSENET201 network, black lines represent the performance of applying DM feature
selection procedure to the features extracted by the fine-tuned DENSENET201 network. n = 10 repetitions were used to extract boxplot.

Fig. 10 DM performance with movement test. Classification performance of DM selection in combination with SVM classification model in terms of ACC
(left y-axis panel a) and F1-score (left y-axis panel b) vs AUC (right y-axis) in recognizing BT-474 cells morphological changes across 4 h of culture at day 0.
The independent test set of images has been modified according to the movement test for the 2D scenario. Blue lines denote performance results calculated
over the training set, red lines denote performance results calculated over the modified test set, green lines represent the performance results achieved by not
selecting features, cyan line identifies the performance of the fine-tuned DENSENET201 network, black lines represent the performance of applying DM feature
selection procedure to the features extracted by the fine-tuned DENSENET201 network. n = 10 repetitions were used to extract boxplot.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04585-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:241 | https://doi.org/10.1038/s42003-023-04585-9 | www.nature.com/commsbio 15

www.nature.com/commsbio
www.nature.com/commsbio


Deep-Manager outcome is shown in Fig. 10. Being DP values in the range [0.5,1],
admissible values of thDP are in the range [0.6–0.8] according to the discrimination
capability of the features extracted in the specific case. Regarding sensitivity, it is
standardly in the range of [0.05–0.1] being it the expected variation of the DP
before and after perturbation. When the threshold thDP is too high or thSENS is too
small, and no feature is selected, then the tool gives an alert to the user to choose
different threshold values.

Case Study #1: Fluorescence microscopy videos of chemotherapy-induced death of
MDA-MB 231 breast cancer cells, in presence of a green fluorescent apoptosis
reporter. An inverted Leica DMi8 equipped with a Retiga R6 camera and Lumencor
SOLA SE 365 light engine, using a 5X objective, has been used to acquire Time-
lapse images. The filter cubes used were TXRed (excitation filter 560/40 nm,
emission filter 630/75 nm, dichroic mirror 585 nm) and GFP (excitation filter 470/
40 nm, emission filter 525/50 nm, dichroic mirror 495 nm). A live fluorescent dye
(CellTrace, red) was used to selectively pre-stain the cancer cells before cultures on-
chip. To monitor apoptotic death, a live fluorescent reporter for caspase activity
(CellEvent Caspase-3/7, green) was added to the on-chip culture medium. The red
channel was then used to locate cells10 while the transposition on the green channel
of the cancer cell position allowed to monitor green emission signal and, therefore,
death events. Breast cancer cells (BT474 cell line, representative of HER2+ breast
cancer subtype) were co-cultured in 3D biomimetic collagen gels, within micro-
fluidic devices, with immune cells (PBMCs, peripheral blood mononuclear cells
from healthy donors), with or without the addition of targeted immunotherapy, the
trastuzumab (brand name Herceptin). With the aim to demonstrate the advantage
of using DM tool in common practice, we extracted handcrafted features related to
green emission and compared the case of standard practice with the use of
DM tool.

Case study #2: TL microscopy videos of PC3 human prostate cancer cells, moving in
a 2D environment in presence of the chemotherapeutic drug etoposide. In the case of
2D TL time-lapse microscopy experiments, good feature selection is of pivotal
importance to exclude those features varying according to unpredictable changes
such as luminance drift, flickering, focus changes over time, etc., that may hope-
lessly hamper data interpretation. With the aim to test the validity of the proposed
Deep-Manager platform in such a context, we analyzed cancer cells before and after
exposure to the chemotherapeutic drug etoposide, a topoisomerase II inhibitor
blocking cell DNA replication that deeply affects cell motility, shape, and granu-
larity over time, characteristics that may be easily misinterpreted if subjected to
luminance drift, flickering, etc. Briefly, PC-3 human metastatic prostate cancer cells
(ATCC) were grown in RPMI 1640 medium, supplemented with 10% fetal bovine
serum, 1% L-glutamine (2 mM), and 1% penicillin/streptomycin (100 IU/mL)
(Euroclone), at 37 °C in a humidified atmosphere of 5% CO2 in the air. In each
experiment, 40,000 cells/mL were seeded in 35-mm Petri dishes (Euroclone).
Seventy-two hours post-seeding, cells were treated with the chemotherapeutic drug
etoposide (Sigma-Aldrich), a topoisomerase II inhibitor blocking cell DNA repli-
cation, at the final concentrations of 0 and 5 μM and immediately analyzed for

time-lapse. Images were acquired via a custom small-scale inverted microscope at
one frame per minute, with 6 h of total experimental time. In the presented results,
we considered the two extreme conditions, 0 and 5 μM.

Case Study #3: Phase-contrast TL microscopy videos of immune cells moving in a 3D
collagen gel inside microfluidic tumor-on-chip devices that mimic the tumor
microenvironment. Breast cancer cells (BT474 cell line, representative of HER2+
breast cancer subtype) were co-cultured in 3D biomimetic collagen gels, within
microfluidic devices, with immune cells (PBMCs, peripheral blood mononuclear
cells from healthy donors), without or with the addition of targeted immu-
notherapy, the trastuzumab (brand name Herceptin). For details, see the original
biological publication12. In this use case, we demonstrated how deep features’
discrimination capability of the effect of targeted immunotherapy in breast tumors
is influenced by image alterations and compared results with those achieved using
standard features selection approaches using diverse deep learning architectures.

Case Study #4: Fluorescence microscopy videos of cancer cells forced to undergo
apoptosis by cytotoxic T cells in the 3D tumor-on-chip. Lung cancer cells (IGR-Pub)
were co-cultured in 3D biomimetic collagen gels, within microfluidic devices,
without or with immune cells (autologous cytotoxic T cells, clone P62). CellEvent
Caspase-3/7 Green Detection Reagent (Thermofisher, #C10423) was added to the
medium in order to visualize the cells undergoing apoptosis in the green channel.
For details, see the original biological publication10. In this use case, we demon-
strated how deep features’ discrimination capability of the T-cell cytotoxic effect in
lung tumors is influenced by image alterations and compared results with those
achieved using standard features selection approaches and diverse deep learning
architectures.

Case Study #5. Phase contrast TL microscopy static images of BT-474 breast cancer
cells from the recently presented public dataset LIVECell. With the aim to
demonstrate the potential of selecting deep features through the proposed DM tool,
we selected a case study from the recently published LIVECell labeled dataset13. In
particular, with the aim to present a practical application in line with the examples
used in this work, we selected BT-474 cells, breast cancer cells grown in rafts. The
cell lines were purchased from ATCC and were cultured as per suppliers’
recommendations. Several wells for each cell type were seeded in 96-well plates
(Corning) and imaged over the course of 5 days, every 4 h using an Incucyte S3
Live-Cell Analysis system (Sartorius) equipped with its standard CMOS camera
(Basler acA1920-155 um). Such equipment avoided the presence of the phase
annulus found in conventional Zernike phase images. Phase-contrast TL images
were acquired using a ×10 objective from two positions in each well and then
cropped into four equally sized images (704 × 520 pixels corresponding to
0.875 × 0.645 mm2). The images were then annotated by a team of experts.

Statistics and reproducibility. Statistical significance was evaluated by imple-
menting a Student t-test. Repeatability was assured by 10-randomly subsampling
using hold-out cross validation approach (e.g., Figs. 9–11). The number of samples
used for each statistical analysis was enclosed in the corresponding figure caption.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are available within the
paper [and its supplementary information files]. Any other support and request can be
submitted at the corresponding author email: martinelli@ing.uniroma2.it or filling the
form that can be found at https://web.bee.uniroma2.it/our-contacts/. Images belonging to
the LIVECell dataset can be downloaded at https://sartorius-research.github.io/LIVECell/.
See also ref. 13.

Code availability
Deep-Manager software and example images to run the code can be freely downloaded at
https://github.com/BEEuniroma2/Deep-Manager.
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