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Abstract: Aquaponics is an innovative agricultural method combining aquaculture and hydroponics.
However, this balance can lead to the gradual depletion of essential micronutrients, particularly iron.
Over time, decreasing iron levels can negatively impact plant health and productivity, making the
monitoring and management of iron in aquaponic systems vital. This study investigates the use
of Fe-Alg-CaCO3 microparticles (MPs) as foliar fertilizer on lettuce plants in an aquaponic system.
The research investigated Lactuca sativa L. cv. Foglia di Quercia Verde plants as the experimental
cultivar. Three iron concentrations (10, 50, and 250 ppm) were tested, with 15 plants per treatment
group, plus a control group receiving only sterile double-distilled water. The Fe-Alg-CaCO3 MPs and
ultrapure water were applied directly to the leaves using a specialized nebulizer. Foliar nebulization
was chosen for its precision and minimal resource use, aligning with the sustainability goals of
aquaponic cultivation. The research evaluated rosette diameter, root length, fresh weight, soluble
solids concentration, levels of photosynthetic pigments, and phenolic and flavonoid content. The
250 ppm treatment produced the most notable enhancements in both biomass yield and quality,
highlighting the potential of precision fertilizers to boost sustainability and efficiency in aquaponic
systems. In fact, the most significant increases involved biomass production, particularly in the
edible portions, along with photosynthetic pigment levels. Additionally, the analysis of secondary
metabolite content, such as phenols and flavonoids, revealed no reduction compared to the control
group, meaning that the proposed fertilizer did not negatively impact the biosynthetic pathways of
these bioactive compounds. This study opens new possibilities in aquaponics cultivation, highlighting
the potential of precision fertilizers to enhance sustainability and productivity in soilless agriculture.

Keywords: aquaponics; sustainability; precision farming; iron; lettuce; micro-vectors; nanoparticles

1. Introduction

Aquaponics is a technique that combines aquaculture with hydroponic cultivation of
plant species of interest [1]. In aquaponics, a harmonious symbiotic relationship unfolds as
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plants absorb nutrients from fish waste, while beneficial bacteria convert ammonia into
nitrates, creating a mutually supportive ecosystem in which plants flourish, fish thrive, and
bacteria play a vital role in nutrient cycling [2]. This cultivation method is growing more
and more, especially in urban contexts, in line with the huge demand for food resources
of an ever-growing population [3]. In these terms, soilless cultivation techniques, such as
aquaponics, can guarantee the filling of the gap between the increasing food demand, re-
source availability, and traditional cultivation systems, which are no longer sustainable [4].
Climate changes must also be considered since agriculture is the economic sector most af-
fected by extreme weather conditions [5]. The imbalances brought about by climate change
risk not only damaging a huge production system, but also perpetuating an increase in
food inequality between supply and demand [6]. To date, the production of vegetables
according to traditional methods on soil and the breeding of fish species suitable for their
consumption are widely used in numerous regions of the planet and have a negative
impact on the environment, in terms of processes connected directly or indirectly to soil
erosion, pollution from pesticides and fertilizers, waste of water, and many others [7,8].
In these terms, aquaponics provides a sustainable and efficient farming technique that
harnesses the mutually beneficial relationship between plants and fish to maximize yields,
conserve water, and support environmentally friendly agriculture [9]. However, growing
crops in aquaponic systems may encounter issues related to the depletion of essential
micronutrients (e.g., Fe, Mn, Zn, B, Mo, and Cu), leading to suboptimal plant growth and
requiring careful monitoring and supplementation to ensure sustainable cultivation [10,11].
The size of an aquaponic system affects the scalability of fish-to-plant production based
on the availability of waste-derived nutrients. While fish nutrition is managed through
feed, plant nutrition is more complex due to nutrient dynamics across the production
cycle, varying plant demands, and physicochemical factors influencing nutrient bioavail-
ability [12]. In fact, aquaponic systems that rely solely on fish waste to provide nutrients
for plants, and micronutrient concentrations, in particular iron, are usually insufficient to
support the successful cultivation of hydroponic vegetables [13]. This usually happens
since commercial fish feeds lack iron concentration [13], because iron is also used by fish
for their physiological activities, and this is reflected in the amounts of this key element
in the recirculating water. Iron integration was the focus of the present study. The most
common practices for adding iron in aquaponics involve either fortifying fish feed, with
iron salts, or introducing iron chelates directly into the water [14–16]. Care must be taken
with the concentration, as excessive levels can be harmful to fish and/or beneficial bacteria.
The integration of modern micro- and nanotechnologies in aquaponics can ensure the
overcoming of the problem related to nutrient depletion. Micro- and nanotechnology in
agriculture involves using microscale and nanoscale materials and techniques to boost crop
productivity, improve nutrient delivery, and enable precision farming, leading to a new era
of innovative and sustainable agricultural solutions [17,18]. The controlled application of
iron nanoparticles (NPs) highlights their potential to fine-tune nutrient availability within
the system, contributing to the success of aquaponic cultivation [19]. In the current study,
we investigated the impact of iron-functionalized calcium carbonate microparticles (MPs)
on the growth and production of aquaponically grown Lactuca sativa L. cv. Foglia di Quercia
Verde plants. Micro- or nano-scale calcium carbonate particles can serve as efficient carriers
for the controlled release of nutrients that are bound to or embedded within them [20,21].
The advantage of this research project is developed on two fronts. First, the foliar adminis-
tration of the smart fertilizer promotes precision agriculture, without interacting with the
other components of the system; secondly, the application of micro- and nanotechnologies
in the field of aquaponic cultivation is underexplored in the literature. So, can smart fertil-
izers, designed to target specific nutrients, effectively address the deficiencies of selective
micronutrients in aquaponic systems? Furthermore, do these foliar fertilizers enhance the
productivity and yield of edible plant parts, such as leaves? This groundbreaking study not
only marks a new frontier but also serves as a catalyst for future exploration, providing a
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fresh perspective on the transformative potential of new fertilizers in aquaponics to elevate
the performance of cultivated plant species.

2. Results
2.1. Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis (SEM/EDX) and Fourier
Transform Infrared Spectroscopy (FTIR) Characterization of Iron-Functionalized Calcium
Carbonate Microspheres (Fe-Alg-CaCO3 MPs)

In Figure 1, MPs (Figure 1A) are between 3 and 5 µm in size and have a cavity
within them (see Figure 1B). They show aggregation of smaller units with a minimum
diameter of 100 nm (inset of B). EDX analysis (Figure 1C,D) revealed the presence of
calcium, oxygen, and iron. The peaks for platinum and copper are due to the platinum
metallization procedure and the sample support, respectively. In particular, the presence of
Fe demonstrates the trapping of this element inside the MPs, which function as carriers for
iron delivery.
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Figure 1. (A) SEM magnification 10 K: a microsphere is illustrated, it has a rough surface, due
to incomplete fusion of constituent subunits. (B) SEM magnification 10 K: this image shows the
microsphere inner cavity; the surface is roughest than (A), and constituent subunits are well visible;
they have a minimum diameter of 100 nm, inset. (C) Region of interest (ROI) for EDX analysis.
(D) EDX analysis element graph shows the presence of calcium, oxygen, and a small amount of Fe.
Platinum, copper, and silver peaks are due to the platinum coating, the copper grid where the sample
is placed, and the aluminum supporting stub.

According to the EDX evidence about Fe presence in the samples, the FTIR study
clearly supports these results, showing the typical fingerprint of the Fe–O stretching modes
(recorded around 563.64 cm−1) and the other one at 475 cm−1, attributed to bending
vibrations of Fe–O–Fe [22], as shown in Table 1. Furthermore, the signals of carbonate and
alginate (cross-linker) are also highlighted very well in the FTIR spectrum, also as shown
in Table 1.
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Table 1. FTIR molecular band assignments for the samples prepared in this work.

Sample
Description

Wavenumber of the
Vibrational Modes (cm−1) Chemical Functional Groups References

Alg

1027.77 ν elongation of C–O groups

[23]

1298.51 ν C–O stretching vibration
1414.55 ν symmetric C=O vibration
1612.22 ν asymmetric stretching vibration of COO groups
2155.37 ν symmetric C=O vibration
2925.95 ν symmetric C=O vibration
3446.23 ν O–H stretching vibrations

Fe-Alg-CaCO3

475 δ bending vibrations of Fe–O–Fe

[22,24,25]

563.64 ν Fe–O stretching modes
475 δ bending vibrations of Fe–O–Fe
712 δ bending in-plane deformation mode vibrations of the O–C–O

871.68 δ out-of-plane bending vibration of the (CO3)2−

1054.88 ν ν1 mode of vaterite (symmetric C–O stretching
1423.47 ν asymmetric stretching (ν3) of C–O bond
1604.96 ν symmetric stretching of carboxyl group (C(=O)OH)

1805 ν ν1 + ν4 sym. stretching (CO3)2−

2960.25 ν symmetric C=O vibration
3417.29 ν O–H stretching vibrations

2.2. Bio-Morphology: Size, Length, and Fresh Weight

The growth of experimental lettuce plants demonstrated positive responses to treat-
ments involving foliar-sprayed Fe-Alg-CaCO3 MPs (Figure 2). Specifically, the data per-
taining to rosette diameter, root length, rosette, and root fresh weight (FW) (Figure 3)
consistently exhibited increments after the application of these MPs. Specifically focusing
on the rosette diameter parameter, the 50 ppm treatment exhibited a notable and statisti-
cally significant increase compared to both the CT (+39.87%) and the 10 ppm (+39.87%)
treatment. Additionally, the 250 ppm treatment followed a similar trend, displaying even
greater increments in comparison to both the CT (+49.02%) and the 10 ppm (+50.80%)
treatment. On the other hand, the data pertaining to root length revealed a statistically sig-
nificant increase solely between the 250 ppm and 10 ppm treatments (+86.74%). Significant
statistical variations in the FW of both the rosette and roots were observed in the 250 ppm
group compared to both the CT and the plants treated at 10 ppm. The FW of the rosette
saw a percentage increase of +229.49% and +311.84%, respectively, while the FW of the
roots exhibited respective increases of +131.37% and +129.89%.
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2.3. Impact on Sugar Concentration

Refractometric analysis of soluble solids content (SSC) did not uncover substantial
variations under the treatments. The measured SSC levels remained relatively stable across
the experimental conditions, suggesting a consistent influence on the soluble solids content.

2.4. Effects on Photosynthetic Pigments, Phenols, and Flavonoids Content

The acquired data revealed that the effect of iron NPs was specifically confined to the
photosynthetic pigment component (Figure 4). In specific detail, the data of chlorophyll a
(CHL a) exhibited a percentage increase of +13.90% when comparing the 50 ppm treatment
with the CT group. Concerning chlorophyll b (CHL b), the data exhibited notable differences
among plants subjected to 250 ppm treatment, as opposed to both the CT and 10 ppm
groups, revealing percentage increases of +139.80% and +100.77%, respectively. The total
chlorophyll (CHL tot) content exhibited an increase in the 250 ppm group, compared
with the CT (+59.41%) and 10 ppm (+54.19%) groups. No significant differences were
observed in terms of carotenoids (CAR), phenols (PHE), and flavonoids (FLA) content in
this experiment.
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a; (B) chlorophyll b; (C) total chlorophyll; (D) carotenoids; (E) total phenolic content; (F) total flavonoid
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significance resulting from the comparisons between the various treatments is indicated by asterisks:
* p < 0.05; ** p < 0.005.

3. Discussion

The objective of this study was to examine the impact of Fe-Alg-CaCO3 MPs on the
morphological characteristics and quantitative/qualitative parameters of lettuce plants cul-
tivated under an aquaponics system. Given the extensive utilization of lettuce in aquaponics
cultivation [26,27], this study employed L. sativa, specifically the cultivar Foglia di Quercia
Verde, as the model plant. The use of the described MPs presents a potential sustainable
and ecologically friendly alternative to conventional nanotechnologies for fertilization in
aquaponic cultivation [19]. In the realm of soilless agriculture, this prospect holds promise
for future opportunities to escalate toward large-scale production, paving the way for en-
hanced agricultural productivity and efficiency. The decision to incorporate iron NPs into
calcium carbonate MPs was driven by the deficiency of this element in the experimental
aquaponics system. The pivotal role of iron in plants, which is essential for processes,
such as chlorophyll synthesis, electron transport during photosynthesis, DNA synthesis,
and nitrogen reduction, underscores its significance [13]. In aquaponically grown plants,
a recurring challenge manifests as the gradual depletion of iron over time, necessitating
strategic supplementation to sustain optimal physiological functions and overall plant
health [10]. In this investigation, we examined the effects of foliar application of iron
NPs at three distinct concentrations (10 ppm, 50 ppm, and 250 ppm). As a comparative
measure, the control group received a foliar spray of sterile double-distilled water. The
experimental choice of the used concentrations was guided by two main factors. First,
considering the limited existing literature on the use of these NPs as fertilizers for aquapon-
ics cultivation, the concentrations were determined empirically. Second, the goal was to
achieve meaningful results with relatively low concentrations, aligning with a sustainability
policy. The parameters examined encompassed morphological and morphometric analyses,
specifically focusing on rosette diameter, root length, rosette fresh weight, and root fresh
weight. The other goals of this study were to evaluate and quantify the soluble solids
content, photosynthetic pigment content, and phenols and flavonoids content, offering a
comprehensive analysis of key biochemical parameters to enhance our understanding of the
plant’s physiological responses under the specific experimental conditions. The noteworthy
findings derived from this experiment underscored the intimate correlation between the
involvement of iron in plants and their corresponding reactions, manifested through an
increase in the synthesis of photosynthetic pigments. This, in turn, established a crucial link
to the increased biomass observed in lettuce plants. The findings align with those of other
studies, confirming that the administration of iron NPs positively influences the growth of
experimental plants [28]. Specifically, there was a notable increase in the diameter of the
rosette, as well as the length of the roots, particularly evident in the 250 ppm treatment. The
fresh weight outcomes were consistent with the data obtained regarding dimensions. The
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fertilization with iron NPs positively influenced the biosynthesis of chlorophylls, thereby
promoting heightened plant growth and improving physiological conditions [29]. These
pigments are essential for capturing light energy during photosynthesis [30]. The products
of photosynthesis, particularly glucose, serve as building blocks for plant growth and
development. Glucose is used for energy, but, also, to synthesize complex molecules like
cellulose, proteins, and lipids [31]. As the rate of photosynthesis increases, there is greater
availability of growth resources, resulting in increased biomass, larger leaves, and overall
plant development. In our detailed investigation, a more pronounced response was noted
for CHL b than for CHL a. This observation can be attributed to the use of shade cloths
during experimental cultivation, which were employed to mitigate the impact of elevated
temperatures and intense summer sunlight. The use of shade cloths can favor the synthesis
of CHL b over CHL a under certain conditions; generally, the ratio of CHL a to CHL b
decreases with a decrease in irradiance, so that CHL b may be relatively more advantageous
for plants because it absorbs light in the blue and red regions of the spectrum, comple-
menting the filtered light from the shade [32]. The CHL tot data encapsulates the general
enhancement of photosynthetic pigment biosynthesis facilitated by iron NPs. Specifically,
in this study, an elevation in the CHL tot concentration was observed in plants treated with
250 ppm, surpassing both the CT and the lower concentration treatment. The elevated
chlorophyll content, as revealed by treatment with iron MPs, emphasizes the central role
of iron in the biosynthesis of these indispensable photosynthetic pigments. During the
synthesis process, iron plays a crucial role in forming the porphyrin ring, which constitutes
the core structure of chlorophyll molecules; the iron atom supports the stabilization of the
chlorophyll structure, enabling its role in capturing light energy during photosynthesis [10].
Since the increase in photosynthetic activity, in terms of a greater capacity to synthesize
photosynthetic pigments, is correlated with an increase in biomass, other studies in the
literature report similar results to those obtained in the present study [33,34]. The ab-
sence of notable differences in CAR content across different treatments, including various
concentrations of iron NPs and a sterile double-distilled water CT group in our study,
indicates that carotenoid synthesis might not be directly affected by alterations in iron
availability. Possible explanations include the existence of alternative pathways, compen-
satory mechanisms, the prioritization of iron usage for essential processes like chlorophyll
synthesis, potential interactions with other nutrients, and the use of shade cloths [35,36].
SSC values serve as a significant indicator of sugar quantity, although they do not solely
represent sugars. Their measurement can be utilized as a broad indicator reflecting the
nutritional and physiological quality of the plant [37]. The absence of significant variation
in SSC results aligns with findings from previous studies where iron was applied through
nanotechnology in aquaponics; consequently, these results led us to hypothesize that the
foliar application of iron NPs did not adversely impact the qualitative and physiologi-
cal aspects of lettuce plants [38]. Like SSC values, the concentrations of PHE and FLA
did not exhibit significant variations among the different treatments. PHE and FLA are
classes of organic compounds found in plants [39]. PHE has a hydroxyl group attached
to an aromatic benzene ring, contributing to functions like defense, growth regulation,
pollinator attraction, and pathogenic resistance [40]. FLA, a subgroup of phenolics, has a
distinctive structure with two aromatic rings linked by a three-carbon chain, serving roles
in UV filtration, pigmentation, and defense mechanisms [41]. Both classes play crucial
roles in plant physiology, and their concentrations can indicate the response of plants to
environmental factors. The synthesis and regulation of PHE and FLA involve complex
biochemical pathways. The pathways responsible for producing these compounds may
not be directly influenced by the application of iron-based NPs in the concentrations used.
The biosynthesis of these secondary metabolites primarily relies on enzymatic pathways,
genetic regulation, and environmental factors; although iron is essential for overall plant
health, its role in specific pathways leading to phenols and flavonoids is indirect [42,43].
Plants allocate resources based on their metabolic priorities. In this case, iron-based NPs
may not have prompted a significant shift in resource allocation toward the biosynthesis of
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PHE and FLA, as other essential processes could take precedence (e.g., chlorophylls). The
deployment of shade cloths might once more be implicated in influencing the biosynthetic
processes leading to these metabolites, thus constraining their synthesis in preference for
other compounds [44]. The protective function of the sheets could indeed have hindered
the production of phenols and flavonoids precisely because the plants were not exposed to
photo-induced stress or other potentially challenging stimuli [45].

4. Conclusions

In this study, the foliar application of Fe-Alg-CaCO3 MPs on aquaponically grown
lettuce plants yielded insightful findings regarding its impact on various physiological
and biochemical parameters. The concentration value of 250 ppm emerged as particu-
larly noteworthy, demonstrating superior biomass production and chlorophyll concen-
tration outcomes. This is of considerable importance in terms of both productivity and
economic impact. No discernible evidence was found for significant changes in CAR,
SSC, PHE, and FLA concentrations across the different treatments. These observations
suggest the selective impact of iron MPs on specific biochemical pathways, indicating a
nuanced and concentration-dependent response. In conclusion, although Fe-Alg-CaCO3
MPs demonstrated positive effects on biomass and chlorophyll concentrations, the nuanced
and selective impact on other biochemical parameters necessitates further research. These
findings contribute valuable insights to the field of MPs-plant interactions and lay the
foundation for more targeted and comprehensive investigations in the quest for sustainable
agricultural practices. Starting from these findings, further studies will be carried out to
produce nanoparticles to test directly in plants.

5. Materials and Methods
5.1. Aquaponics Setup

Between March 2023 and July 2023, experiments were carried out in the aquaponics
greenhouse located at the Botanical Gardens of Tor Vergata University in Rome (Rome,
Italy). The aquaponics system featured two 4000 L fish tanks housing tilapias (Oreochromis
niloticus L.). The system included a UV sterilizer, a reverse osmosis unit, a 5000 L static
biofilter filled with bio-media, and a bottom-up oxygenation system. The flow rate in the
biofilter was 2.5 m3 h−1, with a retention time of 0.8 h ± 45 min. This biofilter supplied
nutrients to two floating raft system units, each covering a 27.5 m2 surface for vegetable
cultivation. The tilapias were fed a diet containing 35% protein.

5.2. Water Quality and Environmental Parameters Monitoring

Specific sensors within the structure recorded data concerning the aquaponics system
parameters, including temperature entering the raft cultivation units (T1), temperature
leaving the raft cultivation units (T2), pH, and dissolved oxygen (DO) (Table 2). Abiotic
data related to the greenhouse, encompassing minimum (Tmin) and maximum (Tmax) tem-
peratures as well as minimum (RHmin) and maximum (RHmax) relative humidity, were
documented using a thermohydrometer (Tabel 1). Weekly monitoring of the aquapon-
ics system’s water characteristics was conducted using specialized spectrophotometric
tests (Hanna Instruments, Woonsocket, RI, USA). These tests enabled the observation of
the evolving concentrations of both macro- and micronutrients over time, including N
(Ammonia, Nitrites, and Nitrates), P, K, Fe, Mg, S, Mo, Cl, Zn, Ca, Mn, and Cu (Table 3).
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Table 2. Parameters evaluated in the aquaponics system. Water characteristics, temperature entering
the raft cultivation units (T1), temperature leaving the raft cultivation units (T2), pH, and dissolved
oxygen (DO), are shown above. The greenhouse environmental data, minimum temperature (Tmin),
maximum temperature (Tmax), minimum relative humidity (RHmin), and maximum relative humidity
(RHmax), are displayed below. The relevant parameters are accompanied by their corresponding units
of measurement, which are indicated in brackets. Results are represented by their mean ± standard
deviation (SD) values.

Water Characteristics

T1 (◦C) T2 (◦C) pH DO (mg L−1)
26.81 ± 2.49 26.32 ± 2.60 8.65 ± 0.17 6.85 ± 0.80

Greenhouse Environmental Data

Tmin (◦C) Tmax (◦C) Rhmin (%) Rhmax (%)
16.22 ± 7.62 34.83 ± 3.89 30.54 ± 14.43 85.85 ± 7.03

Table 3. Levels of macro- and micronutrients present in the circulating water within the aquaponics
system. The data were obtained using spectrophotometric analyses. The targets, with the related
units of measurement indicated in brackets, the recorded values, and the detection methods are
shown. Results are reported as the mean ± standard deviation (SD) values. The abbreviations used
for the methods column are as follows: Eicosapentaenoic Acid (EPA), 2,4,6-Tripyridyl-S-Triazine
(TPTZ), and 1-(2-Pyridylazo)-2-Naphthol (PAN).

Target Value Analytical Method

Ammonia (mg L−1) 0.41 ± 0.03 Adaptation of Nessler method D1426 (ASTM Manual of Water and
Environmental Technology)

Nitrites (mg L−1) 0.15 ± 0.22 Adaptation of EPA 354.1 denitrogenating method
Nitrates (mg L−1) 27.30 ± 8.11 Chromotropic acid method

Phosphorus (mg L−1) 3.90 ± 2.35 Adaptation of EPA 365.2 and ascorbic acid 4500-PE
Potassium (mg L−1) 98.25 ± 11.93 Adaptation of the turbidimetric tetraphenylborate

Iron (mg L−1) 0.07 ± 0.08 Adaptation of TPTZ
Magnesium (mg L−1) 18.00 ± 4.76 Adaptation of calmagite method

Sulfur (mg L−1) 50.25 ± 9.32 Precipitation method with barium salt crystals
Molybdenum (mg L−1) 0.05 ± 0.10 Adaptation of the mercaptoacetic acid method

Chlorine (mg L−1) 16.70 ± 8.21 Adaptation of mercury (II) thiocyanate method

Zinc (mg L−1) 0.04 ± 0.03 Adaptation of zinc from the standard methods for the examination of water
and wastewater

Calcium (mg L−1) 130.75 ± 51.85 Adaptation of oxalate method
Manganese (µg L−1) 9.75 ± 5.85 Adaptation of PAN method

Copper (µg L−1) 22.75 ± 8.18 Adaptation of EPA method

5.3. Synthesis of Fe-Alg-CaCO3 MPs

The synthesis of Fe-Alg-CaCO3 MPs (Figure 5) was carried out in two steps, such as
the following steps:

Step 1: Synthesis of CaCO3 nanoparticles as a precursor of microspheres. The CaCO3
nanoparticles were synthetized, as reported in Valentini et al. [46], by applying an enzyme,
as urease biocatalyst which, in the presence of urea and CaCl2, provides the CaCO3 nanopar-
ticles precipitation. The urease substrate was introduced into the CaCl2 solution, and the
enzymatic reaction products were formed within 30 min. The resulting white precipitate
was rinsed with deionized water and vacuum-filtered to eliminate excess precursors. The
precipitate was air-dried and subjected to both morphological and structural analyses.
This synthetic approach also yields several grams of the compound, indicating potential
for large-scale production [46]. For the synthesis of CaCO3 nanoparticles, all reagents,
including anhydrous calcium chloride, urea phosphate, and urease enzyme (type III) from
Jack beans (Canavalia ensiformis L.), were sourced from Sigma-Aldrich (Buchs, Switzerland).
All mentioned reagents are of analytical grade.
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Step 2: Synthesis of Fe-Alg-CaCO3 microspheres. The synthesis of Fe-Alg-CaCO3
MPs has been performed according to the literature [47], but using here, for the first time,
nanostructured CaCO3 particles, synthetized as reported in Valentini et al. [46]. Briefly,
the subsequent fabrication of iron-functionalized CaCO3 microspheres was carried out by
pacing 400 mg of CaCO3 nano-powder into 100 mL of 2% (w/v) of sodium alginate (Alg)
and leaving for intensive agitation (10 min at room temperature) in a shaker producing
sodium alginate containing CaCO3 micro-particles (Alg-CaCO3 MPs). Then, Alg-CaCO3
particles were precipitated via centrifugation (16,128× g, 10 min) and washed in pure water.
The washing procedure was repeated 3 consecutive times. Further injection of 100 mL
of 0.1 M FeCl2 (1000 mg) to 100 mL of Alg-CaCO3 promoted the cross-linking of sodium
alginate. The mixture was placed on a magnetic plate for stirring (5 min) in a shaker and
then separated by centrifugation (working at 1008× g, for 3 min) and washed with pure
water. Formed microspheres incorporating Fe element (to obtain functionalized Fe-Alg-
CaCO3 MPs, as shown also in Figure 1, were collected by centrifugation (1008× g, for
3 min) and thoroughly washed. These prepared microspheres were stored in distilled water
at 4 ◦C, until use. All chemicals, including sodium alginate, and iron dichloride (FeCl2),
were purchased from Sigma-Aldrich, and they are of analytical grade. In all experiments,
ultrapure water was prepared by using a Milli-Q® IQ 7000/03/05/10/15 system.

5.4. Characterization of Fe-Alg-CaCO3 MPs

New microspheres were characterized from a morphological point of view, by applying
SEM/EDX. For the sample preparation protocol for SEM, a small amount of microparticles
was suspended in 100% ethanol in a glass tube and sonicated for 1 h. As the sonication
ended, 10 µL of the suspension was immediately deposited on 200 mesh Formvar film Cu
grids (Ted Pella, Redding, CA, USA) by drop-casting. The grid was placed on absorbent
paper in a Petri dish, covered, and dried at room temperature. When the grid was perfectly
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dry, it was mounted on an aluminum stub by carbon tape and placed into a sputter-coated
(sputter coater model K550, EMitech, Corato, Italy) and coated with platinum at 15 mA for
1.5 min. Samples were observed using a VP-SEM, Hitachi SU3500 scanning electron micro-
scope (Hitachi, Tokyo, Japan) operated at 15–20 kV under high vacuum conditions [48–50].
The scanning electron microscope used in this study was equipped with a dual-energy
dispersive X-ray spectroscopy detector (dEDS, Bruker XFlash® 6|60, Billerica, MA, USA).
This instrument can simultaneously perform multimodal imaging and spatial distribution
chemical mapping, providing a truly powerful analytical approach for studying biological
surfaces in their native state. The XFlash® 6|60 is particularly suitable for applications
with relatively low X-ray yields, as is common in nano analysis [43,44]. SEM images were
analyzed using the Hitachi Map 3D 8.2 Digital Surf software (Besançon, France) [51,52].
To further characterize the MPs, FTIR was performed in transmittance mode on samples
assembled in KBr pellets using a Shimadzu Model Prestige 21 spectrophotometer model
apparatus, according to our previous paper [53,54].

5.5. Botanical Specimens and Trial Configuration

In the experimental design, we utilized floating panels made of closed-cell expanded
polystyrene, which were perforated to accommodate PET growth baskets. An inert sub-
strate of approximately 50 g of red lapillus was used, providing robust support for culti-
vated plants due to its grain size. Ten Lactuca sativa L. cv. Foglia di Quercia Verde seeds
(Blumen Vegetal Seeds, Piacenza, Italy) were directly sown on the substrate surface. After
a ten-day period, the recently germinated plants were systematically chosen to achieve
homogeneity in the internal experiments, with only one plant retained per growth basket.
Each treatment comprised three floating panels, each hosting five lettuce plants. The treat-
ments included foliar spraying of iron NPs at varying concentrations (10 ppm, 50 ppm,
and 250 ppm), alongside a control (CT) group in which plants were treated with sterile
double-distilled water.

5.6. Fe-Alg-CaCO3 MPs Administrations

At the 21st day post-sowing mark, the application of Fe-Alg-CaCO3 MPs treatments
was initiated, with administration conducted every seven days until the harvesting of
plant material at the 55th day post-sowing point. This process involved a total of five
applications. Specifically, the initial application utilized a volume of 1.5 mL of the product
per plant, followed by 2 mL for the second administration, 3 mL for the third, 4 mL for
the fourth, and a final 10 mL for the fifth, all administered through a foliar spray. The
volumes required for experimental purposes were measured using Gilson® pipettes along
with the corresponding tips for precise and accurate dispensing. The selection of the
sprayed volume in the five administrations involved tests to ensure complete coverage of
the leaf surface, including both the lower and upper lamina, at each specific stage of growth.
To prevent experimental contamination between treatments, especially when different
treatments involved adjacent floating panels, a mobile plexiglass panel was employed.
Exclusively targeting experimental plants through foliar application presents a notable
advantage in aquaponics systems, because it mitigates the risk of adverse effects on raised
fish and beneficial bacteria within the system.

5.7. Sampling Plants, Assessing Biomass, and Measuring Size

After collecting the plants, certain samples underwent immediate analysis to assess
both length and fresh weight measurements, while the remaining samples were stored at
−80 ◦C for subsequent investigations. The length-related data encompassed both rosette
diameter and root length. Length analyses were conducted by placing a Canon EOS 550D
camera at a height of 70 cm from the samples and capturing photos. Afterwards, these
images were processed using ImageJ 1.8.0 software (U.S. National Institution of Health,
Bethesda, MD, USA) capable of accurately determining the relative lengths. FW was
assessed using a precision scale and involved both rosette and root specimen data.
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5.8. Refractometric Assays: Soluble Solids Content Evaluation

For the SSC analysis, the protocol outlined by Braglia et al. was followed [55]. In
summary, a combined 1.5 g of FW from randomly selected samples representing inner,
middle, and outer leaves was homogenized using a mortar and pestle in liquid nitrogen.
The homogenate was then centrifuged at 6089× g for 10 min. Subsequently, 100 µL of the
supernatant was collected and examined using a digital refractometer (model HI96800;
Hanna, Woonsocket, RI, USA). This analytical approach enabled the detection of sugar and
other soluble solids content in the extracts, represented as the Brix value.

5.9. Photosynthetic Pigments: Chlorophyll a, Chlorophyll b, Total Chlorophyll, and
Carotenoids Content

A combined 500 mg of FW from randomly selected samples representing inner, middle,
and outer leaves was homogenized with liquid nitrogen using a mortar and pestle. Pig-
ments were then extracted using 1.5 mL of 80% acetone in a controlled environment at 4 ◦C,
allowing for extraction over 24 h in the dark. Subsequently, the extract was centrifuged at
4500× g for 10 min, and the supernatant was collected for pigment determination. CHL a
and CHL b, as well as carotenoid CAR content, were determined using equations previously
described by Lichtenthaler [56]. The absorbance of the extracts was measured at 663, 644,
and 452 nm using a spectrophotometer (model Iris HI801; Hanna, Woonsocket, RI, USA).
CHL tot was calculated as the combined sum of CHL a and CHL b. Results were expressed
as µg g−1 of the FW.

5.10. Total Phenol and Flavonoid Content

The two methods followed specific protocols to measure the contents of PHE [57] and
FLA [58]. A total of 500 mg of FW from randomly selected samples of the rosettes’ inner,
middle, and outer leaves was homogenized using a mortar and pestle with liquid nitrogen.
The resulting homogenate was then extracted overnight with 1.5 mL of pure methanol for
PHE analysis and with 1.5 mL of 50% methanol for FLA analysis. The extraction process
was carried out on an orbital shaker at 110 rpm at room temperature for 48 h. Afterward, the
plant samples were centrifuged at 8603× g for 20 min, and the supernatants were collected.
For PHE determination, a 200 µL aliquot of the extract was mixed with 1 mL of Folin–
Ciocalteu reagent (diluted 1:10; v/v) and 800 µL of 1 M Na2CO3. This mixture was incubated
at room temperature for 1 h. For FLA quantification, the aluminum chloride method was
applied. Here, 200 µL of plant extract was combined with 40 µL of 10% AlCl3, 40 µL of
1 M CH3CO2K, 600 µL of methanol, and 1120 µL of distilled water. The reaction mixture
was allowed to sit at room temperature for 30 min. The spectrophotometric measurements
(model Iris HI801; Hanna, Woonsocket, RI, USA) for PHE and FLA were performed by
recording the absorbance at 765 nm and 415 nm, respectively. These readings were then
quantified using calibration curves created with increasing amounts of gallic acid (GA) as
the standard equivalent (E) for phenols and quercetin (Q) for flavonoids. The results were
expressed as µg GAE g−1 of FW for phenols and µg QE g−1 of FW for flavonoids.

5.11. Statistical Analyses

Measurements were conducted in triplicates, and the results are expressed as mean ± SD
(standard deviation) values. Statistical analyses were performed using GraphPad Prism
10.1.2 software (GraphPad Software Inc., San Diego, CA, USA). Shapiro–Wilk tests were
used to assess the normal distribution of all analyzed data. The findings indicated that
distributions tended toward normality (p < 0.05), enabling the application of parametric
tests (ANOVA) for data investigation and comparison. Furthermore, the parametric Tukey’s
post hoc test was employed. Statistically significant differences were considered at p < 0.05.
Comparative analyses were performed between the micro-fertilization treatments and the
CT group, as well as among the various iron NPs administration groups.
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