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A B S T R A C T

We propose a novel estimation approach for a general class of semi-parametric time series
models where the conditional expectation is modeled through a parametric function. The
proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies
on the specification of a parametric pseudo-variance that can contain parametric restrictions
with respect to the conditional expectation. The specification of the pseudo-variance and
the parametric restrictions follow naturally in observation-driven models with bounds in the
support of the observable process, such as count processes and double-bounded time series.
We derive the asymptotic properties of the estimators and a validity test for the parameter
restrictions. We show that the results remain valid irrespective of the correct specification of
the pseudo-variance. The key advantage of the restricted estimators is that they can achieve
higher efficiency compared to alternative quasi-likelihood methods that are available in the
literature. Furthermore, the testing approach can be used to build specification tests for
parametric time series models. We illustrate the practical use of the methodology in a simulation
study and two empirical applications featuring integer-valued autoregressive processes, where
assumptions on the dispersion of the thinning operator are formally tested, and autoregressions
for double-bounded data with application to a realized correlation time series.

1. Introduction

A wide range of time series models have been proposed in the literature to model the conditional mean of time series data.
Their specification often depends on the nature of the time series variable of interest. For example, AutoRegressive Moving Average
(ARMA) models (Box et al., 1970) are typically employed for time series variables that are continuous and take values on the real
line. INteger-valued AutoRegressive (INAR) models (Al-Osh and Alzaid, 1987; McKenzie, 1988) and INteger-valued GARCH models
(INGARCH) (Heinen, 2003; Ferland et al., 2006) are designed to account for the discrete and non-negative nature of count processes.
Autoregressive Conditional Duration (ACD) models (Engle and Russell, 1998) are used for modeling non-negative continuous
processes. Beta autoregressive models (Rocha and Cribari-Neto, 2009) are employed for modeling double-bounded time series data
lying in a specified interval domain. The estimation of such models can be carried out by the Maximum Likelihood Estimator (MLE),
which constitutes the gold standard approach for the estimation of unknown parameters in parametric models. However, the MLE
requires parametric assumptions on the entire conditional distribution of the time series process. This feature is not appealing when
the interest of the study is only on modeling the conditional mean instead of the entire conditional distribution. Furthermore, the
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likelihood function can sometimes present a complex form and the implementation of the MLE can become unfeasible. For instance,
maximum likelihood inference of INAR(𝑝) models is well-known to be cumbersome and numerically difficult when the order of the
model 𝑝 is large (Pedeli et al., 2015). In such situations, the use of quasi-likelihood methods becomes attractive.

The Quasi-MLE (QMLE), introduced by Wedderburn (1974), is a likelihood-based estimator where there is a quasi-likelihood
that is not necessarily the true distribution of the data. Quasi-likelihoods are typically a member of the one-parameter exponential
family. Gourieroux et al. (1984) show that the QMLE is consistent for the true unknown parameters of the model. Nevertheless,
QMLEs can be inefficient because, given a parametric definition for the conditional mean of the process, the conditional variance
is implicitly constrained to be a function of the conditional mean as determined by the exponential family of distributions that is
considered. In order to improve the estimation efficiency for the parameters of the conditional mean in time series models, Aknouche
and Francq (2023) propose a two-stage Weighted Least Squares Estimator (WLSE) where in the first step the conditional variance of
he process is estimated and it is then used in the second step as weighting sequence for the solution of the weighted least squares
roblem. It is shown that this WLSE leads to improved efficiency with respect to QMLE if the variance function is correctly specified.
 similar estimator has been more recently proposed in the context of estimating functions approach leading to the same type of
fficiency improvement (Francq and Zakoian, 2023).

In this paper, we propose a novel class of QMLEs for the estimation of the conditional expectation of semi-parametric time
series models. The estimators are based on a Gaussian quasi-likelihood and a pseudo-variance specification, which can contain
restrictions with the parameters of the conditional expectation. The Pseudo-Variance QMLEs (PVQMLEs) only require parametric
assumptions on the conditional expectation as the pseudo-variance function does not need to be correctly specified. We establish
strong consistency and asymptotic normality of the PVQMLEs under very general conditions. The case in which the pseudo-variance
formulation corresponds to the true conditional variance of the process is obtained as a special case. We show that when no
restrictions are imposed between the mean and pseudo-variance, the resulting unrestricted PVQMLE has the same asymptotic
efficiency of a particular WLSE. Furthermore, if the pseudo-variance is correctly specified it achieves the same asymptotic efficiency
as the efficient WLSE. On the other hand, when parameter restrictions are considered, the resulting restricted PVQMLEs can achieve
higher efficiency compared to the efficient WLSE and alternative QMLEs. This result is theoretically shown in some special cases
and empirically verified for INAR models through an extensive numerical exercise. We discuss how the specification of the pseudo-
variance and the parameter restrictions naturally arise for time series processes with bounded support. We obtain that the restricted
VQMLEs retain the desired asymptotic properties when the imposed restrictions are valid with respect to the true parameter of
he mean and a pseudo-true parameter of the conditional variance. The validity of such restrictions can be tested without requiring

correct specification of the conditional variance. We derive a test for this purpose that can be used as a consistency test for restricted
PVQMLEs. When the evidence-based parameter constraints are identified and validated, they constitute a restriction set where an
higher-efficiency restricted PVQMLE can be obtained. Furthermore, under correct specification of the pseudo-variance, the test can
be used as a specification test on the underlying process generating the data.

Finally, the practical usefulness of PVQMLE approach is illustrated by means of two real data applications. One is concerned with
INAR models and one with a Beta autoregression for double-bounded data. INAR processes depend on the distribution assumed for
the innovation and the thinning specification (Lu, 2021). Guerrero et al. (2022) consider an alternative INAR parametrization that
is based on the innovation and marginal distributions that leads to an equivalent INAR specification where the thinning operator
is specified implicitly. Our test allows us to test for the degree of dispersion in the thinning operator as well as the error term.

here exists a vast literature of INAR models in testing innovations and marginal distributions dispersion (Schweer and Weiß, 2014;
Aleksandrov and Weiß, 2020), testing for serial dependence (Sun and McCabe, 2013), and general goodness of fit tests (Weiß,
2018b). However, to the best of our knowledge, specification tests are not available for the thinning dispersion. The thinning operator
s typically assumed to be binomial, which implies underdispersion in the thinning. Once appropriate thinning and innovation
estrictions are identified through the specification test, the corresponding PVQMLE is used to estimate the parameters of the INAR
odel. The second application concerns the analysis of daily realized correlations between a pair of stock returns, which forms a

double-bounded time series as the realized correlation takes values between minus one and one. We consider a pseudo-variance
specification based on the implied variance from Beta-distributed variables for the definition of PVQMLEs. We then test the validity
of parametric restrictions between the mean and pseudo-variance to validate the use of restricted PVQMLEs.

The remainder of the paper is organized as follows. Section 2 introduces the general mean and pseudo-variance framework and
he PVQMLEs, together with some examples. Section 3 presents the main theoretical results of the paper on the asymptotic properties

of the PVQMLE and some special cases. Section 4 discusses the efficiency of the PVQMLE. Section 5 introduces the specification
test for the validity of the constraints with an extensive simulation study in the case of INAR models. Section 6 presents empirical
applications. Section 7 concludes the paper. The proofs of the main results are deferred to Appendix A. Finally, Appendix B includes
additional numerical results.

2. Specification and estimation

2.1. PVQML estimators

Consider a stationary and ergodic time series process {𝑌𝑡}𝑡∈Z with elements taking values in the sample space  ⊆ R and with
conditional mean given by
E(𝑌𝑡|𝑡−1) = 𝜆(𝑌𝑡−1, 𝑌𝑡−2,… ;𝜓0) = 𝜆𝑡(𝜓0) , 𝑡 ∈ Z, (1)
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where 𝑡 denotes the 𝜎-field generated by {𝑌𝑠 , 𝑠 ≤ 𝑡}, 𝜆 ∶ R∞ × 𝛹 → R is a known measurable function, and 𝜓0 ∈ 𝛹 ⊂ R𝑝 is the
rue unknown 𝑝-dimensional parameter vector. We denote with 𝜈𝑡 the conditional variance of the process, i.e. V(𝑌𝑡|𝑡−1) = 𝜈𝑡, which

is considered to have an unknown specification. The model is a semi-parametric model as the quantity of interest is the parameter
ector of the conditional mean 𝜓0 and other distributional properties are left unspecified and treated as an infinite dimensional
uisance parameter. The general specification of the model in (1) includes a wide range of time series models as special case. For

instance, it includes linear and non-linear ARMA models when  = R, INGARCH and INAR models when  = N, ACD models when
 = (0,∞), and Beta autoregressive models for bounded data when  = (0, 1).

The main objective is to estimate the parameter vector 𝜓0 of the conditional expectation. For this purpose, we consider the
specification of a pseudo-variance

𝜈∗𝑡 (𝛾) = 𝜈∗(𝑌𝑡−1, 𝑌𝑡−2,… ; 𝛾), 𝑡 ∈ Z, (2)

where 𝜈∗ ∶ R∞ × 𝛤 → [0,+∞) is a known function that is indexed by the 𝑘-dimensional parameter 𝛾 ∈ 𝛤 ⊂ R𝑘. We refer to this as a
pseudo-variance as it is not necessarily correctly specified, i.e. there may be no value 𝛾 ∈ 𝛤 such that 𝜈∗𝑡 (𝛾) = 𝜈𝑡. The idea is to use
the pseudo-variance 𝜈∗𝑡 (𝛾) to enhance the efficiency of the estimation of 𝜓0 by means of a Gaussian QMLE. We denote the whole
parameter vector that contains both the parameter of the mean and pseudo-variance with 𝜃 = (𝜓 ′, 𝛾 ′)′ and 𝜃 ∈ 𝛩 = 𝛹 × 𝛤 ⊂ R𝑚,
𝑚 = 𝑝 + 𝑘.

We introduce the class of PVQMLEs that relies on a Gaussian quasi-likelihood for the mean equation with the pseudo-variance as
cale of the Gaussian density. We consider estimators based on both unrestricted and restricted quasi-likelihood functions. Assume
hat we have an observed sample of size 𝑇 from the process defined in (1), given by {𝑌𝑡}𝑇𝑡=1. Since 𝜆𝑡(𝜓) and 𝜈∗𝑡 (𝛾) can depend on
he infinite past of 𝑌𝑡, we define their approximations of 𝜆̃𝑡(𝜓) and 𝜈̃∗𝑡 (𝛾) based on the available finite sample {𝑌𝑡}𝑇𝑡=1,

𝜆̃𝑡(𝜓) = 𝜆(𝑌𝑡−1,… , 𝑌1, 𝑌0, 𝑌−1,… ;𝜓) , 𝜈̃∗𝑡 (𝛾) = 𝜈∗(𝑌𝑡−1,… , 𝑌1, 𝑌0, 𝑌−1,… ; 𝛾), (3)

where 𝑌0, 𝑌−1,… are given initial values. The Gaussian quasi-likelihood for 𝜓 with the pseudo-variance scaling is defined as

𝐿̃𝑇 (𝜃) = 1
𝑇

𝑇
∑

𝑡=1
𝑙𝑡(𝜃) , 𝑙𝑡(𝜃) = −1

2
log 𝜈̃∗𝑡 (𝛾) −

[𝑌𝑡 − 𝜆̃𝑡(𝜓)]2

2𝜈̃∗𝑡 (𝛾)
. (4)

Based on the quasi-likelihood function in (4), we define the unrestricted and restricted PVQMLE. The unrestricted PVQMLE
is based on the unconstrained maximization of the pseudo-likelihood without imposing any constrains between 𝜓 and 𝛾. The
unrestricted PVQMLE 𝜃̂ is defined as

𝜃̂ = argmax
𝜃∈𝛩

𝐿̃𝑇 (𝜃), (5)

where 𝜃̂ = (𝜓̂ ′, ̂𝛾 ′)′ and 𝜓̂ is the unrestricted PVQMLE of 𝜓0. In Section 3, we shall see that the unrestricted PVQMLE 𝜓̂ is a consistent
estimator of 𝜓0 and, in fact, it is asymptotically equivalent to a specific WLSE. If the pseudo-variance is correctly specified, i.e. there
is 𝛾0 ∈ 𝛤 such that 𝜈∗𝑡 (𝛾0) = 𝜈𝑡, then 𝜓̂ is asymptotically equivalent to the efficient WLSE.

In models where the sample space  is bounded, such as count-time series models, there can be a natural relationship between
the conditional mean and variance of the process. For example, in a count time series process we have that if the mean goes to zero,
then also the variance goes to zero as, in fact, the limit case is the mean being exactly zero. Such relationship between mean and
variance, as given by parametric models, provide a natural way to introduce restrictions between the mean and pseudo-variance
parameters 𝜓 and 𝛾. Several examples are presented at the end of this section.

To specify the restricted PVQMLE, we consider the constrained parameter set 𝛩𝑅 that imposes 𝑟 restrictions on the pseudo-
ariance parameters

𝛩𝑅 = {𝜃 ∈ 𝛩 ∶ 𝑆 𝛾 = 𝑔(𝜓)},

where 𝑆 is a 𝑟 × 𝑘 selection matrix and 𝑔 ∶ 𝛹 → R𝑟. The estimator derived from the maximization of (4) over the set 𝛩𝑅 is the
estricted PVQMLE,

𝜃̂𝑅 = argmax
𝜃∈𝛩𝑅

𝐿̃𝑇 (𝜃) (6)

where 𝜃̂𝑅 = (𝜓̂ ′
𝑅, ̂𝛾 ′𝑅)′ and 𝜓̂𝑅 is the restricted PVQMLE of 𝜓0. In Section 3, we shall see that the restricted PVQMLE 𝜓̂𝑅 is a

consistent estimator of 𝜓0 if the constrains in 𝛩𝑅 hold with respect to a pseudo-true parameter 𝛾∗. The advantage of the restricted
PVQMLE 𝜓̂𝑅 is that it can achieve higher efficiency than the unrestricted one. Furthermore, as it shall be presented in Section 5,
the validity of the restrictions can be tested under both misspecification and correct specification of the pseudo-variance. The test
can be interpreted as a consistency test for the restricted estimator when the pseudo-variance is misspecified. Instead, it can be
employed as a specification test if we assume correct specification of the pseudo-variance. For instance, it shall be employed to test
for underdispersion, equidispersion or overdispersion in the thinning operator of INAR models.

In practice, both the unrestricted and the restricted PVQMLE (5)–(6) do not have a closed form solution. Therefore, the estimation
of model parameters is carried out by numerical optimization. This is done by employing standard optimization functions of the R
software using the BFGS algorithm (Nocedal and Wright, 1999).
3 
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2.2. Examples

The model specification in (1) is very general and it covers a wide range of semi-parametric observation-driven time series
model. The unrestricted and restricted QMLE based on the pseudo-variance in (2) can be employed for such general class of models.
However, PVQMLEs are particularly suited for time series processes where the support of the conditional mean is bounded and a
natural relationship with the conditional variance can be assumed. In Section 4.2 it will be shown that in models where conditional

ean and pseudo-variance share some parameter restrictions, a more efficient estimator may be obtained with respect to alternative
estimation approaches available in the literature. The specification of the pseudo-variance and the parameter restrictions with the
conditional mean can be based on well known model specifications. The validity of such restrictions is testable and the asymptotic
properties do not require correct specification of the pseudo-variance. This means that no assumptions on the true conditional
variance are needed and the consistency of the restricted PVQMLE can also be tested without relying on such assumptions. Below
we present some examples of models that are encompassed in the framework defined in Eqs. (1) and (2), and provide a general way
to specify the pseudo-variance and the parameter restrictions with the conditional mean.

Example 1 (INAR Models). INAR models are widely used in the literature to model count time series. The INAR(1) model is given
y

𝑌𝑡 = 𝑎◦𝑌𝑡−1 + 𝜀𝑡 , 𝑡 ∈ Z, (7)

where {𝜀𝑡}𝑡∈Z is an iid sequence of non-negative integer-valued random variables with mean 𝜔1 > 0 and variance 𝜔2 > 0, and
◦’ is the thinning operator of Steutel and Van Harn (1979). For a given 𝑁 ∈ N, a general formulation of the thinning operator is
𝑎◦𝑁 =

∑𝑁
𝑗=1𝑋𝑗 when 𝑁 > 0, and 0 otherwise, where 𝑋𝑗 is a sequence of iid non-negative integer-valued random variables following

a distribution with finite mean 𝑎 and variance 𝑏, say 𝑋𝑗 ∼ 𝐷𝑋 (𝑎, 𝑏). The most common formulation (Steutel and Van Harn, 1979)
is the binomial thinning where 𝑋𝑗 is a sequence of independent Bernoulli random variables with success probability 𝑎 ∈ (0, 1),
therefore 𝑎◦𝑁 is a binomial random variable with 𝑁 trials and success probability 𝑎. The conditional mean of the INAR(1) is

𝜆𝑡 = 𝑎𝑌𝑡−1 + 𝜔1 . (8)

The form of the variance for INAR models is known to be linear in the observations, therefore the pseudo-variance can be specified
as

𝜈∗𝑡 = 𝑏𝑌𝑡−1 + 𝜔2 . (9)

Several restrictions can be considered for the PVQMLE. For instance, the restriction 𝑏 = 𝑎(1 − 𝑎) is implied by a binomial thinning
and 𝜔1 = 𝜔2 is implied by a Poisson error. The same estimation framework applies to INAR models with general lag order 𝑝, called
INAR(𝑝).

𝑌𝑡 = 𝑎1◦𝑌𝑡−1 +⋯ + 𝑎𝑝◦𝑌𝑡−𝑝 + 𝜀𝑡 , 𝑡 ∈ Z,

𝜆𝑡 =
𝑝
∑

ℎ=1
𝑎ℎ𝑌𝑡−ℎ + 𝜔1 , 𝜈∗𝑡 =

𝑝
∑

ℎ=1
𝑏ℎ𝑌𝑡−ℎ + 𝜔2.

Further results on INAR models are discussed in Sections 5 and 3.1. An application to real data is presented in Section 6.

Example 2 (INGARCH Models). Another popular model for time series of counts is the INGARCH model. The conditional mean of
the INGARCH(1, 1) model takes the form

𝜆𝑡 = 𝜔1 + 𝛼1𝑌𝑡−1 + 𝛽1𝜆𝑡−1 , (10)

where 𝜔1, 𝛼1, 𝛽1 ≥ 0. The pseudo-variance can be specified as

𝜈∗𝑡 = 𝜔2 + 𝛼2𝑌𝑡−1 + 𝛽2𝜆𝑡−1 . (11)

Also in this case, several restrictions can be considered for the PVQMLE. For instance, the restrictions 𝜔2 = 𝜔1, 𝛼2 = 𝛼1 and 𝛽2 = 𝛽1
re implied by an equidispersion assumption 𝜈∗𝑡 = 𝜆𝑡, which follows assuming a conditional Poisson distribution for example.
lternatively, the restrictions 𝜔2 = 𝑐 𝜔1, 𝛼2 = 𝑐 𝛼1 and 𝛽2 = 𝑐 𝛽1 with 𝑐 > 0 are implied by a proportional variance assumption
∗
𝑡 = 𝑐 𝜆𝑡.

Example 3 (ACD Models). ACD models are typically used to model non-negative continuous time series variables, like durations or
olumes. These models take the form 𝑌𝑡 = 𝜆𝑡𝜀𝑡 where 𝜀𝑡 is a sequence of positive variables with mean equal to 1. The conditional
xpectation 𝜆𝑡 may take the form as in Eq. (10). The pseudo-variance can be specified in several ways and restrictions can be
mposed. For instance, the restriction 𝜈∗𝑡 = 𝜆2𝑡 follows by assuming an exponential error distribution. An alternative restriction is

given by 𝜈∗𝑡 = 𝑐 𝜆2𝑡 , 𝑐 > 0.
4 
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Example 4 (Double-bounded Autoregressions). For double-bounded time series data the conditional mean 𝜆𝑡 can be specified as
in Eq. (10), see Gorgi and Koopman (2023) for instance. Several specifications and restrictions for the pseudo-variance can be
considered. For instance, the restriction 𝜈∗𝑡 = 𝜆𝑡(1 −𝜆𝑡)∕(1 +𝜙) is implied by a beta conditional distribution with dispersion parameter
𝜙 > 0. Intermediate restrictions on the pseudo-variance are discussed in the corresponding application in Section 6. See also
Section 3.2 for further results established on this class of models.

We note that the examples presented in this section are focused on a linear mean equation for simplicity of exposition. Several
ther non-linear model specifications are encompassed in the general framework in (1) and (2), see for example Creal et al. (2013)

and Christou and Fokianos (2015).

3. Asymptotic theory

In this section, the asymptotic properties of the PVQMLEs in (5) and (6) are formally derived. Although asymptotic results
related to quasi-maximum likelihood estimators of observation-driven models are well-established in the literature, the associated
theory for PVQMLEs differs as it relies on simultaneous estimation of mean and pseudo-variance parameters, where the latter can
be misspecified and present parameter restrictions with the mean. Since the pseudo-variance can be misspecified, the estimator of
the pseudo-variance parameter 𝛾̂ will be consistent with respect to a pseudo-true value 𝛾∗, which is given by

𝛾∗ = argmax
𝛾∈𝛤

−1
2
E
(

log 𝜈∗𝑡 (𝛾) +
[𝑌𝑡 − 𝜆𝑡(𝜓0)]2

𝜈∗𝑡 (𝛾)

)

. (12)

We define the vector 𝜃0 = (𝜓 ′
0, 𝛾∗′)′ that contains both true and pseudo-true parameters. The estimator of the mean parameters

preserves the consistency and asymptotic normality results to the true parameter vector 𝜓0 irrespective of the correct specification of
the conditional variance. We show that such result holds for both unrestricted (5) and restricted (6) estimators, where the restricted
estimator requires the validity of the imposed restrictions with respect to the pseudo-true parameter, i.e. 𝑆 𝛾∗ = 𝑔(𝜓0). We note that
the validity of such restriction is a weaker condition than the correct specification of the pseudo-variance. In fact, the test proposed
in Section 5 is a restriction test and, under the null hypothesis of valid restrictions, the pseudo-variance can still be misspecified.

We start by showing consistency and asymptotic normality of the unrestricted PVQMLE in (5). We first obtain the score function
related to (4)

𝑆̃𝑇 (𝜃) = 1
𝑇

𝑇
∑

𝑡=1
𝑠̃𝑡(𝜃), 𝑠̃𝑡(𝜃) =

𝑌𝑡 − 𝜆̃𝑡(𝜓)
𝜈̃∗𝑡 (𝛾)

𝜕𝜆̃𝑡(𝜓)
𝜕 𝜃 +

[𝑌𝑡 − 𝜆̃𝑡(𝜓)]2 − 𝜈̃∗𝑡 (𝛾)

2𝜈̃∗2𝑡 (𝛾)

𝜕 ̃𝜈∗𝑡 (𝛾)
𝜕 𝜃 . (13)

Then, define 𝐿𝑇 (𝜃), 𝑙𝑡(𝜃), 𝑆𝑇 (𝜃) and 𝑠𝑡(𝜃) as the random functions obtained from 𝐿̃𝑇 (𝜃), 𝑙𝑡(𝜃), 𝑆̃𝑇 (𝜃) and 𝑠̃𝑡(𝜃) by substituting 𝜆̃𝑡(𝜓)
nd 𝜈̃∗𝑡 (𝛾) with 𝜆𝑡(𝜓) and 𝜈∗𝑡 (𝛾), respectively. Furthermore, let 𝐻(𝜃0) = E[−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝜃 𝜕 𝜃′] and 𝐼(𝜃0) = E[𝑠𝑡(𝜃0)𝑠𝑡(𝜃0)′]. Consider the
ollowing assumptions.

A1 The process {𝑌𝑡, 𝜆𝑡}𝑡∈𝑍 is strictly stationary and ergodic.
A2 𝜆𝑡(⋅) is continuous in 𝛹 , 𝜈∗𝑡 (⋅) is continuous in 𝛤 and the set 𝛩 is compact. Moreover,

E sup
𝛾∈𝛤

|

|

log 𝜈∗𝑡 (𝛾)|| <∞ , E sup
𝜃∈𝛩

[𝑌𝑡 − 𝜆𝑡(𝜓)]2

𝜈∗𝑡 (𝛾)
<∞ .

A3 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s. if and only if 𝜓 = 𝜓0.
A4 There is a constant 𝜈∗ > 0 such that 𝜈∗𝑡 (𝛾), ̃𝜈∗𝑡 (𝛾) ≥ 𝜈∗ for any 𝑡 ≥ 1 and any 𝛾 ∈ 𝛤 .
A5 Define 𝑎𝑡 = sup𝜓∈𝛹 |𝜆̃𝑡(𝜓) − 𝜆𝑡(𝜓)| and 𝑏𝑡 = sup𝛾∈𝛤 |

|

𝜈̃∗𝑡 (𝛾) − 𝜈∗𝑡 (𝛾)||, it holds that

lim
𝑡→∞

(

1 + |

|

𝑌𝑡|| + sup
𝜓∈𝛹

|𝜆𝑡(𝜓)|
)

𝑎𝑡 = 0 , lim
𝑡→∞

(

1 + 𝑌 2
𝑡 + sup

𝜓∈𝛹
𝜆2𝑡 (𝜓)

)

𝑏𝑡 = 0 𝑎.𝑠.

A6 The pseudo-true parameter 𝛾∗ ∈ 𝛤 defined in (12) is unique.
A7 Define 𝑐𝑡 = sup𝜃∈𝛩 ‖𝜕𝜆̃𝑡(𝜓)∕𝜕 𝜃 − 𝜕 𝜆𝑡(𝜓)∕𝜕 𝜃‖, 𝑑𝑡 = sup𝜃∈𝛩 ‖

‖

𝜕 ̃𝜈∗𝑡 (𝛾)∕𝜕 𝜃 − 𝜕 𝜈∗𝑡 (𝛾)∕𝜕 𝜃‖‖. The following quantities are of order (𝑡−𝛿)
a.s. for some 𝛿 > 1∕2

sup
𝜃∈𝛩

‖

‖

‖

‖

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

‖

‖

‖

‖

𝑎𝑡 , sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

(

1 + |

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)||
)

𝑎𝑡 , sup
𝜃∈𝛩

‖

‖

‖

‖

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

‖

‖

‖

‖

(

|

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)||
)

𝑏𝑡 ,

sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

(

1 + 𝑌 2
𝑡 + sup

𝜓∈𝛹
𝜆2𝑡 (𝜓)

)

𝑏𝑡 ,
(

1 + |

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)||
)

𝑐𝑡 ,
(

1 + 𝑌 2
𝑡 + sup

𝜓∈𝛹
𝜆2𝑡 (𝜓)

)

𝑑𝑡.

A8 𝜆𝑡(⋅) and 𝜈∗𝑡 (⋅) have continuous second-order derivatives in their spaces. Moreover,

E sup
𝜃∈𝛩

[𝑌𝑡 − 𝜆𝑡(𝜓)]4

𝜈∗2𝑡 (𝛾)
<∞ , E sup

𝜃∈𝛩

‖

‖

‖

‖

‖

‖

1
√

𝜈∗𝑡 (𝛾)

𝜕2𝜆𝑡(𝜓)
𝜕 𝜃 𝜕 𝜃′

‖

‖

‖

‖

‖

‖

2

<∞ ,

E sup
𝜃∈𝛩

‖

‖

‖

‖

‖

1
𝜈∗𝑡 (𝛾)

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃′

‖

‖

‖

‖

‖

< ∞ , E sup
𝜃∈𝛩

‖

‖

‖

‖

‖

1
𝜈∗𝑡 (𝛾)

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃′

‖

‖

‖

‖

‖

2

<∞ ,
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E sup
𝜃∈𝛩

‖

‖

‖

‖

‖

1
𝜈∗2𝑡 (𝛾)

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃′

‖

‖

‖

‖

‖

2

< ∞ , E sup
𝜃∈𝛩

‖

‖

‖

‖

‖

1
𝜈∗𝑡 (𝛾)

𝜕2𝜈∗𝑡 (𝛾)
𝜕 𝜃 𝜕 𝜃′

‖

‖

‖

‖

‖

2

< ∞ ,

E
[𝑌𝑡 − 𝜆𝑡(𝜓0)]8

𝜈∗4𝑡 (𝛾∗)
<∞ , E

‖

‖

‖

‖

‖

1
𝜈∗𝑡 (𝛾∗)

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜃

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜃′

‖

‖

‖

‖

‖

2

<∞ .

A9 The matrices 𝐻(𝜃0) and 𝐼(𝜃0) are positive definite.
A10 𝜃0 ∈ 𝛩̇, where 𝛩̇ is the interior of 𝛩.
A11 The sequence

√

𝑇 𝑆𝑇 (𝜃0) obeys the central limit theorem.

The strict stationarity and ergodicity in assumption A1 depends upon the model formulation in (1) and (2) and it can be
stablished by means of different probabilistic approaches, see for instance Straumann and Mikosch (2006) and Debaly and Truquet

(2021). Assumption A2 is a standard moment condition. Assumption A3 is required for the identification of the true parameter 𝜓0.
Assumptions A5 and A7 are needed to guarantee that the initialization of filters in (3) is asymptotically irrelevant. Assumption A6
imposes the uniqueness of the pseudo-true parameter for the variance equation. In Corollary 3 below, we show that this assumption
an be dropped if the researcher is not interested in the asymptotic normality of the estimator but only in the consistency. Assumption
A8 imposes moments on the second derivatives of the log-quasi-likelihood that are required for asymptotic normality to apply.

ssumption A9 is required to obtain the positive definiteness of the asymptotic covariance matrix of the estimators. This condition
s left high-level for generality purposes. However, in Lemma 3 in Appendix A.2, we introduce some special cases and sufficient low-
evel conditions that verify the assumption. Assumption A10 is the standard condition for asymptotic normality that the pseudo-true
arameter value is in the interior of the parameter set. Finally, assumption A11 is an high-level condition that a central limit theorem
pplies to the score. This condition is also left high-level for generality purposes since the score function 𝑠𝑡(𝜃0) is not a martingale
ifference sequence, see Eq. (13). There are several alternative Central Limit Theorems (CLT) for non-martingale sequences and

the choice of the most appropriate one is strongly dependent on the specific mean–variance model formulation. For example, CLTs
appealing the concept of mixing processes or mixingales are widely available, see the surveys in Doukhan (1994), Bradley (2005)
and White (1994). See also the proof of Theorem 4 below for an example in which the assumption is satisfied by appealing the
CLT for 𝛼-mixing processes. Finally, in case of correct conditional variance specification then assumption A11 can be dropped, see
Corollary 2. Theorem 1 delivers the consistency and asymptotic normality of the unrestricted PVQMLE of the true parameter 𝜓0.

Theorem 1. Consider the unrestricted PVQMLE in (5). Under conditions A1–A6

𝜓̂ ←←→ 𝜓0 , 𝑎.𝑠. 𝑇 → ∞ . (14)

Moreover, if also A7–A11 hold, as 𝑇 → ∞
√

𝑇
(

𝜓̂ − 𝜓0
) 𝑑
←←←←←←←→ 𝑁(0, 𝛴𝜓 ) , 𝛴𝜓 = 𝐻−1

𝜓 (𝜃0)𝐼𝜓 (𝜃0)𝐻−1
𝜓 (𝜃0) , (15)

where

𝐻𝜓 (𝜃0) = E
[

1
𝜈∗𝑡 (𝛾∗)

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓 ′

]

, 𝐼𝜓 (𝜃0) = E
[

𝜈𝑡
𝜈∗2𝑡 (𝛾∗)

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓 ′

]

. (16)

In addition, 𝛴𝜓 is positive definite.
The asymptotic properties of the estimator of the pseudo-variance parameters 𝛾 are obtained from Theorem 1 as a byproduct.

We make the result explicit in Corollary 1 below. Let 𝑠𝑡(𝜃0) = [𝑠(𝜓)𝑡 (𝜃0)′, 𝑠(𝛾)𝑡 (𝜃0)′]′ be the partition of the score with respect to the
ean and (pseudo-)variance parameters. Define the partitions 𝐻𝛾 (𝜃0) = E[−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝛾 𝜕 𝛾 ′] and 𝐼𝛾 (𝜃0) = E[𝑠(𝛾)𝑡 (𝜃0)𝑠

(𝛾)
𝑡 (𝜃0)′].

Corollary 1. Under the assumptions of Theorem 1 we have that as 𝑇 → ∞, a.s. 𝛾̂ ←←→ 𝛾∗ and
√

𝑇 (𝛾̂ − 𝛾∗)
𝑑
←←←←←←←→ 𝑁(0, 𝛴𝛾 ), where

𝛴𝛾 = 𝐻−1
𝛾 (𝜃0)𝐼𝛾 (𝜃0)𝐻−1

𝛾 (𝜃0). In addition, 𝛴𝛾 is positive definite.

Theorem 1 determines the asymptotic distribution of the unrestricted PVQMLE of 𝜓0 without requiring correct specification of
the pseudo-variance. The following result shows that in the special case in which the variance is well-specified then the estimator
𝜓̂ gains in efficiency.

Corollary 2. Consider the assumptions of Theorem 1. If, in addition, the variance (2) is correctly specified, i.e. 𝜈∗𝑡 (𝛾∗) = 𝜈𝑡, then A1–A10
entail (14) and

√

𝑇
(

𝜓̂ − 𝜓0
) 𝑑
←←←←←←←→ 𝑁(0, 𝐼−1𝜓 ) , 𝐼𝜓 = E

[

1
𝜈𝑡

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓 ′

]

, (17)

where 𝛴𝜓 − 𝐼−1𝜓 is positive semi-definite.

We also note that in Corollary 2 the uniqueness of the variance parameter in assumption A6 is implied by the condition
𝜈∗𝑡 (𝛾) = 𝜈∗𝑡 (𝛾

∗) a.s. if and only if 𝛾 = 𝛾∗. This follows immediately from the correct specification of the pseudo-variance. Corollary 3
below shows that even if the pseudo-true parameter 𝛾∗ is not unique, i.e. assumption A6 does not hold, the consistency of the
unrestricted estimator 𝜓̂ is retained without any additional assumption. The overall estimator 𝜃̂ will instead be set consistent over
the set of values that maximize the limit of the quasi-likelihood, 𝛩 , since the pseudo-true parameter 𝛾∗ is not uniquely identified.
0
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Corollary 3. Consider the unrestricted PVQMLE (5) and assume conditions A1–A5 hold. Then, as 𝑇 → ∞, inf𝜃0∈𝛩0
‖𝜃̂ − 𝜃0‖ ←←→ 0 a.s. and

𝜓̂ ←←→ 𝜓0 a.s.

We now treat the case in which the conditional mean and pseudo-variance parameters are constrained. We study the asymptotic
properties of the restricted PVQMLE 𝜓̂𝑅 defined in (6).

A12 The equality 𝑆 𝛾∗ = 𝑔(𝜓0) holds and 𝑔(⋅) is continuous.

Assumption A12 is required to ensure that 𝜃0 ∈ 𝛩𝑅, i.e. the imposed restrictions are valid with respect to the true parameter
𝜓0 and the pseudo-true parameter 𝛾∗. The continuity of 𝑔(⋅) guarantees that 𝛩𝑅 remains compact. Define 𝛾 = (𝛾 ′1, 𝛾 ′2)′ where
𝛾1 = 𝑆 𝛾 = 𝑔(𝜓) is the sub-vector of pseudo-variance parameters that are restricted to mean parameters and 𝛾2 constitutes the sub-
vector of remaining free parameters. For 𝜃 ∈ 𝛩𝑅, we have 𝜃 = (𝜓 ′, 𝛾 ′1, 𝛾 ′2)′ = (𝜓 ′, 𝑔(𝜓)′, 𝛾 ′2)′ so the 𝑚-dimensional vector of parameters
to estimate is reduced to 𝜃 = (𝜓 ′, 𝛾 ′2)′, with some abuse of notation. The new parameter vector has dimension 𝑚𝑅 = 𝑝+ 𝑘2 where 𝑘2
is the length of the extra nuisance parameters 𝛾2. Recall that 𝐻𝑥(𝜃0) = E [

−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝑥𝜕 𝑥′
]

and 𝐼𝑥(𝜃0) = E[𝑠(𝑥)𝑡 (𝜃0)𝑠
(𝑥)
𝑡 (𝜃0)′]. Moreover,

efine 𝐻𝑥,𝑧(𝜃0) = E [

−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝑥𝜕 𝑦′
]

, 𝐼𝑥,𝑧(𝜃0) = E[𝑠(𝑥)𝑡 (𝜃0)𝑠
(𝑧)
𝑡 (𝜃0)′] and 𝐼𝑧,𝑥(𝜃0) = 𝐼 ′𝑥,𝑧(𝜃0). Analogously, set 𝐷(𝜃0) = 𝐻−1(𝜃0) and

𝑥,𝑦(𝜃0) being the corresponding partition related to rows 𝑥 and columns 𝑦 of 𝐷(𝜃0). Theorem 2 delivers the asymptotic distribution
f the restricted PVQMLE.

Theorem 2. Consider the restricted PVQMLE in (6). Under conditions A1–A6 and A12

𝜓̂𝑅 ←←→ 𝜓0 , 𝑎.𝑠. 𝑇 → ∞ . (18)

Moreover, if also A7–A11 hold, as 𝑇 → ∞
√

𝑇
(

𝜓̂𝑅 − 𝜓0
) 𝑑
←←←←←←←→ 𝑁(0, 𝛴𝑅) , (19)

where

𝛴𝑅 =𝐷𝜓 (𝜃0)𝐼𝜓 (𝜃0)𝐷𝜓 (𝜃0) +𝐷𝜓 ,𝛾2 (𝜃0)𝐼𝛾2 ,𝜓 (𝜃0)𝐷𝜓 (𝜃0) + 𝐷𝜓 (𝜃0)𝐼𝜓 ,𝛾2 (𝜃0)𝐷𝛾2 ,𝜓 (𝜃0) +𝐷𝜓 ,𝛾2 (𝜃0)𝐼𝛾2 (𝜃0)𝐷𝛾2 ,𝜓 (𝜃0) . (20)

In addition, 𝛴𝑅 is positive definite.

We note that Corollaries 1–3 can easily be adapted to hold also for 𝜃̂𝑅. In Section 4.2 below, we shall see that the restricted
VQMLE can lead to substantial gains in efficiency with respect to the unrestricted PVQMLE. The consistency of the restricted
VQMLE requires the additional assumption A12. However, as discussed in Section 5, this assumption can be tested and the correct

specification of the pseudo-variance is not required. Clearly, when 𝜓 and 𝛾 do not have parameter restrictions, i.e. 𝜓̂𝑅 = 𝜓̂ , it can
be noted that Theorem 1 is equivalent to Theorem 2 with 𝛴𝑅 = 𝛴𝜓 , since 𝐻𝜓 ,𝛾2 (𝜃0) = 0, 𝐻(𝜃0) becomes block diagonal, its inverse
has block elements 𝐷𝑥(𝜃0) = 𝐻−1

𝑥 (𝜃0) and 𝐷𝑥,𝑦(𝜃0) = 𝐷𝑦,𝑥(𝜃0) = 0, implying that 𝛴𝑅 = 𝛴𝜓 .
To illustrate the relevance of the theoretical results, in the remainder of the section we provide an application of the asymptotic

results to two specific models of interest introduced in Example 1.

3.1. Integer-valued autoregressive models

We consider the class of INAR models specified in Eq. (7) with the corresponding conditional mean given in (8). Recall that for
INAR models the thinning operator is defined as 𝑎◦𝑁 =

∑𝑁
𝑗=1𝑋𝑗 when 𝑁 > 0, and 0 otherwise, where 𝑋𝑗 ∼ 𝐷𝑋 (𝑎, 𝑏) are iid with

finite mean 𝑎 and variance 𝑏. We start by studying the stochastic properties of the general class of INAR processes. Theorem 3 below
rovides conditions for strict stationarity and mixing properties of the INAR process.

Theorem 3. Let the INAR process (7) satisfy 𝑎 < 1. Then, the process admits a strictly stationary and ergodic solution with finite second
oment E(𝑌 2

𝑡 ) <∞. Moreover, the process is 𝛽-mixing with coefficients decaying geometrically fast.

Next, we derive the strong consistency and asymptotic normality of several PVQML estimators of INAR models by appealing to
Theorems 1–2. We assume that the observations are generated from an INAR(1) model with thinning and innovation distributions
following some unspecified equidispersed distributions (i.e. mean equal to the variance). We consider PVQMLEs for the parameter
vector based on the pseudo-variance specified in (9). We study the asymptotic properties of the unrestricted PVQMLE and the
estricted PVQMLE with restrictions 𝜔2 = 𝜔1 and 𝑏 = 𝑎. In this case, the restrictions hold but no assumptions on the shape of the
istribution of the data generating process are imposed for the asymptotic results of the PVQMLE.

Theorem 4. Let {𝑌1,… , 𝑌𝑇 } be generated by the INAR(1) process in (7) with an equidispersed error, E(𝜀𝑡) = V(𝜀𝑡) = 𝜔1, and an
quidispersed thinning operator, E(𝑎◦𝑁) = V(𝑎◦𝑁) = 𝑎𝑁 , with 𝑎 < 1. Consider PVQMLEs for the parameter vector 𝜃 = (𝜔1, 𝑎, 𝜔2, 𝑏)′ based

on the pseudo-variance 𝜈∗𝑡 specified in (9). Furthermore, assume that 𝜃0 ∈ 𝛩, where 𝛩 is a compact parameter set such that 𝜔1 > 0, 𝜔2 > 0,
≥ 0, 𝑏 ≥ 0. Then, the unrestricted PVQMLE (5) and the following restricted PVQMLEs (6) with restrictions (i) 𝜔2 = 𝜔1, (ii) 𝑏 = 𝑎 and

(iii) (𝜔2 = 𝜔1, 𝑏 = 𝑎) are strongly consistent. Assume further that 𝜃0 ∈ 𝛩̇ and E(𝑌 8
𝑡 ) < ∞. Then, all the PVQMLEs are also asymptotically

normally distributed with asymptotic covariance matrix given in Theorems 1–2.
7 
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For the INAR model, the existence of the 𝑟-moments with 𝑟 > 2 depends on the specific discrete distribution for the errors 𝜀𝑡
and the thinning. Since we keep such distributions unspecified, the existence of higher-order moments is required. However, the
moment condition is satisfied for several INAR models. For example, when the thinning and the error distributions are Poisson
the observation 𝑌𝑡 are Poisson marginally distributed and then the moments of any order are finite (Christou and Fokianos, 2014,
Lem. A.1). For details on more general INAR modeling see Weiß (2018a). The result can straightforwardly be extended to INAR

odels with a general order 𝑝.

3.2. Double-bounded auto-regressive model

As a second illustration, we consider an application of the asymptotic results to double-bounded time series processes. We study
 process that takes values in the unit interval [0, 1], however, we note that the same results apply to the generic bounds [𝐿, 𝑈 ] as
he observable process can be transformed to lie in the unit interval. We consider the following specification for the conditional
ean and pseudo-variance of the PVQMLE

𝜆𝑡 = 𝜔1 + 𝛼1𝑌𝑡−1 + 𝛽1𝜆𝑡−1, (21)

𝜈∗𝑡 =
𝜇𝑡(1 − 𝜇𝑡)
1 + 𝜙 , 𝜇𝑡 = 𝜔2 + 𝛼2𝑌𝑡−1 + 𝛽2𝜇𝑡−1,

where the double-bounded nature of the data requires 0 < 𝜔𝑖 + 𝛼𝑖 + 𝛽𝑖 < 1 for 𝑖 = 1, 2 and 𝜙 > 0. If the observable variable 𝑌𝑡 follows
a conditional beta distribution with mean 𝜆𝑡 and dispersion parameter 𝜙, 𝐵 𝑒𝑡𝑎(𝜆𝑡, 𝜙), then the conditional variance will take the
form defined in (21) with 𝜇𝑡 = 𝜆𝑡. We assume this beta process as data generating process.

Theorem 5. Assume the process
{

𝑌𝑡, 𝜆𝑡
}

𝑡∈Z is generated by 𝑌𝑡|𝑡−1 ∼ 𝐵 𝑒𝑡𝑎(𝜆𝑡, 𝜙) with conditional mean specified as in (21) and
𝜔1 + 𝛼1 + 𝛽1 < 1. Then, the process admits a strictly stationary and ergodic solution with finite moments of any order E(𝑌 𝑟𝑡 ) < ∞ for
ll 𝑟 ≥ 1.

The results follows immediately by Gorgi and Koopman (2023, Thm. 2.1) and all moments exist since the time series is bounded.
Next, we derive the strong consistency and asymptotic normality of the PVQML estimators of double-bounded autoregressions. We
onsider the case where the observations are generated from 𝐵 𝑒𝑡𝑎(𝜆𝑡, 𝜙) with mean specified as in (21). We study the asymptotic

properties of the unrestricted PVQMLE and the restricted PVQMLE with restrictions 𝜔2 = 𝜔1, 𝛼2 = 𝛼1 and 𝛽2 = 𝛽1.

Theorem 6. Let {𝑌1,… , 𝑌𝑇 } be generated by a beta autoregressive process with conditional distribution 𝑌𝑡|𝑡−1 ∼ 𝐵 𝑒𝑡𝑎(𝜆𝑡, 𝜙) where 𝜆𝑡
ollows the recursive equation in (21). Consider PVQMLEs for the parameter vector 𝜃 = (𝜔1, 𝛼1, 𝛽1, 𝜔2, 𝛼2, 𝛽2)′ based on the pseudo-variance
𝜈∗𝑡 specified in (21). Furthermore, assume that 𝜃0 ∈ 𝛩, where 𝛩 is a compact parameter set such that 𝜔𝑖 > 0, 𝛼𝑖 > 0, 𝛽𝑖 ≥ 0, 𝜔𝑖+𝛼𝑖+𝛽𝑖 < 1,
𝜙 > 0, for 𝑖 = 1, 2 and for any 𝜃 ∈ 𝛩. Then, the unrestricted PVQMLE (5) and the restricted PVQMLE (6) with restrictions 𝜔2 = 𝜔1,
𝛼2 = 𝛼1 and 𝛽2 = 𝛽1 are strongly consistent. Assume further that 𝜃0 ∈ 𝛩̇. Then, both PVQMLEs are asymptotically normally distributed with
asymptotic covariance matrix given in Theorems 1–2.

4. Efficiency of the PVQMLE

4.1. Comparison to alternative estimators

In this section, we show that the unrestricted PVQMLE achieves the same asymptotic variance of existing estimators. Consider
he unrestricted PVQMLE depicted in Theorem 1. The partition of the score related to the mean parameter 𝜓 is

𝑠̃(𝜓)𝑡 (𝜃) = 𝑌𝑡 − 𝜆̃𝑡(𝜓)
𝜈̃∗𝑡 (𝛾)

𝜕𝜆̃𝑡(𝜓)
𝜕 𝜓 . (22)

We compare (22) with some alternative semi-parametric estimators presented in the literature.
Consider the two-stage Weighted Least Squares (WLSE) of Aknouche and Francq (2023) defined as

𝜓̂𝑊 = argmax
𝜓∈𝛹

1
𝑇

𝑇
∑

𝑡=1
𝑙 𝑠𝑡(𝜓 , 𝑤̂𝑡) , 𝑙 𝑠𝑡(𝜓 , 𝑤̂𝑡) = −[𝑌𝑡 − 𝜆̃𝑡(𝜓)]2

𝑤̂𝑡
,

where 𝑤̂𝑡 is a first-step estimator of the set of weights 𝑤𝑡. The resulting score of the WLSE is
𝑠̃𝑡(𝜓 , 𝑤̂𝑡) =

𝑌𝑡 − 𝜆̃𝑡(𝜓)
𝑤̂𝑡

𝜕𝜆̃𝑡(𝜓)
𝜕 𝜓 . (23)

Since it is well-known that the conditional variance is the optimal weight for the WLSE, the same authors set 𝑤𝑡 = 𝜈∗𝑡 (𝜉) =
∗(𝑌𝑡−1, 𝑌𝑡−2,… ; 𝜉) by defining a functional form for a pseudo-variance, where the parameters 𝜉 may also contain 𝜓0 or parts of
t. The corresponding first-step estimated weights are 𝑤̂𝑡 = 𝜈̃∗𝑡 (𝜉), where 𝜉 represents the first-step estimate of the parameter 𝜉.

Another related estimator is the Estimating Function (EF) approach for dynamic models that has been recently introduced
by Francq and Zakoian (2023). In the case where only the conditional mean is correctly specified, the EF equation can be written as
 slightly modified version of (23), by setting 𝑤̂𝑡 = 𝜈̃∗𝑡 (𝜉) and 𝜉 = (𝜓 , 𝜁 ) where 𝜁 are first-step estimates of parameters not in common

with the mean equation. The estimator is then defined as the solution of the following system of equation ∑𝑇 𝑠̃ (𝜓 , 𝑤̂ ) = 0.
𝑡=1 𝑡 𝑡

8 
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Consider the general QMLE of Wedderburn (1974) and Gourieroux et al. (1984) based on the exponential family of quasi-
likelihoods defined as

𝜓̂𝑄 = argmax
𝜓∈𝛹

𝑙𝑇 (𝜓) ,

where the log-quasi-likelihood 𝑙𝑇 (𝜓) is a member of the one-parameter exponential family with respect to 𝜆̃𝑡(𝜓). The corresponding
core is given by

𝑠̃𝑡(𝜓) =
𝑌𝑡 − 𝜆̃𝑡(𝜓)
𝜈̃𝑡(𝜓)

𝜕𝜆̃𝑡(𝜓)
𝜕 𝜓 , (24)

where the conditional variance 𝜈̃𝑡(𝜓) is typically a function of the mean, i.e. 𝜈̃𝑡(𝜓) = ℎ(𝜆̃𝑡(𝜓)) for some function ℎ(⋅). For example,
electing the Poisson quasi-likelihood yields 𝜈̃𝑡(𝜓) = 𝜆̃𝑡(𝜓) (Ahmad and Francq, 2016), see Aknouche and Francq (2023, Sec. 2.2)

for other examples.
The expressions of the scores in (22)–(24) highlight how the unrestricted PVQMLE is related to WLSE, EF estimator and the

QMLE based on the exponential family. The main difference between the unrestricted PVQMLE and the QMLE with score in (24) is
that the QMLE only considers the specification of the conditional mean and the conditional variance is a function of the conditional
mean that is implied by the selected distribution in the exponential family. On the other hand, the unrestricted PVQMLE differs
from the WLSE as the parameters are estimated jointly instead of a multi-step estimation. A similar difference applies between the
unrestricted PVQMLE and the EF approach, which also estimates some of the variance parameters in a first stage. The unrestricted
PVQMLE, the QMLE, the WLSE and the EF estimator enjoy the same consistency property for the mean parameters 𝜓0 irrespective
of the correct specification of the conditional variance. Furthermore, when they have the same specification of the conditional
pseudo-variance, these estimators are asymptotically equivalent.

Corollary 4. Assume Theorem 1 holds. Moreover, suppose the WLSE (23) with 𝑤𝑡 = 𝜈∗𝑡 (𝛾
∗) is consistent and asymptotically normal with

imiting variance 𝛴𝑊 . Then the unrestricted PVQMLE in (5) is asymptotically as efficient as the WLSE, meaning that 𝛴𝜓 = 𝛴𝑊 . In addition,
f 𝜈∗𝑡 (⋅) = 𝜈𝑡(⋅), then 𝛴𝑊 = 𝛴𝜓 = 𝐼−1𝜓 .

The result in Corollary 4 follows immediately from Theorem 1 and Corollary 2. Since the EF estimator still involves a two-
step procedure, it is not surprising to see that the EF estimator has the same efficiency as the WLSE (Francq and Zakoian, 2023).
Therefore, the results of Corollary 4 also hold for the EF approach. We also note that if Corollary 4 holds then also Corollaries
2.1–2.3 in Aknouche and Francq (2023) hold for the unrestricted PVQMLE. This has two direct consequences: (i) if the variance
is well-specified, the unrestricted PVQMLE is asymptotically more efficient than the QMLE of 𝜓0, if the variance implied by the
exponential family is not the true one, and (ii) if the conditional distribution of 𝑌𝑡 comes from the exponential family, then the
well-specified PVQMLE is asymptotically as efficient as the MLE of 𝜓0.

We note that the comparison discussed so far only concerns the unrestricted PVQMLE. This asymptotic equivalence of the
PVQMLE with respect to the WLSE, the EF estimator and the QMLE does not hold for the restricted PVQMLE. This can be noted from
the form of the score function given in Eq. (13) and the fact that the partial derivative of 𝜈̃∗𝑡 (𝛾) with respect to 𝜓 is no longer equal
to zero. This partial derivative is non-zero also in the EF approach for the special case of correctly specified conditional variance.

owever, even in this special case of correct specification of the conditional variance, PVQMLEs differ from the EF approach as the
latter assumes that 𝜈̃∗𝑡 only depends on the parameter 𝜓 , i.e. no additional free parameters are allowed in the conditional variance
equation, which is instead included in our approach. Below we discuss how the restricted PVQMLE can achieve higher efficiency
ompared to the unrestricted PVQMLE.

4.2. Some results on the efficiency of PVQMLE

Given that the PVQMLE with distinct parameters on mean and pseudo-variance is asymptotically equivalent to the WLSE for the
ean parameters 𝜓0 (Corollary 4), it may be expected that if the mean and pseudo-variance equations share common parameters

in 𝜃, i.e. 𝜓0 and 𝛾∗ are not completely distinct so that 𝜃0 ∈ 𝛩𝑅, then the restricted PVQMLE in (6) could show improved efficiency
ver the unrestricted PVQMLE and the WLSE. It is not straightforward to prove this result in general but for the following special
ases it is verified.

A13 𝐸(𝑌 4
𝑡 |𝑡−1) < ∞ almost surely.

A14 Set 𝑝 = 𝑘 = 1 and 𝑌𝑡|𝑡−1 ∼ 𝑞(𝜆𝑡, 𝜈𝑡) where 𝑞(⋅) has kurtosis ≤ 3. One of the following conditions holds:

A14.a 𝑞(⋅) is symmetric.
A14.b The first derivatives of the functions 𝜆𝑡(𝜓0) and 𝜈𝑡(𝛾0) have the (opposite) same sign and 𝑞(⋅) is (positive) negative

skewed.

Proposition 1. Assume that Assumptions A1–A14 hold with 𝜈∗𝑡 (𝛾
∗) = 𝜈𝑡. Moreover, suppose that the WLSE in (23) with 𝑤𝑡 = 𝜈𝑡 is

consistent and asymptotically normal with asymptotic variance 𝐼−1𝜓 . Then, the restricted PVQMLE in (6) is asymptotically more efficient
than the unrestricted PVQMLE and the WLSE, i.e. 𝐼−1𝜓 − 𝛴𝑅 is positive semi-definite.
9 
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The conditions stated in Assumptions A14 can be somewhat restrictive, however, we note that they are only sufficient conditions.
In general, it is not straightforward to derive sharper theoretical conditions under which the restricted PVQMLE is more efficient than
the unrestricted PVQMLE. However, for specific models, we can appeal to numerical methods to obtain the asymptotic covariance
matrix of the two estimators and evaluate their relative efficiency.

We consider the INAR(1) model in (7) with binomial thinning and Poisson error distribution as an example. The unrestricted
VQMLE 𝜓̂ is based on the following conditional mean and pseudo-variance equations

𝜆𝑡(𝜓) = 𝑎𝑌𝑡−1 + 𝜔1 , 𝜈∗𝑡 (𝛾) = 𝑏𝑌𝑡−1 + 𝜔2 , (25)

where 𝜓 ′ = (𝑎, 𝜔1) and 𝛾 ′ = (𝑏, 𝜔2). Instead, the restricted PVQMLE 𝜓̂𝑅 imposes the restrictions 𝑏 = 𝑎(1 − 𝑎) and 𝜔2 = 𝜔1 = 𝜔.
We focus on the analysis of the asymptotic variances of these estimators. To this aim, we simulate a long time series (𝑇 = 10,000)

from the INAR(1) process (binomial thinning and Poisson errors) for different values of the parameters 𝑎 and 𝜔1 over a grid. The
symptotic covariance matrices of the two estimators are computed by approximating their expectations with the corresponding
ample means. Fig. 1 reports an heatmap plot of the ratio (in log10 scale) between the asymptotic variance of the unrestricted and

the restricted PVQMLEs for the parameter estimates of 𝑎 and 𝜔1. The regions of the parameter set where the log10-variance ratio is
greater than zero, i.e. variance ratio is greater than one, indicate the parameter values for which the restricted estimator is more
efficient of the unrestricted one, and vice versa. The pictures suggest that the restricted estimator 𝜓̂𝑅 is more efficient than the
unrestricted estimator 𝜓̂ in most cases, except when 𝑎 and 𝜔1 are close to zero. Furthermore, the lack of efficiency of the restricted
PVQMLE in the green areas is showed to be minimal. For example, a log10-variance ratio around −0.05 indicates a variance ratio
around 0.9. Therefore, for small values of 𝑎 and 𝜔1 the two estimators are essentially equivalent. Instead, for larger values of 𝑎 and
𝜔1, the variance ratio gets substantially larger with the unrestricted PVQMLE estimator having up to 30 times larger variance of the
restricted one. This is further illustrated in Fig. 2, which displays a graph of cross-section of the log10-variance ratio for some fixed
alues of 𝑎 and 𝜔1.

Another way to grasp the intuition behind the improved efficiency of the restricted PVQMLE comes from the literature on
addlepoint approximations (Daniels, 1954). Saddlepoint approximations are used to approximate a density function with a function

Fig. 1. Contour plots of log10-variance ratios for the INAR coefficients. Left: ratio log10[𝑉 𝑎𝑟(𝑎̂)∕𝑉 𝑎𝑟(𝑎̂𝑅)] plotted for several values of 𝑎 and 𝜔. Right: ratio
og10[𝑉 𝑎𝑟(𝜔̂)∕𝑉 𝑎𝑟(𝜔̂𝑅)] plotted for several values of 𝑎 and 𝜔. The green area indicates a variance ratio smaller than one.

Fig. 2. log10-variance ratios plots for the INAR coefficients. Dashed red line: y-axis=0. Left: ratio log10[𝑉 𝑎𝑟(𝑎̂)∕𝑉 𝑎𝑟(𝑎̂𝑅)] plotted for several values of 𝑎 and 𝜔 = 3.
Right: ratio log10[𝑉 𝑎𝑟(𝜔̂)∕𝑉 𝑎𝑟(𝜔̂𝑅)] plotted for several values of 𝜔 and 𝑎 = 0.85.
10 
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Table 1
Bias and RMSE of estimators of the mean parameters when the data generating process is an INAR(1) with 𝑎 = 0.85 and 𝜔 = 3, and sample size 𝑇 = {100, 500, 2000}

𝑇 = 100 𝑇 = 500 𝑇 = 2000
𝜔1 𝑎 𝜔1 𝑎 𝜔1 𝑎

Est. Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

𝜓̂𝑄 0.7462 1.4348 −0.0389 0.0736 0.1496 0.5218 −0.0077 0.0262 0.0323 0.2425 −0.0016 0.0121
𝜓̂𝐿𝑆 0.7453 1.4391 −0.0389 0.0739 0.1503 0.5217 −0.0077 0.0262 0.0290 0.2401 −0.0014 0.0119
𝜓̂𝑊 0.7382 1.4319 −0.0385 0.0735 0.1475 0.5175 −0.0076 0.0260 0.0301 0.2392 −0.0015 0.0119
𝜓̂𝑊 𝑈 𝑁 0.7377 1.4318 −0.0385 0.0735 0.1474 0.5173 −0.0076 0.0260 0.0300 0.2393 −0.0015 0.0119
𝜓̂ 0.7203 1.4235 −0.0376 0.0731 0.1452 0.5166 −0.0075 0.0260 0.0295 0.2388 −0.0015 0.0119
𝜓̂𝑅1

0.7050 1.3837 −0.0368 0.0710 0.1417 0.4985 −0.0073 0.0250 0.0305 0.2314 −0.0015 0.0115
𝜓̂𝑅2

0.5913 1.1980 −0.0313 0.0620 0.1316 0.5051 −0.0068 0.0255 0.0246 0.2332 −0.0012 0.0115
𝜓̂𝑅3

0.0311 0.4586 −0.0028 0.0235 −0.0010 0.2036 −0.0002 0.0101 0.0027 0.1011 −0.0001 0.0049
𝜓̂𝑀 𝐿 0.0317 0.4551 −0.0028 0.0234 −0.0002 0.2018 −0.0002 0.0100 0.0029 0.1009 −0.0001 0.0049

that is based on the cumulant generating function of the data, which is typically called saddlepoint density. Pedeli et al. (2015)
show that the conditional saddlepoint density can approximate the conditional density of the INAR(𝑝) model in (7) to a certain
degree of accuracy. It is not hard to see that the conditional saddlepoint density is approximately equal to the pseudo-variance
uasi-likelihood in (4) with correctly specified variance (Pedeli et al., 2015, Sec. 3.4). Therefore, when the variance is correctly

specified, the restricted PVQMLE of the INAR(𝑝) model is close to the maximizer of the log-likelihood obtained by the saddlepoint
density, which in turn is expected to get closer to the MLE as 𝜆𝑡 → ∞. This is confirmed empirically from the results in Figs. 1 and
2, where the efficiency of restricted PVQMLE over the unrestricted PVQMLE grows as 𝑎, 𝑤 → ∞ i.e. where restricted PVQMLE
approximates more accurately the MLE. We conjecture that similar results may apply also to other models. For the case of
independent observations, Goodman (2022) has recently shown that the approximation error in using saddlepoint approximation
is negligible compared to the inferential uncertainty inherent in the MLE. Although the literature is still under development, these
arguments provide reliable evidence on the higher asymptotic performance of restricted PVQMLEs compared to the unrestricted one
and other quasi-likelihood methods presented in Section 4.1.

Finally, we consider a simulation study to assess the small sample properties of PVQMLEs in comparison with several other
alternative estimators. The study consists of 1000 Monte Carlo replications where we generate data from the Poisson INAR(1) process
and estimate the mean parameter vector 𝜓 . We consider several PVQMLEs based on different restrictions of the variance parameter
vector 𝛾. The unrestricted PVQMLE 𝜓̂ is based on the mean and pseudo-variance equations in (25). The first restricted PVQMLE
𝜓̂𝑅1

imposes the restriction 𝑅1 ∶ 𝑏 = 𝑎(1 − 𝑎), the second restricted PVQMLE 𝜓̂𝑅2
imposes the restriction 𝑅2 ∶ 𝜔2 = 𝜔1, and the third

restricted PVQMLE 𝜓̂𝑅3
imposes the restriction 𝑅3 ∶ 𝑏 = 𝑎(1 −𝑎), 𝜔2 = 𝜔1. Furthermore, we consider the QMLE based on the Poisson

quasi-likelihood 𝜓̂𝑄, the conditional least squares estimator (CLSE) 𝜓̂𝐿𝑆 , the WLSE in (23) with weights 𝑤̂𝑡 = 𝑎̂𝐿𝑆 (1 − 𝑎̂𝐿𝑆 )𝑌𝑡−1+ 𝜔̂𝐿𝑆
here (𝜔̂𝐿𝑆 , 𝑎̂𝐿𝑆 )′ = 𝜓̂𝐿𝑆 are first-step estimates obtained from the CLSE, and the unfeasible WLSE 𝜓̂𝑊 𝑈 𝑁 with weights given by

the true conditional variance. Finally, we also include the MLE 𝜓̂𝑀 𝐿 for comparison purposes. The results of the simulation study
are reported in Table 1.

Since the PVQMLE without constraints on the first two moments is asymptotically equivalent to the WLSE, it can be expected that
the restricted PVQMLE where suitable constraints corresponding to the true model are imposed should show improved performances
over the other quasi-likelihood-type estimators. Indeed, from Table 1 it can be seen that QMLE, CLSE, WLSE and unrestricted
PVQMLE of model (25) share similar performances both in terms of bias and RMSE. Instead, a partial specification of the true
onstraints underlying the model in 𝜓̂𝑅1

and 𝜓̂𝑅2
already leads to an improvement with respect to the other estimation techniques;

uch improvement becomes substantial in 𝜓̂𝑅3
where all the correct constraints are considered. Moreover, this last restricted PVQMLE

has comparable performance to the MLE. This is important since when 𝑝 ≫ 1 the MLE can become hard to compute and therefore
ur approach is a valid alternative.

5. Testing restrictions

In Section 3, we have seen that correctly identified constraints on mean and pseudo-variance equations can deliver a restricted
VQMLE with improved efficiency. In this section, we develop a test based on the unrestricted estimator in (5) which allows us

to test the validity of the restriction 𝑆 𝛾 = 𝑔(𝜓). We define 𝑟(𝜃) = 𝑆 𝛾 − 𝑔(𝜓) and we denote with 𝛴(𝜃0) = 𝐻−1(𝜃0)𝐼(𝜃0)𝐻−1(𝜃0) the
symptotic covariance matrix of the entire unrestricted estimator vector 𝜃̂. Moreover, consider the following plug-in estimators of
(𝜃0) and 𝐼(𝜃0) given by 𝐻̃𝑇 (𝜃̂) = 𝑇 −1 ∑𝑇

𝑡=1 −𝜕
2𝑙𝑡(𝜃̂)∕𝜕 𝜃 𝜕 𝜃′ and 𝐼𝑇 (𝜃̂) = 𝑇 −1 ∑𝑇

𝑡=1 𝑠̃𝑡(𝜃̂)𝑠̃
′
𝑡(𝜃̂), respectively. The following result holds.

Proposition 2. Assume that the assumptions of Theorem 1 hold. Consider the test 𝐻0 ∶ 𝑟(𝜃0) = 0 versus 𝐻1 ∶ 𝑟(𝜃0) ≠ 0 where the function
𝑟(⋅) is continuously differentiable. Let 𝑅(𝜃) = 𝜕 𝑟(𝜃)∕𝜕 𝜃′. Then, under 𝐻0, as 𝑇 → ∞

𝑊𝑇 = 𝑇 𝑟′(𝜃̂)[𝑅(𝜃̂)𝛴(𝜃0)𝑅′(𝜃̂)
]−1𝑟(𝜃̂)

𝑑
←←←←←←←→ 𝜒2

𝑟 ,

where we can estimate 𝛴(𝜃0) by 𝛴̃𝑇 (𝜃̂) = 𝐻̃−1
𝑇 (𝜃̂)𝐼𝑇 (𝜃̂)𝐻̃−1

𝑇 (𝜃̂).
11 
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The result follows immediately by the multivariate delta method, the continuous mapping theorem and standard asymptotic
convergence arguments. Proposition 2 provides us a testing procedure for 𝐻0 ∶ 𝜃0 ∈ 𝛩𝑅 versus 𝐻1 ∶ 𝜃0 ∉ 𝛩𝑅. It is worth nothing
hat the hypothesis test depicted in Proposition 2 does not require the variance of the model to be correctly specified. In the special

case in which the pseudo-variance is correctly specified, then the test can be interpreted as a test of correct specification.
For example, consider the INAR(1) model in (7) with conditional mean and pseudo-variance equations as defined in Eqs. (8)–(9).

We may consider the following test

𝐻0 ∶ 𝑏 = 𝑎(1 − 𝑎) vs 𝐻1 ∶ 𝑏 ≠ 𝑎(1 − 𝑎) , (26)

which is a test for the assumption of a binomial thinning operator ‘◦’. This follows from the definition of the INAR model in (7)
as the autoregressive coefficient of the variance takes the form 𝑏 = 𝑎(1 − 𝑎) under the assumption of binomial thinning. Alternative
thinning specifications can be tested leading to a different form of the autoregressive variance parameter 𝑏, see Latour (1998) for
the properties of INAR models with a general thinning specification. For instance, if we have a Poisson distribution for the thinning
operator we have the restriction 𝑏 = 𝑎. The corresponding test is

𝐻0 ∶ 𝑏 = 𝑎 vs 𝐻1 ∶ 𝑏 ≠ 𝑎, (27)

which assesses the validity of the assumption of equidispersion in the thinning operator versus either overdispersion or underdis-
ersion.

We carry out a simulation study with 5000 Monte Carlo replications to assess the empirical size and power of the test of the
arameter restrictions for the INAR(1) model. We consider the hypothesis in (27). To assess the size of the test we simulate under 𝐻0
rom a model with Poisson thinning operator and a Poisson distribution of the error term. Table 2 reports the results on the empirical

size of the test. We can see that the test is slightly oversized for the smallest sample size, though still close to the nominal level,
and it quickly becomes correctly sized as the sample size increases. Next, we evaluate the power of the test by simulating under
he alternative. We consider a negative binomial thinning specification such that 𝑎◦𝑁 has a negative binomial distribution with
ean 𝑎𝑁 and variance 𝑏𝑁 , 𝑏 = 𝑎+ 𝑎2∕𝑣, where 𝑣 is the dispersion parameter of the negative binomial. We note that this generates

verdipersion in the thinning as 𝑏 = 𝑎 + 𝑎2∕𝑣 > 𝑎 and the smaller the parameter 𝑣 the more the overdispersion. Fig. 3 shows the
power of the test in (27) to reject the null hypothesis. As expected, we see that the power increases as the relative overdispersion
 − 𝑎∕𝑏 increases (𝑣 decreases) and as the sample size increases. Overall, the results show how the test has appropriate size and it
as power against alternative hypotheses.

We also report additional simulation results in Appendix B that consider alternative data generating processes. First, we evaluate
the robustness of the described test statistic by repeating the same simulation study with the inclusion of an outlier defined as 3
times the standard deviation of the observations plus their sample mean. The results show that the test is slightly oversized but
the empirical size is still in line with nominal values. Moreover, the power of the test converges to 1 at a slightly slower rate

Table 2
Empirical size for test in (27). The model considered under 𝐻0 is an INAR(1) model with Poisson thinning as well as Poisson
error with parameter values 𝑎 = 0.75 and 𝜔 = 1.

Nominal size 𝑇

100 250 500 1000 2000

0.1000 0.1222 0.1222 0.1140 0.1060 0.0986
0.0500 0.0720 0.0642 0.0582 0.0514 0.0518
0.0100 0.0202 0.0142 0.0114 0.0122 0.0128

Fig. 3. Empirical power for test in (27). The true parameter values of the INAR(1) model with negative binomial thinning and Poisson error are 𝑎 = 0.75 and
= 1. The value of the dispersion parameter 𝑣 changes as indicated in the horizontal axis through the % of overdispersion: 1 − 𝑎∕(𝑎 + 𝑎2∕𝑣).
12 
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with the increasing sample size but it still performs satisfactorily. Second, we evaluate the test in case of near-unit root. The test
seems conservative in this case, which can be due to the finite sample distribution of the estimators being different from the normal
distribution near the unit-root boundary. The results on power indicate an adequate rejection rate when the sample size is large
enough. Third, we evaluate the power of the equidispersion test under a different thinning specification. There are several thinning
specifications available in the literature, see Ristić et al. (2013), Miletić Ilić (2016), Borges et al. (2016), Nastić et al. (2017), Borges
et al. (2017), and Bourguignon et al. (2018), amongst others. We consider the Binomial-Negative Binomial (BiNB) thinning as
n Bourguignon and Weiß (2017). The results show that the power increases as the relative overdispersion of the thinning increases.
inally, we consider the case of testing equidispersion of the thinning operator in an INAR(2) model. As expected, the results are

comparable to the INAR(1) results with slower convergence rate towards the correct nominal size and power as the sample size
grows. This is due to a more complex testing problem and larger set of parameters to be estimated.

6. Real data applications

In this section, we present two empirical applications where we employ PVQMLEs. We consider the test described in Section 5 to
select appropriate parameter restrictions and compare different PVQMLEs. The first application concerns a dataset of crime counts,

here the INAR model is considered for the specification of the conditional mean and the pseudo-variance. The second application
oncerns the realized correlation between two financial assets that forms a double-bounded time series, where we consider a beta
utoregression for the specification of the conditional mean and the pseudo-variance.

6.1. INAR model for crime counts

We consider an empirical application to the monthly number of offensive conduct reports in the city of Blacktown, Australia,
rom January 1995 to December 2014. This dataset has been employed in several articles featuring the INAR(1) model (Gorgi, 2018;

Leisen et al., 2019). The time series is displayed in Fig. 4. In the literature, the distributional structure of the INAR innovation term
𝑡 is typically allowed to be flexible or left unspecified but the thinning operator is typically considered to be binomial. We consider
he test proposed in the previous section to formally test the validity of binomial thinning assumption as well as the dispersion
f the error term. We obtain the unrestricted PVQMLE for the INAR conditional mean and pseudo-variance equations in (25) and

test several restrictions based on the test in Proposition 2. We test for equidispersion in the error 𝐻0 ∶ 𝜔1 = 𝜔2, binomial thinning
𝐻0 ∶ 𝑏 = 𝑎(1 − 𝑎), Poisson thinning 𝐻0 ∶ 𝑎 = 𝑏 and geometric thinning 𝐻0 ∶ 𝑏 = 𝑎 + 𝑎2. As discussed in Latour (1998), INAR(𝑝)
models have the same autocorrelation structure as continuous-valued AR(𝑝) models. In this case, we can focus on INAR(1) model
as the residuals obtained from the one-lag unrestricted model appear uncorrelated.

Fig. 4. Monthly number of offensive conduct reports in Blacktown, Australia, from January 1995 to December 2014. The second plot represents the sample
autocorrelation function of the residuals obtained from the unrestricted estimator with 95% confidence bounds.
13 
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Table 3
𝑝-values of the restriction tests for the INAR(1) model.
𝜔1 = 𝜔2 Thinning

binomial Poisson geometric

0.372 0.005 0.043 0.229

Table 4
PVQMLEs of the INAR(1) model for the crime time series dataset. Standard errors in brackets.

𝜔̂1 𝜔̂2 𝑎̂ 𝑏̂

Unrestricted 4.559 6.644 0.509 1.170
(0.520) (2.374) (0.058) (0.330)

Binomial thinning 6.280 – 0.371 –
(0.434) (0.040)

Poisson thinning 4.820 – 0.524 –
(0.523) – (0.058) –

Geometric thinning 4.129 – 0.592 –
(0.500) – (0.059) –

The results of the tests are summarized in Table 3. We can see that the test does not reject the hypothesis of equidispersion
n the error 𝜔1 = 𝜔2. As it concerns the tests on the thinning, the binomial and Poisson thinning are rejected at 5% significance

level, instead, the geometric thinning is not rejected. This indicates that there is overdispersion in the thinning and the geometric
ne may be appropriate to describe the degree of overdispersion. Table 4 reports the estimation results for several PVQMLEs that

are based on the different restrictions on the thinning operator. The standard errors are computed from the empirical counterparts
of the asymptotic covariance matrices Eqs. (15) and (20) for the unrestricted and the restricted estimators, respectively. We can
see that restricting to a binomial thinning leads to substantially biased estimates with respect to the unrestricted PVQMLE. Instead,
from the geometric thinning we do not have such bias and the estimator can be expected to have an higher efficiency. We have
also considered a BiNB thinning and it yields to equivalent estimation results as the geometric thinning. This follows as the BiNB
thinning nests the geometric thinning and the estimated Bernoulli probability of the BiNB thinning is equal to zero, leading to a
geometric thinning.

6.2. Double-bounded autoregression for realized correlation

The second application we present concerns the modeling of daily realized correlations between Boeing and Honeywell stocks as
onsidered in Gorgi and Koopman (2023). Fig. 5 reports the plot of the time series. The sample size is 𝑇 = 2515. Realized correlation

measures take values in the interval [−1, 1] and the transformation 𝑌𝑡∕2 + 1∕2 is applied to rescale the realized correlation in the
unit interval [0, 1]. We refer to Gorgi and Koopman (2023) for a discussion on how models on the unit interval can be extended to
a general interval with known bounds.

We consider the specification for the conditional mean and pseudo-variance defined in (21). Besides the unrestricted PVQMLE,
we consider a restricted PVQMLE with 𝜔2 = 𝜔1, 𝛼2 = 𝛼1, 𝛽1 = 𝛽2, which implies 𝜇𝑡 = 𝜆𝑡. These restrictions impose that the pseudo-
ariance is equal to the conditional variance implied by a beta distribution with mean parameter 𝜆𝑡 and precision parameter 𝜙. In

Fig. 5. Daily time series of realized correlations between Boeing (BA) and Honeywell (HON) asset returns, from January 2001 to December 2010.
14 
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Table 5
Estimation results for the realized correlation series. Standard errors in brackets. The bottom of the table reports the 𝑝-values of the tests on the restrictions.

𝜔̂1 𝛼̂1 𝛽1 𝜙̂ 𝜔̂2 𝛼̂2 𝛽2
Unrestricted 0.01 0.163 0.822 22.226 0.055 0.045 0.898

(0.003) (0.013) (0.015) (2.745) (0.019) (0.007) (0.022)
Restricted 0.01 0.161 0.826 36.963 – – –

(0.003) (0.013) (0.015) (1.073)

𝐻0 𝜔1 = 𝜔2 𝛼1 = 𝛼2 𝛽1 = 𝛽2 joint test
𝑝-value 0.02 <0.001 0.01 <0.001

this way, we can also test the adequacy of the beta autoregression for modeling the analyzed data through the specification test on
he restriction. Table 5 reports the estimation results together with the restriction tests. We can see that the specification test rejects
he null hypothesis of equality for the estimated 𝛼 coefficients. For the same reason also the null assumption of the combined joint

test is rejected. However, the null hypothesis is instead not rejected for 𝜔 and 𝛽 coefficients at 1% level. This leans in favor of the
estricted PVQMLE. We also notice that the estimated coefficients and the corresponding standard errors of the restricted PVQMLE

are fairly close to the ones obtained from the beta autoregression reported in Table 1 of Gorgi and Koopman (2023).

7. Conclusions

We have introduced a novel methodology for the estimation of a broad range of semi-parametric time series models, where
only the conditional mean is correctly specified by a parametric function. Our proposed PVQMLE is based on a Gaussian quasi-
likelihood function and relies on the specification of a parametric pseudo-variance, which does not need to be the true conditional
variance of the process and it may include restrictions on parameters related to the conditional expectation. We have established the
asymptotic properties of the PVQMLE estimator with and without restrictions on the parameter space, and derived a test to validate
the parameter restrictions. Importantly, our findings hold regardless of the correct specification of the pseudo-variance. A significant
advantage of our restricted estimators is their potential to achieve greater efficiency compared to other quasi-likelihood methods
found in existing literature. Additionally, our testing approach enables the development of specification tests for parametric time
series models. We have demonstrated the practical application of our methodology through simulation studies and empirical cases.
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Appendix A. Proofs of results

A.1. Proofs

Proof of Theorem 1. Let 𝐿(𝜃) = E[𝑙𝑡(𝜃)] be the limit log-quasi-likelihood. In what follows we show the following intermediate
results.

(i) Uniform convergence: sup𝜃∈𝛩 |𝐿̃𝑇 (𝜃) − 𝐿(𝜃)| → 0 almost surely, as 𝑇 → ∞.
(ii) Identifiability: the pseudo-true parameter value 𝜃0 is the unique maximizer of 𝐿(𝜃), i.e. E

[

𝑙𝑡(𝜃)
]

< E
[

𝑙𝑡(𝜃0)
]

for all 𝜃 ∈ 𝛩 , 𝜃 ≠ 𝜃0.

In order to prove (i) the uniform convergence of the two summands of (A.1) should be shown.

|𝐿̃𝑇 (𝜃) − 𝐿(𝜃)| ≤ |𝐿̃𝑇 (𝜃) − 𝐿𝑇 (𝜃)| + |𝐿𝑇 (𝜃) − 𝐿(𝜃)| . (A.1)
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The first term converges uniformly by Lemma 1 in Appendix A.2, under A4–A5, implying that the starting value of the process
is asymptotically unimportant for the quasi-likelihood contribution. By assumption A1 the log-quasi-likelihood contribution 𝑙𝑡(𝜃) is
stationary and ergodic. Moreover, it is uniformly bounded

E sup
𝜃∈𝛩

|

|

𝑙𝑡(𝜃)|| ≤
1
2
E sup
𝛾∈𝛤

|

|

log 𝜈∗𝑡 (𝛾)|| +
1
2
E sup
𝜃∈𝛩

(
[

𝑌𝑡 − 𝜆𝑡(𝜓)
]2

𝜈∗𝑡 (𝛾)

)

< ∞

by assumption A2. For the continuity of the quasi-likelihood and the compactness of 𝛩, Straumann and Mikosch (2006, Thm. 2.7)
applies providing the uniform convergence of the second term in (A.1); in symbols sup𝜃∈𝛩 |𝐿𝑇 (𝜃) − 𝐿(𝜃)| → 0 almost surely, as
→ ∞. This concludes the proof of (i).
We now prove (ii). First note that by the uniform limit theorem 𝐿(𝜃) = E[𝑙𝑡(𝜃)] is a continuous function and it attains at

east a maximum in 𝛩 since 𝛩 is compact. We now prove that such maximum is unique so that it can be univocally identified.
ecall that 𝜃 = (𝜓 ′, 𝛾 ′)′, assumption A2 provides E sup𝜓∈𝛹 |

|

𝑙𝑡(𝜓 , 𝛾)|
|

< ∞ and E sup𝛾∈𝛤 |

|

𝑙𝑡(𝜓0, 𝛾)|| < ∞ so also the function
𝑡(𝜓 , 𝛾) has at least a maximum for 𝜓 ∈ 𝛹 , and 𝑙𝑡(𝜓0, 𝛾) has at least a maximum for 𝛾 ∈ 𝛤 . Consider now E

{

𝑙𝑡(𝜃) − 𝑙𝑡(𝜃0)
}

=
{

𝑙𝑡(𝜃) − 𝑙𝑡(𝜓0, 𝛾)
}

+ E{

𝑙𝑡(𝜓0, 𝛾) − 𝑙𝑡(𝜃0)
}

. The first summand is bounded as follows,

E
{

𝑙𝑡(𝜃) − 𝑙𝑡(𝜓0, 𝛾)
}

= E
{

−
E[
(

𝑌𝑡 − 𝜆𝑡(𝜓)
)2

|𝑡−1]
2𝜈∗𝑡 (𝛾)

+
𝜈𝑡

2𝜈∗𝑡 (𝛾)

}

≤ E
{

−
𝜈𝑡

2𝜈∗𝑡 (𝛾)
+

𝜈𝑡
2𝜈∗𝑡 (𝛾)

}

= 0

with equality if and only if 𝜓 = 𝜓0 by assumption A3. Moreover, E
{

𝑙𝑡(𝜓0, 𝛾) − 𝑙𝑡(𝜃0)
}

= E [

𝑙𝑡(𝜓0, 𝛾)
]

− E [

𝑙𝑡(𝜓0, 𝛾∗)
]

≤ 0 by assumption
A6. This concludes the proof of (ii). The consistency of the whole estimator 𝜃̂ follows from (i), (ii) and the compactness of 𝛩
by Pötscher and Prucha (1997, Lemma 3.1). This implies (14).

To prove the asymptotic normality of the estimator we establish additional intermediate results.

(a)
√

𝑇 sup𝜃∈𝛩 ‖𝑆𝑇 (𝜃) − 𝑆̃𝑇 (𝜃)‖ → 0 almost surely, as 𝑇 → ∞.
(b) Define 𝐻𝑇 (𝜃) = 𝑇 −1 ∑𝑇

𝑡=1 −𝜕
2𝑙𝑡(𝜃)∕𝜕 𝜃 𝜕 𝜃′. 𝐻𝑇 (𝜃) → 𝐻(𝜃) almost surely uniformly over 𝜃 ∈ 𝛩, as 𝑇 → ∞.

(c) E[𝑠𝑡(𝜃0)] = 0.
The condition (a) is satisfied by Lemma 2 in Appendix A.2, under A4–A5 and A7 implying that initial values of the process do not
affect the asymptotic distribution of the PVQMLE.

Consider the second derivative of the log-quasi-likelihood contribution.
𝜕2𝑙𝑡(𝜃)
𝜕 𝜃 𝜕 𝜃′ =

(

1
2𝜈∗2𝑡 (𝛾)

−
[𝑌𝑡 − 𝜆𝑡(𝜓)]2

𝜈∗3𝑡 (𝛾)

)

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃′ −

𝑌𝑡 − 𝜆𝑡(𝜓)
𝜈∗2𝑡 (𝛾)

(

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃′ −

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃′

)

(A.2)

− 1
𝜈∗𝑡 (𝛾)

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃′ +

𝑌𝑡 − 𝜆𝑡(𝜓)
𝜈∗𝑡 (𝛾)

𝜕2𝜆𝑡(𝜓)
𝜕 𝜃 𝜕 𝜃′ +

(

[𝑌𝑡 − 𝜆𝑡(𝜓)]2

2𝜈∗2𝑡 (𝛾)
− 1

2𝜈∗𝑡 (𝛾)

)

𝜕2𝜈∗𝑡 (𝛾)
𝜕 𝜃 𝜕 𝜃′ .

Assumptions A8 and the Cauchy–Schwarz inequality yield E sup𝜃∈𝛩 |

|

|

𝜕2𝑙𝑡(𝜃)∕𝜕 𝜃𝑖𝜕 𝜃𝑗 ||
|

< ∞ for all 𝑖, 𝑗 = 1,… , 𝑚. Furthermore, the
econd derivative is a continuous, stationary and ergodic sequence. Then, an application of Straumann and Mikosch (2006, Thm. 2.7)

provides condition (b). Note that since in this case 𝜕 𝜆𝑡(𝜓)∕𝜕 𝛾 = 𝜕 𝜈∗𝑡 (𝛾)∕𝜕 𝜓 = 0 the matrix 𝐻(𝜃0) is block diagonal with diagonal
block matrices 𝐻𝜓 (𝜃0) = E [

−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝜓 𝜕 𝜓 ′] and 𝐻𝛾 (𝜃0) = E [

−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝛾 𝜕 𝛾 ′
]

. The former is defined in (16).
For establishing the asymptotic normality of the estimator 𝜃̂ the proof of (c) is needed. Let 𝑠𝑡(𝜃0) = [𝑠(𝜓)𝑡 (𝜃0)′, 𝑠(𝛾)𝑡 (𝜃0)′]′ be the

artition of the score between mean and pseudo-variance parameters. Observe that E(𝑠(𝜓)𝑡 (𝜃0)|𝑡−1) = 0 but E
(

𝑠𝑡(𝜃0)|𝑡−1
)

≠ 0. Note

hat sup𝜃∈𝛩 |

|

𝜕 𝑙𝑡(𝜃)∕𝜕 𝜃𝑖|| ≤ 2
[

sup𝜃∈𝛩 |

|

𝑙𝑡(𝜃)||
]1∕2

[

sup𝜃∈𝛩
|

|

|

𝜕2𝑙𝑡(𝜃)∕𝜕 𝜃𝑖𝜕 𝜃𝑖||
|

]1∕2
, by Rudin (1976, p. 115). Moreover, E sup𝜃∈𝛩 |

|

𝑙𝑡(𝜃)|| < ∞,
nd E sup𝜃∈𝛩 |

|

|

𝜕2𝑙𝑡(𝜃)∕𝜕 𝜃𝑖𝜕 𝜃𝑗 ||
|

< ∞. Then an application of Cauchy–Schwarz inequality entails E sup𝜃∈𝛩 |

|

𝜕 𝑙𝑡(𝜃)∕𝜕 𝜃𝑖|| < ∞. Finally,
𝜕 𝑙𝑡(𝜃)∕𝜕 𝜃‖‖ ≤ sup𝜃∈𝛩 ‖

‖

𝜕 𝑙𝑡(𝜃)∕𝜕 𝜃‖‖ and an application of the dominated convergence theorem leads to E
[

𝜕 𝑙𝑡(𝜃)∕𝜕 𝜃
]

= 𝜕E
[

𝑙𝑡(𝜃)
]

∕𝜕 𝜃. By
oting that 𝜃0 is the unique maximizer of E

[

𝑙𝑡(𝜃)
]

the result (c) follows.
Using the formula (13) some tedious algebra allows to show that E ‖

‖

𝑠𝑡(𝜃0)𝑠𝑡(𝜃0)′‖‖ < ∞, by A8 and an application of
Cauchy–Schwarz inequality. Therefore 𝐼(𝜃0) = E [

𝑠𝑡(𝜃0)𝑠𝑡(𝜃0)′
]

is finite.
For 𝑇 large enough 𝜃̂ ∈ 𝛩̇ by A10, so the following derivatives exist almost surely

0 =
√

𝑇 𝑆̃𝑇 (𝜃̂) =
√

𝑇 𝑆𝑇 (𝜃̂) + 𝑜𝑝(1) =
√

𝑇 𝑆𝑇 (𝜃0) −𝐻𝑇 (𝜃̄)
√

𝑇 (𝜃̂ − 𝜃0) + 𝑜𝑝(1),
where the first equality comes from the definition (4), the second equality holds by (a), and the third equality is obtained by

aylor expansion at 𝜃0 with 𝜃̄ lying between 𝜃̂ and 𝜃0. By assumption A11 and (c) we have
√

𝑇 𝑆𝑇 (𝜃0)
𝑑
←←←←←←←→ 𝑁(0, 𝐼(𝜃0)). This fact and

(b) establish the asymptotic normality of the estimator 𝜃̂ with covariance matrix 𝛴(𝜃0) = 𝐻−1(𝜃0)𝐼(𝜃0)𝐻−1(𝜃0) by assumption A9,
where

𝐻(𝜃0) =
(

𝐻𝜓 (𝜃0) 0
0 𝐻𝛾 (𝜃0)

)

, 𝐼(𝜃0) =
(

𝐼𝜓 (𝜃0) 𝐼𝜓 ,𝛾 (𝜃0)
𝐼𝜓 ,𝛾 (𝜃0)′ 𝐼𝛾 (𝜃0)

)

, (A.3)

with 𝐻𝑥(𝜃0) = E [

−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝑥𝜕 𝑥′
]

, 𝐼𝑥(𝜃0) = E[𝑠(𝑥)𝑡 (𝜃0)𝑠
(𝑥)
𝑡 (𝜃0)′] and 𝐼𝑥,𝑧(𝜃0) = E[𝑠(𝑥)𝑡 (𝜃0)𝑠

(𝑧)
𝑡 (𝜃0)′]. In particular, standard algebra shows

hat 𝐼𝜓 (𝜃0) equals (16). See also Eq. (22). A suitable block matrix multiplication of (A.3) provides

𝛴(𝜃0) =
(

𝛴𝜓 (𝜃0) 𝛴𝜓 ,𝛾 (𝜃0)
)

,

𝛴𝜓 ,𝛾 (𝜃0)′ 𝛴𝛾 (𝜃0)
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where 𝛴𝜓 (𝜃0) takes the form defined in (15). In addition, note that for the marginal property of the multivariate Gaussian distribution
result (15) holds with covariance matrix 𝛴𝜓 being the partition of 𝛴(𝜃0) for the mean parameters 𝜓 .

The positive definiteness of the matrix 𝛴(𝜃0) follows since for all 𝛿 ∈ R𝑚, with 𝛿 ≠ 0, we have 𝐻(𝜃0)−1𝛿 ≠ 0 as 𝐻(𝜃0)−1 is full
ank by A9. Now by setting 𝜂 = 𝐻(𝜃0)−1𝛿 we have that 𝜂′𝐼(𝜃0)𝜂 > 0 by A9. Therefore, it follows that 𝛿′𝐻(𝜃0)−1𝐼(𝜃0)𝐻(𝜃0)−1𝛿 > 0.
he principal submatrices of 𝛴(𝜃0) are also positive definite. □

Proof of Corollary 2. Condition A11 is not required since in this case is easily showed by (13) that E
(

𝑠𝑡(𝜃0)|𝑡−1
)

= 0. Recall
hat

√

𝑇 𝑠𝑇 (𝜃0) = 𝑇 −1∕2 ∑𝑇
𝑡=1 𝑈𝑡 where 𝑈𝑡 = 𝑠𝑡(𝜃0). Note that

{

𝑈𝑡,𝑡
}

is a stationary martingale difference, and due to A8–A9 it has
a finite and positive definite second moments matrix. Then A11 follows by the central limit theorem for martingales (Billingsley,
1961) and the Cramér–Wold device. The consistency and asymptotic normality of 𝜃̂ follow as above. Finally, in view of (22) and
E(𝑠(𝜓)𝑡 (𝜃0)|𝑡−1) = 0

Var
[

𝐻−1
𝜓 (𝜃0)𝑠

(𝜓)
𝑡 (𝜃0) − 𝐼−1𝜓 (𝜃0)𝑠

(𝜓)
𝑡 (𝜃0)

]

= 𝛴𝜓 − 𝐼𝜓

being necessarily positive semi-definite. □

Proof of Corollary 3. Analogously to the proof of Theorem 1, A1–A5 guarantee that 𝐿𝑡(𝜃) is continuous and a.s. uniformly
onvergent to E[𝑙𝑡(𝜃)]. By recalling that 𝛩 is compact the result follows by Pötscher and Prucha (1997, Lemma 4.2). □

Proof of Theorem 2. The consistency of 𝜃̂𝑅 follows from the fact that by the proof of Theorem 1 we have that E[𝑙𝑡(𝜓 , 𝛾)] ≤
E[𝑙𝑡(𝜓0, 𝛾∗)] for any 𝜃 ∈ 𝛩 with equality holding only if 𝜃 = (𝜓0

′, 𝛾∗′)′, and assumption A12 ensures that (𝜓0
′, 𝛾∗′)′ ∈ 𝛩𝑅 with

𝑅 ⊆ 𝛩. The consistency in (18) follows. The asymptotic normality of the estimator 𝜃̂𝑅 follows as in the proof of Theorem 1 with
covariance matrix 𝛴(𝜃0) = 𝐻−1(𝜃0)𝐼(𝜃0)𝐻−1(𝜃0). In this case Hessian and Fisher information matrices can be written in the following
block matrix form

𝐻(𝜃0) =
(

𝐻𝜓 (𝜃0) 𝐻𝜓 ,𝛾2 (𝜃0)
𝐻𝜓 ,𝛾2 (𝜃0)′ 𝐻𝛾2 (𝜃0)

)

, 𝐼(𝜃0) =
(

𝐼𝜓 (𝜃0) 𝐼𝜓 ,𝛾2 (𝜃0)
𝐼𝜓 ,𝛾2 (𝜃0)′ 𝐼𝛾2 (𝜃0)

)

. (A.4)

Moreover, recall that

𝐻−1(𝜃0) = 𝐷(𝜃0) =
(

𝐷𝜓 (𝜃0) 𝐷𝜓 ,𝛾2 (𝜃0)
𝐷𝜓 ,𝛾2 (𝜃0)′ 𝐷𝛾2 (𝜃0)

)

. (A.5)

By computing 𝛴(𝜃0) using the block matrix multiplication as defined in (A.4) and (A.5) the partition of 𝛴(𝜃0) for the mean parameters
𝜓 equals 𝛴𝑅. This entails (19). □

Proof of Theorem 3. The result follows by a combination of Doukhan et al. (2012, Thm. 1–2) and the results of Doukhan et al.
(2012, Sec. 4.1) given that 𝑋𝑗 ∼ 𝐷𝑋 (𝑎, 𝑏) and E(𝑋𝑗 ) = 𝑎. Then the process is stationary, ergodic and E(𝑌𝑡) < ∞. The same results
show that the process is 𝛽-mixing with geometrically decaying coefficients. Finally, following Latour (1997, Sec. 3) we conclude
hat E(𝑌 2

𝑡 ) <∞. □

Proof of Theorem 4. To prove the results we have to prove conditions A1–A12 for the specified model. First note that since the
pseudo-variance 𝜈∗𝑡 defined in (9) is correctly specified we have that 𝜈∗𝑡 (⋅) = 𝜈𝑡(⋅). Moreover, A12 holds. The condition A1 holds by
Theorem 3. A4 holds since a.s. 𝜈𝑡(𝛾) ≥ 𝜔2. Note that a.s. sup𝛾∈𝛤 | log 𝜈𝑡(𝛾)| ≤ sup𝛾∈𝛤 (𝜈𝑡(𝛾) + 1)∕ min{𝜔2, 1} and sup𝜃∈𝛩(𝑌𝑡−𝜆𝑡(𝜓))2∕𝜈𝑡(𝛾) ≤
(2𝑌 2

𝑡 + 2 sup𝜓∈𝛹 𝜆2𝑡 (𝜓))∕𝜔2. By the 𝑐𝑝 inequality it holds that E sup𝜓∈𝛹 𝜆𝑟𝑡 (𝜓) <∞ and E sup𝛾∈𝛤 𝜈𝑟𝑡 (𝛾) < ∞ for 𝑟 ≤ 2 so the moments in
A2 are finite.

We prove A3 by contradiction. We have that a.s. 𝜆𝑡(𝜓) − 𝜆𝑡(𝜓0) = 𝜔1 − 𝜔1,0 + (𝑎 − 𝑎0)𝑌𝑡−1. If 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s. with 𝜔1 ≠ 𝜔1,0
hen 0 ≠ 𝜔1,0 − 𝜔1 = (𝑎 − 𝑎0)𝑌𝑡−1 a.s. and the equality will be possible only if (𝑎 − 𝑎0) ≠ 0 and 𝑌𝑡−1 equals a.s. a non-zero constant.

However, 𝑌𝑡−1 is non-constant. Therefore, if 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s. then 𝜔1 = 𝜔1,0 and 0 = (𝑎 − 𝑎0)𝑌𝑡−1. Now to have 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s.
with 𝑎 ≠ 𝑎0 we shall have that 𝑌𝑡−1 = 0 a.s. but this is impossible since 𝑌𝑡−1 is non-constant. Hence, if 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s. then 𝑎 = 𝑎0.
Analogous results hold for 𝜈𝑡(𝛾).

Assumptions A5–A7 are trivially satisfied here since 𝜆𝑡 and 𝜈𝑡 are initialized using the first observation of the sample so 𝜆𝑡(⋅) = 𝜆̃𝑡(⋅)
nd 𝜈𝑡(⋅) = 𝜈̃𝑡(⋅). Condition A6 is verified since 𝛾∗ is the true parameter vector of the variance, say 𝛾0, so 𝜈𝑡(𝛾0) = 𝜈𝑡 a.s. and

E
[

𝑙𝑡(𝜓0, 𝛾) − 𝑙𝑡(𝜓0, 𝛾0)
]

= E
[

1
2
log

𝜈𝑡
𝜈𝑡(𝛾)

+ 1
2
−

𝜈𝑡
2𝜈𝑡(𝛾)

]

≤ E
[

𝜈𝑡
2𝜈𝑡(𝛾)

− 1
2
+ 1

2
−

𝜈𝑡
2𝜈𝑡(𝛾)

]

= 0

where the inequality follows by log(𝑥) ≤ 𝑥 − 1 for 𝑥 > 0. So E
[

𝑙𝑡(𝜓0, 𝛾)
]

≤ E
[

𝑙𝑡(𝜓0, 𝛾0)
]

with equality if and only if (henceforth,
ff) 𝜈𝑡(𝛾) = 𝜈𝑡(𝛾0) a.s. but by A3 this happens iff 𝛾 = 𝛾0. Therefore 𝛾0 is unique maximizer of (12). Let 0𝑘 be a 𝑘 × 1 vector of
eros. Recall that 𝜕 𝜆𝑡(𝜓)∕𝜕 𝜃 = (1, 𝑌𝑡−1, 0′2)′ = 𝑌𝑡−1 and 𝜕 𝜈𝑡(𝛾)∕𝜕 𝜃 is a permutation of the elements of 𝑌𝑡−1. Therefore an application of
ölder’s inequality and E(𝑌 8

𝑡 ) <∞ provide A8. To prove A9 note that the elements of 𝜕 𝜆𝑡(𝜓)∕𝜕 𝜓 = 𝜕 𝜈𝑡(𝛾)∕𝜕 𝛾 = (1, 𝑌𝑡−1)′ are linearly
independent and 𝜈∗𝑡 (𝛾∗) = 𝜈𝑡 so by employing the results of Lemma 3 in Appendix A.2 the sufficient condition A9* holds. The same
follows for the restricted estimators since 𝜕 𝜈 (𝛾)∕𝜕 𝛾 is a subvector of (1, 𝑌 )′.
𝑡 2 𝑡−1
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Finally, recall that the process
{

𝑌𝑡
}

is 𝛽-mixing with coefficients 𝛽(𝑛) ≤ 𝐶 𝜌𝑛 where 𝐶 , 𝜌 are positive constants and 𝜌 ∈ (0, 1).
Following Francq and Zakoian (2019, Sec. A.3) the score contribution 𝑠𝑡(𝜃0) is also 𝛽-mixing with coefficients 𝛽𝑠(𝑛) ≤ 𝛽(𝑛 − 1) for
≥ 1. By recalling that 𝛼𝑠(𝑛) ≤ 𝛽𝑠(𝑛) for 𝑛 ≥ 1 and 𝛼𝑠(0) ≤ 1∕4, we have that ∑∞

𝑛=0[𝛼(𝑛)]
𝛿∕(2+𝛿) < ∞ for some 𝛿 > 0. Moreover, by

 combination of Hölder’s and 𝑐𝑝 inequalities, E(𝑌𝑡)8 < ∞ is sufficient to show that E(𝜂′𝑠𝑡(𝜃0))2+𝛿 < ∞ for 𝛿 = 2 and for all 𝜂 ∈ R𝑚
ith 𝜂 ≠ 0. Therefore, an application of the Cramér–Wold device and the central limit theorem for 𝛼-mixing processes (Francq and
akoian, 2019, Thm. A.4) shows that

√

𝑇 𝑆𝑇 (𝜃0)
𝑑
←←←←←←←→ 𝑁(0, 𝐼(𝜃0)) as 𝑇 → ∞. This proves A11. □

Proof of Theorem 6. Since the observations are generated from a beta distribution, the results of Theorem 5 guarantee that A1
and the restrictions of A12 are satisfied with 𝜈∗𝑡 (⋅) = 𝜈𝑡(⋅). Define 𝛿𝑖 = 𝜔𝑖 + 𝛼𝑖 + 𝛽𝑖 for 𝑖 = 1, 2. The restrictions on the parameter space
imply that a.s. 0 < 𝜔1 ≤ 𝜆𝑡(𝜓) ≤ 𝛿1 < 1, 0 < 𝜔2 ≤ 𝜇𝑡(𝛾) ≤ 𝛿2 < 1 and 0 < 𝜈 ≤ 𝜈𝑡(𝛾) < 𝜈̄ < 1 for any 𝜃 ∈ 𝛩 and any 𝑡 ≥ 1 where
̄ = 1∕(1 +𝜙) < 1 since 𝜇𝑡(1 −𝜇𝑡) < 1 and 𝜈 = min

{

𝜈1, 𝜈2
}

where 𝜈1 = 𝜔2(1 −𝜔2)∕(1 +𝜙) and 𝜈2 = 𝛿2(1 −𝛿2)∕(1 +𝜙). All these processes
are a.s. bounded in the (0, 1) interval for any 𝜃 ∈ 𝛩 therefore all their sup-moments are bounded. Hence, A2 and A4 hold.

A3 is proved by contradiction. Assume that a.s. 𝜆𝑡−1(𝜓) = 𝜆𝑡−1(𝜓0) = 𝜆𝑡−1. Then 𝜆𝑡(𝜓) − 𝜆𝑡(𝜓0) = 𝜔1 − 𝜔1,0 + (𝛼1 − 𝛼1,0)𝑌𝑡−1 +
(𝛽1 − 𝛽1,0)𝜆𝑡−1. If 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s. with 𝜔1 ≠ 𝜔1,0 then 0 ≠ 𝜔1,0 − 𝜔1 = (𝛼1 − 𝛼1,0)𝑌𝑡−1 + (𝛽1 − 𝛽1,0)𝜆𝑡−1 a.s. and the equality will be
possible only if (𝛼1 − 𝛼1,0) ≠ 0 and 𝑌𝑡−1 equals a non-zero constant a.s. and/or (𝛽1 − 𝛽1,0) ≠ 0 and 𝜆𝑡−1 equals a non-zero constant.
However, 𝑌𝑡−1 is non-constant and since 𝛼1 > 0 this is true also for 𝜆𝑡−1. Therefore, if 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s. then 𝜔1 = 𝜔1,0 and
0 = (𝛼1 − 𝛼1,0)𝑌𝑡−1 + (𝛽1 − 𝛽1,0)𝜆𝑡−1. Now to have 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s. with 𝛼1 ≠ 𝛼1,0 and 𝛽1 ≠ 𝛽1,0 we shall have that a.s. 𝑌𝑡−1 = 𝜆𝑡−1 = 0
but this is impossible since 𝑌𝑡−1 and 𝜆𝑡−1 are non-constant. Therefore, if 𝜆𝑡(𝜓) = 𝜆𝑡(𝜓0) a.s. then 𝛼1 = 𝛼1,0 and 𝛽1 = 𝛽1,0. An analogous
result holds for 𝜇𝑡(𝛾), consequently 𝜈𝑡(𝛾) = 𝜈𝑡(𝛾0) a.s. if and only if 𝛾 = 𝛾0. Then, A6 holds following the same arguments provided
n the proof of Theorem 4.

Recall that 𝑌−𝑖 ∈ [0, 1] for 𝑖 = 0, 1,… so a.s. |𝜆𝑡(𝜓) − 𝜆̃𝑡(𝜓)| = 𝛽𝑡1|𝜆0(𝜓) − 𝜆̃0(𝜓)| ≤ 2𝛽𝑡1, |𝜇𝑡(𝛾) − 𝜇̃𝑡(𝛾)| ≤ 2𝛽𝑡2. The variance is a
unction of 𝜇𝑡 so in simplified notation 𝜕 𝜈𝑡(𝛾 , 𝜇)∕𝜕 𝜇 = (1 − 2𝜇)∕(1 + 𝜙) and |1 − 2𝜇| ≤ 𝑐 < 1 since 0 < 𝜇 < 1, therefore by the
ean value theorem a.s. |𝜈𝑡(𝛾) − 𝜈̃𝑡(𝛾)| ≤ 2𝑐 𝛽𝑡2. This implies that, as 𝑡 → ∞, 𝑎𝑡, 𝑏𝑡 → 0 e.a.s. where 𝑒.𝑎.𝑠. means exponentially fast a.s.

onvergence (Straumann and Mikosch, 2006, Sec. 2.1). Then, the limits in A5 converge e.a.s to 0.
Recall that 0𝑘 is a 𝑘 × 1 vector of zeros. Define 𝑍𝑡(𝜃) = (1, 𝑌𝑡, 𝜆𝑡(𝜓), 0′4)′, 𝐶1 = ‖(1, 1, 1, 0′4)

′
‖ and sup𝜓∈𝛹 𝛽1 = 𝜌1. Note that

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃 = 𝑍𝑡−1(𝜃) + 𝛽1

𝜕 𝜆𝑡−1(𝜓)
𝜕 𝜃 ,

𝜕 𝜈𝑡(𝛾)
𝜕 𝜃 =

1 − 2𝜇𝑡(𝛾)
1 + 𝜙

𝜕 𝜇𝑡(𝛾)
𝜕 𝜃 +

𝜇2𝑡 (𝛾) − 𝜇𝑡(𝛾)
(1 + 𝜙)2 1 = 𝐴(𝜃) + 𝐵(𝜃) ,

and 𝑐𝑡 → 0 e.a.s. by Gorgi and Koopman (2023, Lem. A.2). Then, for 𝑡 large enough, with probability 1

sup
𝜃∈𝛩

‖

‖

‖

‖

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

‖

‖

‖

‖

≤
𝑡−1
∑

𝑖=0
𝜌𝑖1 sup𝜃∈𝛩

‖

‖

𝑍𝑡−1−𝑖(𝜃)‖‖ + 𝜌
𝑡
1 sup𝜃∈𝛩

𝜕 𝜆0(𝜓)
𝜕 𝜃 ≤ 𝐶1

∞
∑

𝑖=0
𝜌𝑖1 + 1 =𝑀 <∞ ,

since 𝜌1 < 1. By similar arguments sup𝜃∈𝛩 ‖

‖

𝜕 𝜇𝑡(𝛾)∕𝜕 𝜃‖‖ ≤ 𝐾 and sup𝜃∈𝛩 ‖

‖

𝜕 𝜈𝑡(𝛾)∕𝜕 𝜃‖‖ ≤ 3𝐾+ 2, for 𝑡 large enough, where 𝐾 is a positive
onstant. By employing again the mean value theorem it follows that, for 𝑡 large enough and with probability 1

𝑑𝑡 ≤ sup
𝜃∈𝛩

sup
𝜇∈(0,1)

‖

‖

‖

‖

‖

𝜕
𝜕 𝜃

(

𝜕 𝜈𝑡(𝛾 , 𝜇)
𝜕 𝜇

)

‖

‖

‖

‖

‖

sup
𝛾∈𝛤

|𝜇𝑡(𝛾) − 𝜇̃𝑡(𝛾)| ≤ (3 + 2𝐾) sup
𝛾∈𝛤

|𝜇𝑡(𝛾) − 𝜇̃𝑡(𝛾)|

converging to 0 e.a.s. as 𝑡→ ∞. Then, the limits in A7 converge e.a.s to 0 and are of order (𝑡−𝛿).
Recall that 𝑂𝑚,𝑛 is a 𝑚 × 𝑛 matrix of zeros. The second derivative has the form

𝜕2𝜆𝑡(𝜓)
𝜕 𝜃 𝜕 𝜃′ = 𝑍̇𝑡−1(𝜃) + 𝛽1

𝜕2𝜆𝑡−1(𝜓)
𝜕 𝜃 𝜕 𝜃′ , 𝑍̇𝑡−1(𝜃) =

⎛

⎜

⎜

⎜

⎝

𝑂2,3 02
𝜕 𝜆𝑡−1(𝜓)
𝜕 𝜃′ 0
0′3 0

⎞

⎟

⎟

⎟

⎠

.

Following the same arguments of the first derivative, for 𝑡 large enough and probability 1

sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕2𝜆𝑡(𝜓)
𝜕 𝜃 𝜕 𝜃′

‖

‖

‖

‖

‖

≤
∞
∑

𝑖=0
𝜌𝑖1 sup𝜃∈𝛩

‖

‖

𝑍̇𝑡−1−𝑖(𝜃)‖‖ + 1 ≤
𝐶2𝑀
1 − 𝜌1

+ 1 <∞ ,

where 𝐶2 is a positive constant depending on the type of matrix norm ‖ ⋅ ‖ employed. Analogously, sup𝜃∈𝛩
‖

‖

‖

𝜕2𝜇𝑡(𝛾)∕𝜕 𝜃 𝜕 𝜃′‖‖
‖

and
up𝜃∈𝛩

‖

‖

‖

𝜕2𝜈𝑡(𝛾)∕𝜕 𝜃 𝜕 𝜃′‖‖
‖

are a.s. bounded by a constant so A8 is verified.
Consider a deterministic vector 𝜂 ∈ R𝑚 with 𝜂 = (𝜂′1, 𝜂2)′ where 𝜂1 is of dimension 3 and 𝜂2 is a scalar. By appealing the results

f Lemma 3 in Appendix A.2, we prove A9 by showing that 𝜂′1𝜕 𝜆𝑡(𝜓0)∕𝜕 𝜓 = 0 a.s. if and only if (henceforth, iff) 𝜂1 = 0. The proof
is by contradiction. Assume that 𝜂′1𝜕 𝜆𝑡(𝜓0)∕𝜕 𝜓 = 0 a.s. for some 𝜂1 ≠ 0. Then 𝜂′1𝜕 𝜆𝑡−1(𝜓0)∕𝜕 𝜓 = 0 a.s. by stationarity. Therefore
rom the formula of the first derivative we should have 𝜂′1𝑍𝑡−1(𝜓0) = 𝜂′1(1, 𝑌𝑡−1, 𝜆𝑡−1(𝜓0))′ = 0 a.s. for some 𝜂1 ≠ 0. However, this is
mpossible since 𝑍𝑡−1(𝜓0) has linearly independent elements so it follows that 𝜂′1𝑍𝑡−1(𝜓0) = 0 a.s. iff 𝜂1 = 0. Recall that 𝛾 = (𝛾1, 𝜙)′
here 𝛾1 = (𝜔2, 𝛼2, 𝛽2)′. Note that

𝜂′
𝜕 𝜈𝑡(𝛾0)
𝜕 𝛾 = 𝜂′1

𝜕 𝜈𝑡(𝛾0)
𝜕 𝛾1

+ 𝜂2
𝜕 𝜈𝑡(𝛾0)
𝜕 𝜙 = 𝜂′1

1 − 2𝜇𝑡(𝛾0)
1 + 𝜙

𝜕 𝜇𝑡(𝛾0)
𝜕 𝛾1

− 𝜂2
𝜇𝑡(𝛾0)(1 − 𝜇𝑡(𝛾0))

(1 + 𝜙)2 = 𝜂′1𝑚𝑡𝑛𝑡 − 𝜂2𝑜𝑡

with obvious notation. We appeal again the proof by contradiction so assume that 𝜂′𝜕 𝜈𝑡(𝛾0)∕𝜕 𝛾 = 0 a.s. for some 𝜂 ≠ 0. We consider
hree cases. (i) 𝜂1 ≠ 0, 𝜂2 = 0. We have that 𝑚𝑡 ≠ 0 a.s. since 𝜇𝑡(𝛾0) is non-degenerate, therefore it should be that 𝜂′1𝑛𝑡 = 0 a.s. for
ome 𝜂 ≠ 0, however 𝑛 has linearly independent elements, following the same arguments of 𝜂′ 𝜕 𝜆 (𝜓 )∕𝜕 𝜓 above, so the assumed
1 𝑡 1 𝑡 0
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statement cannot be true. (ii) 𝜂1 = 0, 𝜂2 ≠ 0. In this case we have 𝑜𝑡 > 0 a.s., by definition, so 𝜂2𝑜𝑡 = 0 a.s. cannot occur since
𝜂2 ≠ 0. (iii) 𝜂1 ≠ 0, 𝜂2 ≠ 0. In this case we shall have a.s. 𝜂′1𝑛𝑡 = 𝜂2𝑚−1

𝑡 𝑜𝑡 and therefore 𝛽2𝜂′1𝑛𝑡−1 = 𝜂2𝑚−1
𝑡 𝑜𝑡 − 𝜂′1𝑍𝑡−1(𝛾0) where

𝑡−1(𝛾0) = (1, 𝑌𝑡−1, 𝜇𝑡−1(𝛾0))′. However this cannot hold because the left-hand side is 𝑡−2-measurable whereas the right-hand side is
ot since it depends on 𝑌𝑡−1. Then 𝜂′𝜕 𝜈𝑡(𝛾0)∕𝜕 𝛾 = 0 a.s. iff 𝜂 = 0. Therefore A9* holds and A9 follows. Noting that 𝛾2 = 𝜙, condition
A9* holds by the arguments in (ii) so A9 holds also for the restricted estimator.

Finally, A11 holds as in the proof of Corollary 2 because the score contribution 𝑠𝑡(𝜃0) is a martingale difference sequence and
herefore

√

𝑇 𝑆𝑇 (𝜃0)
𝑑
←←←←←←←→ 𝑁(0, 𝐼(𝜃0)) as 𝑇 → ∞. □

Proof of Proposition 1. Under the conditions of Proposition 1, 𝑝 = 𝑘 = 1 so 𝜓 and 𝛾 are scalar. In particular, 𝛾 = 𝛾1 ∈ R, i.e. there
re no free nuisance parameters 𝛾2. So, under the results of Theorem 2, following the notation for restricted estimators defined

below assumption A12, it is not hard to show that the limiting covariance of the restricted estimator is a scalar and takes the form
𝑅 = 𝐻−1

𝜓 (𝜃0)𝐼𝜓 (𝜃0)𝐻−1
𝜓 (𝜃0) with

𝐻𝜓 (𝜃0) = E
[

1
𝜈𝑡(𝛾0)

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓

2
+ 1

2𝜈2𝑡 (𝛾0)
𝜕 𝜈𝑡(𝛾0)
𝜕 𝜓

2
]

, (A.6)

𝐼𝜓 (𝜃0) = E
[

1
𝜈𝑡(𝛾0)

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓

2
+

ℎ𝑡
2𝜈3𝑡 (𝛾0)

(

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓

𝜕 𝜈𝑡(𝛾0)
𝜕 𝜓 +

𝜕 𝜈𝑡(𝛾0)
𝜕 𝜓

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜓

)

]

+ E
[(

𝑘𝑡
𝜈2𝑡 (𝛾0)

− 1
)

1
4𝜈2𝑡 (𝛾0)

𝜕 𝜈𝑡(𝛾0)
𝜕 𝜓

2
]

, (A.7)

where ℎ𝑡 = E[(𝑌𝑡 − 𝜆𝑡(𝜓0)
)3

|𝑡−1] and 𝑘𝑡 = E[(𝑌𝑡 − 𝜆𝑡(𝜓0)
)4

|𝑡−1] by A13. By Corollary 2, the limiting covariance of the unrestricted
stimator, 𝐼−1𝜓 , is the reciprocal expected value of the first summand of (A.6). In the case A14.a we have that ℎ𝑡 = 0 and 𝑘𝑡 ≤ 3𝜈𝑡(𝛾0),

with equality if and only if 𝑞(⋅) is Gaussian. Hence, from (A.7) 𝐼𝜓 (𝜃0) ≤ 𝐻𝜓 (𝜃0) and 𝛴𝑅 ≤ 𝐻−1
𝜓 (𝜃0) ≤ 𝐼−1𝜓 where the last inequality

holds since the second summand in (A.6) is non-negative. In the case A14.b we have that ℎ𝑡 > 0 and 𝜕 𝜆𝑡(𝜓0)∕𝜕 𝜓 𝜕 𝜈𝑡(𝛾0)∕𝜕 𝜓 < 0 or
𝑡 < 0 and 𝜕 𝜆𝑡(𝜓0)∕𝜕 𝜓 𝜕 𝜈𝑡(𝛾0)∕𝜕 𝜓 > 0. In both scenarios the second summand in (A.7) is negative so 𝐼𝜓 (𝜃0) < 𝐻𝜓 (𝜃0). The result

follows as above. □

A.2. Technical lemmas

Lemma 1. Consider the PVQMLE in (5) with log-quasi-likelihood (4). Under conditions A4–A5, almost surely as 𝑇 → ∞,
up𝜃∈𝛩 |𝐿̃𝑇 (𝜃) − 𝐿𝑇 (𝜃)| → 0.

Proof of Lemma 1. From assumption A4, we have that

sup
𝜃∈𝛩

|𝑙𝑡(𝜃) − 𝑙𝑡(𝜃)| ≤ sup
𝜃∈𝛩

|

|

|

|

|

[𝜆̃𝑡(𝜓) − 𝜆𝑡(𝜓)][𝜆̃𝑡(𝜓) + 𝜆𝑡(𝜓) − 2𝑌𝑡]
2𝜈̃∗𝑡 (𝛾)

+
[𝜈∗𝑡 (𝛾) − 𝜈̃∗𝑡 (𝛾)][𝑌𝑡 − 𝜆𝑡(𝜓)]2

2𝜈∗𝑡 (𝛾)𝜈̃
∗
𝑡 (𝛾)

|

|

|

|

|

+ 1
2
sup
𝛾∈𝛤

|

|

|

|

|

log
𝜈̃∗𝑡 (𝛾)
𝜈∗𝑡 (𝛾)

|

|

|

|

|

≤ 1
𝜈∗
𝑎𝑡
(

𝑎𝑡 + |

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)||
)

+ 1
𝜈∗2

𝑏𝑡
(

𝑌 2
𝑡 + sup

𝜓∈𝛹
𝜆2𝑡 (𝜓)

)

+ 1
2
sup
𝛾∈𝛤

|

|

|

|

|

log
(

1 + 𝜈̃∗𝑡 (𝛾) − 𝜈∗𝑡 (𝛾)
𝜈∗𝑡 (𝛾)

)

|

|

|

|

|

≤ 1
𝜈∗
𝑎𝑡
(

1 + |

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)||
)

+ 1
𝜈∗2

𝑏𝑡
(

𝑌 2
𝑡 + sup

𝜓∈𝛹
𝜆2𝑡 (𝜓)

)

+ 1
2𝜈∗

𝑏𝑡,

for 𝑡 large enough since, by assumption A5, a.s. 𝑎𝑡 → 0 as 𝑡 → ∞. Note that in the last inequality we have used the fact that
𝑥∕(𝑥 + 1) ≤ log(1 + 𝑥) ≤ 𝑥 for 𝑥 > −1 and that | log(1 + 𝑥)| ≤ max {|𝑥∕(𝑥 + 1)|, |𝑥|}. Indeed, by setting the simplified notation
= (𝜈̃ − 𝜈)∕𝜈, it is clear that 𝑥 = 𝜈̃∕𝜈 − 1 > −1 since 𝜈̃∕𝜈 > 0. By standard algebra we find that |𝑥∕(𝑥 + 1)| = |𝜈̃ − 𝜈|∕𝜈̃. Therefore
log(1 + 𝑥)| ≤ max {|𝜈̃ − 𝜈|∕𝜈̃ , |𝜈̃ − 𝜈|∕𝜈} ≤ 𝑏𝑡∕𝜈∗ where the last inequality follows by A4 and the definition of 𝑏𝑡. Assumption A5 and
n application of Cesaro’s lemma lead to

sup
𝜃∈𝛩

|𝐿̃𝑇 (𝜃) − 𝐿𝑇 (𝜃)| ≤ 𝑇 −1
𝑇
∑

𝑡=1
sup
𝜃∈𝛩

|𝑙𝑡(𝜃) − 𝑙𝑡(𝜃)| → 0 , 𝑎.𝑠.

as 𝑇 → ∞. □

Lemma 2. Consider the PVQMLE in (5) with score (13). Under conditions A4–A5 and A7 , almost surely as 𝑇 → ∞,
√

𝑇 sup𝜃∈𝛩 ‖𝑆̃𝑇 (𝜃) −
𝑆𝑇 (𝜃)‖ → 0.

Proof of Lemma 2. We obtain that

sup
𝜃∈𝛩

‖

‖

𝑠𝑡(𝜃) − 𝑠̃𝑡(𝜃)‖‖ ≤ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

1
2𝜈̃∗𝑡 (𝛾)

𝜕 ̃𝜈∗𝑡 (𝛾)
𝜕 𝜃 − 1

2𝜈∗𝑡 (𝛾)
𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

+ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝑌𝑡 − 𝜆̃𝑡(𝜓)
𝜈̃∗𝑡 (𝛾)

𝜕𝜆̃𝑡(𝜓)
𝜕 𝜃 −

𝑌𝑡 − 𝜆𝑡(𝜓)
𝜈∗𝑡 (𝛾)

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

‖

‖

‖

‖

‖

+ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

[𝑌𝑡 − 𝜆̃𝑡(𝜓)]2

2𝜈̃∗2𝑡 (𝛾)

𝜕 ̃𝜈∗𝑡 (𝛾)
𝜕 𝜃 −

[𝑌𝑡 − 𝜆𝑡(𝜓)]2

2𝜈∗2𝑡 (𝛾)

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

1 2 3
= 𝛿𝑡 + 𝛿𝑡 + 𝛿𝑡 ,
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with obvious notation. We now bound the single terms individually. In what follows the notation 𝑜(1) almost surely, as 𝑡 → ∞, will
be abbreviated to 𝑜(1).

𝛿1𝑡 ≤ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

1
2𝜈̃∗𝑡 (𝛾)

( 𝜕 ̃𝜈∗𝑡 (𝛾)
𝜕 𝜃 −

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

)

+

[

𝜈∗𝑡 (𝛾) − 𝜈̃∗𝑡 (𝛾)
]

2𝜈̃∗𝑡 (𝛾)𝜈
∗
𝑡 (𝛾)

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

≤
𝑑𝑡
2𝜈∗

+
𝑏𝑡

2𝜈∗2
sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

.

Similarly,

𝛿2𝑡 ≤ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝑌𝑡 − 𝜆̃𝑡(𝜓)
𝜈̃∗𝑡 (𝛾)

(

𝜕𝜆̃𝑡(𝜓)
𝜕 𝜃 −

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

)

‖

‖

‖

‖

‖

+ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

(

𝜆𝑡(𝜓) − 𝜆̃𝑡(𝜓)
𝜈̃∗𝑡 (𝛾)

+
𝑌𝑡 − 𝜆𝑡(𝜓)
𝜈̃∗𝑡 (𝛾)

−
𝑌𝑡 − 𝜆𝑡(𝜓)
𝜈∗𝑡 (𝛾)

)

‖

‖

‖

‖

‖

≤
𝑐𝑡
𝜈∗

(

|

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)|| + 𝑎𝑡
)

+ sup
𝜃∈𝛩

‖

‖

‖

‖

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

‖

‖

‖

‖

(

𝑎𝑡
𝜈∗

+ sup
𝜃∈𝛩

|

|

|

|

|

[

𝜈∗𝑡 (𝛾) − 𝜈̃∗𝑡 (𝛾)
] [
𝑌𝑡 − 𝜆𝑡(𝜓)

]

𝜈̃∗𝑡 (𝛾)𝜈
∗
𝑡 (𝛾)

|

|

|

|

|

)

≤
𝑐𝑡
𝜈∗

(

|

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)|| + 𝑜(1)
)

+ sup
𝜃∈𝛩

‖

‖

‖

‖

𝜕 𝜆𝑡(𝜓)
𝜕 𝜃

‖

‖

‖

‖

( 𝑎𝑡
𝜈∗

+
𝑏𝑡
𝜈∗2

(

|

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)||
))

.

Using similar arguments for 𝛿3𝑡 and assumption A5 leads to

𝛿3𝑡 ≤
𝑑𝑡
𝜈∗2

sup
𝜃∈𝛩

(

𝑌 2
𝑡 + 𝜆2𝑡 (𝜓) + 𝑎2𝑡 + 2𝑎𝑡𝜆𝑡(𝜓)

)

+ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

sup
𝜃∈𝛩

|

|

|

|

|

[𝜆̃𝑡(𝜓) − 𝜆𝑡(𝜓)][𝜆̃𝑡(𝜓) + 𝜆𝑡(𝜓) − 2𝑌𝑡]
2𝜈̃∗2𝑡 (𝛾)

|

|

|

|

|

+ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

sup
𝜃∈𝛩

|

|

|

|

|

|

[

𝜈∗𝑡 (𝛾) − 𝜈̃∗𝑡 (𝛾)
] [
𝜈∗𝑡 (𝛾) + 𝜈̃∗𝑡 (𝛾)

] [
𝑌𝑡 − 𝜆𝑡(𝜓)

]2

2𝜈∗2𝑡 (𝛾)𝜈̃∗2𝑡 (𝛾)

|

|

|

|

|

|

≤
𝑑𝑡
𝜈∗2

(

𝑌 2
𝑡 + sup

𝜓∈𝛹
𝜆2𝑡 (𝜓) + 𝑜(1)

)

+ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

𝑎𝑡
𝜈∗2

(

|

|

𝑌𝑡|| + sup
𝜓∈𝛹

|

|

𝜆𝑡(𝜓)|| + 𝑜(1)
)

+ sup
𝜃∈𝛩

‖

‖

‖

‖

‖

𝜕 𝜈∗𝑡 (𝛾)
𝜕 𝜃

‖

‖

‖

‖

‖

2𝑏𝑡
𝜈∗3

(

𝑌 2
𝑡 + sup

𝜓∈𝛹
𝜆2𝑡 (𝜓)

)

.

By assumption A7, 𝛿𝑗𝑡 = (𝑡−𝛿), for 𝛿 > 1∕2 and 𝑗 = 1, 2, 3. Therefore
√

𝑇 sup𝜃∈𝛩 ‖𝑆𝑇 (𝜃) − 𝑆̃𝑇 (𝜃)‖ ≤ 𝑇 −1∕2 ∑𝑇
𝑡=1 (𝑡

−𝛿) converges to 0
lmost surely as 𝑇 → ∞. □

Lemma 3. Assumption A9 is satisfied for the unrestricted PVQMLE (5) under the following sufficient condition.

A9* The random variables of the vectors 𝜕 𝜆𝑡(𝜓0)∕𝜕 𝜓 and 𝜕 𝜈∗𝑡 (𝛾∗)∕𝜕 𝛾 are linearly independent. Moreover, one of the following conditions
holds a.s. for some 𝑡 ≥ 1.

1. 𝜈∗𝑡 (𝛾∗) = 𝜈𝑡.
2. 𝜈∗𝑡 (𝛾∗) < 𝜈𝑡, 𝜕2𝜈∗𝑡 (𝛾∗)∕𝜕 𝜃 𝜕 𝜃′ is negative semi-definite.
3. 𝜈𝑡 < 𝜈∗𝑡 (𝛾∗) < 2𝜈𝑡, 𝜕2𝜈∗𝑡 (𝛾∗)∕𝜕 𝜃 𝜕 𝜃′ is positive semi-definite.
4. 𝜈∗𝑡 (𝛾∗) < 2𝜈𝑡, 𝜕2𝜈∗𝑡 (𝛾

∗)∕𝜕 𝜃𝑖𝜕 𝜃𝑗 = 0 for all 𝑖, 𝑗 = 1,… , 𝑚.

The same result holds for the restricted PVQMLE (6) with 𝜕 𝛾2 instead of 𝜕 𝛾.

Proof of Lemma 3. Condition A9 requires that for all 𝜂 ∈ R𝑚, 𝜂′ E[−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝜃 𝜕 𝜃′]𝜂 > 0, with 𝜂 ≠ 0, but E[−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝜃 𝜕 𝜃′] =
[E[−𝜕2𝑙𝑡(𝜃0)∕𝜕 𝜃 𝜕 𝜃′|𝑡−1]] and following (A.2), we only need to show

E
(

𝑑𝑡𝜂
′𝑓 𝜃𝑡 𝑓

𝜃′
𝑡 𝜂 + 𝑙𝑡𝜂

′ℎ𝜃𝑡 ℎ
𝜃′
𝑡 𝜂 + 𝜂

′𝐶𝜃𝑡 𝜂
)

> 0 , (A.8)

where

𝑑𝑡 =
1

𝜈∗𝑡 (𝛾∗)
, 𝑓 𝜃𝑡 =

𝜕 𝜆𝑡(𝜓0)
𝜕 𝜃 , 𝑙𝑡 =

2𝜈𝑡 − 𝜈∗𝑡 (𝛾
∗)

2𝜈∗3𝑡 (𝛾∗)
, ℎ𝜃𝑡 =

𝜕 𝜈∗𝑡 (𝛾∗)
𝜕 𝜃 , 𝐶𝜃𝑡 =

(

𝜈∗𝑡 (𝛾
∗) − 𝜈𝑡

2𝜈∗2𝑡 (𝛾∗)

)

𝜕2𝜈∗𝑡 (𝛾
∗)

𝜕 𝜃 𝜕 𝜃′ .

Note that under the conditions in A9* we have that a.s. 𝑙𝑡 > 0 and 𝜂′𝐶𝜃𝑡 𝜂 ≥ 0. Moreover, a.s. 𝑑𝑡 > 0, 𝜂′𝑓 𝜃𝑡 𝑓
𝜃′
𝑡 𝜂 = (𝜂′ 𝑓 𝜃𝑡 )2 ≥ 0 and

′ℎ𝜃𝑡 ℎ
𝜃′
𝑡 𝜂 = (𝜂′ ℎ𝜃𝑡 )2 ≥ 0. Therefore a sufficient condition for (A.8) requires a.s. 𝜂′ 𝑓 𝜃𝑡 ≠ 0 or 𝜂′ℎ𝜃𝑡 ≠ 0. Let 0𝑚 be a 𝑚-dimensional vector

f zeros. To prove the result recall that

𝑓 𝜃𝑡 =
(

𝑓𝜓𝑡
0𝑘

)

, ℎ𝜃𝑡 =
(

ℎ𝜓𝑡
ℎ𝛾𝑡

)

.

Hence, a.s. 𝜂′ 𝑓 𝜃𝑡 = 𝜂′1 𝑓
𝜓
𝑡 . We can split 𝜂 = (𝜂′1, 𝜂′2)′ where 𝜂1 has dimension 𝑝 and 𝜂2 has dimension 𝑘. Consider two cases: (i) 𝜂1 ≠ 0

and (ii) 𝜂1 = 0. Under (i) the result is verified by a.s. 𝜂′1 𝑓
𝜓
𝑡 ≠ 0. In the case (ii), the result follows by 𝜂′2 ℎ

𝛾
𝑡 ≠ 0 a.s. since 𝜂′ ℎ𝜃𝑡 = 𝜂′2 ℎ

𝛾
𝑡 .

Recall that 𝜂′𝐼(𝜃0)𝜂 = E[(𝜂′𝑠𝑡(𝜃0))2] ≥ 0. Therefore, to prove the positive definiteness of 𝐼(𝜃0) we need to show that for all 𝜂 ∈ R𝑚,
with 𝜂 ≠ 0, 𝜂′𝑠𝑡(𝜃0) ≠ 0 where

𝜂′𝑠𝑡(𝜃0) =
𝑒𝑡

𝜈∗𝑡 (𝛾∗)
𝜂′𝑓 𝜃𝑡 +

𝑒2𝑡 − 𝜈
∗
𝑡 (𝛾

∗)

2𝜈∗2𝑡 (𝛾∗)
𝜂′ℎ𝜃𝑡 , (A.9)

and 𝑒𝑡 = 𝑌𝑡 − 𝜆𝑡(𝜓0) and therefore a.s. 𝑒𝑡 ≠ 0, 𝑒2𝑡 − 𝜈∗𝑡 (𝛾∗) ≠ 0 and 𝜈∗𝑡 (𝛾
∗) > 0. If only one between 𝜂′𝑓 𝜃𝑡 and 𝜂′ℎ𝜃𝑡 is different from 0

.s. then the result follows with argument identical to the Hessian matrix case above. In the case where both 𝜂′𝑓 𝜃𝑡 and 𝜂′ℎ𝜃𝑡 are not
0 a.s. we show that this cannot imply that 𝜂′𝑠 (𝜃 ) = 0 since by Eq. (A.9) this would entail
𝑡 0
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𝜂′𝑓 𝜃𝑡 = − 𝑒
2
𝑡 − 𝜈

∗
𝑡 (𝛾

∗)
2𝜈∗𝑡 (𝛾∗)𝑒𝑡

𝜂′ℎ𝜃𝑡 ,

where the left-hand side is 𝑡−1-measurable whereas the right-hand side is not as it depends on 𝑌𝑡. Therefore 𝜂′𝑠𝑡(𝜃0) ≠ 0 for any
on-trivial vector 𝜂. This concludes the proof. □

Appendix B. Further numerical results

B.1. Outliers

We evaluate the robustness of the described test statistic by repeating the same simulation study as in Section 5 with the inclusion
of an outlier defined as 3 times the standard deviation of the observations plus their sample mean. The results are summarized in
Tables B.6–B.7 and Fig. 6 below.

B.2. Near unit root

We evaluate the test in case of near unit root by considering the same simulation setting as in Section 5 but setting the
autoregressive parameter equal to 0.99. The results are summarized in Tables B.8–B.9 and Fig. 7 below.

Table B.6
Empirical size for test in (27) with outlier. The model considered under 𝐻0 is an INAR(1) model with Poisson thinning as well
as Poisson error with parameter values 𝑎 = 0.75 and 𝜔 = 1.

Nominal size 𝑇

100 250 500 1000 2000

0.1000 0.1510 0.1544 0.1312 0.1154 0.1112
0.0500 0.0692 0.0730 0.0646 0.0550 0.0540
0.0100 0.0142 0.0116 0.0106 0.0112 0.0128

Table B.7
Mean of parameters estimated for unrestricted PVQMLE over 5000 simulations with the presence
of outlier. Data are generated from an INAR(1) model with Poisson thinning as well as Poisson
error with parameter values 𝑎 = 0.75 and 𝜔 = 1.
𝑇 𝑎 𝜔1 𝜔2 𝑏

100 0.6827 1.2679 1.7522 0.8230
250 0.7235 1.1059 1.3657 0.7740
500 0.7372 1.0497 1.1805 0.7616
1000 0.7432 1.0268 1.1066 0.7509
2000 0.7467 1.0125 1.0562 0.7497

Fig. 6. Empirical power for test in (27) with outlier. The true parameter values of the INAR(1) model with negative binomial thinning and Poisson error are
𝑎 = 0.75 and 𝜔 = 1. The value of the dispersion parameter 𝑣 changes as indicated in the horizontal axis through the % of overdispersion: 1 − 𝑎∕(𝑎 + 𝑎2∕𝑣).
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Table B.8
Empirical size for test in (27). The model considered under 𝐻0 is an INAR(1) model with Poisson thinning as well as Poisson
error with parameter values 𝑎 = 0.99 and 𝜔 = 1.

Nominal size 𝑇

100 250 500 1000 2000

0.1000 0.0524 0.0562 0.0568 0.0614 0.0660
0.0500 0.0250 0.0310 0.0300 0.0296 0.0254
0.0100 0.0074 0.0060 0.0076 0.0068 0.0050

Table B.9
Mean of parameters estimated for unrestricted PVQMLE over 5000 simulations with the presence
of outlier. Data are generated from an INAR(1) model with Poisson thinning as well as Poisson
error with parameter values 𝑎 = 0.99 and 𝜔 = 1.
𝑇 𝑎 𝜔1 𝜔2 𝑏

100 0.9364 6.0910 16.8541 0.7962
250 0.9690 2.9188 6.8376 0.9150
500 0.9802 1.8379 3.3397 0.9578
1000 0.9857 1.3415 1.7776 0.9776
2000 0.9880 1.1619 1.1795 0.9866

Fig. 7. Empirical power for test in (27). The true parameter values of the INAR(1) model with negative binomial thinning and Poisson error are 𝑎 = 0.99 and
= 1. The value of the dispersion parameter 𝑣 changes as indicated in the horizontal axis through the % of overdispersion: 1 − 𝑎∕(𝑎 + 𝑎2∕𝑣).

B.3. BiNB thinning

We evaluate the power of the equidispersion test under BiNB thinning. In this specification 𝑋𝑗 ∼ 𝐵 𝑒𝑟𝐺(𝜇 , 𝜋) is the Bernoulli-
Geometric distribution, defined as the sum of a Bernoulli distribution with probability 𝜋 and a geometric distribution with mean 𝜇
where the distributions are independent and 𝜇 + 𝜋 < 1. Moreover, 𝑎 = 𝜇 + 𝜋, 𝑏 = 𝜋(1 − 𝜋) + 𝜇(1 − 𝜇) so 𝑏∕𝑎 = 1 + 𝜇 − 𝜋 and therefore
𝑏 > 𝑎 if 𝜇 > 𝜋. Fig. 8 below shows the power of the test in (27) to reject the null hypothesis.

B.4. INAR(2)

We consider the case of testing equidispersion of the thinning operator in an INAR(2) model. In this case the hypothesis test is
the following

𝐻0 ∶ 𝑏𝑖 = 𝑎𝑖 vs 𝐻1 ∶ 𝑏𝑖 ≠ 𝑎𝑖 for 𝑖 = 1, 2 . (B.10)

The results of the test against negative binomial thinning are reported in Tables B.10–B.11 and Fig. 9.

Data availability

Codes and data to replicate the analyses in the paper are available at https://github.com/mirkoarmillotta/Pseudo_variance.
22 

https://github.com/mirkoarmillotta/Pseudo_variance


M. Armillotta and P. Gorgi

v

Journal of Econometrics 246 (2024) 105894 
Fig. 8. Empirical power for test in (27). The true parameter values of the INAR(1) model with BiNB thinning and Poisson error are 𝜇 = 0.75 and 𝜔 = 1. The
alue of the Bernoulli parameter 𝜋 ∈ [0, 0.15] changes as indicated in the horizontal axis through the % of overdispersion: 1 − 1∕(1 + 𝜇 − 𝜋).

Table B.10
Empirical size for test in (B.10). The model considered under 𝐻0 is an INAR(2) model with Poisson thinning as well as Poisson
error with parameter values 𝑎1 = 𝑎2 = 0.4 and 𝜔 = 1.

Nominal size 𝑇

100 250 500 1000 2000

0.1000 0.1384 0.1460 0.1348 0.1182 0.1096
0.0500 0.0932 0.0822 0.0800 0.0632 0.0574
0.0100 0.0452 0.0242 0.0206 0.0166 0.0138

Table B.11
Mean of parameters estimated for unrestricted PVQMLE over 5000 simulations. Data are generated from an INAR(2) model with
Poisson thinning as well as Poisson error with parameter values 𝑎1 = 𝑎2 = 0.4 and 𝜔 = 1.
𝑇 𝑎1 𝑎2 𝜔1 𝜔2 𝑏1 𝑏2
100 0.3835 0.3614 1.2498 1.0030 0.3939 0.3865
250 0.3937 0.3863 1.0858 0.9856 0.3978 0.3964
500 0.3966 0.3942 1.0386 0.9838 0.3997 0.3986
1000 0.3976 0.3977 1.0189 0.9977 0.3979 0.3991
2000 0.3991 0.3984 1.0099 0.9989 0.3999 0.3991

Fig. 9. Empirical power for test in (B.10). The true parameter values of the INAR(2) model with negative binomial thinning and Poisson error are 𝑎1 = 𝑎2 = 0.4
and 𝜔 = 1. The value of the dispersion parameter 𝑣 changes as indicated in the horizontal axis through the % of overdispersion: 1 −𝑎1∕(𝑎1 +𝑎21∕𝑣). The horizontal
axis is equal to 1 − 𝑎2∕(𝑎2 + 𝑎22∕𝑣) since 𝑎1 = 𝑎2.
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