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A B S T R A C T

Efficient hydrogen generation from water-splitting is widely acknowledged as a priority route to promote the
hydrogen economy. Anion exchange membrane water electrolyzers (AEMWE) offer multiple advantages in
improving performance and minimizing the cost limitations of current electrolysis technologies. However, the
persistence of issues related to the limited electrocatalytic activity of such materials and their poor stability under
operating conditions makes developing highly active, stable, platinum-group-metal-free electrocatalysts for ox-
ygen evolution reaction (OER) necessary.

We report the development of Prussian blue analogues (PBA)-derived NiFe-based electrocatalysts through a
mild aqueous phase precipitation method, followed by thermal stabilization and phosphorus doping. The for-
mation of the NiFe-PBA-precursor with a framework nanocubic Ni(II)[Fe(III)(CN)6]2/3 structure was confirmed
by X-ray diffraction, scanning electron microscopy, and inductively coupled plasma analysis. The NiFe-PBA-
precursor was subjected to thermal stabilization and phosphorus doping to provide the material with
enhanced OER catalytic activity and stability. The existence of OER active sites based on NiFe and NiFeP has
been revealed by transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical
characterization in a three-electrode cell configuration in a 1 M KOH electrolyte. NiFe-PBA and NiFeP-PBA were
assembled at the anode side of an AEMWE, resulting in an excellent electrochemical performance both in terms
of current density at 2.0 V using 1 M KOH (1.21 A cm− 2) and durability, outperforming the benchmark catalyst.

1. Introduction

In the coming years, the decarbonization process must be urgently
addressed in line with the growing energy demand.[1] For these rea-
sons, many efforts are increasingly focused on developing sustainable
energy storage and conversion technologies, such as fuel cells and bat-
teries, that can meet net-zero emission requirements with high perfor-
mance.[2–13] In this scenario, hydrogen production has become
strategic in this global energy transition. Indeed, H2 is an advantageous
energy carrier ready to convert renewable but intermittent sources into
energy-dense hydrogen fuels that can be stored and used in trans-
portation and industrial processes.[14–16].

Producing green hydrogen by water electrolysis technologies (WEs)
at low temperature (<100 ◦C) is considered an efficient, clean, and long-

term solution. [17] Among WEs, proton exchange membrane water
electrolyzer (PEMWE) and the emerging anion exchange membrane
water electrolyzer (AEMWE) are the promising ones.[18] AEMWEs are
particularly interesting because, in these devices, the advantages of
more mature technologies are combined: key components without
platinum-group-metal (PGM) materials like the alkaline WEs (AWEs)
and high purity H2 (99.99 %) production at a high current and high
pressure like in PEMWEs. Another critical aspect of an AEMWE is that it
can be fed with pure water or a low-alkalinity solution as the electrolyte.
This results in reduced equipment corrosion and lower costs, thus
improving the life of the electrolyzer. [19–23].

One of the major bottlenecks in AEMWEs is the limiting oxygen
evolution reaction (OER) catalysis, so overcoming it with a favorable
kinetic catalyst is paramount. Ruthenium dioxide (RuO2) and iridium
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dioxide (IrO2), belonging to PGM materials, are considered benchmark
catalysts for OER due to their efficiency and low overpotentials (η). [24]
However, large-scale applications are limited due to their stability
problems (especially with acid electrolytes), high costs, and environ-
mental impact.

Several PGM-free electrocatalysts have been proposed to improve
OER electrocatalytic activity, lower the overpotential, and further
improve the energy efficiency of AEMWEs.[25–29] Transition metal
(TM)-based structures, such as oxides, carbides, nitrides, phosphides,
phosphates, sulfides, and chalcogenides have been investigated to
replace PGM materials. [19,30–36] Among the different families, TM-
based oxides (TMOs), chalcogenides (TMCs), and phosphides (TMPs)
are particularly promising since they offer the possibility of tailoring the
electrocatalytic activity via heteroatom doping [37,38], the introduction
of polymetallic sites [39–42], compounding with highly conductive
materials [43], stress engineering [44] and heterostructure engineering.
[45,46] Previous studies indicated that TMPs are particularly suited as
OER electrocatalysts for water electrolysis due to their abundance and
efficient electrocatalysis.[32,34,47–50] Metal phosphides doped with
heteroatoms, rather than monometallic phosphides, have demonstrated
improved catalytic activity due to the modified electronic structures,
with the choice of TM playing a critical role.[51] Combining Ni with
other TMs (e.g. Fe, Co, Mn, etc.) significantly improves OER activity in
alkaline media [52–61], and, in particular, Fe-Ni-based catalysts have
attracted attention due to their excellent results and low environmental
impact. [56,57,62–65].

A crucial aspect in the development of an efficient electroactive
catalyst is the design of its structure/morphology. Using metal–organic
frameworks (MOFs) allows for precise tuning of crystal structure, with
ligand type and metal geometry playing key roles in the overall catalytic
performance of the final material. [66–68] As a subcategory of MOFs,
prussian blue analogues (PBA) are coordination polymers assembled
from octahedral coordination cyanide bridge metal nodes with a parent
structure of M[M’(CN)6] where M and M’ are transition metals (TM).
Among PBAs, hexacyanoferrates (Fe(CN)63-) offer a wide selection of
metal nodes, microporous nature, and unique vacancy/defect arrange-
ment. [69] The typical composition of hexacyanoferrates can be
expressed as Mx[Fe(CN)6]y, where M is commonly a transition metal
(TM), such as Ni, Co, Fe, or Mn. [70]When the choice of metals and their
oxidation state are varied, it is possible to alter the lattice parameters by
stretching the hexacyanometallates structure to compensate for elec-
troneutrality. [71,72] Nanostructured PBAs have recently been con-
verted into metal oxides, sulfides, and functional phosphides while
retaining their electron transfer properties. The synthesis, which
generally takes place by chemical precipitation under soft conditions,
allows extensive control over the composition of the material. [73–76]
Moreover, the open skeleton structure composed of cyanide ligands and
metal central ions enables the formation of uniformly distributed and
adjustable metal active sites that can be tailored for specific electro-
chemical reactions. [77–79] Based on these features, PBAs have been
recently evaluated for environmental and energy applications, such as
sensors, contaminant removal, metal-ion batteries, and water splitting
[80–87].

In this work, we developed PBA-derived NiFe-based electrocatalysts
and investigated their performance as electrocatalysts for OER in
AEMWEs. The synthesis occurs under mild conditions in an aqueous
environment at room temperature, obtaining a PBA precursor with Ni
(II)[Fe(III)(CN)6]2/3 as crystal structure. To overcome the intrinsic limits
of the PBA precursor in terms of limited electronic conductivity and
electrochemical stability, it was thermally treated at 350 ◦C under inert
conditions in the presence of a P-precursor for heteroatom doping.
Through a series of morphological, structural, and electrochemical
characterizations, the optimized electrocatalysts were assembled in
AEMWE, demonstrating high OER activity and stability.

2. Material and methods

2.1. Materials

Nickel (II) acetate tetrahydrate (>99.9 %), trisodium citrate dihy-
drate (>99.0 %), potassium ferricyanide (III) (>99.9 %), sodium
hypophosphite monohydrate (>99.9 %), IrO2 (>99.9 %) and Nafion
solution (5 wt% in lower aliphatic alcohols and water, 15–20 %), 2-
propanol (99.9 %) were purchased from Sigma-Aldrich. Millipore
water (18.2 MΩ cm@25 ◦C) was used for material preparation and
experiments.

2.2. Synthesis of the electrocatalysts

1.92 g of nickel (II) acetate tetrahydrate Ni(CH3COO)2 and 2.26 g of
trisodium citrate dihydrate were solubilized in 50 mL of deionized under
stirring at room temperature (about 250 rpm). Then, 50 mL of a 64 mM
K3Fe(CN)6 aqueous solution was added and kept stirring at room tem-
perature overnight. The obtained precipitate was collected, centrifuged,
washed, and dried at 70 ◦C and labeled as NiFe-PBA-precursor.

NiFe-PBA-precursor was heat-treated at 350 ◦C (3 ◦C min− 1 heating
rate) for 2 h under N2 flow, obtaining the sample labeled as NiFe-PBA. A
further sample was obtained by using sodium hypophosphite (NaH2PO2)
as a P-doping agent during the thermal treatment. As shown in Fig. S1,
this process is carried out with two shuttles, one containing NaH2PO2
(upstream to the N2 flow) and one containing NiFe-PBA-precursor
(downstream), with a mass ratio of 2:1, respectively. The obtained
sample was labeled as NiFeP-PBA.

2.3. Material characterization

Element quantification was performed by atomic emission spec-
troscopy on the Spectroblue TI FMT26 inductively coupled plasma –
optical emission spectroscopy (ICP-OES) equipment. Before analysis, the
sample was dried in an oven at 120 ◦C for two hours. Once dried, it was
homogenized and grounded in an agate mortar. The mixture was then
digested by oxidative alkaline fusion with sodium peroxide, followed by
acid dilution with HCl to obtain a solution. Finally, this solution was
filtered with a 0.45 µm pore size filter. Besides, Elemental Analysis (C, H,
N) was determined on a Thermo Flash 1112 Elemental Analyser.

Transmission electron microscope (TEM) images and selected-area
electron diffraction (SAED) pattern were acquired with a Tecnai F30
microscope operated at 300 kV, alongside images obtained in the
scanning transmission mode with a high-angle annular dark-field de-
tector (STEM-HAADF). The samples were ultrasonically dispersed in
ethanol for 15 min and then placed in a Cu carbon grid. On the other
hand, Scanning Electron Micrographs (SEM) were obtained using a Leo
Supra 35 field-emission scanning electron microscope (Carl Zeiss,
Oberkochen, Germany).

Powder X-ray diffraction (XRD) patterns were recorded using a
Philips PW1730 and ESCAPlus of Omicron diffractometers with Cu Kα
radiation (λ = 1.5406 Å). Thermogravimetric analysis (TGA) was per-
formed by using a thermogravimetric analyzer TGA/DSC1 Star System
(Mettler Toledo) working between 25 to 700 ◦C under an N2 flow, with a
heating rate of 5 ◦Cmin− 1. The materials were held in a platinum sample
holder with a cover having one central vent hole.

X-ray photoelectron spectra (XPS) were obtained in a ESCA Plus
Omicron spectrometer equipped with a hemispherical electron analyzer
with an Al anode (1486.7 eV) at 225 W with passing energy of 50 eV in
the survey analysis and 20 eV in the high-resolution regions. The C 1 s
line at 284.6 eV was employed for charge correction of all XPS spectra.
CasaXPS software was used to perform peak fitting and quantification,
and Shirley-type background was used for all peaks. A 70 %/30 %
Gaussian/Lorentzian line shape was used to deconvolute the high res-
olution spectrum for each component.

Electrochemical tests were performed using a standard three-
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electrode cell: a rotating disk electrode setup (636 PAR AMETEK) with a
rotating disc electrode (RDE-GC5009 Pine Research) or a rotating ring
disc electrode (RRDE-AFE6R2GCPT, Pine Research) as the working
electrodes (WE), while a graphite rod was used as the counter electrode
(CE) and a Hg|HgO (RE − F0038) as the reference electrode (RE).
Measurements were recorded with a VMP3 potentiostat (Bio-Logic Sci-
ence Instruments) controlled by a computer using EC-Lab V10.18 soft-
ware. Potential values for all electrochemical tests were measured
against Hg|HgO and converted to the reversible hydrogen electrode
(RHE), using the Nernst equation ERHE = EHg|HgO + 0.154 V + 0.059 ×

pH, and the overpotential (η) value was determined by η = ERHE − 1.23
V.

Before the electrochemical tests, the WE was polished with an
alumina slurry (0.3 µm particle size). The catalytic inks were prepared
by dispersing 3.4 mg of catalyst in 425 ml of 2-propanol solution and 75
µL of Nafion/H2O (0.5 wt%). The suspension was ultrasonicated for 15
min at room temperature. The ink was then drop-casted onto the WE
glassy carbon disk at a catalyst loading of 0.20 mg cm− 2 and dried at
room temperature. IrO2 was used as a reference catalyst for OER. The
IrO2 ink was prepared using 1mg of IrO2 (99.9 %), 150 μL of 2-propanol,
14 μL of water and 6 μL of Nafion (5 wt%). The suspension was ultra-
sonicated for 15–20 min. The total IrO2 loading was 0.2 mg cm− 2.

The tests were carried out in a three-electrode configuration with 1
M KOH as an electrolyte solution, purged with N2 for 20 min. Before
testing, the catalysts were activated by cyclic voltammetry (CV) in a
potential window of 1.2 to 0.6 V vs. RHE at a scan rate of 50 mV s− 1 (25
cycles). To investigate the synthesized catalysts’ electrochemical active

surface area (ECSA), cyclic voltammetry (CV) experiments were per-
formed using an RDE in a static configuration. Gravimetric capacitance
(CGrav) was determined by integrating the capacitive current from the
CV curves at a scan rate of 5 mV s− 1, in an N2-saturated electrolyte over a
potential window of 0.02 V to − 0.1 V vs. RHE, according to the
following equation [88]:

CGrav =

∫
IdV

2mνΔV
(1)

Where i, is the current (A), ΔV is the potential window (V), m is the mass
of catalyst on the electrode (g) and ν (V s− 1) is the potential scan rate.
Thus, the ECSA was estimated based on Eq. (2), assuming a capacitance
per surface area (Cs) of 0.04 mF cm− 2.[89]

ECSA =
CGrav

Cs
(2)

Linear sweep voltammetry (LSV) curves were acquired with RDE to
evaluate the performance of the OER. Experiments were conducted at a
scan rate of 10 mV s− 1 and a rotational speed of 1600 rpm from 1.7 to
1.0 V vs. RHE under N2-saturated conditions to evaluate the OER. Disk
currents were corrected from the background by subtracting the
capacitive current measured in the N2-saturated electrolyte, and re-
ported potentials were compensated with it (85 %). The LSV of the
electrocatalytic electrode was converted into a Tafel plot using the
overpotential (η) vs. log j relation (η = b log| J | + a); the Tafel slope (b)
reflects the reaction mechanism of the catalysts. Additionally,

Fig. 1. SEM images of (a) NiFe-PBA-precursor, (b) NiFe-PBA, and (c) NiFeP-PBA. (d-e) TEM and (f) HAADF-STEM of NiFeP-PBA, (g-h) TEM and (i) HAADF-STEM of
NiFe-PBA.
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chronopotentiometry (at J= 10 mA cm− 2) and LSV were used to analyze
the durability and activity of the most active electrocatalyst after and
before the stability test. Electrochemical impedance spectroscopy (EIS)
spectra were recorded at a current density of 10mAcm− 2 (corresponding
to EJ10) over a frequency range of of 50 kHz to 100 Hz at a 10 mV
amplitude (rms). According to previous works [48,90], the faradaic
oxygen efficiency was determined by chronoamperometry measurement
at 1 mAcm− 2, polarizing the Pt ring electrode at 0.4 V vs. RHE for
promoting the oxygen reduction reaction (ORR). The faradaic oxygen
efficiency ε was estimated using the following expression: ε = (4/nORR)⋅
iring/(N⋅idisk), where nORR indicates the number of electrons transferred
per O2 molecule (nORR = 4 for the Pt ring), N is the RRDE collection
efficiency (0.248).

2.4. MEA preparation and AEMWE tests

The tests in AEMWE were carried out using Pt/C as the cathode
catalyst, while NiFeP-PBA, NiFe-PBA, and IrO2 were used at the anode.
The cathodes were made by spraying a catalytic ink based on Pt/C (40
wt% platinum on carbon, Alfa-Aesar) with 20 wt% FAA3 as ionomer
(Fumion FAA-3-SOLUT-10, 10 wt% in N-methyl-2-pyrrolidone, Fuma-
Tech) onto a Sigracet 39 BC gas diffusion electrode to a Pt loading of
0.23 mg cm− 2.

The anodes were prepared by spraying the catalytic ink based on
either IrO2, NiFe-PBA, or NiFeP-PBA (20 % wt.% FAA3 ionomer)
directly onto the anion exchange membrane (Fumasep® anionic mem-
brane, FAA3-50, FumaTech) to obtain a catalyst-coated membrane
(CCM). The catalyst loading was 1.6 for IrO2 and 2 mg cm− 2 for NiFe-
PBA and NiFeP-PBA. The CCM was coupled with a Ni-fibre matrix
(2Ni06-20, Bekaert) sheet to act as a porous transport layer at the anode
side.

The cathode and CCM-membrane were combined into a Membrane-
Electrode Assembly (MEA) by hot pressing (2.5 MPa, 60 ◦C, 5 min).
Before testing, the MEA (bromide form) was exchanged using a 1M KOH
aqueous solution for 1 h, as previously reported. [91,92] Electro-
chemical characterizations were then carried out in a single-cell
configuration (5 cm2 geometric area of the electrodes) at 60 ◦C and at-
mospheric pressure. An aqueous electrolyte solution was supplied to the
anode and the cathode sides (0.1–1 M KOH) with a flow rate of 6 mL
min− 1. Electrochemical measurements for AEMWE were carried out
using a PGSTAT302N potentiostat–galvanostat equipped with a 20 A
booster (Metrohm). Polarization curves were obtained by varying the
current from 0 to 1.6 A cm− 2 and measuring the cell voltage. Electro-
chemical impedance spectroscopy (EIS) analysis was used to determine
the cell resistances. EIS was performed under potentiostatic conditions
at a cell voltage of 1.5 V, in a frequency range of 1000 – 0.01 Hz, using
frequency sweeps in single sinusoidal mode. Durability tests were car-
ried out in 0.1M KOH (changing it with a fresh electrolyte every 50 h) by
setting a potential of 1.8 V and measuring the current over time.

3. Results and discussion

NiFe-PBA and NiFeP-PBA were obtained via a mild aqueous phase
precipitation method, followed by thermal stabilization and phosphorus
doping. First, a M[M’(CN)6] precursor was obtained, using nickel(II)
acetate as an M source and hexacyanoferrate(III) anion as M’(CN)6
source, in the presence of trisodium citrate for promoting the ion ex-
change process and precipitation of Ni3[Fe(CN)6]2 (NiFe-PBA-precur-
sor). Thermal stabilization was carried out at 350 ◦C in an inert
atmosphere without and with sodium hypophosphite, obtaining NiFe-
PBA and the P-enriched analogous NiFeP-PBA.

Fig. 1shows SEM and TEM images of NiFe-PBA-precursor, NiFe-PBA,
and NiFeP-PBA, revealing the effect of heat treatment on the NiFe-PBA
precursor at a morphological and compositional level. As can be seen in
Fig. 1a, the NiFe-PBA-precursor is characterized by a cubic shape with
edges of 150 nm; the cubic morphology is preserved even after the heat

treatment, as indicated by SEM images of NiFe-PBA and NiFeP-PBA
(Fig. 1b and 1c, respectively). Based on the thermogravimetric anal-
ysis reported in Fig. S2, 350 ◦C as heat treatment temperature allows
removing the thermally unstable phases while preserving the structure
of the NiFe-PBA-precursor. In agreement with previous works investi-
gating the effect of temperature on the catalytic activity of PBA-based
compounds towards OER, the heat treatment is expected to promote
the exposure of active sites, significantly improving the material’s sta-
bility [93]. SEM images of NiFe-PBA and NiFeP-PBA revealed the
presence of homogeneous cubic nanoparticles, which were studied in
more detail by transmission electron microscopy (TEM).

Fig. 1d and 1 g show TEM images of NiFeP-PBA and NiFe-PBA,
respectively, indicating that the cubic nanoparticles are formed by ag-
glomerates of smaller particles of homogeneous dimensions of approx-
imately ~30-40 nm, corresponding to the lighter areas in HAADF
images (Fig. 1f and 1i) and consist of NiP- and Ni-based (violet and red
dashed areas respectively) and NiFeP and NiFe-based nanoparticles
(green and yellow dashed area). At higher magnifications (Fig. 1e and 1
h), the nanoparticles in NiFeP-PBA appear to be more sharply defined
than in NiFe-PBA. TEM-HAADF analysis also confirmed the effectiveness
of P-functionalization in the NiFeP-PBA sample. In particular, as indi-
cated by the red arrows in Fig. 1e, the NiFeP-PBA sample shows a thin
outer layer formation, which can be traced back to P. This finding can be
explained since phosphine gas is released upon the thermal decompo-
sition of sodium hypophosphite, covering the NiFe-BPA structure as
previously highlighted by previous works reporting similar P-function-
alization methods. [48,94,95]

Elemental analysis carried out on the samples indicated that carbon
content is less than 4 wt%. The Ni, Fe, and P content in the samples was
evaluated through Inductively Coupled Plasma Optical Emission Spec-
troscopy (ICP-OES) analysis and reported in Table 1.

In both samples, the Ni/Fe molar ratio is 3:2, in agreement with Ni
(II)[Fe(III)(CN)6]2/3 crystal structure. The XRD patterns of NiFe-PBA-
precursor, NiFe-PBA, and NiFeP-PBA are shown in Fig. 2. The dif-
fractogram of the NiFe-PBA-precursor corresponds to the pattern of the
Ni3[Fe(CN)6]2⋅H2O face-centered cubic crystal structure (JCPDS sheet

Table 1
Ni, Fe, and P content in NiFe-PBA and NiFeP-PBA samples.

Sample Ni (wt.%) Fe (wt.%) P (wt. %)

NiFe-PBA 27.0 ± 0.2 17.3 ± 0.7 −

NiFeP-PBA 26.3 ± 0.1 16.6 ± 0.3 11.6 ± 0.1

Fig. 2. X-ray diffractograms of NiFe-PBA-precursor, NiFe-PBA, and NiFeP-PBA.
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No. 96–151-6493). As already predicted by TGA analysis (Fig. S2), after
thermal treatment, NiFe-PBA and NiFeP-PBA partially retain the crys-
tallinity of the precursor, as can be seen from the peaks at 2θ = 17.4,
24.6, and 35.1◦, but secondary metal phases were also observed. [87]
The NiFe-PBA sample shows the presence of a nickel ferrite (NiFe2O4)
phase (JCPDS sheet No. 96–901-0942) at 2θ = 18.6, 20.8, and 39.3◦ and
an iron (II, III) oxide (Fe3O4) phase (JCPDS sheet No. 96–901-4005) as
can be seen from the peak at 2θ = 27.9 ◦. Additionally, the presence of Ni
(0) (JCPDS 96–901-0942) at 2θ = 44.6 ◦ confirms the presence of
metallic Ni, previously observed in HAADF-STEM analysis (Fig. 1i). The
XRD pattern of NiFeP-PBA shows the presence of phosphorus (P) (JCPDS
sheet No. 96–154-1405) at 2θ = 31.4◦. P-Ni and P-Fe phases are also
observed as evidenced by Ni2P nickel phosphide (JCPDS sheet no.
96–153-3385) at 2θ = 40.7, 47.8◦ (consistent with HAADF-STEM anal-
ysis Fig. 1f) and FeP (JCPDS sheet no. 96–152-8059) at 2θ = 48.3◦.

The surface stoichiometry of NiFe-PBA and NiFeP-PBA catalysts was
determined by XPS (Fig. 3). Fig. 3a reveals the XPS survey spectra,
indicating the presence of C, N, O, Fe, and Ni in NiFe-PBA and NiFeP-
PBA, the latter including the presence of P. The deconvolution of Ni
2p3/2, Fe 2p3/2, and P 2p peaks are shown in Fig. 3b-d to investigate the
element speciation. Table S1-3 shows the relative percentage of Ni, Fe,
and P species and the associated binding energy (BE) obtained from the
high-resolution XPS spectra of Ni 2p3/2, Fe 2p3/2, and P 2p.

STEM images in Fig. S3a and S3c show the lattice fringes corre-
sponding to NiP and P domains for the NiFeP-PBA sample, and Ni(0) and
NiFe2O4 for the NiFe-PBA sample. The selected area electron diffraction
(SAED) patterns are shown in Fig. S3b and S3d, corroborating the
polycrystalline nature of both NiFe-PBA and NiFeP-PBA, as highlighted
by HAADF-STEM images in Fig. 1, and XRD analysis (Fig. 2). Compared

to the bulk crystal structure observed by XRD, SAED patterns indicate
that the arrangement of atoms on the near surface is slightly more
amorphous, as envisaged from the wider broadening of the concentric
circles. This effect is related to the heat treatment, particularly evident in
NiFeP-PBA sample, where the reduced presence of lattice interference
patterns suggests the homogeneous presence of an amorphous phos-
phorus layer.

Ni(II) was observed at 855.3 eV in the NiFe-PBA sample, which
agrees with the presence of nickel ferrite (NiFe2O4) as revealed by XRD
analysis. The Ni 2p3/2 deconvolution of NiFe-PBA also indicated the
presence of Ni(0) at BE of 852.3 eV. This phase is associated with metal
Ni and Ni-Fe alloy phases, in good agreement with XRD and HAADF-EDS
analysis. The NiFeP-PBA sample shows the presence of Ni(II) (856.6 eV),
with a minor contribution of Ni(III) (862.3 eV). The formation of Ni-P
bonds, evident from HAADF-EDS and XRD analysis, was confirmed by
the deconvoluted Ni 2p peaks at 852.9 eV.

For NiFeP-PBA and NiFe-PBA, iron is mainly distributed as Fe (III),
with a lower percentage of Fe (II), confirming the partial preservation of
the structure of the starting NiFe-PBA-precursor. NiFe-PBA also indi-
cated the presence of Fe (0), which can be observed from the peak at
707.4 eV BE, while the occurrence of Fe-P bonds is evident for the NiFeP-
PBA sample.

Deconvolution of the P 2p spectrum shows the presence of the peaks
associated with P 2p3/2 and P 2p1/2 at 128.8 eV and 129.8 eV, as well as
the presence of C-P / P-O (132.7 eV and 133.7 eV, respectively) and C-O-
P (134.7 eV and 135.7 eV), compatible with phosphide, phosphorus
oxide, and phosphorus bound to the partially preserved structure of the
NiFe-PBA-precursor.[96–98]

Fig. 4 shows the electrochemical characterization of the NiFe-PBA

Fig. 3. XPS survey scans of NiFe-PBA and NiFeP-PBA (a), deconvoluted high-resolution XPS spectra for Ni 2p (b), Fe 2p (c), and P 2p (d).
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and NiFeP-PBA samples in a half-cell configuration using 1.0 M KOH as
an electrolyte solution, and a performance comparison with literature
data obtained for similar PGM-free catalysts. Hydrodynamic voltam-
metry with RDE was carried out to evaluate the OER activity of the
NiFeP-PBA and NiFe-PBA samples, and Fig. 4a shows the polarization
curves of NiFeP-PBA and NiFe-PBA compared with that of IrO2 catalyst
that represents, together with RuO2, the benchmark electrocatalysts for
OER.[99] Potential values at 10 mA cm− 2 current density of (EJ10) are
1.47 V and 1.52 V vs. RHE for NiFeP-PBA and NiFe-PBA, respectively.
Both values outperformed the activity of the commercial IrO2, which
instead has an EJ10 = 1.61 V vs. RHE. The NiFeP-PBA showed a
decreased overpotential for OER (50 mV) compared to NiFe-PBA, sug-
gesting that P-functionalization boosts OER activity. As previously
observed by Grimaud and coworkers, the anchoring of P sites on the
active electrocatalytic interface promotes the oxidation of OH– with the
formation of the O-O bond by promoting interfacial transfer kinetics
within the Helmholtz plane. [100,101].

The Tafel analysis (Fig. 4b) indicated two slopes for both catalysts:
one around~40mV dec-1 (37.6 mV dec-1 for NiFe-PBA and 42.9mV dec-
1 for NiFeP-PBA) and another one around~118mV dec-1 (106.5mV dec-
1 for NiFe-PBA and 124.1 mV dec-1 for NiFeP-PBA). The first slope can be
associated with the dominant surface coverage of M at low over-
potential, where M is the active site (Step A: M* → MOH*), while the
other is associated with oxygen deprotonation (Step B: MOH* → MO).
This indicates a dependence on the surface coverage phase of M (step A),
which requires high energy to form a new bond with oxygen. Step A, the
rate-determining step is followed by favorable deprotonation (Step B).
[102,103] Based on the similar values of Tafel slopes of NiFe-PBA and
NiFeP-PBA, P-functionalization did not alter the OERmechanism, which

resulted in the same for NiFe-PBA and NiFeP-PBA.
The gravimetric capacitance of the two materials was calculated

from the cyclic voltammograms shown in Fig. S4, according to Eq. (2),
resulting 7.12 mFmg− 1 and 5.12 mFmg− 1 for NiFeP-PBA and NiFe-PBA,
respectively. Considering a value of 0.04 mFcm− 2, ECSA resulted 17.8
m2 g− 1 and 13.0 m2 g− 1 for NiFeP-PBA and NiFe-PBA respectively.
Those values are in agreement with other previously reported works
dealing with similar materials.[109,110] The slightly higher ECSA of
NiFeP-PBA than NiFe-PBA is coherent with the improved electro-
chemical activity of the P-functionalized sample. The Nyquist plots ob-
tained by EIS and shown in Fig. S5 also confirm this trend. The first
semicircle at higher frequencies is associated with electron transfer
phenomena, as in the case of IrO2, the second semicircle is associated
with mass transfer of OH–, OOH– functional species for the OER reac-
tion.[111–113] P-functionalization allows for reducing both charge-
transfer and mass-transfer resistances; this is also reflected in the
higher faradic efficiency (ε) of NiFeP-PBA than NiFe-PBA. ε was evalu-
ated by chronoamperometry (Fig. S6), being ε = 83 % for NiFeP-PBA
and ε = 42 % NiFe-PBA.

Half-cell durability tests, shown in Fig. 4c, were performed by
chronopotentiometry at 10 mA cm− 2 under dynamic conditions (1600
rpm).[89] During the first two hours, η at 10 mA cm− 2 (ηJ10) decreases
for both samples (~23 % for NiFe-PBA and ~17 % for NiFeP-PBA) fol-
lowed by an increase after 6 h for NiFe-PBA, while for NiFeP-PBA ηJ10 is
maintained stable with only a slight increase after 10 h. The initial
decrease can be attributed to the activation of the catalyst surface, which
enhances the electrochemical kinetics as active sites become available.
This phenomenon is often observed in the early stages of testing, where
forming a thin layer of oxides or oxyhydroxides on the catalyst surface

Fig. 4. (a) Polarization curves of IrO2, NiFe-PBA, and NiFeP-PBA at 10 mVs− 1, 1600 rpm in 1 M KOH; (b) Tafel slope of NiFeP-PBA, NiFe-PBA, and IrO2, (c)
chronopotentiometry test at 10 mA cm− 2 under dynamic conditions (1600 rpm), and (d) literature performance comparison (η@10, 50, 100 mA cm− 2) for similar
systems: NiFeP [104], Ni-Fe LDH [105], NiCoP [106], CoFe-LDH [107], Fe-Ni MOF [108], CoP-NC [94].
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increases catalytic activity. [114] As the test progresses, steady behavior
indicates the active sites’ stabilization, followed by only a slight increase
after 6 h for NiFe-PBA and 10 h for NiFeP-PBA. By contrast, the rapid
and immediate increase in overpotential in the case of IrO2 indicates a
significant material degradation in agreement with the literature.
[79,80]

Fig. 4d shows a literature comparison of OER overpotential (η) at
different current densities (10, 50, 100 mA cm− 2) with that of NiFeP-
PBA reported in this work. In the literature landscape about OER elec-
trocatalysts for AEMWEs, we can observe how the NiFeP-PBA catalyst is
well-positioned regarding OER overpotential and electrocatalytic
activity.

Based on the competitive electrochemical performance of NiFeP-PBA
and NiFe-PBA, the catalysts were assembled at the anode of the AEMWE
equipped with commercial Pt/C (40 wt. % ) at the cathode of the single
cell equipment, and a FAA3-50 Fumasep ®. Schematics of AEMWE as-
sembly is shown in Fig. 5a.

Fig. 5b shows the polarization curves for NiFeP-PBA, NiFe-PBA, and
IrO2. The resulting trend is similar to those obtained in the half-cell tests.
In fact, at 1.8 V, the NiFeP-PBA sample achieves a current density of 0.40
A cm− 2, while the current density for the MEAs equipped with NiFe-PBA
and IrO2 anode catalysts are 0.26 and 0.22 A cm− 2, respectively. In
agreement with the Nyquist plots acquired in a half-cell configuration
previously discussed in Fig. S5, the NiFeP-PBA exhibits polarization
lower resistance (0.63 Ω cm2) than NiFe-PBA (1.8 Ω cm2), as highlighted
by Nyquist plots obtained by EIS analysis under AEMWE operation
(Fig. S7).

Fig. 5c shows the polarization curves of the NiFeP-PBA using
different KOH concentrations (0.1 to 1 M). When KOH concentration is
decreased, there is only a moderate decrease in electrochemical per-
formance: the current density at 1.8 V decreased only about 40 % when
the electrolyte concentration decreased by one order of magnitude.

Therefore, a KOH concentration of 0.1 M was selected for further tests.
Table 2 reports a comparison of the electrochemical performance of

NiFeP-PBA at the anode of an AEMWE with those previously obtained in
literature for similar Ni-based electrocatalysts. This comparison high-
lights that the electrochemical performance of NiFeP-PBA prepared in
this work is well aligned with previously published results, enabling
high electrochemical performance at low electrolyte concentration.

Changes in morphology and structure of NiFeP-PBA and NiFe-PBA
were evaluated after 1 h of AEMWE operation at 1.8 V with 0.1 M
KOH. The anode catalysts were partially recovered and subjected to SEM
and HAADF-STEM analyses (Fig. 6). The relative weight percent of O, P,
Ni, and Fe as obtained from EDS analysis is also reported in Fig. 6 as pie
and bar charts. After assembling the NiFe-PBA and NiFeP-PBA in MEAs,
the material’s morphology differs from that shown in Fig. 1. This is due
to the residual ionomer’s presence and the morphological changes
induced by MEA preparation conditions (ink’s sonication, hot pressing,
and oxidative stress at 60 ◦C). [123–126]

Overall, SEM images show that all samples exhibit needle-like
structures homogeneously dispersed in the material (Fig. 6a-b).
HAADF-STEM images show that the NiFeP-PBA (Fig. 6c) has the most
pronounced needle presence compared with NiFe-PBA (1 h) (Fig. 6d).
The EDS analysis reveals that the needle-like structures can be ascribed
to Ni phases, as seen in zones A (Fig. 6c) and B and C (Fig. 6d). In
addition, iron aggregates (~30-40 nm) were observed. These iron pha-
ses are attributable to iron oxide nanoparticles formed during OER ac-
tivity of the catalyst in contact with the electrolyte, as proposed by
Schlögl et al.[126] Interestingly, EDS analysis of SEM images indicated
that the 3:2 Ni:Fe weight ratio is maintained after assembling the cat-
alysts in the MEA, and the P presence can be detected in the NiFeP-PBA
sample.

The NiFeP-PBA sample was subjected to further long-term durability
tests, recording current density at 1.8 V over 100 h (Fig. 7a).

Fig. 5. (a) Schematics of an AEMWE assembly, (b) Polarization curves of NiFeP-PBA, NiFe-PBA, and IrO2 samples (0.1 M KOH), (c) polarization curves of NiFeP-PBA
at different KOH concentrations (0.1–1.0 M).

Table 2
Comparison of current density values obtained in this work and in the literature for AEMWEs equipped with PGM-free OER catalysts at the anodes.

AEM Anode/Cathode (loading) catalysts [KOH]
(M)

J (A cm¡2)
@1.8 V

J (A cm¡2)
@2 V

T (◦C) Ref.

FAA-3–50 IrO2 (1.6 mg cm¡2) / Pt/C(40 %) (0.23 mg cm¡2) 0.1 0.22 0.79 60 This work
FAA-3–50 NiFe-PBA (2 mg cm2) / Pt/C(40 %) (0.23 mg cm¡2) 0.1 0.26 0.54 60 This work
FAA-3–50 NiFeP-PBA (1.9 mg cm¡2) / Pt/C(40 %) (0.23 mg cm¡2) 0.1 0.40 0.47 60 This work
FAA-3–50 NiFeP-PBA (1.9 mg cm¡2) / Pt/C(40 %) (0.23 mg cm¡2) 0.425 0.59 1.06 60 This work
FAA-3–50 NiFeP-PBA (1.9 mg cm¡2) / Pt/C(40 %) (0.23 mg cm¡2) 1 0.67 1.21 60 This work
FAA-3–50 NiFe2O4 (1.8 mg cm¡2)/ NiFeCo (2.7 mg cm¡2) 1 0.24  60 [115]
SustainionGrade T NiFe2O4 (1.8 mg cm¡2) /Raney nickel (14.8 mg cm¡2) 1 0.84  60 [115]
FAA-3–50 NiFeOOH (0.5 mg cm¡2) / Pt/C (0.4 mg cm¡2) 1  3.6 @1.9 V 70 [116]
FAA3-50 NiFeOx (3 mg cm2) / Pt/C (0.5 mg cm¡2) 1 1.5 2.4 60 [117]
FAA3-50 NiFe2O4 (2 mg cm¡2) / NiFeCo (2 mg cm¡2) 1 0.38  60 [118]
FAS-50 NiFe2O4 (1.8 mg cm¡2) / NiFeCo (2.7 mg cm¡2) 1 0.24  60 [118]
FAA3-50 g-CN-CNF-800 (6 mg cm¡2) / Pt/C(40 %) (0.4 mg cm¡2) 1  0.73@1.9 V 60 [119]
FAA3-50 NiMn2O4 (3 mg cm¡2) / (0.5 mg cm¡2) 1  0.530 80 [120]
FAA3-50 NiMn2O4/ CNF (2.5 mg cm¡2) / Pt/C(40 %) (0.5 mg cm¡2) 6 0.18  60 [121]
FAA3-50 NiCo2O4/CNF(3 mg cm¡2) / Pt/C(40 %) (0.5 mg cm¡2) 6 0.30  60 [121]
Sustanion NiFe2O4 / NiFeCo 1  1.6 60 [122]
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Fig. 6. SEM images of (a) NiFe-PBA, (b) NiFeP-PBA, and HAADF-STEM images of (c) NiFe-PBA, and (d) NiFeP-PBA after 1 h AEMWE operation with the corre-
sponding element atomic percentage.

Fig. 7. (a) Durability test: J@1.8 V over time for NiFeP-PBA, and (b) the corresponding polarization curves and EIS spectra at 1.5 V (inset) before (0 h) and after
(100 h) the durability test.
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The current density loss is about 12 % after 50 h and 28 % after 100
h. The loss of performance over time has also been observed in similar
systems, and this is not explicitly related to the anode catalyst itself but
to the system as a whole. [127] Some major critical factors are related to
the membrane used (in this case FAA-3–50 Fumasep®),[118] the ion-
omer binding agent, [128,129] pH, [130,131] electrolyte transport is-
sues,[132] and other factors specific to the setup itself. [125] In fact,
replacing the electrolyte with a fresh electrolyte after 50 h operation,
which is a standard practice in AEMWE testing [125,133], positively
influenced the test performance, which significantly improved (about
10 %) after the electrolyte change. This aspect indicates a partial
reversible degradation associated with the system, particularly the
electrolyte composition.

Polarization curves and EIS spectra were acquired before and after
the durability test (Fig. 7b), resulting in only an 8 % increase in total
polarization resistance, which allows for retaining up to 88 % current
density at 1.8 V after 100 h of AEMWE working, which can be consid-
ered as a promising and competitive result as compared to previous
published papers.[134,135] Therefore, NiFeP-PBA has demonstrated a
high OER activity in an alkaline environment, resulting in a good per-
formance in delivered current density and stability once assembled at
the anode of an AEMWE.

4. Conclusion

Mild aqueous precipitation of iron and nickel PBA analogues fol-
lowed by thermal stabilization in an inert gas atmosphere is a facile and
efficient strategy for preparing NiFe-PBA OER catalysts in AEMWE ap-
plications. As highlighted by SEM, TEM, XRD, and XPS analysis, the
thermal stabilization step enabled obtaining NiFe-based OER active sites
distributed as Fe3O4, NiFe2O4, and metal nickel, preserving the nano
cubic morphology of the Ni[Fe(CN)6]2/3 precursor structure. Imple-
menting the thermal treatment step with sodium hypophosphite allowed
P-functionalization and the formation of NiFeP-based active sites to
boost OER activity further. The electrochemical performances, evalu-
ated by LSV-RDE and chronopotentiometry experiments in a half-cell
configuration in 1 M KOH electrolyte, indicated EJ10 of 1.47 V for
NiFeP-PBA and 1.52 V vs. RHE for NiFe-PBA, with good performance
stability over time. These values surpassed the IrO2 performance used as
a benchmark (EJ10 = 1.61 V vs. RHE, huge stability loss).

Polarization curves obtained in the AEMWE (fuel-cell configuration)
reflected the same trend observed in the half-cell, and the NiFeP-PBA
sample delivered a current density of 1.21 A cm− 2 at 2 V (1 M KOH).
The electrochemical results were complemented by SEM and HAADF-
STEM of the NiFe-PBA-based samples after AEMWE operation, sug-
gesting a crucial role of PBA as catalyst precursor, thermal stabilization,
and P-doping in enhancing the electrocatalyst activity and stability of
the catalysts. The NiFeP-PBA, in addition to having better-performing
polarization curves than NiFe-PBA, showed promising results in terms
of stability by maintaining 88 % of the current density at 1.8 V after 100
h of operation in the AEMWE.
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