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FORMAL MULTIPARAMETER QUANTUM GROUPS,
DEFORMATIONS AND SPECIALIZATIONS

GASTÓN ANDRÉS GARCÍA♭ , FABIO GAVARINI ♯

Abstract. We introduce the notion of formal multiparameter QUEA — in short
FoMpQUEA — as a straightforward generalization of Drinfeld’s quantum group
Uℏ(g) . Then we show that the class of FoMpQUEAs is closed under deformations
by (“toral”) twists and deformations by (“toral”) 2–cocycles: as a consequence,
all “multiparameter formal QUEAs” considered so far are recovered, as falling
within this class. In particular, we prove that any FoMpQUEA is isomorphic to a
suitable deformation, by twist or by 2–cocycle, of Drinfeld’s standard QUEA.

We introduce also multiparameter Lie bialgebras (in short, MpLbA’s), and we
consider their deformations, by twist and by 2–cocycle. The semiclassical limit
of every FoMpQUEA is a suitable MpLbA, and conversely each MpLbA can be
quantized to a suitable FoMpQUEA. In the end, we prove that, roughly speaking,
the two processes of “specialization” — of a FoMpQUEA to a MpLbA — and of
“deformation (by toral twist or toral 2–cocycle)” — at the level of FoMpQUEAs
or of MpLbA’s — do commute with each other.
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1. Introduction

Quantum groups can be thought of, roughly speaking, as Hopf algebras depending
on one “parameter” such that, for a “special value” of this parameter, they turn
isomorphic either to the universal enveloping algebra of some Lie algebra g or to the
function algebra of some algebraic group G . In the first case the quantum group
is called “quantized universal enveloping algebra” (or QUEA in short) and in the
second “quantized function algebra” (or QFA in short).

Quite soon, people also began to introduce new quantum groups depending on
two or more parameters, whence the terminology “multiparameter quantum groups”
came in use: see, e.g., [BGH], [BW1], [BW2], [CM], [CV1], [CV2], [DPW], [GG1],
[HLT], [HPR], [Jn], [Kh], [KT], [Ma], [OY], [Re], [Su], [Tk] — and the list might be
longer. Nevertheless, one can typically describe a multiparameter quantum group so
that one single parameter stands “distinguished”, as the continuous one that can be
specialized. The other parameters instead (seen as discrete) parametrize different
structures on a common “socle” underlying the semiclassical limit of the quantum
group, that is achieved when the continuous parameter is specialized. Indeed, this
already occurs with one-parameter quantum groups: for example, the celebrated
Drinfeld’s QUEA Uℏ(g) associated with a complex, finite-dimensional, semisimple
Lie algebra g has a description where the continuous parameter ℏ bears the quanti-
zation nature of Uℏ(g) , while other discrete parameters, namely the entries of the
Cartan matrix of g , describe the Lie algebra structure on g itself.

In this paper we focus onto the study of multiparameter QUEAs; then it will
be possible to realize a parallel study and to achieve the corresponding results for
multiparameter QFA’s by suitably applying duality. Recall that QUEAs (and QFA’s
alike) are usually considered in two versions: the so-called “formal” one — dealing
with topological Hopf algebras over k[[ℏ]] — and the “polynomial” one — dealing
with Hopf algebras over a field K with some q ∈ K entering the game as parameter.

One of the first general examples of multiparameter QUEA, hereafter mentioned
as MpQUEA, was provided by Reshetikhin in [Re]. This extends Drinfeld’s definition
of Uℏ(g) to a new object UΨ

ℏ (g) that shares the same algebra structure of Uℏ(g) but
bears a new coalgebra structure, depending on a matrix Ψ that collects the new,
discrete parameters of UΨ

ℏ (g) . At the semiclassical limit, these new parameters
(hence Ψ) describe the new Lie coalgebra structure inherited by g from UΨ

ℏ (g) itself.
Note that UΨ

ℏ (g) is defined from scratch as being the outcome of a deformation by
twist of Drinfeld’s Uℏ(g) , using a twist of a specific type (that we shall call “toral”)
defined via Ψ . It follows that the class of all Reshetikhin’s MpQUEAs is stable
under deformation by toral twists, i.e. any such deformation of an object of this
kind is again an object of the same kind. Even more, this class is “homogeneous”,
in that each UΨ

ℏ (g) is nothing but a twist deformation of Drinfeld’s Uℏ(g) .
With a parallel approach, a polynomial version of Reshetikhin’s MpQUEAs was

introduced and studied by Costantini-Varagnolo: see [CV1], [CV2], and also [Ga1];
on the other hand, these works do not consider deformations. Alternatively, using
the duality with quantum coordinate algebras, two-parameters quantum envelopling
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algebras of polynomial type are considered in Dobrev-Parashar [DoP] and in Dobrev-
Tahri [DoT]. The effect of the twist can be seen in the description of the coproduct
after a change the presentation à la Drinfeld-Jimbo type.

In another direction, a different version of polynomial MpQUEA (still working
over g as above), call it Uq(g) , has been developed in the works of Andruskiewitsch-
Schneider, Rosso, and many others — see for instance [AS1], [AS2], [HPR], [Ro]. In
this case, the “multiparameter” is cast into a matrix q =

(
qij
)
i,j∈I whose entries

take part in the description of the algebra structure of Uq(g) . Under mild, additional
conditions, this yields a very general family of MpQUEAs which is very well-behaved:
in particular, it is stable under deformations by 2–cocycles of “toral” type. Even
better, this family is “homogeneous”, in that each Uq(g) is a 2–cocycle deformation
of Jimbo-Lusztig’s polynomial version Uq(g) of Drinfeld’s Uℏ(g) .

Note that, in Hopf theory, twist and 2–cocycle are notions dual to each other.
Thus the constructions of MpQUEAs by Reshetikhin and by Andruskiewitsch-
Schneider (besides the difference in being “formal” or “polynomial”) are somehow
dual to each other — and, as such, seem definitely different from each other.

The purpose of this paper is to introduce a new notion of MpQUEA that encom-
pass both Reshtikhin’s one and Andruskiewitsch-Schneider’s one. Indeed, we achieve
this goal introducing a new family of MpQUEAs which incorporates Andruskie-
witsch-Schneider’s one, hence in particular it includes Drinfeld’s standard example
(see Definition 4.2.2, Theorem 4.3.2 and §4.5). We show that this new family is stable
by toral 2–cocycle deformations (Theorem 5.2.12), just as Andruskiewitsch-Schnei-
der’s, and it is also stable by toral twist deformations (Theorem 5.1.4), hence it in-
corporates Reshetikhin’s family as well. In particular, we show that every MpQUEA
of the Reshetikhin’s family is actually isomorphic to one of the Andruskiewitsch-
Schneider’s family, and viceversa: the isomorphism is especially meaningful in itself,
in that it amounts to a suitable change of presentation via a well-focused change
of generators (see Theorem 5.1.4). In this sense, we really end up with a single,
homogeneous family — not just a collage of two distinct families; this can be seen
as a byproduct of the intrinsic “self-duality” of Drinfeld’s standard Uℏ(g) .
For each one of these MpQUEAs, then, one can decide to focus the dependence

on the discrete multiparameters either on the coalgebra structure (which amounts
to adopt Reshetikhin’s point of view) or on the algebra structure (thus following
Andruskiewitsch-Schneider’s approach). In our definition we choose to adopt the
latter point of view, as it is definitely closer to the classical Serre’s presentation of
U(g) — or even to the presentation of Drinfeld’s standard Uℏ(g) — where the discrete
multiparameters given by the Cartan matrix entries rule the algebra structure.

Technically speaking, we adopt the setting and language of formal quantum
groups, thus our newly minted objects are “formal MpQUEAs”, in short “FoM-
pQUEAs”. This is indeed a necessary option: in fact, the setup of polynomial
MpQUEAs is well-suited when one deals with (toral) 2–cocycle deformations, but
behaves quite poorly under deformations by (toral) twists. Roughly speaking, the
toral part in a polynomial MpQUEA (in the sense of Andruskiewitsch-Schneider,
say) happens to be too rigid, in general, under twist deformations; this is shown in
our previous paper [GG2], where we pursued the same goal by means of “polynomial
MpQUEAs”, which eventually prove to be a somewhat less suitable tool.
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Thus, one needs to allow a more flexible notion of “toral part” in our would-be
MpQUEA in order to get a notion that is stable under deformation by (toral) twists.
We obtain this by choosing to define our formal MpQUEA as having a toral part
with two distinguished sets of “coroots” and “roots”, whose mutual interaction is
encrypted in a “multiparameter matrix” P whose role generalizes that of the Cartan
matrix. We formalize all this via the notion of realization of the matrix P , which
is a natural extension of Kac’ notion of realization of a generalized Cartan matrix
(cf. Definition 2.1.2); our FoMpQUEA then is defined much like Drinfeld’s standard
one, with the entries of P playing the role of discrete multiparameters.

By looking at semiclassical limits, we find that our new class of FoMpQUEAs
gives rise to a new family of multiparameter Lie bialgebras (in short MpLbA’s) that
come equipped with a presentation “à la Serre” in which the parameters — i.e., the
entries of P , again — rule the Lie algebra structure (cf. §3.2.3). Again, we prove
that this family is stable by deformations — in Lie bialgebra theoretical sense —
both via “toral” 2–cocycles and via “toral” twists (see Theorem 3.4.3 and Theo-
rem 3.3.3). In particular, every such MpLbA admits an alternative presentation in
which the Lie algebra structure stands fixed (always being ruled by a fixed gener-
alized Cartan matrix) while the Lie coalgebra structure does vary according to the
multiparameter matrix P . Like in the quantum setup, the isomorphism between the
two presentations is quite meaningful, as it boils down to a well-chosen change of
generators (cf. Theorem 3.3.3). The very definition of these MpLbA’s, as well as the
just mentioned results about them, can be deduced as byproducts of those for FoM-
pQUEAs (via the process of specialization); otherwise, they can be introduced and
proved directly; in short, we do both (cf. §3 and Theorem 6.1.4). These MpLbA’s
were possibly known in literature, at least in part: yet our construction yields a
new, systematic presentation of their whole family in its full extent, also proving its
stability under deformations by both (toral) 2–cocycles and (toral) twists.

As a final, overall comment, we recall that a close relation between multiparame-
ters and deformations is ubiquitous in several applications, e.g. in the classification of
complex finite-dimensional pointed Hopf algebras over abelian groups [AS2], [AGI]
— where deformations by 2–cocycle play a central role. Moreover, MpQUEAs may
also serve as interpolating objects in the study of the representation theory of quan-
tum groups associated with Langlands dual semi-simple Hopf algebras [FH] — where
deformations by twist instead are a key tool.

A last word about the organization of the paper.
In section 2, we introduce the “combinatorial data” underlying our constructions

of MpLbA’s and FoMpQUEAs alike: the notion of realization of a multiparameter
matrix, and the process of deforming realizations either by twists or by 2–cocycles.

In section 3 we introduce our MpLbA’s and study their deformations by (toral)
twists and by (toral) 2–cocycles.

Section 4 is dedicated to introduce our newly minted FoMpQUEAs, in particular
using different, independent approaches, and to prove their basic properties.

With section 5 we discuss deformations of FoMpQUEAs by (toral) twists and by
(toral) 2–cocycles: we prove that these deformations turn FoMpQUEAs into new
FoMpQUEAs again, the case by twist being possibly the more surprising.
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Finally, in section 6 we perform specializations of FoMpQUEAs and look at their
resulting semiclassical limit: we find that this limit is always a MpLbA (in short,
by the very definition of MpLbA’s), with the same multiparameter matrix P as the
FoMpQUEA it comes from. Conversely, any possible MpLbA does arise as such a
limit — in other words, any MpLbA has a FoMpQUEA which is quantization of it.
Then — more important — we compare deformations (by toral twists or 2–cocycle)
before and after specialization: the outcome is, in a nutshell, that “specialization
and deformation (of either type) commute with each other” (cf. Theorem 6.2.2 and
Theorem 6.2.4). In fact, this last result can be deduced also as a special instance of a
more general one, which in turn is an outcome of a larger study about deformations
(of either type) of formal quantum groups — i.e., Drinfeld’s-like QUEAs and their
dual, the so-called QFSHA’s — and of their semiclassical limits. This is a more
general chapter in quantum group theory, with its own reasons of interest, thus we
shall treat it in a separate publication — cf. [GG3].
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2. Multiparameters and their realizations

In this section we fix the basic combinatorial data that we need later on. The
definition of our multiparameter Lie bialgebras and formal multiparameter quantum
groups requires a full lot of related material that we now present. In particular,
N = {0, 1, . . .} and N+ := N \ {0} , while k will be a field of characteristic zero.

2.1. Multiparameter matrices, Cartan data, and realizations.

We introduce hereafter the “multiparameters”, which we will use to construct
(semi)classical and quantum objects as well. The theory can be developed more in
general, but we stick to the case of “Cartan type” as more relevant to us; accordingly,
this will keep us close to the common setup of Lie algebras of Kac–Moody type, in
particular those whose Cartan matrix is symmetrisable.

2.1.1. Cartan data and associated Lie algebras. Hereafter we fix n ∈ N+

and I := {1, . . . , n} . Let A :=
(
aij
)
i,j∈I be a generalized, symmetrisable Cartan

matrix; then there exists a unique diagonal matrix D :=
(
di δij

)
i,j∈I with positive

integral, pairwise coprime entries such that DA is symmetric. Let g = gA be the
Kac-Moody algebra over C associated with A (cf. [Ka]); we consider a split integral
Z–form of g , and for the latter the scalar extension from Z to any field k : by abuse
of notation, the resulting Lie algebra over k will be denoted by g again.
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Let Φ be the root system of g , with Π =
{
αi | i ∈ I

}
as a set of simple roots,

Q =
⊕

i∈I Zαi the associated root lattice, Φ+ the set of positive roots with respect
to Π , Q+ =

⊕
i∈I Nαi the positive root (semi)lattice.

Fix a Cartan subalgebra h of g , whose associated set of roots identifies with
Φ (so kQ ⊆ h∗ ); then for all α ∈ Φ we call gα the corresponding root space.
Now set h′ := g′ ∩ h where g′ := [g , g] is the derived Lie subalgebra of g : then(
h′
)∗

= kQ ⊆ h∗ . We fix a k–basis Π∨ :=
{
hi := α∨

i

}
i∈I of h′ so that

(
h ,Π ,Π∨ )

is a realization of A , as in [Ka, Chapter 1]; in particular, αi(hj) = aji for all i, j ∈ I .
Let h′′ be any vector space complement of h′ inside h . Then there exists a unique

symmetric k–bilinear pairing on h , denoted ( , ) , such that (hi , hj) = aij d
−1
j ,

(hi , h
′′
2) = αi

(
h′′2
)

and (h′′1 , h
′′
2) = 0 , for all i, j ∈ I , h′′1, h

′′
2 ∈ h′′ ; in addi-

tion, this pairing is invariant and non-degenerate (cf. [Ka, Chapter 2]). By non-

degeneracy, this pairing induces a k–linear isomorphism t : h∗
∼=−−→ h , and this

in turn defines a similar pairing on h∗ , again denoted ( , ) , via pull-back, namely(
t−1(h1), t

−1(h2)
)
:= (h1 , h2) ; in particular, on simple roots this gives (αi , αj) :=

di aij for all i, j ∈ I . In fact, this pairing on h∗ restricts to a (symmetric, Z–valued,
Z–bilinear) pairing on Q ; note that, in terms of the latter pairing on Q , one has

di = (αi , αi)
/
2 and aij =

2 (αi, αj)

(αi, αi)
( i, j ∈ I ). Moreover t : h∗

∼=−−→ h restricts to

another isomorphism t′ :
(
h′
)∗ ∼=−−→ h′ for which we use notation tα := t′(α) = t(α) .

Let n+ , resp. n− , be the nilpotent subalgebra in g containing all positive, resp.
negative, root spaces, and set b± := h⊕n± be the corresponding Borel subalgebras.
There is a canonical, non-degenerate pairing between b+ and b− , using which one
can construct aManin double gD = b+⊕b− , automatically endowed with a structure
of Lie bialgebra — roughly, gD is like g but with two copies of h inside it (cf. [CP],
§1.4), namely h+ := h⊕ 0 inside b+ and h− := 0⊕ h inside b− ; accordingly, we set
h′+ := h′ ⊕ 0 and h′− := 0 ⊕ h′ . By construction both b+ and b− lie in gD as Lie
sub-bialgebras. Moreover, there exists a Lie bialgebra epimorphism πgD : gD−−↠ g
which maps the copy of b± inside gD identically onto its copy in g .

For later use we fix generators ei, hi, fi ( i ∈ I ) in g as in the usual Serre’s presen-
tation of g . Moreover, for the corresponding elements inside gD = b+⊕b− we adopt
notation ei := (ei, 0) , h+

i := (hi, 0) , h−
i := (0, hi) and fi := (0, fi) , for all i ∈ I .

Notice that we have by construction

ei ∈ g+αi
, hi = d−1

i tαi
∈ h , fi ∈ g−αi

∀ i ∈ I

In sight of applications to Lie theory, we introduce, mimicking [Ka, Ch. 1], the
notion of realization of a multiparameter matrix:

Definition 2.1.2. Let ℏ be a formal variable, and k[[ℏ]] the ring of formal power
series in ℏ with coefficients in k . Let h be a free k[[ℏ]]–module of finite rank, and pick
subsets Π∨ :=

{
T+
i , T

−
i

}
i∈I ⊆ h , and Π :=

{
αi
}
i∈I ⊆ h∗ := Homk[[ℏ]]

(
h ,k[[ℏ]]

)
.

For later use, we also introduce the elements Si := 2−1
(
T+
i + T−

i

)
and Λi :=

2−1
(
T+
i − T−

i

)
(for i ∈ I ) and the sets Σ :=

{
Si
}
i∈I⊆ h and Λ :=

{
Λi
}
i∈I⊆ h .

Let P ∈Mn

(
k[[ℏ]]

)
be any (n× n)–matrix with entries in k[[ℏ]] .



FORMAL MULTIPARAMETER QUANTUM GROUPS 7

(a) We call the triple R :=
(
h ,Π ,Π∨ ) a realization of P over k[[ℏ]], with

rank defined as rk(R) := rkk[[ℏ]](h) , if:

(a.1) αj
(
T+
i

)
= p ij , αj

(
T−
i

)
= pj i , for all i, j ∈ I ;

(a.2) the set Σ :=
{
Si := Si (mod ℏ h )

}
i∈I is k–linearly independent in

h := h
/
ℏ h — N.B.: this is equivalent to saying that Σ itself can be completed to

a k[[ℏ]]–basis of h , hence in particular Σ is k[[ℏ]]–linearly independent in h .

(b) We call a realization R :=
(
h ,Π ,Π∨ ) of the matrix P , respectively,

(b.1) straight if the set Π :=
{
αi := αi (mod ℏ h∗)

}
i∈I is k–linearly indepen-

dent in h∗ := h∗
/
ℏ h∗ — N.B.: this is equivalent to saying that Π can be completed

to a k[[ℏ]]–basis of h∗ , thus in particular Π is k[[ℏ]]–linearly independent in h∗ ;

(b.2) small if Spank[[ℏ]]
(
{Si}i∈I

)
= Spank[[ℏ]]

({
T+
i , T

−
i

}
i∈I

)
;

(b.3) split if the set Π∨ :=
{
T±

i := T±
i (mod ℏ h )

}
i∈I is k–linearly indepen-

dent in h := h
/
ℏ h — N.B.: this is equivalent to saying that Π∨ can be completed

to a k[[ℏ]]–basis of h , hence in particular it is k[[ℏ]]–linearly independent in h ;

(b.4) minimal if Spank[[ℏ]]
({
T+
i , T

−
i

}
i∈I

)
= h — N.B.: in particular, R is

split and minimal if and only if
{
T+
i , T

−
i

}
i∈I is a k[[ℏ]]–basis of h .

(c) For any pair of realizations R :=
(
h ,Π ,Π∨ ) and Ṙ :=

(
ḣ , Π̇ , Π̇∨ ) of the

same matrix P , a (homo)morphism ϕ : R −→ Ṙ is the datum of any k[[ℏ]]–module

morphism ϕ : h −→ ḣ such that ϕ
(
T±
i

)
= Ṫ±

σ(i) (for all i ∈ I ) for some permutation

σ ∈ SI — the symmetric group over I — hence, in particular, ϕ
(
Π∨) = Π̇∨ , and

also that ϕ∗(Π̇) = Π — N.B.: realizations along with their morphisms form a
category, in which the iso–/epi–/mono–morphisms are those morphisms ϕ as above
that actually are k[[ℏ]]–module iso–/epi–/mono–morphisms.

(d) Let A :=
(
aij
)
i,j∈I ∈ Mn(k) be any symmetrisable generalized Cartan ma-

trix, and D :=
(
di δij

)
i,j∈I the associated diagonal matrix, as in §2.1.1. We say that

a matrix P ∈ Mn(k[[ℏ]]) is of Cartan type with corresponding Cartan matrix A if
Ps := 2−1

(
P + P T

)
= DA .

N.B.: condition (b.3) is equivalent to requiring that Σ ∪ Λ be k–linearly inde-

pendent in h := h
/
ℏ h ; in turn, this is equivalent to saying that Σ∪Λ itself can be

completed to a k[[ℏ]]–basis of h , hence in particular it is k[[ℏ]]–linearly independent.
Similarly, the condition ϕ

(
T±
i

)
= Ṫ±

σ(i) — i ∈ I , for some permutation σ ∈ S(I)
— in (c) can be replaced by ϕ(Si) = Ṡσ(i) and ϕ(Λi) = Λ̇σ(i) .

(e) In an entirely similar way, one may define realizations of a matrix P :=(
pi,j
)
i,j∈I ∈ Mn(k) over a ground field k . Such a realization R :=

(
h ,Π ,Π∨ )

consists of a k–vector space h and distinguished subsets Π∨ :=
{
T+
i , T

−
i

}
i∈I ⊆ h

and Π :=
{
αi
}
i∈I ⊆ h∗ := Homk

(
h ,k

)
: then condition (a.1) reads the same, while

(a.2) instead says that the set
{
Si = 2−1

(
T+
i + T−

i

) }
i∈I is linearly independent,
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and the rank of the realization is rk(R) := dimk(h) . Also, R is straight, resp. split,
if Π , resp. Π∨, is linearly independent.
Basing on the context, we shall possibly stress the ring we are working over,

namely k[[ℏ]] for P ∈Mn

(
k[[ℏ]]

)
and the field k for P ∈Mn(k) . ♢

Remark 2.1.3. In the present language, if P = P T is symmetric a realization of
it in the sense of [Ka, Ch. 1, §1.1], is also a realization, in the sense of Definition
2.1.2, of P which has rank 2n− r , is straight and small with Λi = 0 for all i ∈ I .

The following consequence of the definitions yields another link with Kac’ notion:

Lemma 2.1.4. Let P ∈Mn(k[[ℏ]]) be a matrix as above. If R :=
(
h ,Π ,Π∨ ) is

a straight realization of P , then the triple
(
h ,Π ,Π∨

S

)
— with Π∨

S := {Si}i∈I — is

a realization of Ps := 2−1
(
P + P T

)
— over the ring k[[ℏ]] — in the sense of [Ka],

Ch. 1, §1.1, but for condition (1.1.3).

Note that condition (1.1.3) in [Ka, Ch. 1, §1.1], is fulfilled whenever rk(h) =
2n − rk(Ps) ; in particular, we can always achieve that condition up to suitably
enlarging or restricting h . In any case, from now on with any straight realization
of a matrix P of Cartan type, for some Cartan matrix A , we shall always associate
the realization of Ps = DA given by Lemma 2.1.4, hence also the corresponding
realization of A and then all the related data and machinery mentioned in §2.1.

We need now a few technical results:

Proposition 2.1.5.

(a) For every P ∈ Mn

(
k[[ℏ]]

)
and every ℓ ≥ 3n− rk

(
P + P T

)
, there exists a

straight split realization of P with rk(h) = ℓ , which is unique up to isomorphisms.

(b) Claim (a) still holds true if we drop the condition “straight” and pick ℓ ≥ 2n .

Proof. (a) Let r := rk
(
P + P T

)
and ℓ ≥ 3n− r be fixed. We set

Si := 2−1
(
T+
i + T−

i

)
, Λi := 2−1

(
T+
i − T−

i

)
∀ i ∈ I

for any choice of elements T±
i (i ∈ I) in any k[[ℏ]]–module h ; then T±

i = Si±Λi for

all i ∈ I , so we have Spank[[ℏ]]

({
T+
i , T

−
i

}
i∈I

)
= Spank[[ℏ]]

({
Si , Λi

}
i∈I

)
. Therefore,

the existence of a split realization of P amounts to the same as the existence of the
slightly modified notion where:

— instead of the T+
i ’s and the T−

i ’s one considers the Si’s and the Λi’s,

— condition (a.1) in Definition 1 is replaced by condition
(a.1+) αj(Si) = 2−1(p ij + p ji) , αj(Λi) = 2−1(p ij − pj i) ∀ i, j ∈ I ;

Therefore, we look now for such a “realization” in this alternative sense. We
consider the matrices (respectively symmetric and antisymmetric)

Ps := 2−1
(
P + P T

)
, Pa := 2−1

(
P − P T

)
and then, reordering the indices in I if necessary, we re-write the matrix Ps in the

block form Ps =

(
P ⌜
s P ⌝

s

P ⌞
s P ⌟

s

)
where P ⌜

s has size r× r, rk
(
P ⌜
s

)
= r , and the other
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blocks have the corresponding sizes; according to the same reordering of the indices

(if any), we also re-write Pa as Pa =

(
P ⌜
a P ⌝

a

P ⌞
a P ⌟

a

)
with P ⌜

a of size r× r , and so on.

Now we consider the ℓ× ℓ matrix

GP =


P ⌜
s P ⌝

s 0 0 0 0
P ⌞
s P ⌟

s In−r 0 0 0
0 In−r 0 0 0 0
P ⌜
a P ⌝

a 0 Ir 0 0
P ⌞
a P ⌟

a 0 0 In−r 0
0 0 0 0 0 Iℓ−(3n−r)

 (2.1)

that is non-degenerate, as det
(
GP

)
= ± det

(
P ⌜
s

)
̸= 0 . Now, set h• := k[[ℏ]]3n−r ,

fix as Si’s, respectively Λi’s ( i ∈ I ), the rows of GP (as vectors in h•) from 1 to n ,
respectively from 2n− r + 1 to 3n− r , and fix as αj’s ( j ∈ I ) the first n linear
coordinate functions on h• (as vectors in h∗• ). Now set Π∨

S,Λ :=
{
Si , Λi

}
i∈I and let

h be the k[[ℏ]]–span (inside h•) of the rows of GP ; then the αj’s restrict to elements
of h∗ (that we still denote by αj ) hence we consider Π := {αj}j∈I as a subset in h∗ .

Now the triple RS,Λ :=
(
h ,Π ,Π∨

S,Λ

)
is a “realization” (in the present, modified

sense) of P which is straight split, thus proving the existence part of claim (a).

As to uniqueness, we reverse the previous line of arguing. Indeed, given a split
“realization”, in modified sense, RS,Λ :=

(
h ,Π ,Π∨

S,Λ

)
of P , we complete Π∨

S,Λ to a
k[[ℏ]]–basis of h adding extra elements Y1 , . . . , Yℓ−2n ; moreover, we define additional
αn+1, . . . , αℓ ∈ h∗ such that the matrix of all values of the αj’s on the elements of the
ordered basis

{
S1, . . . , Sn , Y1 , . . . , Yn−r, Λ1, . . . , Λn , Yn−r+1 , . . . , Yℓ−2n

}
is given by

NP =


P ⌜
s P ⌝

s 0 0 0 0
P ⌞
s P ⌟

s In−r 0 0 0
B< B> 0 0 0 0
P ⌜
a P ⌝

a 0 Ir 0 0
P ⌞
a P ⌟

a 0 0 In−r 0
D< D> 0 0 0 Iℓ−(3n−r)

 (2.2)

which by construction is non-degenerate. Now, let us extend scalars for a while
from k[[ℏ]] to k((ℏ)) : then by Gauss’ elimination algorithm on the rows (involving
in particular the first r rows) we can modify the matrix NP in (2.2) till it gets a new
form where B< = 0 and D< = 0 ; moreover, the “new” submatrix B> fulfills

det
(
P ⌜
s

)
det(B>) = ± det

(
NP

)
̸= 0 , hence B> ∈ GLn−r

(
k((ℏ))

)
hence we can choose another basis in Spank((ℏ))

(
Y1 , . . . , Yn−r

)
so to get B> = In−r .

Then another Gauss’ elimination process involving the rows from n + 1 to 2n − r
allows us to modify the last ℓ− (3n− r) rows so as to get D> = 0 .

All this gives us a new split realization (in modified sense) of P over k((ℏ)) and
a specific basis, including the Si’s and the Λi’s, of the k((ℏ))–vector space hk((ℏ))
considered in it: eventually, taking as h the k[[ℏ]]–span of that basis we can easily
read off that that “ realization over k((ℏ)) ” is a genuine realization over k[[ℏ]] , which
is isomorphic to the original one, by construction (indeed, we only modified a direct
sum complement of Spank((ℏ))

(
{Si , Λi}i∈I

)
by a sheer rescaling, at most). But now,
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for this final realization the matrix NP in (2.2) takes the same form as GP in (2.1):
so taking as ϕ : h −−→ h the isomorphism given by change of bases, we are done.

(b) As claim (a) already guarantees the existence of straight realizations, the
relevant part of claim (b) concerns the uniqueness, that is proved again like for (a),
up to minimal changes. Namely, instead of the matrix in (2.2) we deal with

N ′
P =


P ⌜
s P ⌝

s 0 0 0 0
P ⌞
s P ⌟

s In−r 0 0 0
P ⌜
a P ⌝

a 0 Ir 0 0
P ⌞
a P ⌟

a 0 0 In−r 0
D< D> 0 0 0 Iℓ−2n


and then we observe that we can again reduce it to a similar matrix where D< = 0
— acting by Gauss’ elimination on the rows, exploiting the nonsingular square
submatrix P ⌜

s — and D> = 0 — where we perform another Gauss’ elimination
on the columns (which in the end amounts to modifying the αj’s), exploiting the
nonsingular square submatrix Iℓ−2n . □

Remark 2.1.6. It follows from definitions that a necessary condition for a small
realization of any P ∈Mn

(
k[[ℏ]]

)
to exist is rk

(
Ps
∣∣Pa) = rk(Ps) . Conversely, with

much the same arguments used in the proof of Proposition 2.1.5, we can prove that
such a condition is also sufficient, as the following holds true, indeed:

Proposition 2.1.7. If P ∈Mn

(
k[[ℏ]]

)
is such that rk

(
Ps
∣∣Pa) = rk(Ps) , then, for

all ℓ ≥ 2n − rk(Ps) , there exists a straight small realization of P with rk(h) = ℓ ,
and such a realization is unique up to isomorphisms.

After this existence results concerning realizations of special type, we can achieve
a more general result with two additional steps. The first one tells in short that
every realization can be “lifted” to a split one:

Lemma 2.1.8. Let R :=
(
h ,Π ,Π∨ ) be a realization of P ∈ Mn

(
k[[ℏ]]

)
. Then

there exists a split realization Ṙ :=
(
ḣ , Π̇ , Π̇∨ ) of the same matrix P and an

epimorphism of realizations π : Ṙ −↠ R such that, if h
T
:= Span

({
T±
i

}
i∈I

)
and

ḣ
T
:= Span

({
Ṫ±
i

}
i∈I

)
, then π induces an isomorphism π∗ : ḣ

/
ḣ

T
∼= h
/
h

T
.

If in addition R is straight, resp. minimal, then a split realization Ṙ as above
can be found that is straight, resp. minimal, as well.

Proof. We proceed in two steps, first working over scalar extensions from k[[ℏ]] to
k((ℏ)) and then “pulling back” our result to the original setup. To this end, hereafter,
for any k[[ℏ]]–module m we write m(ℏ) := k((ℏ))⊗k[[ℏ]] m .

Let h
T
:= Span

({
T+
i , T

−
i

}
i∈I

)
. Then h(ℏ)

T
embeds into h(ℏ) and the latter splits

into h(ℏ) = h(ℏ)
T
⊕ h′◦ for some k((ℏ))–submodule h′◦ in h(ℏ) . Now fix formal vectors

Ṫ±
i ( i ∈ I ) , the free k((ℏ))–module h′

T
with k((ℏ))–basis Π′∨ :=

{
Ṫ+
i , Ṫ

−
i

}
i∈I , and

the k((ℏ))–module epimorphism π′ : h′⊕ := h′
T
⊕h′◦−−↠ h(ℏ) given by π′(Ṫ±

i

)
:= T±

i

( i ∈ I ) and π
∣∣
h◦
:= idh◦ . If we let α

(ℏ)
j be the natural scalar extension of αj ( j ∈ I ),
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then every such α
(ℏ)
j is a k((ℏ))–linear function from h(ℏ) to k((ℏ)), and altogether

the α
(ℏ)
j ’s are linearly independent over k((ℏ)) if the αj’s are; therefore, the set

Π′ :=
{
α′
j := α

(ℏ)
j ◦ π′ }

j∈I lies inside the k((ℏ))–dual module of h′⊕ , and it is also

k((ℏ))–linearly independent if Π is — i.e., if we are in the straight case.

Now look at h embedded into h(ℏ) and set ḣ := (π′)−1(h) , Π̇∨ :=
(
π′
∣∣
ḣ

)−1(
Π∨) =

Π′∨ , Π̇ :=
(
π′
∣∣
ḣ

)∗
(Π) =

{(
π′
∣∣
ḣ

)∗(
α
(ℏ)
j

)
:= α

(ℏ)
j ◦ π′

∣∣
ḣ
= α′

j

∣∣
ḣ

}
j∈I

; then ḣ is a free

k[[ℏ]]–module containing Π̇∨ and such that ḣ(ℏ) = h′⊕ , while Π̇ is a subset in the

k[[ℏ]]–dual of ḣ , that is even k[[ℏ]]–linearly independent if Π is — i.e., if we are in

the straight case. Even more, looking in depth we find that Ṙ :=
(
ḣ , Π̇ , Π̇∨ ) is

indeed a split realization of the matrix P — which is also straight, resp. minimal
if the original R is straight, resp. minimal — that together with the epimorphism
π := π′

∣∣
ḣ
: ḣ −−↠ h yields all that is prescribed in the claim. Indeed, we only have

to point out the last step, noting that π induces an isomorphism π∗ : ḣ
/
π−1(h

T
) ∼=

h
/
h

T
and then observing that, by construction, we have π−1(h

T
) = ḣ

T
. □

A last result concerns morphisms between realizations.

Lemma 2.1.9. Let R̂ :=
(
ĥ , Π̂ , Π̂∨ ) and Ř :=

(
ȟ , Π̌ , Π̌∨ ) be two realizations

of a same P ∈ Mn

(
k[[ℏ]]

)
, and let ϕ : R̂ −→ Ř be a morphism between them.

Then Ker
(
ϕ : ĥ −→ ȟ

)
⊆
⋂
j∈I

Ker(α̂j) .

Proof. Since α̂j = ϕ∗(α̌j) = α̌j ◦ ϕ ( j ∈ I ) by assumption, for all k ∈ Ker(ϕ) we
have α̂j(k) = (α̌j ◦ ϕ)(k) = α̌j

(
ϕ(k)

)
= α̌j(0) = 0 ( j ∈ I ), whence the claim. □

Remark 2.1.10. Working with matrices in Mn(k) and realizations of them over k
(for some field k ), all the previous constructions still make sense; some results (e.g.,
Proposition 2.1.5 and Lemma 2.1.8) even get stronger and/or have simpler proofs.

2.2. Twist deformations of multiparameters and realizations.

In this subsection we introduce the notion of deformation by twist of realizations,
which will be needed later when dealing with deformations of multiparameter Lie
bialgebras and formal multiparameter quantum universal enveloping algebras.

2.2.1. Deforming realizations (and matrices) by twist. Fix P :=
(
pi,j
)
i,j∈I ∈

Mn

(
k[[ℏ]]

)
and a realization R :=

(
h ,Π ,Π∨ ) , possibly (up to changing minimal

details in what follows) over k if P ∈Mn(k) ; in particular di := pii/2 for all i ∈ I .
Recall that h is, by assumption, a free k[[ℏ]]–module of finite rank t := rk(h) . We

fix in h any k[[ℏ]]–basis
{
Hg

}
g∈G , where G is an index set with |G| = rk(h) = t .

Fix an antisymmetric square matrix Φ =
(
ϕgk
)
g,k∈G ∈ sot

(
k[[ℏ]]

)
— indeed, we

might work with any Φ ∈ Mt

(
k[[ℏ]]

)
, but at some point we should single out its
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antisymmetric part Φa := 2−1
(
Φ−ΦT

)
which would be all that matters. We define

the twisted “distinguished toral elements” (or “coroots”)

T±
Φ,ℓ := T±

ℓ ±
t∑

g,k=1

αℓ(Hg)ϕkgHk (2.3)

As a matter of notation, let T :=

(
T+

T−

)
be the (2n×1)–matrix given by the column

vectors T± =
(
T±
i

)
i∈I . Similarly, let TΦ :=

(
T+

Φ

T−
Φ

)
be the (2n× 1)–matrix given

by the (superposed) two column vectors T±
Φ =

(
T±

Φ,i

)
i∈I , and H the column vector

H :=
(
Hg

)
g∈G . Moreover, denote by A the (n×t)–matrix with entries in k[[ℏ]] given

by A :=
(
αℓ(Hg)

)g∈G
ℓ∈I , and set A• :=

(
+A
−A

)
— a matrix of size (2n× t) .

Now, using matrix notation we have TΦ = T− A•ΦH . Eventually, define also

PΦ =
(
pΦ

i,j

)
i,j∈I := P − AΦA T (2.4)

Now, using the above notation, a direct computation yields

SΦ,i := 2−1
(
T+

Φ,i + T−
Φ,i

)
= 2−1

(
T+
i + T−

i

)
= Si ∀ i ∈ I

αj
(
T+

Φ,i

)
= pΦ

i,j , αj
(
T−

Φ,i

)
= pΦ

j,i ∀ i, j ∈ I

so that the triple RΦ :=
(
hΦ ,ΠΦ ,Π

∨
Φ

)
with hΦ := h , ΠΦ := Π and Π∨

Φ :={
T+

Φ,i , T
−
Φ,i

∣∣ i ∈ I } , is a realization of the matrix PΦ =
(
pΦ
i,j

)
i,j∈I — as in Definition

2.1.2; also, by construction RΦ is also straight, resp. small, if and only if such is R .
Moreover, PΦ is the sum of P plus an antisymmetric matrix, so the symmetric part
of PΦ is the same as P , i.e.

(
PΦ

)
s
= Ps . In particular, if P is of Cartan type, then

so is PΦ , and they are associated with the same Cartan matrix. In short, we get:

Proposition 2.2.2. With notation as above, the following holds true:

(a) the matrix PΦ := P − AΦA T obeys
(
PΦ

)
s
= Ps ; in particular, if P is of

Cartan type, then so is PΦ , and they are associated with the same Cartan matrix.

(b) the triple RΦ :=
(
hΦ := h , ΠΦ := Π , Π∨

Φ :=
{
T+

Φ,i , T
−
Φ,i

}
i∈I

)
is a realization

of PΦ ; moreover, RΦ is straight, resp. small, if and only if such is R .

Definition 2.2.3. The realization RΦ :=
(
h ,Π ,Π∨

Φ

)
of the matrix PΦ =

(
pΦ
i,j

)
i,j∈I

is called a twist deformation (via Φ ) of the realization R =
(
h ,Π ,Π∨ ) of P .

Similarly, the matrix PΦ is called a twist deformation of the matrix P . ♢

Remarks 2.2.4. (a) Observe that, by the very definition of twisting one has that(
PΦ

)
Φ′ = PΦ+Φ′ and

(
RΦ

)
Φ′ = RΦ+Φ′ for all Φ , Φ′ ∈ sot

(
k[[ℏ]]

)
Therefore, the additive group sot

(
k[[ℏ]]

)
acts on the set of (multiparameter) ma-

trices of size n := |I| with fixed symmetric part, as well as on the set of their
realizations of (any) fixed rank. When two matrices P, P ′ ∈ Mn

(
k[[ℏ]]

)
belong to

the same orbit of this sot
(
k[[ℏ]]

)
–action we say that P and P ′ are twist equivalent.
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(b) It follows from Proposition 2.2.2(a) that if two multiparameter matrices P
and P ′ are twist equivalent, then their symmetric part is the same, that is Ps = P ′

s .
Next result shows the converse holds true as well, up to taking the group sot

(
k[[ℏ]]

)
big enough, namely with t ≥ 3n− rk(Ps) .

Lemma 2.2.5. With notation as above, let P, P ′ ∈ Mn

(
k[[ℏ]]

)
, and consider the

aforementioned action by twist on Mn

(
k[[ℏ]]

)
by any additive group sot

(
k[[ℏ]]

)
with

t ≥ 3n− rk(Ps) . Then P and P ′ are twist equivalent if and only if Ps = P ′
s .

Proof. We have to prove the “if” part of the statement, so we assume that Ps = P ′
s

and we look for Φ ∈ sot
(
k[[ℏ]]

)
such that P ′ = PΦ , that is P ′ = P − AΦA T .

By assumption P ′ = P + Λ with Λ := P ′ − P antisymmetric, and we want

Λ = −AΦA T (2.5)

for some Φ ∈ sot
(
k[[ℏ]]

)
— in other words, we have to show that the equation (2.5)

in the indeterminate Φ has a solution.
By Proposition 2.1.5(a), there exists a straight split realization of P , say R =(
h ,Π ,Π∨ ) , of rank t . By the straightness assumption, the αℓ’s are linearly inde-

pendent in h∗, while the Hg’s form a basis of h , so the matrix A :=
(
αℓ(Hg)

)g∈G
ℓ∈I

has rank |I| = n ; therefore, we can write it as a block matrix A =
(
G
∣∣Q )Mσ

where G, Q and Mσ are matrices of size n× n , n× (t− n) and t× t , respectively,
and moreover G is invertible and Mσ is a permutation matrix. Then (2.5) reads

Λ = −
(
G
∣∣Q )Mσ ΦM

T

σ

(
G T

Q T

)
(2.6)

Now let us replace the indeterminate matrix Φ with Ψ := Mσ ΦM
T
σ and accord-

ingly let us read (2.6) as an equation in Ψ , namely

Λ = −
(
G
∣∣Q )Ψ(G T

Q T

)
(2.7)

then writing the latter in block form as Ψ =

(
A |B
C |D

)
where A , B , C and D

has size n× n , n× (t− n) , (t− n)× n and (t− n)× (t− n) , respectively, we see

at once that a possible solution for (2.7) is Ψ =

(
A | 0
0 | 0

)
with A := G−1ΛG−t .

Thus (2.7) has a solution, hence (2.5) has one too, q.e.d. □

Remark 2.2.6. A similar notion of twist-equivalence of matrices can be found in
[AS1] and [Ro] in relation with matrices corresponding to diagonal braidings.

Next proposition “upgrades” the previous result to the level of realizations.

Proposition 2.2.7. Let P and P ′ be two matrices in Mn

(
k[[ℏ]]

)
with the same

symmetric part, i.e. such that Ps = P ′
s .

(a) Let R be a straight realization of P of rank t . Then there exists a matrix
Φ ∈ sot

(
k[[ℏ]]

)
such that P ′ = PΦ and the corresponding realization RΦ is straight.

In short, if P ′
s = Ps then from any straight realization of P we can obtain by

twist deformation a straight realization (of the same rank) for P ′, and viceversa.
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(b) Let R and R′ be straight small realizations of P and P ′ , such that rk(R) =
rk(R′) =: t . Then there exists a matrix Φ ∈ sot

(
k[[ℏ]]

)
such that R′ ∼= RΦ .

In short, if P ′
s = Ps then any straight small realization of P is isomorphic to a

twist deformation of a straight small realization of P ′ of same rank, and viceversa.

(c) Every straight small realization R of P is isomorphic to some twist deforma-
tion of the standard realization of Ps of the same rank as R , as in Lemma 2.1.4.

Proof. (a) We can resume the same argument used in the proof of Lemma 2.2.5 to
show that there exists a suitable Φ ∈ sot

(
k[[ℏ]]

)
such that P ′ = PΦ , the difference

being only that now the starting point is the given realization R of P . But then
Proposition 2.2.2 ensures also that RΦ :=

(
h ,Π ,Π∨

Φ

)
is a realization of P ′ = PΦ ,

which is straight because R is.

(b) This follows from claim (a), along with the uniqueness (up to isomorphisms)
of straight small realizations — cf. Proposition 2.1.5(a).

(c) This follows as an application of claim (b), taking P ′ := Ps and R′ :=(
h , Π , Π∨

S

)
— assuming R =

(
h , Π , Π∨ ) — as the standard Kac’ realization

over k[[ℏ]] which is straight and small, see Remark 2.1.3 and Lemma 2.1.4. □

2.2.8. Stability issues for twisted realizations. Keep notation as above; in

particular, from §2.2 we consider T± =
(
T±
i

)
i∈I and T :=

(
T+

T−

)
, we fix a

vector of k[[ℏ]]–basis elements H :=
(
Hg

)
g∈G for h and accordingly we set A :=(

αℓ(Hg)
)g∈G
ℓ∈I and A• :=

(
+A
−A

)
. Finally, given Φ ∈ sot

(
k[[ℏ]]

)
we consider the

new strings of “coroot vectors” T±
Φ =

(
T±

Φ,i

)
i∈I and TΦ :=

(
T+

Φ

T−
Φ

)
that are linked

to the old coroot vectors — as in §2.2.1 — by the formulas

T±
Φ := T± ∓ AΦH , TΦ = T− A•ΦH (2.8)

Eventually, recall also the notation PΦ =
(
pΦ
i,j

)
i,j∈I := P − AΦA T .

From Proposition 2.2.2 we have that the class of (small) minimal realizations is
stable under twist deformations. We look now instead at the split case.

Assume that the realization R :=
(
h ,Π ,Π∨ ) of P is split, i.e. the T±

i ’s are
part of a k[[ℏ]]–basis of h . From (2.8) we see that we cannot give for granted
the same property for the T±

Φ,i’s, hence we cannot say either that the realization

RΦ :=
(
h ,Π ,Π∨

Φ

)
of PΦ be split as well — in fact, all that depends on the matrix

A•Φ . We shall now discuss this issue in detail in a more restricted setting.

We assume now that R is split minimal, so
{
T+
i , T

−
i

}
i∈I is a k[[ℏ]]–basis of h

— cf. Definition 2.1.2(d). Again from Definition 2.1.2, let us consider the elements
Si := 2−1

(
T+
i + T−

i

)
and Λi := 2−1

(
T+
i − T−

i

)
— for all i ∈ I — and similarly

SΦ,i := 2−1
(
T+

Φ,i + T−
Φ,i

)
and ΛΦ,i := 2−1

(
T+

Φ,i − T−
Φ,i

)
— for all i ∈ I ; set also

S := 2−1
(
T++T− ) and Λ := 2−1

(
T+−T− ) , and similarly S Φ := 2−1

(
T+

Φ+T
−
Φ

)
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and ΛΦ := 2−1
(
T+

Φ− T−
Φ

)
. In matrix terms, we have(

S

Λ

)
=

(
+2−1In +2−1In
+2−1In −2−1In

)(
T+

T−

)
,

(
S Φ

ΛΦ

)
=

(
+2−1In +2−1In
+2−1In −2−1In

)(
T+

Φ

T−
Φ

)
and conversely(

T+

T−

)
=

(
+In +In
+In −In

)(
S

Λ

)
,

(
T+

Φ

T−
Φ

)
=

(
+In +In
+In −In

)(
S Φ

ΛΦ

)
In particular, we have Span k[[ℏ]]

({
Si , Λi

}
i∈I

)
= Span k[[ℏ]]

({
T+
i , T

−
i

}
i∈I

)
and

similarly Span k[[ℏ]]

({
SΦ,i , ΛΦ,i

}
i∈I

)
= Span k[[ℏ]]

({
T+

Φ,i , T
−
Φ,i

}
i∈I

)
.

Now, with respect to the previous analysis we pick our fixed k[[ℏ]]–basis of h to be
{Hg}g∈G :=

{
T+
i , T

−
i

}
i∈I : then A reads as a block (n×2n)–matrix A =

(
P T P

)
,

hence the first identity in (2.8) yields, via straightforward computations,

S Φ = S , ΛΦ = Λ−
(
P T P

)
Φ

(
+In +In
+In −In

)(
S

Λ

)
which in matrix terms reads(

S Φ

ΛΦ

)
=

(
In 0n
−B′ ( In −B′′ ))( S

Λ

)
(2.9)

where B′ and B′′ are blocks in the matrix
(
P T P

)
Φ

(
+In +In
+In −In

)
=
(
B′ B′′ ) ,

i.e. they are the (n×n)–matrices B′ := P T
(
Φ+,++Φ+,− )+P (Φ−,++Φ−,− ) and

B′′ := P T
(
Φ+,+− Φ+,− ) + P

(
Φ−,+− Φ−,− ) , with notation as follows: we write

Φ in block form Φ :=
(
Φ++ Φ+−

Φ−+ Φ−−

)
with Φε1,ε2 =

(
ϕε1, ε2ij

)
i,j∈I for all εi, εj ∈ {+,−} .

Now, it is clear that the set
{
T+

Φ,i , T
−
Φ,i

}
i∈I is k[[ℏ]]–linearly independent if and

only if Span k[[ℏ]]

({
T+

Φ,i , T
−
Φ,i

}
i∈I

)
= Span k[[ℏ]]

({
T+
i , T

−
i

}
i∈I

)
, and the latter is

true if and only if Span k[[ℏ]]

({
SΦ,i , ΛΦ,i

}
i∈I

)
= Span k[[ℏ]]

({
Si , Λi

}
i∈I

)
. But the

latter holds true, by (2.9), if and only if the matrix
(
In − B′′ ) is invertible in

Mn

(
k[[ℏ]]

)
. Finally, from the explicit form of B′′, we find the following criterion:

Assume that the realization R :=
(
h ,Π ,Π∨ ) of P be split minimal. If the matrix

M Φ
P := In − P T

(
Φ+,+ − Φ+,−) − P

(
Φ−,+ − Φ−,−) is invertible in Mn

(
k[[ℏ]]

)
,

then the realization RΦ :=
(
h ,Π ,Π∨

Φ

)
of PΦ is split minimal too (and viceversa).

As an outcome, this proves that the twist deformation of a split realization may
be not split (counterexamples do exist, see below), hence the subclass of all split
realizations is not stable under twist deformations.

Examples 2.2.9. Note that M Φ
P has the form M Φ

P = In −
(
P T P

)
Φ

(
+In
−In

)
.

Using this, we may find examples where M Φ
P is invertible or not. For instance:

(a) if Φ = 0 2n , then M Φ
P = In is invertible;

(b) if
(
P T P

)
Φ

(
+In
−In

)
is nilpotent, then M Φ

P is clearly invertible;
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(c) Let Φ =

(
0 Φ
−Φ T 0

)
with Φ ∈Mn

(
k[[ℏ]]

)
. Then M Φ

P = In+P
T Φ+P Φ T .

If we take Φ antisymmetric, we find M Φ
P = In− 2Pa Φ where Pa := 2−1

(
P −P T

)
is the antisymmetric part of P . Hence, by taking the canonical multiparameter
P = DA , we get M Φ

P = In . On the other hand, there are plenty of examples
such that

(
In− 2Pa Φ

)
is non-invertible; for example, take n even, Φ invertible and

antisymmetric, and Pa = 2−1Φ−1 . In addition, in this last case is M Φ
P = 0 , hence

Span k[[ℏ]]

({
SΦ,i , ΛΦ,i

}
i∈I

)
= Span k[[ℏ]]

({
Si
}
i∈I

)
⫋ Span k[[ℏ]]

({
Si , Λi

}
i∈I

)
By our analysis, this proves that in this case the realization RΦ is definitely not split
— on the contrary it is (small) minimal.

2.3. 2-cocycle deformations of multiparameters and realizations.

In this subsection we introduce the notion of deformation by 2–cocycles of real-
izations (as well as of multiparameters), which is dual to that of deformation by
twist.

2.3.1. Deforming realizations (and matrices) by 2–cocycles. Fix again P :=(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
and a realization R :=

(
h ,Π ,Π∨ ) of it, setting di :=

pii/2 for all i ∈ I and DP := diag
(
d1 , . . . , dn

)
. We consider special deformations

of realizations, called “2-cocycle deformations”. To this end, like in §2.2, we fix in
h a k[[ℏ]]–basis

{
Hg

}
g∈G , where G is an index set with |G| = rk(h) = t .

Let χ : h × h −−→ k[[ℏ]] be any k[[ℏ]]–bilinear map: note that it bijectively
corresponds to some X =

(
χgγ
)
g,γ∈G ∈ Mt

(
k[[ℏ]]

)
via χgγ = χ(Hg , Hγ) . We as-

sume that χ is antisymmetric, which means χT (x, y) = −χ(x, y) where χT (x, y) :=
χ(y, x) , for all x, y ∈ h ; this is equivalent to saying that X is antisymmetric, i.e.
X ∈ sot

(
k[[ℏ]]

)
. We denote by Alt k[[ℏ]]

(
h× h , k[[ℏ]]

)
the set of all antisymmetric,

k[[ℏ]]–bilinear maps from h× h to k[[ℏ]] . We assume also that χ obeys

χ(Si , − ) = 0 = χ(− , Si) ∀ i ∈ I (2.10)

where Si := 2−1
(
T+
i + T−

i

)
for all i ∈ I . In particular, this implies (for i ∈ I ,

T ∈ h ) that χ
(
+ T+

i , T
)
= χ

(
− T−

i , T
)
, χ
(
T ,+T+

i

)
= χ

(
T ,−T−

i

)
, hence

+χ
(
– , T+

i

)
= −χ

(
– , T−

i

)
∀ i ∈ I (2.11)

For later use, we introduce also the notation

AltSk[[ℏ]](h) :=
{
χ ∈ Alt k[[ℏ]]

(
h× h , k[[ℏ]]

) ∣∣∣ χ obeys (2.10)
}

(2.12)

and to each χ ∈ AltSk[[ℏ]](h) we associate X̊ :=
(
χ̊ij = χ

(
T+
i , T

+
j

))
i,j∈I
∈ son

(
k[[ℏ]]

)
.

Basing on the above, we define

P(χ) := P + X̊ =
(
p
(χ)
ij := pij + χ̊ij

)
i,j∈I

, Π(χ) :=
{
α
(χ)
i := αi ± χ

(
– , T±

i

)}
i∈I

We are now ready for our key result on 2–cocycle deformations.
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Proposition 2.3.2. Keep notation as above. Then:

(a) P(χ) := P + X̊ obeys
(
P(χ)

)
s
= Ps ; in particular, if P is of Cartan type,

then so is P(χ) , and they are associated with the same Cartan matrix.

(b) the triple R(χ) =
(
h ,Π(χ) ,Π

∨ ) is a realization of the matrix P(χ) , which
is minimal, resp. split, if so is R .

Proof. (a) This is obvious, as X̊ is antisymmetric.

(b) Since the set Π∨ does not change, condition (a.2) is trivially satisfied. In
particular, R(χ) is minimal, resp. split, if so is R . The conditions on (a.1) follows
easily by definition and (2.11): namely,

α
(χ)
j

(
T+
i

)
= αj

(
T+
i

)
+ χ

(
T+
i , T

+
j

)
= p ij + χ̊ij = p

(χ)
ij

α
(χ)
j

(
T−
i

)
= αj

(
T−
i

)
+ χ

(
T−
i , T

+
j

)
= p ji − χ

(
T+
j , T

−
i

)
=

= p ji + χ
(
T+
j , T

+
i

)
= p ji + χ̊ji = p

(χ)
ji

for all i, j ∈ I . This shows that R(χ) is a realization of P(χ) , q.e.d. □

Definition 2.3.3. The realization R(χ) =
(
h ,Π(χ) ,Π

∨ ) of P(χ) =
(
p
(χ)
ij

)
i,j∈I is

called a 2–cocycle deformation of the realization R =
(
h ,Π ,Π∨ ) of P .

Similarly, the matrix P(χ) is called a 2–cocycle deformation of the matrix P . ♢

Remarks 2.3.4. (a) The very definitions give(
P(χ)

)
(χ)′

= P(χ+χ′) and
(
R(χ)

)
(χ′)

= R(χ+χ′) for all χ , χ′ ∈ AltSk[[ℏ]](h)

Thus, the additive group AltSk[[ℏ]](h) acts on the set of (multiparameter) matrices
of size n := |I| with fixed symmetric part, as well as on the set of their realizations
of (any) fixed rank. When two matrices P and P ′ in Mn

(
k[[ℏ]]

)
belong to the same

orbit of this AltSk[[ℏ]](h)–action, we say that P and P ′ are 2–cocycle equivalent.

(b) It follows from Proposition 2.3.2(a) that if two multiparameter matrices P
and P ′ are 2–cocycle equivalent, then their symmetric part is the same, i.e. Ps = P ′

s .
As a consequence of the next result, the converse holds true as well (cf. Lemma 2.3.6
below), under mild, additional assumptions.

Next result concerns the aforementioned AltSk[[ℏ]](h)–action on realizations; indeed,
up to minor details it can be seen as the “2–cocycle analogue” of Proposition 2.2.7:

Proposition 2.3.5. Let P, P ′ ∈ Mn

(
k[[ℏ]]

)
be two matrices with the same sym-

metric part, i.e. such that Ps = P ′
s . Moreover, let R be a split realization of P .

(a) There exists a map χ ∈ AltSk[[ℏ]](h) such that P ′ = P(χ) and the realization

R(χ) =
(
h ,Π(χ) ,Π

∨ ) of P ′ = P(χ) is split. In a nutshell, if P ′
s = Ps then from

any split realization of P we can obtain a split realization (of the same rank) of P ′

by 2–cocycle deformation, and viceversa.

(b) Assume in addition that R be minimal. Then R is isomorphic to a 2–cocycle
deformation of the split minimal realization of Ps .
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Proof. (a) Since P and P ′ share the same symmetric part, we have Λ := P ′ −
P ∈ son

(
k[[ℏ]]

)
, so P ′ = P + X̊ with X̊ =

(
χ̊ij
)
i,j∈I := Λ . Let h′′ :=

Spank[[ℏ]]
({
T+
i

}
i∈I

)
. Then X̊ defines a unique antisymmetric, k[[ℏ]]–bilinear map

χ′′ ∈ Alt k[[ℏ]]
(
h′′ × h′′ , k[[ℏ]]

)
with χ′′(T+

i , T
+
j

)
:= χ̊ij ∀ i, j ∈ I

Imposing (2.11), this χ′′ extends to a map — non-unique, in general — χ ∈
AltSk[[ℏ]]

(
h× h , k[[ℏ]]

)
, obeying (2.11) and such that χ

∣∣∣
h′′×h′′

= χ′′ . Now choosing

Π(χ) :=
{
α
(χ)
i := αi ± χ

(
– , T±

i

)}
i∈I
⊆ h∗ , we get, thanks to Proposition 2.3.2,

that R(χ) :=
(
h ,Π(χ) ,Π

∨ ) is a split realization of P ′ = P(χ) , q.e.d.

(b) Let us write the split minimal realization of Ps as Rst =
(
h ,Πst ,Π

∨
st

)
,

with Π∨
st =

{
T±
i

}
i∈I and Πst =

{
α
(st)
i

}
i∈I . Since P = Ps + Pa — with Pa :=

2−1
(
P −P T

)
— applying the arguments in (a) above we fix the matrix X̊ := Pa =(

χ̊ij
)
i,j∈I ∈ son

(
k[[ℏ]]

)
and χ ∈ AltSk[[ℏ]]

(
h × h , k[[ℏ]]

)
obeying (2.11); moreover,

for all i ∈ I we set α
(χ)
i := α

(st)
i ± χ

(
– , T±

i

)
. As R is split minimal and

α
(χ)
j

(
T±
i

)
= α

(st)
j

(
T±
i

)
+ χ

(
T±
i , T

+
j

)
=
(
Ps
)
ij
+ χ̊ij =

(
Ps
)
ij
+
(
Pa
)
ij
= pij

for all i, j ∈ I , we get α
(χ)
j = αj for all j ∈ I . Thus the realization

(
Rst

)
(χ)

obtained from the 2–cocycle deformation of R afforded by χ does coincide with R .
Finally, the assumption “split minimal” implies rk(h) = 2n , hence the uniqueness
property in Proposition 2.1.5(b) gives R ∼= Rst as desired. □

As a byproduct, we find the following “2-cocycle counterpart” of Lemma 2.2.5:

Lemma 2.3.6. With notation as above, let P, P ′ ∈ Mn

(
k[[ℏ]]

)
. Then P and P ′

are 2-cocycle equivalent — for the aforementioned 2-cocycle action on Mn

(
k[[ℏ]]

)
of

some additive group sot
(
k[[ℏ]]

)
— if and only if Ps = P ′

s .

Proof. The “if” part is Proposition 2.3.2, so we are left to prove the “only if”. By
the existence result for realizations (cf. Proposition 2.1.5), we can pick a realization
R of P of rank rk(R) = t : then Proposition 2.3.5(a) applies, and we are done. □

Observation 2.3.7. To sum up, we wish to stress the following, remarkable fact.
Consider two matrices P, P ′ ∈ Mn

(
k[[ℏ]]

)
with the same symmetric part Ps =

P ′
s , and a realization R =

(
h ,Π ,Π∨ ) of P that is split and straight. Then, by

Proposition 2.2.7 and Proposition 2.3.5, one can construct two realizations RΦ and
R(χ) of P

′ by a twist deformation, respectively a 2-cocycle deformation, of R that
affects only the coroot set Π∨ or the root set Π , respectively; in particular, RΦ is
still straight (yet possibly not split) and R(χ) is still split (yet possibly not straight),
while both have the same rank as R .
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3. Multiparameter Lie bialgebras and their deformations

In this section we introduce multiparameter Lie bialgebras, i.e. Lie bialgebra
structures on a given vector space that depend on a multiparameter, and their
deformations. Indeed, these will be the semiclassical objects corresponding to the
specialization of our formal multiparameter quantum enveloping algebras at ℏ = 0 .

3.1. Lie bialgebras and their deformations.

We recall hereafter a few notions concerning Lie bialgebras and their deformations;
all this is classic, so we rely on references for a more detailed treatment.

3.1.1. Generalities on Lie bialgebras. A Lie bialgebra is any triple
(
g ; [ , ] , δ

)
such that g is a k–module — for some ground field k — [ , ] is a Lie bracket on g
(making the latter into a Lie algebra), the map δ : g −→ g∧ g is a Lie cobracket on
g (making it into a Lie coalgebra, i.e. δ∗ : g∗ ∧ g∗ −→ g∗ is a Lie algebra bracket on
g∗ ), and the two structures are linked by the constraint that δ is a 1–cocycle — for
the Chevalley-Eilenberg cohomology of the Lie algebra

(
g ; [ , ]

)
with coefficients

in g ∧ g . As a matter of notation, we set x ∧ y := 2−1(x⊗ y − y ⊗ x) and thus we
identify g ∧ g with the subspace of antisymmetric tensors in g⊗ g . Moreover, we
loosely use a Sweedler’s-like notation δ(x) = x[1] ⊗ x[2] for any x ∈ g .

For example, the compatibility condition between both structures reads

δ([x, y]) = adx
(
δ(y)

)
− ady

(
δ(x)

)
=

=
[
x, y[1]

]
⊗ y[2] + y[1] ⊗

[
x, y[2]

]
−
[
y, x[1]

]
⊗ x[2] − x[1] ⊗

[
y, x[2]

] (3.1)

When
(
g ; [ , ] , δ

)
is a Lie bialgebra, the same holds for

(
g∗ ; δ∗, [ , ]∗

)
— up

to topological technicalities, if g is infinite-dimensional — which is called the dual
Lie bialgebra to

(
g ; [ , ] , δ

)
.

We shall usually denote a Lie bialgebra simply by g , hence its dual by g∗.
We need some more notation. Given r = r1 ⊗ r2 and s = s1 ⊗ s2 in g ⊗ g —

and similarly in g ∧ g — we write r2,1 := r2 ⊗ r1 and

[[r, s]] :=
[
r1, s1

]
⊗ r2 ⊗ s2 + r1 ⊗

[
r2, s1

]
⊗ s2 + r1 ⊗ s1 ⊗

[
r2, s2

]
which in compact form reads

[[r, s]] := [r1,2, s1,3] + [r1,2, s2,3] + [r1,3, s2,3]

Further details can be found in [CP], [Mj], and references therein.

3.1.2. Deformations of Lie bialgebras. A general theory of deformations for Lie
bialgebras exists, which clearly springs up as a sub-theory of that of Lie algebras:
see, for instance, [CG], [MW], and references therein. In the present work, we are
mainly interested in two special kinds of deformations, which we now define, where
either the Lie cobracket or the Lie bracket alone is deformed, leaving the “other
side” of the overall structure untouched.

We begin by deforming the Lie cobracket. Let
(
g ; [ , ] , δ

)
be a Lie bialgebra.

Let then c ∈ g⊗ g — identified with a 0–cochain — be such that

adx
(
(id⊗δ)(c) + c.p. + [[ c , c ]]

)
= 0 , adx

(
c+ c 2,1

)
= 0 ∀ x ∈ g (3.2)
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where adx denotes the standard adjoint action of x and “ c.p.” means “cyclic
permutations (on the tensor factors of the previous summand)”.

Then the map δ c : g −−→ g ∧ g defined by

δ c := δ − ∂(c) , i.e. δ c(x) := δ(x)− adx(c) ∀ x ∈ g (3.3)

is a new Lie cobracket on the Lie algebra
(
g ; [ , ]

)
making

(
g ; [ , ] , δc

)
into a

new Lie bialgebra (cf. [Mj, Theorem 8.1.7]).

Definition 3.1.3. Every c ∈ g ⊗ g that obeys (3.2) is called a twist of the Lie
bialgebra g , and the associated Lie bialgebra g c :=

(
g ; [ , ] , δ c

)
is called a

deformation by twist (or “twist deformation”) of the original Lie bialgebra g . ♢

Now we go and deform the Lie bracket. Let again
(
g ; [ , ] , δ

)
be a Lie bialgebra.

Let now χ ∈ Homk
(
g⊗g ,k

)
and identify Homk

(
g⊗g ,k

)
= (g⊗ g)∗ = g∗⊗g∗

— up to technicalities in the infinite-dimensional case (yet the outcome is always
the same). Then condition (3.2) with g∗ replacing g and χ in the role of c reads

adψ
(
∂∗(χ) + [[χ , χ ]]∗

)
= 0 , adψ

(
χ+ χ2,1

)
= 0 ∀ ψ ∈ g∗ (3.4)

where χ2,1 := χT , ∂∗ is the coboundary map for the Lie algebra g∗ and similarly
the symbol [[ , ]]∗ has the same meaning as above but with respect to g∗.

For example, the condition adψ
(
χ+ χ2,1

)
= 0 for all ψ ∈ g∗ reads

ψ(x[1])
(
χ(x[2], y) + χ(y, x[2])

)
+ ψ(y[1])

(
χ(x, y[2]) + χ(y[2], x)

)
= 0 ∀ x, y ∈ g

This is clearly satisfied, for instance, whenever χ is antisymmetric, i.e. it is a 2–
cochain for the usual Lie algebra cohomology.

Then the map [ , ]χ : g ∧ g −−→ g defined by

[x, y]χ := [x, y] + χ
(
x[1], y

)
x[2] − χ

(
y[1], x

)
y[2] ∀ x, y ∈ g (3.5)

is a new Lie bracket on the Lie coalgebra
(
g ; δ

)
making

(
g ; [ , ]χ , δ

)
into a new

Lie bialgebra (cf. [Mj, Exercise 8.1.8]).

Definition 3.1.4. Every χ ∈ Homk
(
g ∧ g , k

)
that obeys (3.4) is called a 2–cocy-

cle of the Lie bialgebra g , and the Lie bialgebra gχ :=
(
g ; [ , ]χ , δ

)
is called a

deformation by 2–cocycle (or “2–cocycle deformation”) of the Lie bialgebra g . ♢

At last, we point out that the two notions of “twist” and of “2–cocycle” for Lie
bialgebras, as well as the associated deformations, are so devised as to be dual to
each other. The following result then holds, whose proof is left to the reader:

Proposition 3.1.5. Let g be a Lie bialgebra, and g∗ the dual Lie bialgebra.

(a) Let c be a twist for g , and χc the image of c in
(
g∗ ⊗ g∗

)∗
for the natural

composed embedding g⊗ g ↪−−→ g∗∗⊗ g∗∗ ↪−−→
(
g∗ ⊗ g∗

)∗
. Then χc is a 2–cocycle

for g∗ , and there exists a canonical isomorphism
(
g∗
)
χc

∼=
(
gc
)∗

.

(b) Let χ be a 2–cocycle for g ; assume that g is finite-dimensional, and let cχ be
the image of χ in the natural identification (g⊗ g)∗ = g∗ ⊗ g∗ . Then cχ is a twist

for g∗ , and there exists a canonical isomorphism
(
g∗
)cχ ∼= (gχ)∗ . □
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3.2. Multiparameter Lie bialgebras (=MpLbA’s).

Let A :=
(
ai,j
)
i,j∈I be some fixed generalized symmetrizable Cartan matrix, and

let P :=
(
pi,j
)
i,j∈I ∈ Mn(k) be a matrix of Cartan type with associated Cartan

matrix A : about the latter, hereafter we refer to the notions in Definition 2.1.2 and
all what follows in §2, but working now with k as ground ring instead of k[[ℏ]] .
Thus P + P T = 2DA , i.e. pij + pji = 2 di aij for all i, j ∈ I , which implies
pii = 2 di ̸= 0 for all i ∈ I . Let R :=

(
h ,Π ,Π∨ ) be a split minimal realization of

P , as in Definition 2.1.2(b.4) — so h is free over k with
{
T+
i , T

−
i

}
i∈I as k–basis.

Out of these data, we introduce the so-called “multiparameter Borel Lie bialge-
bras” bP

± and a suitable Lie bialgebra pairing among them; then out of this pairing
we construct the associated Manin double, that is a suitable, canonical structure of
Lie bialgebra onto bP

+ ⊕ bP
− depending on that of bP

± and on the pairing itself. Our
recipe follows in the footsteps of Halbout’s construction in [Hal], that we are just
slightly generalizing: indeed, all proofs in [Hal] easily adapt to the present situa-
tion, the only assumptions which really are relevant in the calculations being that
(αi , αi) = 2 di = pii and (αi , αj) + (αj , αi) = diaij + djaji = pij + pji ( i, j ∈ I ).
N.B.: as a matter of notation, as we are dealing with k rather than k[[ℏ]] ,

comparing with §2.1.2 we identify the space h with h , the roots αj with αj , etc.

3.2.1. Pre-Borel multiparameter Lie bialgebras. We define the positive, resp.
negative, pre-Borel multiparameter Lie bialgebra with multiparameter P as being

the free Lie algebra over k , denoted by b̂P
+ , resp. by b̂P

− , with generators T+
i , Ei ,

resp. T−
i , Fi ( i ∈ I ). Moreover, we give b̂P

+ , resp. b̂P
− , the unique structure of Lie

bialgebra over k whose Lie cobracket is uniquely defined — still using shorthand
notation x ∧ y := 2−1(x⊗ y − y ⊗ x) — by

δ
(
T
)
= 0 , δ

(
Ei
)
= −2T+

i ∧ Ei = −
(
T+
i ⊗ Ei − Ei ⊗ T+

i

)
∀ i ∈ I

resp. by δ
(
T
)
= 0 , δ

(
Fi
)
= +2T−

i ∧ Fi = +
(
T−
i ⊗ Fi − Fi ⊗ T−

i

)
∀ i ∈ I

One can prove — like in [Hal] — that there exists a Lie bialgebra pairing

⟨ , ⟩ : b̂P

+ × b̂P

− −−−→ k
uniquely given — for all and i , j ∈ I — by〈

T+
i , T

−
j

〉
= pij = αi(T

−
j ) = αj(T

+
i ) ,

〈
T+
i , Fj

〉
= 0 =

〈
Ei , T

−
j

〉〈
Ei , Fj

〉
= δij p

−1
ii = δij 2 di

−1

3.2.2. Borel multiparameter Lie bialgebras. We introduce a Lie ideal l± of b̂P
±

as follows. On the one hand, l+ is the Lie ideal generated by the elements

T+
i,j :=

[
T+
i , T

+
j

]
, E

(T )
i,j :=

[
T+
i , Ej

]
− αj(T

+
i )Ej ∀ i , j ∈ I

Ei,j :=
(
ad (Ei)

)1−aij(Ej) ∀ i ̸= j

on the other hand, l− is the Lie ideal generated by the elements

T−
i,j :=

[
T−
i , T

−
j

]
, F

(T )
i,j :=

[
T−
i , Fj

]
+ αj(T

−
i )Fj ∀ i , j ∈ I

Fi,j :=
(
ad (Fi)

)1−aij(Fj) ∀ i ̸= j
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Now, acting once again like in [Hal], one sees that l+ is contained in the left radical

and l− is contained in the right radical of the pairing ⟨ , ⟩ : b̂P
+ × b̂P

− −−−→ k
introduced above. This has two consequences:

(1) first, l± is in fact a Lie bi-ideal in the Lie bialgebra b̂P
± , hence either quotient

bP
± := b̂P

±
/
l± is a quotient Lie bialgebra indeed: we call bP

+ , resp. bP
− the positive,

resp. the negative, Borel multiparameter Lie bialgebra with multiparameter P ;

(2) second, the (non-degenerate) Lie bialgebra pairing ⟨ , ⟩ : b̂P
+× b̂P

− −−−→ k
boils down to a (possibly degenerate) Lie bialgebra pairing ⟨ , ⟩ : bP

+×bP
− −−−→ k

of (multiparameter) Borel Lie bialgebras.

3.2.3. Multiparameter Lie bialgebras as doubles. Still following [Hal], we
proceed now to introduce our multiparameter Lie bialgebras, in two steps.

The split minimal case: By general theory we can use the two Lie bialgebras bP
+

and bP
− and the pairing among them to define their generalized double (as in [Mj,

§8.3]). Namely, we endow gD
P := bP

+ ⊕ bP
− with a Lie algebra structure described

in the same way as in [Hal, Théorème 1.5], and the unique Lie coalgebra structure
such that

(
bP
+

)cop
↪−→ gD

P←−↩ bP
− are Lie coalgebra embeddings, where a superscript

“cop” means that we are taking the opposite Lie coalgebra structure — cf. [CP, Ch.
1, §1.4], for further details, or even [ApS, §2.3] (and references therein), for a quick
recap of this topic and its generalizations. This makes gD

P into a Lie bialgebra; in
addition, when the pairing ⟨ , ⟩ : b+ × b− −−→ k is non-degenerate, the Lie
bialgebra gD

P is even quasitriangular.
Finally, from the previous description of bP

+ and bP
− one also deduces an explicit

presentation for gD
P . Namely, gD

P is the Lie bialgebra generated (as Lie algebra) by
the k–subspace h together with elements Ei and Fi ( i ∈ I ), with relations[

T ′, T ′′ ] = 0 ,
[
T,Ej

]
− αj(T )Ej = 0 ,

[
T, Fj

]
+ αj(T )Fj = 0(

ad (Ei)
)1−aij(Ej) = 0 ,

(
ad (Fi)

)1−aij(Fj) = 0 ,
[
Ei , Fj

]
= δij

T+
i + T−

i

2 di

— for all T ′, T ′′ , T ∈ h , i, j ∈ I , i ̸= j , with Lie bialgebra structure given on
generators — for all T ∈ h and all i ∈ I — by

δ
(
T
)
= 0 , δ

(
Ei
)
= 2 T+

i ∧ Ei , δ
(
Fi
)
= 2 T−

i ∧ Fi
As a last remark, we stress that in gD

P the Lie algebra structure does depend on the
multiparameter P , while the Lie coalgebra structure is actually independent of it.

The general case: Let now P be again a multiparameter (of Cartan type) and

R :=
(
h ,Π ,Π∨ ) be any realization of it — not necessarily split nor minimal.

Then we define a Lie bialgebra gR
P generalizing the notion of gD

P introduced above.
Namely, as a Lie algebra we define gR

P by generators and relations with (formally)
the very same presentation as for gD

P right above. The Lie coalgebra also has the
same form, but we introduce it indirectly.

First of all, using Lemma 2.1.8 we fix a realization Ṙ :=
(
ḣ , Π̇ , Π̇∨ ) of P that

is split, and we also fix ḣ
T
:= Span

({
T±
i

}
i∈I

)
inside ḣ . Then we consider also

R̊ :=
(
ḣ

T
, Π̊ ,Π∨ ) — where Π̊ :=

{
α̊i := αi

∣∣
ḣ
T

}
i∈I

— that is again a realization



FORMAL MULTIPARAMETER QUANTUM GROUPS 23

of P , which is now split and minimal. Out of Ṙ and R̊ we define two Lie algebras
— denoted gṘ

P , resp. gR̊
P — via an explicit presentation, which is again (formally)

like the one given above for gD
P , up to the obvious changes. Clearly, the inclusion

ḣ
T
⊆ ḣ induces an embedding of Lie algebras gR̊

P ↪−−→ gṘ
P .

Now, as R̊ is split minimal, the Lie algebra gR̊
P actually is one of the form gD

P ,
and as such it bears a structure of Lie bialgebra as given above. But then, it follows
by construction that there is a unique way to extend the Lie cobracket of gR̊

P to gṘ
P

in such a way that the embedding gR̊
P ↪−−→ gṘ

P mentioned above is actually one of
Lie bialgebras. In short, gṘ

P bears a Lie bialgebra structure that is again described

by the very same formulas as for gD
P , up to replacing everywhere h with ḣ .

Finally, again by Lemma 2.1.8 there exists also an epimorphism of realizations
π : Ṙ −↠ R . Then, from the presentation of both gṘ

P and gR
P , this π induces an

epimorphism of Lie algebras Lπ : gṘ
P −↠ gR

P , such that Ker
(
Lπ
)
is generated by

Ker
(
π : ḣ −−↠ h

)
, and the latter lies in the center of gṘ

P , by definitions and by
Lemma 2.1.9; moreover, the Lie cobracket of gṘ

P kills Ker(π) , so the latter is a Lie
bi-ideal in the Lie bialgebra gṘ

P . Thus gR
P inherits via Lπ a quotient Lie bialgebra

structure from gṘ
P , again described by the same formulas given above for gD

P .

Every such Lie bialgebra gR
P will be called multiparameter Lie bialgebra, in short

MpLbA. In addition, we say that the MpLbA gR
P is straight, or small, or minimal,

or split, if such is R , and we define rank of gR
P as rk

(
gR

P

)
:= rk(R) = rkk(h) .

For later use, we remark that every gR
P has two obvious triangular decompositions

gR
P = n+ ⊕ h⊕ n− , gR

P = n− ⊕ h⊕ n+ (3.6)

as a direct sum of Lie algebras, where n+ , resp. n− , is the Lie subalgebra of gR
P

generated by all the Ei’s, resp. all the Fi’s.

The following result points out the fact that the dependence of MpLbA’s on
realizations (for a common, fixed multiparameter matrix) is functorial:

Proposition 3.2.4. Let P ∈ Mn(k) . If both R′ and R′′ are realizations of P and
ϕ : R′ −−−→ R′′ is a morphism between them, then there exists a unique morphism

of Lie bialgebras Lϕ : gR′
P −−→ gR′′

P that extends the morphism ϕ : h′−−→ h′′ given

by ϕ ; moreover, LidR
= idgRP

and Lϕ′◦ϕ = Lϕ′ ◦ Lϕ (whenever ϕ′ ◦ ϕ is defined).
Thus, the construction R 7→ gR

P — for any fixed P — is functorial in R .
Moreover, if ϕ is an epimorphism, resp. a monomorphism, then Lϕ is an epimor-

phism, resp. a monomorphism, as well. Finally, for any morphism ϕ : R′ −−→ R′′ ,

the kernel Ker
(
Lϕ
)
of Lϕ coincides with Ker(ϕ) , and the latter is central in gR′

P .
In particular, when ϕ , and hence also Lϕ , is an epimorphism, we have — setting

k := Ker(ϕ) — a central exact sequence of Lie bialgebras

0 −−−→ k −−−→ gR′

P

Lϕ

−−−→ gR′′

P −−−→ 0

Proof. The existence of Lϕ is obvious, as well as all the other claims; we only spend

a moment on the centrality of Ker(ϕ) . Lemma 2.1.9 imply Ker(ϕ) ⊆
⋂
j∈I

Ker(α′
j) ;

then from the relations among the generators of gR′
P (cf. §3.2.3) we get that each

element in Ker(ϕ) commutes with all generators of gR′
P , thus Ker(ϕ) is central. □
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Corollary 3.2.5. With notation as above, if R′ ∼= R′′ then gR′
P
∼= gR′′

P .

In particular, all MpLbA’s built upon split realizations, respectively small realiza-
tions, of the same matrix P and sharing the same rank of h , are isomorphic to each
other, hence they are independent (up to isomorphisms) of the specific realization,
but only depend on P and on the rank of h .

Proof. This follows at once from Proposition 3.2.4 together with the uniqueness
result in Proposition 2.1.5 and Proposition 2.1.7. □

Remark 3.2.6. We expect that our definition (and construction) of MpLbA’s, as
well as the related results presented below, can be extended to the case where the
symmetrizable generalized Cartan matrixA is replaced by a more general symmetriz-
able Borcherds-Cartan matrix, as in [Bor]. However, due to additional technical
difficulties, we do not pursue such a goal in the present paper.

3.2.7. Construction via double cross sums. In this subsection we give another
construction of our MpLbA’s, as suitable double cross sums ; the latter can be seen
as a semiclassical version of the double cross products of FoMpQUEAs given in
§4.5.17. We follow [Mj, Section 8.3] for the exposition.

Definition 3.2.8. [Mj, Definition 8.3.1] Two Lie algebras (g,m) form a right-left
matched pair if there is a right action of g on m and a left action of m on g , denoted

◁ : m⊗ g −→ m and ▷ : m⊗ g −→ g

obeying the following conditions (for all m,n ∈ m and x, y ∈ g ):

[m,n] ◁ x = [m ◁ x, n] + [m,n ◁ x] + n ◁ (m ▷ x) − m ◁ (n ▷ x)

m ▷ [x, y] = [m ▷ x, y] + [x,m ▷ y] + (m ◁ y) ▷ x − (m ◁ x) ▷ y

After the previous definition, the key fact is the following result:

Proposition 3.2.9. [Mj, Proposition 8.3.2]

(a) Given a matched pair of Lie algebras (g,m) , there exists a Lie algebra, called
double cross sum Lie algebra and denoted by g ▷◁ m , whose socle is the vector space
g⊕m and whose Lie bracket is (for all x, y ∈ g and m,n ∈ m )

[x⊕m, y ⊕ n] =
(
[x, y] +m ▷ y − n ▷ x

)
⊕
(
[m,n] +m ◁ y − n ◁ x

)
(b) Conversely, if the direct sum space h := g ⊕ m bears a structure of Lie

bialgebra such that the copies of g and m inside it are Lie subalgebras, then (g,m) is
a matched pair of Lie algebras whose associated double cross sum obeys g ▷◁ m ∼= h ,
i.e. it is isomorphic to h . The required actions are recovered from the identities[

j(m), i(x)
]
= i(m ▷ x) + j(m ◁ x) ∀ x ∈ g ,m ∈ m

where i : g −→ g⊕m =: h
(
y 7→ i(y) := (y, 0m)

)
and likewise j : m −→ g⊕m =: h(

n 7→ j(n) := (0g, n)
)

are the natural Lie algebra monomorphisms. □
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In order to extend the notion of matched pair to Lie bialgebras, it is necessary to
have a compatibility of the left-right actions with the Lie coalgebra structures. Thus
assume now that g and m are Lie bialgebras: we say that m is a right g–module Lie
coalgebra if it is a right g–module and in addition (for m ∈ m and x ∈ g ) one has

δm(m ◁ x) =
(
m[1] ◁ x

)
⊗m[2] + m[1] ⊗

(
m[2] ◁ x

)
=: δm(m) ◁ x

the notion of left m–module Lie coalgebra is defined analogously.

Proposition 3.2.10. [Mj, Proposition 8.3.4]

Let (g,m) be a matched pair of Lie algebras, with both g and m being Lie bialge-
bras and with ◁ , resp. ▷ , making g into a left m–module Lie coalgebra, resp. m into
a right g–module Lie coalgebra, such that, for all m ∈ m and x ∈ g , we have

0 = m ◁ δg(x) + δm(m) ▷ x =

=
(
m ◁ x[1]

)
⊗ x[2] + x[1] ⊗

(
m ◁ x[2]

)
+
(
m[1] ▷ x

)
⊗m[2] + m[1] ⊗

(
m[2] ▷ x

)
Then the direct sum Lie coalgebra structure makes g ▷◁ m into a Lie bialgebra,
which is called the double cross sum Lie bialgebra. □

3.2.11. Multiparameter Lie bialgebras as double cross sums. Let A :=(
ai,j
)
i,j∈I be some fixed generalized symmetrizable Cartan matrix, and let P :=(

pi,j
)
i,j∈I ∈ Mn(k) be a matrix of Cartan type with associated Cartan matrix A .

Then one defines, as in Subsection 3.2.2, the Borel multiparameter Lie bialgebras bP
+

and bP
− , which are dually paired by a Lie bialgebra pairing, that we denote hereafter

by ⟨ , ⟩ : bP
+ × bP

− −−−→ k . Using this pairing one may define left-right actions

◁ : bP

+ ⊗
(
bP

−
)op −−→ bP

+ ▷ : bP

+ ⊗
(
bP

−
)op −−→ (

bP

−
)op

m ◁ x := m[1]

〈
m[2], x

〉
m ▷ x := x[1]

〈
m,x[2]

〉
for all m ∈ bP

+ and x ∈
(
bP
−
)op

, cf. [Mj, Example 8.3.7]. Then these Borel mul-

tiparameter Lie bialgebras form a matched pair
((

bP
−
)op
, bP

+

)
, whence the double

cross sum Lie bialgebra
(
bP
−
)op

▷◁ bP
+ is defined. By the very construction, there

exist also Lie bialgebra monomorphisms(
bP

−
)op

↪−−−−→
(
bP

−
)op

▷◁ bP

+←−−−−↩ bP

+

An entirely similar construction can be made transposing the opposite Lie algebra
structure on bP

− to the co-opposite Lie coalgebra structure on bP
+ : in other words,

the pairing ⟨ , ⟩ induces skew-parings both on
(
bP
−
)op⊗ bP

+ and on bP
−⊗

(
bP
+

)cop
.

In this case, we get the matched pair of Lie bialgebras
(
bP
−,
(
bP
+

)cop)
and the double

cross sum bP
− ▷◁

(
bP
+

)cop
; the latter also admits the Lie bialgebra monomorphisms

bP

− ↪−−−−→ bP

− ▷◁
(
bP

+

)cop←−−−−↩ (bP

+

)cop
Morevoer, by the very definition, this double cross sum is isomorphic to the Drinfeld
double gD

P as defined in §3.2.3, that is bP
− ▷◁

(
bP
+

)cop ∼= gD
P .
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3.3. Deformations of MpLbA’s by toral twists. Let gR
P be a MpLbA as in

§3.2.3 above; then h is a free k–module of finite rank t := rk(h) : we fix in it a
k–basis

{
Hg

}
g∈G , where G is an index set with |G| = rk(h) =: t .

We begin introducing the so-called “toral” twists for gR
P .

Definition 3.3.1. For any antisymmetric matrix Θ =
(
θgk
)
g,k∈G ∈ sot(k) , we set

jΘ :=
∑t

g,k=1θgkHg ⊗Hk ∈ h⊗ h ⊆ g⊗ g (3.7)

and we call this jΘ the toral twist (or “twist of toral type”) associated with Θ . ♢

N.B.: When g is a simple Lie algebra, in the classification of [ESS] via Belavin-
Drinfeld triples the above twist is associated with the empty datum; moreover, it
turns out to be a semiclassical limit of a twist for Uℏ(g) , see §6.

Next result — which explains our use of terminology — follows by construction;
in particular, it makes use of the antisymmetry condition on Θ .

Lemma 3.3.2. For any matrix Θ =
(
θgk
)
g,k∈G ∈ sot(k) , the element jΘ given in

Definition 3.3.1 is a twist element for the Lie bialgebra gR
P , in the sense of (3.2).

Concerning deformations of MpLbA’s by toral twists, our main result is the next
one. To settle its content, let P ∈ Mt(k) be a multiparameter matrix of Cartan
type with associated Cartan matrix A , let R be a realization of it, and let gR

P be the
associated multiparameter Lie bialgebra; then, for any given antisymmetric matrix

Θ =
(
θgk
)
g,k∈G ∈ sot(k) , let jΘ :=

t∑
g,k=1

θgkHg ⊗ Hk be the associated twist

as in (3.7). Moreover, we consider the “deformed” multiparameter matrix PΘ =(
pΘ
i,j

)
i,j∈I := P − AΘA T as in (2.4) — again of Cartan type, the same as P —

and its corresponding “deformed” realization RΘ :=
(
h ,Π ,Π∨

Θ :=
{
T+

Θ,i , T
−
Θ,i

}
i∈I

)
.

Theorem 3.3.3. There exists a Lie bialgebra isomorphism fΘ
P : gRΘ

PΘ

∼=
↪−−−↠

(
gR

P

)jΘ
(notation as above, with in right-hand side the twist deformation

(
gR

P

)jΘ of gR
P by

jΘ occurs) given by Ei 7→ Ei , T 7→ T and Fi 7→ Fi for all i ∈ I , T ∈ h .

In particular, the class of all MpLbA’s of any fixed Cartan type and of fixed rank
is stable by toral twist deformations. Moreover, inside it the subclass of all such
MpLbA’s associated with straight, resp. small, realizations is stable as well.

Proof. By §3.2.3, the Lie algebra structure in
(
gR

P

)jΘ is the same as in gR
P , and the

latter only depends on the αj’s and the sums Sj := 2−1
(
T+
i + T−

i

)
( j ∈ I ). Now,

both the αj’s and the Sj’s do not change (see above) when we pass from gR
P to gRΘ

PΘ
or

viceversa; therefore, the formulas in the claim (mapping each generator of gRΘ
PΘ

onto

the same name generator of gR
P =

(
gR

P

)jΘ ) provide an isomorphism of Lie algebras.

Now consider the toral twist jΘ :=
∑t

g,k=1θgkHg ⊗Hk given in (3.7). By (3.3)

δjΘ(x) := δ(x)− adx
(
jΘ
)

= δ(x)−
∑t

g,k=1θgk
([
x,Hg

]
⊗Hk +Hg ⊗

[
x,Hk

])
for all x ∈ g . Now take x := Eℓ ( ℓ ∈ I ): then the previous formula reads
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δjΘ(Eℓ) := δ(Eℓ)−
∑t

g,k=1 θgk
([
Eℓ , Hg

]
⊗Hk +Hg ⊗

[
Eℓ , Hk

])
=

= δ(Eℓ)−
∑t

g,k=1 θgk
(
− αℓ(Hg)Eℓ ⊗Hk −Hg ⊗ αℓ(Hk)Eℓ

)
=

= T+
ℓ ⊗ Eℓ − Eℓ ⊗ T

+
ℓ +

∑t
g,k=1 θgk

(
αℓ(Hg)Eℓ ⊗Hk + αℓ(Hk)Hg ⊗ Eℓ

)
=

=
(
T+
ℓ +

∑t
g,k=1 θkg αℓ(Hg)Hk

)
⊗ Eℓ − Eℓ ⊗

(
T+
ℓ +

∑t
g,k=1 θkg αℓ(Hg)Hk

)
=

= T+
Θ,ℓ ⊗ Eℓ − Eℓ ⊗ T+

Θ,ℓ = 2 T+
Θ,ℓ ∧Eℓ

hence in short we get δjΘ(Eℓ) = 2 T+
Θ,ℓ ∧Eℓ . Similar computations give

δjΘ(Ei) = 2T+
Θ,i ∧Ei , δjΘ(T ) = 0 , δjΘ(Fi) = 2T−

Θ,i ∧Fi , ∀ i ∈ I , T ∈ h

This means that, through the Lie algebra isomorphism fΘ
P , the Lie coalgebra struc-

ture of
(
gR

P

)jΘ is described on generators exactly like that of gRΘ
PΘ

, with the new

“coroots” T±
Θ,i ( i ∈ I ) in

(
gR

P

)jΘ playing the role of the coroots T±
i ( i ∈ I ) in gRΘ

PΘ
.

Therefore fΘ
P : gRΘ

PΘ
−−−→

(
gR

P

)jΘ is an isomorphism of Lie bialgebras, q.e.d. □

In fact, the previous result can be reversed, somehow. Namely, our next result
shows, in particular, that every straight small MpLbA can be realized as a toral twist
deformation of the “standard” MpLbA gD

DA (as in §3.2.3) — cf. claim (c) below.

Theorem 3.3.4. With assumptions as above, let P and P ′ be two matrices of Cartan
type with the same associated Cartan matrix A , i.e. such that Ps = P ′

s .

(a) Let R be a straight realization of P and let gR
P be the associated MpLbA.

Then there exists a matrix Θ ∈ sot(k) such that P ′ = PΘ , the corresponding RΘ is
a straight realization of P ′ = PΘ , and for the twist element jΘ as in (3.7) we have

g
RΘ

P ′
∼=
(
gR

P

)jΘ
In a nutshell, if P ′

s = Ps then from any straight MpLbA over P we can obtain by
toral twist deformation a straight MpLbA (of the same rank) over P ′ .

(b) Let R and R′ be straight small realizations of P and P ′ respectively, with
rk(R) = rk(R′) =: t , and let gR

P and gR′

P ′ be the associated MpLbA’s. Then there
exists a matrix Θ ∈ sot(k) such that for the twist element jΘ as in (3.7) we have

gR′

P ′ ∼=
(
gR

P

)jΘ
In a nutshell, if P ′

s = Ps then any straight small MpLbA over P ′ is isomorphic
to a toral twist deformation of any straight small MpLbA over P of the same rank.

(c) Every straight small MpLbA is isomorphic to some toral twist deformation of
the standard MpLbA gD

DA (over DA = Ps , cf. §3.2.3) of the same rank.

Proof. (a) By Theorem 3.3.3 it is enough to find Θ ∈ sot(k) such that P ′ = PΘ ,
that is P ′ = P − AΘA T ; but this is guaranteed by Lemma 2.2.5, so we are done.

(b) This follows from claim (a), along with the uniqueness of straight small real-
izations — cf. Proposition 2.1.5(b) — and Proposition 3.2.4.

(c) This follows from (b), taking as gR′

P ′ the given straight small MpLbA and as
gR

P the “standard” MpLbA gD
P over P := DA = P ′

s . □
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Observations 3.3.5.

(a) Theorems 3.3.3 and 3.3.4 have the following interpretation. Our MpLbA’s
gR

P depend on the multiparameter P ; at a further level, once we perform onto gR
P a

deformation by toral twist the outcome gR
P ,Θ :=

(
gR

P

)jΘ depends on two multipara-
meters, namely P and Θ . Thus all these gR

P ,Θ’s form a seemingly richer family of
“twice-multiparametric” MpLbA’s. Nonetheless, Theorem 3.3.3 above proves that
this coincides with the family of all MpLbA’s, though the latter seems smaller.

In short, Theorems 3.3.3 and 3.3.4 show the following. The dependence of the
Lie bialgebra structure of gR

P ,Θ on the “double parameter” (P ,Θ) is “split” in the
algebraic structure — ruled by P — and in the coalgebraic structure — ruled by Θ .
Now, Theorems 3.3.3 and 3.3.4 enable us to “polarize” this dependence so to codify
it either entirely within the algebraic structure (while the coalgebraic one is reduced
to a “canonical form”) — so the single multiparameter PΘ is enough to describe it
— or entirely within the coalgebraic structure (with the algebraic one being reduced
to the “standard” one) — so the one multiparameter ΘP is enough to describe it.

(b) As we saw at the end of §2.2.8, the (sub)class of split realizations is not
closed under twist deformation; as a consequence, the subclass of all MpLbA’s that
are “split” is not closed either under twist deformation.

3.4. Deformations of MpLbA’s by toral 2–cocycles. Let again gR
P be a MpLbA

as in §3.2.3, and keep notation as above. Dually to what we did before, we consider
now the so-called “toral” 2–cocycles for gR

P .

Definition 3.4.1. Fix an antisymmetric k–linear map χ : h⊗ h −−→ k such that

χ(Si , − ) = 0 = χ(− , Si) ∀ i ∈ I (3.8)

where Si := 2−1
(
T+
i + T−

i

)
for all i ∈ I (cf. Definition 2.1.2); in other words, we

have χ ∈ AltSk[[ℏ]](h) , cf. (2.12). Moreover, let π
gRP
h : gR

P −↠ h be the canonical
projection induced by any one of the triangular decompositions in (3.6). We define

χg := χ ◦
(
π
gRP
h ⊗ π

gRP
h

)
: gR

P ⊗ gR
P −−↠ h⊗ h −−→ k

and we call it the toral 2–cocycle (or “2–cocycle of toral type”) associated with χ . ♢

Next result follows at once by construction, and explains our use of terminology:

Lemma 3.4.2. For any antisymmetric k–linear map χ : h⊗h −→ k obeying (3.8),

χg := χ ◦
(
π
gRP
h ⊗ π

gRP
h

)
: gR

P ⊗ gR
P −−↠ h⊗ h −−→ k

is a 2–cocycle map for the Lie bialgebra gR
P , in the sense of (3.4).

Proof. We have to check that χg ∈ Homk
(
gR

P ⊗ gR
P ,k

)
satisfies (3.4), that is

adψ
(
∂∗(χg)− [[χg , χg ]]∗

)
= 0 , adψ

(
χg + (χg)

2,1

)
= 0 ∀ ψ ∈ (gR

P )
∗

Since χ is antisymmetric, we have that χg+(χg)
2,1

= 0 , hence the second condition

is trivially satisfied. On the other hand, the first equality follows from the fact that
actually one has ∂∗(χg) = 0 and [[χg , χg ]]∗ = 0 . To see it, let us describe ∂∗(χg) ,

[[χg , χg ]]∗ ∈
(
gR

P ⊗ gR
P ⊗ gR

P )
∗
explicitly. For x, y, z ∈ gR

P we have
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∂∗(χg)(x, y, z) =
(
(id⊗δ∗)(χg) + c.p.

)
(x, y, z) = χg

(
x⊗ [y, z]

)
+ c.p. =

= χg

(
x, [y, z]

)
+ χg

(
z, [x, y]

)
+ χg

(
y, [z, x]

)
[[χg , χg ]]∗(x, y, z) = χg(x[1], y)χg(x[2], z) + χg(y[1], z)χg(y[2], x) + χg(z[1], x)χg(z[2], y)

Using (3.6), for g ∈ gR
P write g = g+ + g0 + g− with g± ∈ n± and g0 ∈ h . As χg is

defined through the map π
gRP
h , the map ∂∗(χg) vanishes when evaluated at elements

in n+ or n− . Moreover, since the bracket on h is trivial and [ h, n± ] ⊆ n± , we get

∂∗(χg)(x, y, z) = χ
(
x0 , [ y+, z−] + [ y−, z+]

)
+ c.p.

But [n+, n−] is contained in the Lie subalgebra spanned by the Si’s ( i ∈ I ), so we
eventually get ∂∗(χg)(x, y, z) = 0 — for all x, y, z ∈ gR

P — by condition (3.8).
To prove that [[χg , χg ]]∗(x, y, z) = 0 , we use the Lie coalgebra structure. From

(3.1) it follows that δ(n±) ⊆ bP
± ⊗ n± . Since δ(h) = 0 by definition and ∂∗(χg)

vanishes on n± , we get that each summand of [[χg , χg ]]∗(x, y, z) is zero, q.e.d. □

The second result is the dual analog of Theorem 3.3.3 and of Theorem 3.3.4.

We start with some preliminaries. Let P ∈Mt(k) be a multiparameter matrix of
Cartan type with associated Cartan matrix A , let R be a realization of it, and let
gR

P be the associated multiparameter Lie bialgebra; then, given any χ ∈ AltSk[[ℏ]](h)
as in (2.12), let χg : gR

P⊗ gR
P −→ k be the 2–cocycle map for gR

P as in Lemma 3.4.2.

Consider the antisymmetric matrix X̊ :=
(
χ̊ij = χ

(
T+
i , T

+
j

))
i,j∈I
∈ son(k) . By

Proposition 2.3.2 we have a matrix P(χ) and a realization R(χ) of it, given by

P(χ) := P + X̊ =
(
p
(χ)
ij := pij + χ̊ij

)
i,j∈I

, Π(χ) :=
{
α
(χ)
i := αi ± χ

(
– , T±

i

)}
i∈I

In particular, if P is of Cartan type, then so is P(χ) as well, and they are associated
with the same Cartan matrix.

Theorem 3.4.3. Keep notation as above.

(a) There exists a Lie bialgebra isomorphism f
(χ)
P : g

R(χ)

P(χ)

∼=
↪−−−↠

(
gR

P

)
χg

— where(
gR

P

)
χg

=
(
gR

P ; [ , ]χg
, δ
)
is the 2–cocycle deformation of gR

P as in Definition 3.1.4.

In particular, the class of all MpLbA’s of any fixed Cartan type and of fixed rank
is stable by toral 2–cocycle deformations. Moreover, inside it the subclass of all such
MpLbA’s associated with split, resp. minimal, realizations is stable as well.

(b) Let P and P ′ be two matrices of Cartan type with the same associated Cartan
matrix A , i.e. such that Ps = P ′

s . Then the following holds:

(b.1) Let R be a split realization of P and let gR
P be the associated MpLbA.

Then there is χ ∈ AltSk (h) such that P ′ = P(χ) , the corresponding R(χ) is a split
realization of P ′ = P(χ) , and for the 2–cocycle χg as in Definition 3.4.1 we have

g
R(χ)

P ′
∼=
(
gR

P

)
χg

In a nutshell, if P ′
s = Ps then from any split MpLbA over P we can obtain by

toral 2–cocycle deformation a split MpLbA (of the same rank) over P ′ .
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(b.2) Let R and R′ be split minimal realizations of P and P ′ respectively, and
let gR

P and gR′

P ′ be the associated MpLbA’s. Then there exists χ ∈ AltSk (h) such that
for the 2–cocycle χg as in Definition 3.4.1 we have

gR′

P ′ ∼=
(
gR

P

)
χg

In a nutshell, if P ′
s = Ps then any split minimal MpLbA over P ′ is isomorphic to

a toral 2–cocycle deformation of any split minimal MpLbA over P .

(b.3) Every split minimal MpLbA is isomorphic to some toral 2–cocycle deforma-
tion of the Manin double gD

DA := b+ ⊕ b− associated with DA endowed with the
canonical Lie bialgebra structure given in §3.2.3.

Proof. (a) By §3.1.2, the Lie coalgebra structure in
(
gR

P

)
χg

is the same as in gR
P ,

and the latter coincides with the one in g
R(χ)

P(χ)
. In particular, we have a Lie coalgebra

isomorphism among them. With respect to the Lie algebra structure, we know that
the Lie bracket in

(
gR

P

)
χg

is a deformation of that of gR
P according to (3.5). Let us

see that the modified defining relations in
(
gR

P

)
χg

coincide with the ones in g
R(χ)

P(χ)
,

cf. §3.2.3; this will imply that both objects are isomorphic as Lie bialgebras.

As the Lie cobracket on the Cartan subalgebra h of g
R(χ)

P(χ)
is trivial, we get that

[T ′, T ′′]χg
= [T ′, T ′′] − T ′

[1] χg

(
T ′
[2], T

′′) + T ′′
[1] χg

(
T ′′
[2], T

′) = [T ′, T ′′] = 0

for all T ′, T ′′ ∈ h . Take now i ∈ I : since δ(T ) = 0 , δ(Ei) = 2T+
i ∧ Ei and

δ(Fi) = 2T−
i ∧ Fi , we get that

[T,Ei]χg
= [T,Ei]− Ei χg

(
T+
i , T

)
= αi(T )Ei + χ

(
T, T+

i

)
Ei = α

(χ)
i (T )Ei

[T, Fi]χg
= [T, Fi]− Fi χg

(
T−
i , T

)
= −αi(T )Fi + χg

(
T, T−

i

)
Fi =

= −
(
αi(T )Fi − χ

(
T, T−

i

))
Fi = −α(χ)

i (T )Fi

[Ei, Fj]χg
= [Ei, Fj] + Ei χg

(
T+
i , Fj

)
− Fj χg

(
T−
j , Ei

)
= [Ei, Fj] = δij

T+
i + T−

i

2 di
Note that only the relations involving the roots are changed by the cocycle. Now,
with respect to the Serre relations, as the Lie subalgebras n± are contained in the
right and left radical of χg , analogous calculations as above yield that(

adχg (Ei)
)1−aij(Ej) =

(
ad (Ei)

)1−aij(Ej) = 0(
adχg (Fi)

)1−aij(Fj) =
(
ad (Fi)

)1−aij(Fj) = 0

Here adχg denotes the adjoint action with respect to the deformed bracket [−,−]χg
.

(b.1) By claim (a), it is enough to find an antisymmetric k–linear χ : h⊗h −→ k
obeying (3.8) such that P ′ = P(χ) ; this is guaranteed by Proposition 2.3.5.

(b.2) This follows from claim (b.1), along with the uniqueness of split realizations
— cf. Proposition 2.1.5(b).

(b.3) This follows as an application of claim (b.2), taking as gR′

P ′ the given split
minimal MpLbA and for gR

P the “standard” MpLbA gD
P over P := DA = P ′

s (cf.
§3.2.3), which by definition is straight and split minimal. □
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4. Formal multiparameter QUEAs (=FoMpQUEAs)

This section is devoted to introduce formal multiparameter quantized universal
enveloping algebras (in short, FoMpQUEAs) and to study their deformations.

4.1. The Hopf algebra setup.

Our main references for the theory of Hopf algebras are [Mo] and [Ra]. For
topological or ℏ–adically complete Hopf algebras see for instance [Ks], [CP], [KS].

4.1.1. Hopf notation. Let us fix our notation for Hopf algebra theory (mainly
standard, indeed). The comultiplication is denoted ∆, the counit ϵ and the antipode
S ; for the first, we use the Heyneman-Sweedler notation, namely ∆(x) = x(1)⊗x(2) .

Hereafter by k we denote the ground ring of our algebras, coalgebras, etc. In any
coalgebra C , the set of group-like elements is denoted by G(C) ; also, we denote by
C+ := Ker(ϵ) the augmentation ideal. If g, h ∈ G(C) , the set of (g, h)–primitive
elements is defined to be Pg,h(C) :=

{
x ∈ C |∆(x) = x⊗ g + h⊗ x

}
. In case C

is a bialgebra, we write Prim(C) = P1,1(C) for the space of primitive elements.
For a Hopf algebra H (or just bialgebra), we write Hop , resp. Hcop , for the Hopf

algebra (or bialgebra) given by taking in H the opposite product, resp. coproduct.
Given a Hopf algebra map π : H −→ K , then H is a left and right K–comodule,

with structure maps λ := (π⊗id)∆ : H −→ K⊗H , ρ := (id⊗π)∆ : H −→ H⊗K .
The space of left and right coinvariants then is defined, respectively, by

coKH := coπH =
{
h ∈ H

∣∣ (π ⊗ id)
(
∆(h)

)
= 1⊗ h

}
H coK := Hcoπ =

{
h ∈ H

∣∣ (id⊗π)(∆(h)
)
= h⊗ 1

}
We recall the (essentially standard) notion of skew-Hopf pairing between two Hopf

algebras and the construction of the Drinfeld’s double.

Definition 4.1.2. [AY, §2.1] Given two Hopf algebras H and K with bijective
antipode over the ring k , a k–linear map η : H ⊗k K −→ k is called a skew-Hopf
pairing (between H and K ) if, for all h ∈ H , k ∈ K , one has

η
(
h , k′ k′′

)
= η

(
h(1) , k

′) η(h(2) , k′′) (4.1)

η
(
h′ h′′ , k

)
= η

(
h′, k(2)

)
η
(
h′′, k(1)

)
(4.2)

η
(
h , 1

)
= ϵ(h) , η

(
1 , k

)
= ϵ(k) (4.3)

η
(
S±1(h) , k

)
= η

(
h , S∓1(k)

)
(4.4)

Note that the map η turns out to be convolution invertible: its inverse is given
by η−1(h, k) = η(h,S(k)) = η(S−1(h), k) for all h ∈ H and k ∈ K .

In this setup, the Drinfeld double, or “quantum double”, D(H,K, η) is the quotient

algebra T (H ⊕K)
/
I , where I is the (two-sided) ideal generated by the relations

1H = 1 = 1K , a⊗ b = a b , x(1) ⊗ y(1) η(y(2), x(2)) = η(y(1), x(1)) y(2) ⊗ x(2)
for all a , b ∈ H or a , b ∈ K and x ∈ K , y ∈ H . This is also endowed with a
standard Hopf algebra structure, for which H and K are Hopf k–subalgebras. ♢
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4.1.3. Topological issues. We will often deal with topological Hopf algebras,
namely Hopf algebras over the ring k[[ℏ]] of formal power series over a field k in a
formal variable ℏ . This ring carries a natural topology, called the ℏ–adic topology,
coming from the so-called ℏ–adic norm with respect to which it is complete, namely∥∥ anℏn + an+1ℏn+1 + · · ·

∥∥ := C−n (
an ̸= 0

)
where C > 1 is any fixed constant in R . In this sense, we shall consider topological
k[[ℏ]]–modules and the completed tensor products among them, which we denote by
⊗̂k[[ℏ]] or simply by ⊗̂ . For any k–vector space V , set

V [[ℏ]] :=
{∑

n≥0vnℏ
n
∣∣∣ vn ∈ V , ∀n ≥ 0

}
then V [[ℏ]] is a complete k[[ℏ]]–module. We call a topological k[[ℏ]]–module topolog-
ically free if it is isomorphic to V [[ℏ]] for some k–vector space V . For two topologi-
cally free modules V [[ℏ]] and W [[ℏ]] one has that V [[ℏ]] ⊗̂W [[ℏ]] ∼=

(
V ⊗W

)
[[ℏ]] ,

see [Ks, Proposition XVI.3.2]. All completed tensor products between k[[ℏ]]–modules
then will be denoted simply by ⊗ , unless we intend to stress the topological aspect.
In particular, we make no distinction on the notation between Hopf algebras and
topological Hopf algebras; we assume it is well-understood from the context.

4.1.4. Hopf algebra deformations. There exist two standard methods to de-
form Hopf algebras, leading to so-called “2–cocycle deformations” and to “twist
deformations”: hereafter we recall both procedures, adapting them to the setup of
topological Hopf algebras, then later on we apply them to formal quantum groups.

Twist deformations: Let H be a Hopf algebra (over a commutative ring), and let
F ∈ H ⊗H be an invertible element in H⊗2 (later called a “twist”) such that

F12

(
∆⊗ id

)
(F) = F23

(
id⊗∆

)
(F) ,

(
ϵ⊗ id

)
(F) = 1 =

(
id⊗ ϵ

)
(F)

Then H bears a second Hopf algebra structure, denoted HF and called twist defor-
mation of the old one, with the old product, unit and counit, but with new “twisted”
coproduct ∆F and antipode SF given by

∆F(x) := F ∆(x)F−1 , SF(x) := v S(x) v−1 ∀ x ∈ H

where v :=
∑

F S(f ′
1) f

′
2 — with

∑
F f

′
1 ⊗ f ′

2 = F−1 — is invertible in H (see,
[CP, §4.2.E], for further details). When H is in fact a topological Hopf algebra —
meaning that, in particular, its coproduct ∆ takes values into H ⊗ H where now
“⊗ ” stands for a suitable topological tensor product — then the same notions still
make sense, and the related results apply again, up to properly reading them.

Cocycle deformations: Let
(
H,m , 1 ,∆ , ϵ

)
be a bialgebra over a ring k . A

convolution invertible linear map σ in Homk(H ⊗ H,k ) is called a (normalized)
Hopf 2-cocycle (or just a “2–cocycle” if no confusion arises) if

σ(b(1), c(1))σ(a, b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c)

and σ(a, 1) = ϵ(a) = σ(1, a) for all a, b, c ∈ H , see [Mo, Sec. 7.1].
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Using a 2–cocycle σ it is possible to define a new algebra structure on H by
deforming the multiplication. Indeed, define mσ = σ ∗m ∗ σ−1 : H ⊗H −→ H by

mσ(a, b) = a ·σ b = σ(a(1), b(1)) a(2) b(2) σ
−1(a(3), b(3)) ∀ a, b ∈ H

If in addition H is a Hopf algebra with antipode S , then define also Sσ : H −→ H
as Sσ : H −→ H where

Sσ(a) = σ(a(1),S(a(2)))S(a(3))σ−1(S(a(4)), a(5)) ∀ a ∈ H

It is known that
(
H,mσ, 1,∆, ϵ

)
is in turn a bialgebra, and

(
H,mσ, 1,∆, ϵ,Sσ

)
is

a Hopf algebra: we shall call such a new structure on H a cocycle deformation of
the old one, and we shall graphically denote it by Hσ ; see [Doi] for more details.

4.1.5. Deformations and duality. The two notions of “2–cocycle” and of “twist”
are so devised as to be dual to each other with respect to Hopf duality. The proof
of the following result (an exercise in Hopf theory) is left to the reader:

Proposition 4.1.6. Let H be a Hopf algebra over a field, and H∗ its linear dual.

(a) Let F be a twist for H , and σF the image of F in (H ⊗H)∗ for the natural
composed embedding H ⊗ H ↪−−→ H∗∗ ⊗ H∗∗ ↪−−→

(
H∗ ⊗H∗)∗ . Then σF is a

2–cocycle for H∗ , and there exists a canonical isomorphism
(
H∗)

σF

∼=
(
HF )∗ .

(b) Let σ be a 2–cocycle for H ; assume that H is finite-dimensional, and let Fσ
be the image of σ in the natural identification (H ⊗H)∗ = H∗⊗H∗ . Then Fσ is a

twist for H∗ , and there exists a canonical isomorphism
(
H∗)Fσ ∼=

(
Hσ

)∗
. □

4.1.7. Some q–numbers. Let Z
[
q, q−1

]
be the ring of Laurent polynomials with

integral coefficients in the indeterminate q . For every n ∈ N+ we define

(0)q := 1 , (n)q :=
qn − 1

q − 1
= 1 + q + · · ·+ qn−1 =

n−1∑
s=0

qs
(
∈ Z[q]

)
(n)q! := (0)q(1)q · · · (n)q :=

n∏
s=0

(s)q ,

(
n

k

)
q

:=
(n)q!

(k)q!(n− k)q!
(
∈ Z[q]

)
[0]q := 1 , [n]q :=

qn − q−n

q − q−1
= q−(n−1) + · · ·+ qn−1 =

n−1∑
s=0

q2 s−n+1
(
∈ Z

[
q, q−1

] )
[n]q! := [0]q[1]q · · · [n]q =

n∏
s=0

[s]q ,

[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
(
∈ Z

[
q, q−1

] )
In particular, we have the identities

(n)q2 = qn−1[n]q , (n)q2 ! = q
n(n−1)

2 [n]q ,

(
n

k

)
q2

= qk(n−k)
[
n

k

]
q

.

Moreover, for any field F we can think of Laurent polynomials as functions on F×,
hence for any q ∈ F× we shall read every symbol above as a suitable element in F .
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4.2. Formal multiparameter QUEAs.

We introduce now the notion of formal multiparameter quantum universal en-
veloping algebra — or just “FoMpQUEA”, in short.
Hereafter, k is a field of characteristic zero, k[[ℏ]] the ring of formal power series in

ℏ with coefficients in k . In any topological, k[[ℏ]]–adically complete k[[ℏ]]–algebra

A , if X ∈ A we use the standard notation eℏX := exp(ℏX) =
+∞∑
n=0

ℏnXn
/
n! ∈ A .

Definition 4.2.1. Let A :=
(
ai,j
)
i,j∈I be some fixed generalized symmetrizable

Cartan matrix, and let P :=
(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
be a matrix of Cartan type

associated with A as in the sense of Definition 2.1.2(d), that is P + P T = 2DA ,
i.e. pij + pji = 2 di aij for all i, j ∈ I , which implies pii = 2 di ̸= 0 for all i ∈ I .
We define in k[[ℏ]] the following elements: q := eℏ = exp(ℏ) ∈ k[[ℏ]] , qi :=

eℏ di
(
= qdi

)
, qij := eℏ pij

(
= qpij

)
for all i, j ∈ I , and also q

1/2
ij := eℏ pij/2 for all

i, j ∈ I . In particular we have q
1/2
ii = eℏdi = qi and qij qji = q

aij
ii for all i, j ∈ I . ♢

We can now define our FoMpQUEAs, using notation as in Definition 4.2.1 above.

Definition 4.2.2. Let A :=
(
ai,j
)
i,j∈I be a generalized symmetrizable Cartan

matrix, and P :=
(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
a matrix of Cartan type associated with

A. We fix a realization R :=
(
h ,Π ,Π∨ ) of P as in Definition 2.1.2.

(a) We define the formal multiparameter quantum universal enveloping algebra
— in short formal MpQUEA, or simply FoMpQUEA — with multiparameter P
and realization R as follows. It is the unital, associative, topological, ℏ–adically
complete k[[ℏ]]–algebra U R

P,ℏ(g) generated by the k[[ℏ]]–submodule h together with
elements Ei , Fi (for all i ∈ I ), with relations (for all T, T ′, T ′′ ∈ h , i , j ∈ I )

T Ej − Ej T = +αj(T )Ej , T Fj − Fj T = −αj(T )Fj

T ′ T ′′ = T ′′ T ′ , Ei Fj − Fj Ei = δi,j
e+ℏT+

i − e−ℏT−
i

q+1
i − q−1

i

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i = 0 ( i ̸= j )

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i FjF

k
i = 0 ( i ̸= j )

(4.5)

We say that the FoMpQUEA U R
P,ℏ(g) is straight, or small, or minimal, or split, if

such is R ; also, we define the rank of U R
P,ℏ(g) as rk

(
U R
P,ℏ(g)

)
:= rk(R) = rkk[[ℏ]](h) .

(b) We define the Cartan subalgebra U R
P,ℏ(h) , or just Uℏ(h) , of a FoMpQUEA

U R
P,ℏ(g) as being the unital, ℏ–adically complete topological k[[ℏ]]–subalgebra of

U R
P,ℏ(g) generated by the k[[ℏ]]–submodule h .

(c) We define the positive, resp. the negative, Borel subalgebra U R
P,ℏ(b+), resp.

U R
P,ℏ(b−), of U

R
P,ℏ(g) to be the unital, ℏ–adically complete topological k[[ℏ]]–subalge-

bra of U R
P,ℏ(g) generated by h and all the Ei’s, resp. by h and all the Fi’s ( i ∈ I ).
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(d) We define the positive, resp. negative, nilpotent subalgebra U R
P,ℏ(n+), resp.

U R
P,ℏ(n−), of a FoMpQUEA U R

P,ℏ(g) to be the unital, ℏ–adically complete topological

k[[ℏ]]–subalgebra of U R
P,ℏ(g) generated by the Ei’s, resp. the Fi’s, with i ∈ I . ♢

The following two results underscore that the dependence of FoMpQUEAs on
realizations (which includes that on the multiparameter matrix) is functorial:

Proposition 4.2.3. Let P ∈ Mn

(
k[[ℏ]]

)
. If both R′ and R′′ are realizations of

P and ϕ : R′ −−−→ R′′ is a morphism between them, then there exists a unique

morphism of unital topological k[[ℏ]]–algebras Uϕ : U R′

P,ℏ (g) −−−→ U R′′

P,ℏ (g) that

extends the morphism ϕ : h′ −−−→ h′′ of k[[ℏ]]–modules given by ϕ ; moreover,

UidR
= idU R

P,ℏ(g)
and Uϕ′◦ϕ = Uϕ′ ◦ Uϕ (whenever ϕ′ ◦ ϕ is defined).

Thus, the construction R 7→ U R
P,ℏ(g) — for any fixed P — is functorial in R .

Moreover, if ϕ is an epimorphism, resp. a monomorphism, then Uϕ is an epimor-
phism, resp. a monomorphism, as well.

Finally, for any morphism ϕ : R′ −−−−→ R′′ , the kernel Ker
(
Uϕ
)
of Uϕ is the

two-sided ideal in U R′

P,ℏ (g) generated by Ker(ϕ) , and the latter is central in U R′

P,ℏ (g) .

Proof. Everything is obvious, we only spend some words on the centrality of Ker(ϕ) .
Lemma 2.1.9 gives Ker(ϕ) ⊆

⋂
j∈I

Ker(α′
j) ; then (4.5) implies that each element in

Ker(ϕ) commutes with all generators of U R′

P,ℏ (g) , so Ker(ϕ) is central in U R′

P,ℏ (g) . □

Corollary 4.2.4. With notation as above, if R′ ∼= R′′ then U R′

P,ℏ(g)
∼= U R′′

P,ℏ (g) .
In particular, all FoMpQUEAs built upon split realizations, respectively small re-

alizations, of the same matrix P and sharing the same rank of h are isomorphic to
each other, hence they are independent (up to isomorphisms) of the specific realiza-
tion, but only depend on P and on the rank of h .

Proof. This follows at once from Proposition 4.2.3 together with the uniqueness
result in Proposition 2.1.5 and Proposition 2.1.7. □

We conclude this subsection with an important structure result, namely the “tri-
angular decomposition” for FoMpQUEAs. We begin with some preliminaries.

Definition 4.2.5. Let A :=
(
ai,j
)
i,j∈I be a generalized symmetrizable Cartan

matrix, and P :=
(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
a matrix of Cartan type associated with

A. We fix a realization R :=
(
h ,Π ,Π∨ ) of P as in Definition 2.1.2.

(a) We define Û+, resp. Û−, to be the unital, associative, topological, ℏ–adically
complete k[[ℏ]]–algebra with generators Ei (i ∈ I ) , resp. Fi (i ∈ I ) , and relations

uXij :=

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji X

1−aij−k
i XjX

k
i = 0 ( ∀ i ̸= j )

with X := E , resp. X := F .



36 G. A. GARCÍA , F. GAVARINI

(b) We define Û0 to be the unital, associative, commutative, topological, ℏ–
adically complete k[[ℏ]]–algebra generated by h . In other words, it is Û0 := Ŝℏ(h) ,
the ℏ–adic completion of the symmetric k[[ℏ]]–algebra over the k[[ℏ]]–module h .

(c) We define
−→
U R,⊗
P, ℏ (g) := Û− ⊗̂k[[ℏ]] Û

0 ⊗̂k[[ℏ]] Û
+ , and we introduce notation

Û−
⊗ := Û−⊗k[[ℏ]]⊗k[[ℏ]] , Û0

⊗(h) := k[[ℏ]]⊗Û0⊗k[[ℏ]] , Û+
⊗ := k[[ℏ]]⊗k[[ℏ]]⊗Û+

F⊗ := F ⊗1⊗1 , H⊗ := 1⊗H⊗1 , E⊗ := 1⊗1⊗E ∀ F ∈ Û−, H ∈ Û0, E ∈ Û+

Similarly, we set
←−
U R,⊗
P, ℏ (g) := Û+ ⊗̂k[[ℏ]] Û

0 ⊗̂k[[ℏ]] Û
− .

The following, key technical result is also interesting in itself:

Lemma 4.2.6. There exists on
−→
U R,⊗
P, ℏ (g) a unique structure of unital, associative,

topological, ℏ–adically complete k[[ℏ]]–algebra such that Û−
⊗ , Û0

⊗ and Û+
⊗ are all

k[[ℏ]]–subalgebras in UR,⊗
P, ℏ (g) , and moreover

F⊗
i · T⊗ = Fi ⊗ T ⊗ 1 , T⊗ · E⊗

j = 1⊗ T ⊗ Ej , F⊗
i · E⊗

j = Fi ⊗ 1⊗ Ej
T⊗ · F⊗

i = Fi ⊗ T ⊗ 1 − αi(T )F
⊗
i , E⊗

j · T⊗ = 1⊗ T ⊗ Ej − αj(T )E
⊗
j

E⊗
j · F⊗

i = Fi ⊗ 1⊗ Ej + δij 1⊗
e+ℏT+

i − e−ℏT−
i

e+ℏ di − e−ℏ di
⊗ 1

An entirely similar claim holds true for
←−
U R,⊗
P, ℏ (g) := Û+ ⊗̂k[[ℏ]] Û

0 ⊗̂k[[ℏ]] Û
− .

Proof. It is enough to prove the statement about
−→
U R,⊗
P, ℏ (g) .

We introduce a structure of an ℏ–adically complete, topological k[[ℏ]]–algebra
−→
U R,⊗
P, ℏ (g) as required by hands, somehow. First, we assume that in this algebra the

submodules Û−
⊗ , Û0

⊗ and Û+
⊗ sit as k[[ℏ]]–subalgebras — there is no obstruction to

such a requirement. After this, the structure will be uniquely determined once we fix
the products among elements in any two (different) of these subalgebras. Moreover,

as the subalgebra Û−
⊗ , resp. Û0

⊗(h) , resp. Û
+
⊗ , is (topologically) generated by the

F⊗
i ’s ( i ∈ I ), resp. the T⊗’s (T ∈ h ), resp. the E⊗

j ’s ( j ∈ I ), it is enough to fix
the products among any two such generators (from different sets). Eventually, recall

that the Fi’s, resp. the Ej’s, are indeed generators for Û−, resp. for Û+, which are
only subject to the “quantum Serre relations” in Definition 4.2.5(b), while the T ’s
are “commutative free” — but for the fact that they are related by obvious, built-in

relations such as T = c′ T ′ + c′′T ′′ inside h implies T = c′ T ′ + c′′T ′′ in Û0
⊗ , as

h is naturally mapped (linearly) into Û0
⊗ . Thus, one can define the values of the

product among F⊗
i , E

⊗
j ’ and T

⊗ in any possible way as soon as all “quantum Serre

relations” among the F⊗
i ’s and among the E⊗

j ’s, as well as the “obvious relations”
among the T ’s from h — namely the “linear relations” (such as T = c′ T ′ + c′′T ′′ )
and the commutation relations (of the form T ′T ′′ = T ′′T ′ ) are respected.
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By the above discussion, the following choices

F⊗
i · T⊗ := Fi ⊗ T ⊗ 1 , T⊗ · E⊗

j := 1⊗ T ⊗ Ej , F⊗
i · E⊗

j := Fi ⊗ 1⊗ Ej
T⊗ ·F⊗

i := Fi⊗T ⊗1 − αi(T )Fi⊗1⊗1 , E⊗
j ·T⊗ := 1⊗T ⊗Ej − αj(T ) 1⊗1⊗Ej

E⊗
j · F⊗

i := Fi ⊗ 1⊗ Ej + δi j · 1⊗
e+ℏT+

i − e−ℏT−
i

e+ℏ di − e−ℏ di
⊗ 1

for the values of the product among two generators — from different subalgebras

Û−
⊗ , Û0

⊗ or Û+
⊗ — are enough to determine a unique algebra structure as required:

we only have still to check that, using these defining formulas for the product, the
relations mentioned above among generators are respected.

First of all, we consider all linear relations and commutation relations among the
T ’s: in this case, the check is entirely trivial.

Second, we consider the case of quantum Serre relations. Concerning them, in
order to have more readable formulas, we simplify notation (with a slight abuse) by

writing, instead of “F⊗ ” (∀ F ∈ Û− ) just “F ” again, and similarly “H ” instead

of ”H⊗ ” ( ∀ H ∈ Û0 ) and “E ” instead of ”E⊗ ” ( ∀ E ∈ Û+ ).
Our goal now is to check that the multiplication defined by the previous formulas

“respects” the quantum Serre relations, which boils down to verify the following: all
products between a factor chosen in

{
Fi , T, Ej | i , j ∈ I, T ∈ h

}
and another (in

either order) chosen in
{
uEij , u

F
ij

∣∣ i , j ∈ I, i ̸= j
}

is zero.

Clearly all products of type uFij · Fℓ and Fℓ · uFij , resp. uEij · Et and Et · uEij , are
zero because so they are in the subalgebra U−, resp. U+. The non-trivial cases are

T · uEij , uEij · T , T · uFij , uFij · T , uEij · Fℓ , Fℓ · uEij , uFij · Et , Et · uFij
but among these, four cases are indeed almost trivial, as definitions give

T · uEij = 1⊗ T ⊗ uEij = 1⊗ T ⊗ 0 = 0 , uFij · T = uFij ⊗ T ⊗ 1 = 0 ⊗ T ⊗ 1 = 0

Fℓ ·uEij = Fℓ⊗1⊗uEij = Fℓ⊗1⊗0 = 0 , uFij ·Et = uFij⊗1⊗Et = 0 ⊗1⊗Et = 0

Eventually, the remaining, really non-trivial cases are the following four

uEij · T , T · uFij , uEij · Fℓ , Et · uFij
that we now go and analyze in detail.

Let us consider the product T · uFij : straightforward calculations give

T · uFij = T

(
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i Fj F

k
i

)
=

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji T F

1−aij−k
i Fj F

k
i =

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i Fj F

k
i ⊗
(
T−

((
1−aij

)
αi+αj

)
(T )
)
⊗1 =

= uFij⊗
(
T −

((
1−aij

)
αi+αj

)
(T )
)
⊗1 = 0⊗

(
T −

((
1−aij

)
αi+αj

)
(T )
)
⊗1 = 0

which is good. The product uEij · T is dealt with in a similar way.
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Let us now consider the product uEij ·Fℓ : again, direct calculations yield different
results, depending on whether ℓ ∈ {i , j} or not. The first possible case is

ℓ ̸∈ {i , j} =⇒ uEij ·Fℓ =

(
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i Ej E

k
i

)
Fℓ =

= Fℓ ⊗ 1⊗
(

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i Ej E

k
i

)
=

= Fℓ ⊗ 1⊗ uEij = Fℓ ⊗ 1⊗ 0 = 0

which stands good! The second case is

ℓ = j =⇒ uEij · Fℓ =

(
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i Ej E

k
i

)
Fj =

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i · Ej · Fj · Ek

i =

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i ·

(
Fj · Ej +

e+ℏT+
j − e−ℏT−

j

e+ℏ dj − e−ℏ dj

)
· Ek

i =

= Fj · uEij +
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i · e

+ℏT+
j − e−ℏT−

j

e+ℏ dj − e−ℏ dj
· Ek

i =

= Fj ⊗ 1⊗ uEij +

+
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji q

k−1+aij
ji · e+ℏT+

j

e+ℏ dj − e−ℏ dj
· E1−aij

i −

−
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji q

1−aij−k
ij · e−ℏT−

j

e+ℏ dj − e−ℏ dj
· E1−aij

i =

= Fj ⊗ 1⊗ uEij + 1⊗
C+
ij (q) e

+ℏT+
j − C−

ij (q) e
−ℏT−

j

e+ℏ dj − e−ℏ dj
⊗ E1−aij

i

where in the last line we have Fj ⊗ 1⊗ uEij = Fj ⊗ 1⊗ 0 = 0 , and

C+
ij (q) :=

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji q

k−1+aij
ji =

=
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

(
qij qji

)+k/2
q
−1+aij
ji = q

aij−1
ji

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
kaij
i = 0

where the very last identity follows from the general, combinatorial q–identity (see
for example [Ja, Chapter 0], or [Lu, §1.3.4])

N∑
k=0

(−1)k
[
N

k

]
qi

q
k(1−N)
i = 0 ∀ N ∈ N+

In a parallel way we get C−
ij (q) = 0 , hence from the above analysis we conclude

that uEij · Fℓ = uEij · Fj = 0 whenever ℓ = j . The third and last case is when ℓ = i .
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To deal with that, let us notice that standard computations give us, for all n ∈ N ,

En
i · Fi = FiE

n
i +

[
En
i , Fi

]
= FiE

n
i +

n∑
ℓ=0

Eℓ
i

[
Ei , Fi

]
En−1−ℓ
i =

= FiE
n
i +

n−1∑
ℓ=0

Eℓ
i

e+ℏT+
i − e−ℏT−

i

e+ℏ di − e−ℏ di
En−1−ℓ
i =

= Fi · En
i +

∑n−1
ℓ=0 q

−ℓ
ii e

+ℏT+
i −

∑n−1
ℓ=0 q

+ℓ
ii e

−ℏT−
i

q+1
i − q−1

i

· En−1
i =

= Fi · En
i + [n]qi

q−n+1
i e+ℏT+

i − q+n−1
i e−ℏT−

i

q+1
i − q−1

i

· En−1
i

Using this, we compute still more, and get, for all r, s ∈ N ,

Er
i Ej E

s
i · Fi = Er

i Ej

(
Fi · Es

i + [s]qi
q−s+1
i e+ℏT+

i − q+s−1
i e−ℏT−

i

q+1
i − q−1

i

· Es−1
i

)
=

= Er
i · Fi · Ej Es

i + [s]qi E
r
i Ej ·

q−s+1
i e+ℏT+

i − q+s−1
i e−ℏT−

i

q+1
i − q−1

i

· Es−1
i =

= Fi · Er
i Ej E

s
i + [r]qi

q−r+1
i e+ℏT+

i − q+r−1
i e−ℏT−

i

q+1
i − q−1

i

· Er−1
i Ej E

s
i +

+ [s]qi
q−s+1−2r
i q−1

ij e
+ℏT+

i − q+s−1+2r
i q+1

ji e
−ℏT−

i

q+1
i − q−1

i

· Er
i Ej E

s−1
i

Applying this result, we get the following:

uEij · Fi =
∑

r+s=1−aij
(−1)s

[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji Er

i Ej E
s
i · Fi =

=
∑

r+s=1−aij
(−1)s

[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji ·

(
Fi · Er

i Ej E
s
i +

+ [r]qi
q−r+1
i e+ℏT+

i − q+r−1
i e−ℏT−

i

q+1
i − q−1

i

· Er−1
i Ej E

s
i +

+ [s]qi
q−s+1−2r
i q−1

ij e
+ℏT+

i − q+s−1+2r
i q+1

ji e
−ℏT−

i

q+1
i − q−1

i

· Er
i Ej E

s−1
i

)
=

= Fi ·
∑

r+s=1−aij
(−1)s

[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji Er

i Ej E
s
i +

+
∑

h+k=−aij

(−1)k Γ+
h,k

q+1
i − q−1

i

e+ℏT+
i · Eh

i Ej E
k
i +

∑
h+k=−aij

(−1)k Γ−
h,k

q+1
i − q−1

i

e−ℏT−
i · Eh

i Ej E
k
i

where the coefficients Γ+
h,k and Γ−

h,k are given by

Γ±
h,k = q

+k/2
ij q

−k/2
ji q∓hi

([
h+ k +1

k

]
qi

[
h+1

]
qi
−
[
h+ k +1

k +1

]
qi

[
k +1

]
qi

)
= 0
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Plugging this result in the previous formulas, we get

ℓ = i =⇒ uEij ·Fℓ = Fi ·
∑

r+s=1−aij
(−1)s

[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji Er

i Ej E
s
i + 0 + 0 =

= Fi u
E
ij + 0 + 0 = Fi ⊗ 1⊗ uEij = Fi ⊗ 1⊗ 0 = 0

which makes the job. The case of Et ·uFij is entirely similar, hence we are done. □

The next result shows that
−→
U R,⊗
P, ℏ (g) and

←−
U R,⊗
P, ℏ (g) are nothing but different, ex-

plicit realizations of our FoMpQUEA U R
P,ℏ(g) ; moreover, from this we deduce an ex-

plicit description of the nilpotent, Borel and Cartan quantum subalgebras in U R
P,ℏ(g) .

Theorem 4.2.7.

(a) There exist natural isomorphisms of topological k[[ℏ]]–algebras
−→
U R,⊗
P, ℏ (g) := Û− ⊗̂k[[ℏ]] Û

0 ⊗̂k[[ℏ]] Û
+ ∼= U R

P,ℏ(g)
←−
U R,⊗
P, ℏ (g) := Û+ ⊗̂k[[ℏ]] Û

0 ⊗̂k[[ℏ]] Û
− ∼= U R

P,ℏ(g)

induced by multiplication in U R
P,ℏ(g) .

(b) With notation as in Definition 4.2.2, the isomorphisms in claims (a) above
induce by restriction similar isomorphisms

U R
P,ℏ(n−)

∼= Û− , Uℏ(h) ∼= Û0 , U R
P,ℏ(n+)

∼= Û+

Û± ⊗̂k[[ℏ]] Û
0 ∼= U R

P,ℏ(b±) , Û0 ⊗̂k[[ℏ]] Û
± ∼= U R

P,ℏ(b±)

It follows then that U R
P,ℏ(n±) , Uℏ(h) , and U

R
P,ℏ(b±) admit the obvious descriptions

(in particular, by generators and relations) inherited from Definition 4.2.5.

Proof. (a) The two cases are similar, so we prove the claim only for
−→
U R,⊗
P, ℏ (g) .

Consider the k[[ℏ]]–algebra
−→
U R,⊗
P, ℏ (g) := Û− ⊗̂ Û0 ⊗̂ Û+ of Lemma 4.2.6. By

construction, it is (topologically) generated by the elements F⊗
i , T

⊗, E⊗
j ( i , j ∈

I , T ∈ h ), and these generators obey the same relations (up to “inserting/removing”
any super/sub-script “⊗”) as the analogous generators of U R

P,ℏ(g) . Therefore, there
exists an epimorphism of topological k[[ℏ]]–algebras
π : U R

P,ℏ(g) −−−−↠ UR,⊗
P, ℏ (g) , Fi 7→ F⊗

i , T 7→ T⊗ , Ej 7→ E⊗
j

(
∀ i , j , T

)
On the other hand, for each • ∈ {− , 0 ,+} there is a morphism Û• η•−−−→U R

P,ℏ(g)

mapping every generator of Û• onto the corresponding generator in U R
P,ℏ(g) . Com-

posing these with “threefold-multiplication” m3 in U R
P,ℏ(g) we obtain a morphism

µ3 := m3 ◦
(
η− ⊗ η0 ⊗ η+

)
: UR,⊗

P, ℏ (g) := Û− ⊗̂ Û0 ⊗̂ Û+−−−−→ U R
P,ℏ(g)

of topological k[[ℏ]]–modules. Now, by construction, the map µ3 is inverse to π , so
the latter is bijective, hence it is a k[[ℏ]]–algebra isomorphism. As on both sides we
consider ℏ–adic topology, this π is then an homeomorphism of topological spaces
too, so it is an isomorphism of topological k[[ℏ]]–algebras. Therefore µ3 , being the
inverse of π , is an isomorphism of topological k[[ℏ]]–algebras too, q.e.d.

(b) This follows quite easily from claim (a). □
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Observation 4.2.8. The proof above relies on an ad-hoc argument which has roots
on well-known Hopf theoretic constructions: bosonization and lifting. Indeed, the

algebras Û± admit a braided Hopf algebra structure whose comultiplication is de-
fined by setting the generators Ei , resp. Fi , to be primitive elements, for all i ∈ I .
Hereafter, by braided Hopf algebra we mean a Hopf algebra in a braided tensor

category; in the present case, the category is the category Û0

Û0
Y D of Yetter-Drinfeld

modules over the topological Hopf algebra Û0 . Given a Hopf algebra B in a cat-
egory of Yetter-Drinfeld modules H

HY D over a Hopf algebra H, there is a process
to construct a usual Hopf algebra, called the “Radford biproduct” or bosonization:
it is kind of a semidirect product and coproduct, discovered by Radford and inter-
preted categorically by Majid. As a vector space, the bosonization B#H is just

the vector space B ⊗ H . In our case, the (completed) tensor product Û− ⊗ Û+

of the braided Hopf algebras is again a braided Hopf algebra, and the bosonization(
Û− ⊗ Û+

)
# Û0 is a topological, complete Hopf k[[ℏ]]–algebra. By construction,

it can be presented by the generators T ∈ h and Ei , Fi with i ∈ I , satisfying all
the relations in (4.5) except the commuting relation between Ei and Fj ; in fact,
the latter now is replaced simply by

[
Ei , Fj

]
= 0 . Here enters into the picture the

process of lifting or deformation: through this process, one deforms the relations in

a specific way, in our case, the element
[
Ei , Fj

]
∈ Û−⊗ Û+ becomes skew-primitive

in the bosonization
(
Û−⊗ Û+

)
# Û0 and one change the relation by setting it equal

to the difference between the group-like elements appearing in the comultiplication,

that is Ei Fj − Fj Ei = δi,j
e+ℏT+

i − e−ℏT−
i

q+1
i − q−1

i

.

In general, the lifting process can also be described via cocycle deformations.
All these constructions are described explicitly in [Gar] in the case of polynomial

multiparameter quantum groups. It is worth noting that through bosonizations
and quantum doubles one can generalize triangular decompositions to more gen-
eral families of Hopf algebras or quantum groups; this implies special features in
representation theory, see for example [PV].

Eventually, we can prove the “triangular decomposition” for our FoMpQUEAs:

Theorem 4.2.9. (“Triangular Decompositions” in U R
P,ℏ(g))

There exist natural isomorphisms of topological k[[ℏ]]–algebras
U R
P,ℏ(n∓) ⊗̂k[[ℏ]] Uℏ(h) ∼= U R

P,ℏ(b∓) , Uℏ(h) ⊗̂k[[ℏ]] U
R
P,ℏ(n∓)

∼= U R
P,ℏ(b∓)

U R
P,ℏ(n−) ⊗̂k[[ℏ]] Uℏ(h) ⊗̂k[[ℏ]] U

R
P,ℏ(n+)

∼= U R
P,ℏ(g)

U R
P,ℏ(n+) ⊗̂k[[ℏ]] Uℏ(h) ⊗̂k[[ℏ]] U

R
P,ℏ(n−)

∼= U R
P,ℏ(g)

(notation as in Definition 4.2.2) induced by multiplication in U R
P,ℏ(g) .

Proof. This is a direct consequence of Theorem 4.2.7 above. □

4.3. Hopf structure on FoMpQUEAs.

We introduce now on our FoMpQUEAs a structure of topological Hopf algebra.
Another proof of its existence will follow from an alternative construction (cf. §4.5).
To begin with, we explain the link between our “formal” and the “polynomial” one.
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Observation 4.3.1. The usual, formal QUEA Uℏ(g) by Drinfeld has a “polynomial”
sibling Uq(g) introduced by Jimbo and Lusztig: the latter is a (Hopf) subalgebra of
the former, over the subring k

[
q , q−1

]
of k[[ℏ]] , with q±1 := e±ℏ .

Our notion of formal multiparameter QUEA is explicitly tailored so that this
parallelism extend to the multiparameter setting, linking our formal multiparameter
U R
P,ℏ(g) with a “polynomial” multiparameter QUEA Uq(g) as in [HPR] or [GG1].
To see this, we consider a matrix P of Cartan type, whose associated Cartan

matrix is A, and a split realization R =
(
h ,Π ,Π∨ ) of it: for this the algebra

U R
P,ℏ(g) is defined and we begin by modifying the presentation of the latter. First,

replace each Fi by Ḟi := qiFi for all i ∈ I . Then the fourth relation in (4.5) reads

Ei Ḟj − Ḟj Ei = δi,j qii
e+ℏT+

i − e−ℏT−
i

qii − 1
∀ i , j ∈ I

Second, using the relation

(
n

k

)
qii

= q
k (n−k)
i

[
n

k

]
qi

(cf. §4.1.7) along with the

identity qij qji = q
aij
ii — which follows from the assumption P + P t = 2DA and

definitions, see Definition 4.2.1, we can re-write the two last relations in (4.5) as

1−aij∑
k=0

(−1)k
(
1− aij
k

)
qii

q
(k2)
ii q kij E

1−aij−k
i EjE

k
i = 0 ( i ̸= j )

1−aij∑
k=0

(−1)k
(
1− aij
k

)
qii

q
(k2)
ii q kij Ḟ

1−aij−k
i ḞjḞ

k
i = 0 ( i ̸= j )

With this reformulation, U R
P,ℏ(g) has the following, alternative presentation: it is

the unital, associative, topological, ℏ–adically complete k[[ℏ]]–algebra generated by
the k[[ℏ]]–submodule h and the elements Ei , Ḟi (for all i ∈ I ), with relations

T Ej − Ej T = +αj(T )Ej , T Ḟj − Ḟj T = −αj(T ) Ḟj

T ′ T ′′ = T ′′ T ′ , Ei Ḟj − Ḟj Ei = δi,j qii
e+ℏT+

i − e−ℏT−
i

qii − 1
( i, j ∈ I )

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i = 0 ( i ̸= j )

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji Ḟ

1−aij−k
i ḞjḞ

k
i = 0 ( i ̸= j )

(4.6)

for all T, T ′, T ′′ ∈ h , i, j ∈ I .
Now we set q±1 := e±ℏ ∈ k[[ℏ]] and consider the k–subalgebra k

[
q , q−1

]
of

k[[ℏ]] , and the elements K±1
i := e±ℏT+

i , L±1
i := e∓ℏT−

i ( i ∈ I ) in U R
P,ℏ(g) . Then

in the scalar extension UR
P,ℏ(g) := k(q)⊗k[q , q±1] U

R
P,ℏ(g) , we slightly abuse notation

by writing X := 1⊗X for any X ∈ U R
P,ℏ(g) , and we define Uq(g) to be the unital

k(q)–subalgebra of UR
P,ℏ(g) generated by

{
K±1
i , L±1

i , Ei , Ḟi
}
i∈I . By construction

and by (4.6), we can describe Uq(g) as being the unital, associative algebra over
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k(q) with generators K±1
i , L±1

i , Ei , Ḟi (for all i ∈ I ) and relations

K±1
i K±1

j = K±1
j K±1

i , K±1
i L±1

j = L±1
j K±1

i , L±1
i L±1

j = L±1
j L±1

i

K+1
i K−1

i = 1 = K−1
i K+1

i , L+1
i L−1

i = 1 = L−1
i L+1

i

K±1
i EjK

∓1
i = q±1

i,j Ej , L±1
i Ej L

∓1
i = q∓1

j,i Ej

K±1
i ḞjK

∓1
i = q∓1

i,j Ḟj , L±1
i Ḟj L

∓1
i = q±1

j,i Ḟj

Ei Ḟj − Ḟj Ei = δi,j qii
Ki − Li
qii − 1

1−aij∑
k=0

(−1)k
(
1− aij
k

)
qii

q
(k2)
ii qkij E

1−aij−k
i EjE

k
i = 0 ( i ̸= j )

1−aij∑
k=0

(−1)k
(
1− aij
k

)
qii

q
(k2)
ii qkij Ḟ

1−aij−k
i ḞjḞ

k
i = 0 ( i ̸= j )

(4.7)

Next we consider the scalar extension Uℏ(h) := k(q)⊗k[q , q±1] Uℏ(h) of Uℏ(h)
— cf. Definition 4.2.2(b) — which clearly embeds as a “Cartan subalgebra” into
UR
P,ℏ(g) := k(q)⊗k[q , q±1] U

R
P,ℏ(g) ; let also Uq(h) be the k(q)–subalgebra — inside

Uq(g) , Uℏ(h) and Uℏ(h) — generated by all theK±1
i ’s and all the L±1

i ’s. Note that in-
side Uℏ(h) we have ±T+

i = ℏ−1 log
(
K±1
i

)
and ±T−

i = ℏ−1 log
(
L±1
i

)
. By construc-

tion, both Uℏ(h) and Uq(g) are modules (on the right and on the left, respectively)
for the commutative algebra Uq(h) ; therefore, the Uq(h)–module Uℏ(h) ⊗

Uq(h)
Uq(g)

is well-defined. Finally, the ℏ–adic completion of the latter actually identifies with
its closure inside UR

P,ℏ(g) , which is exactly all of UR
P,ℏ(g) : in a nutshell, we have a

(complete) tensor product factorization UR
P,ℏ(g) = Uℏ(h) ⊗̂

Uq(h)
Uq(g) .

The previous observation is our bridge to achieve the key point about the notion
of formal multiparameter QUEA, that is the following:

Theorem 4.3.2. Every FoMpQUEA U R
P,ℏ(g) as in Definition 4.2.2 bears a structure

of topological Hopf algebra over k[[ℏ]] — with coproduct taking values into the ℏ–
adically completed tensor product U R

P,ℏ(g) ⊗̂
k[[ℏ]]

U R
P,ℏ(g) — given by ( ∀ T ∈ h , ℓ ∈ I)

∆
(
Eℓ
)
= Eℓ ⊗ 1 + eℏT

+
ℓ ⊗ Eℓ

∆
(
T
)
= T ⊗ 1 + 1⊗ T

∆
(
Fℓ
)
= Fℓ ⊗ e−ℏT−

ℓ + 1⊗ Fℓ

(4.8)

ϵ
(
Eℓ
)
= 0 , ϵ

(
T
)
= 0 , ϵ

(
Fℓ
)
= 0 (4.9)

S
(
Eℓ
)
= −e−ℏT+

ℓ Eℓ , S
(
T
)
= −T , S

(
Fℓ
)
= −Fℓ e+ℏT−

ℓ (4.10)

Proof. We provide hereafter two proofs; a third, independent one will follow from
another approach, that is detailed in §4.5 later on.

First Proof: Via a direct approach, the proof is a matter of computation. First,
in the free, topological, ℏ–adically complete, unital, associative k[[ℏ]]–algebra FR
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generated by the k[[ℏ]]–submodule h together with the Ei’s and the Fi’s, the formulas
(4.8) and (4.9) define a structure of (topological) bialgebra. Then one has to check
that the two-sided ideal IR in FR generated by relations (4.5) is a bi-ideal for that
bialgebra. Second, one has to check that the map S : U R

P,ℏ(g) −→ U R
P,ℏ(g)

op defined

on FR

/
IR =: U R

P,ℏ(g) by the second line in (4.10) is an algebra anti-morphism

with the “right” properties for the antipode map on the generators. In all cases,
computations are the same as for [CP, Definition-Proposition 6.5.1] which treats
Drinfeld’s special case with h of minimal rank. It is worth stressing, though, a
key feature of this generalized result: namely, the assumption that P be of Cartan
type is what one uses to prove that the quantum Serre’s relations — i.e., the last
two relations in (4.5) — are mapped into FR ⊗̂ IR + IR ⊗̂ FR — where ⊗̂ denotes
the ℏ–adic completion of the algebraic tensor product — by the given coproduct
on FR . Actually, one shows that the elements Ei,j and Fi,j represented by the
left hand side of these equalities are skew-primitives, namely ∆(Ei,j) = Ei,j ⊗ 1 +

e+(1−aij) ℏT+
i +ℏT+

j ⊗Ei,j and similarly ∆(Fi,j) = Fi,j ⊗ e−(1−aij) ℏT−
i −ℏT−

j + 1⊗ Fi,j .
Second Proof: This alternative method goes through an indirect approach.

First of all, we assume the realization R to be split. In this case, Observation
4.3.1 provides a factorization UR

P,ℏ(g) := k(q)⊗k[q , q±1] U
R
P,ℏ(g) = Uℏ(h) ⊗̂

Uq(h)
Uq(g) .

Due to its presentation in Observation 4.3.1, our Uq(g) is a “multiparameter
quantum group” in the sense of [HPR] — cf. also [GG1], where such an example of
multiparameter quantum group is referred to as being “rational”, in that each qij
is a power of a single, common parameter q . The key point then is that any such
(“polynomial”) multiparameter quantum group Uq(g) has a specific Hopf algebra
structure — cf. [HPR] and [Gar] — given (for all ℓ ∈ I ) by

∆
(
Eℓ
)
= Eℓ ⊗ 1 + Kℓ ⊗ Eℓ , ϵ

(
Eℓ
)
= 0 , S

(
Eℓ
)
= −K−1

ℓ Eℓ
∆
(
K±1
ℓ

)
= K±1

ℓ ⊗K
±1
ℓ , ϵ

(
K±1
ℓ

)
= 1 , S

(
K±1
ℓ

)
= K∓1

ℓ

∆
(
L±1
ℓ

)
= L±1

ℓ ⊗ L
±1
ℓ , ϵ

(
L±1
ℓ

)
= 1 , S

(
L±1
ℓ

)
= L∓1

ℓ

∆
(
Ḟℓ
)
= Ḟℓ ⊗ Lℓ + 1⊗ Ḟℓ , ϵ

(
Ḟℓ
)
= 0 , S

(
Ḟℓ
)
= −Ḟℓ L−1

ℓ

(4.11)

Let now Ũq(g) be the k
[
q , q−1

]
–subalgebra of Uq(g) — hence of U R

P,ℏ(g) —

generated by
{
Ei , K

±1
i , L±1

i , Ḟi
}
i∈I : it is ℏ–adic dense in Uq(g) , and restricting

the coproduct ∆ to Ũq(g) yields ∆
(
Ũq(g)

)
⊆ Ũq(g) ⊗

k[q,q−1]
Ũq(g) . Therefore, since

Ki = exp
(
+ ℏT+

i

)
and Li = exp

(
− ℏT−

i

)
, there exists one and only one way to

extend (continuously) ∆
∣∣∣
Ũq(g)

to U R
P,ℏ(g), which gives a map

∆ : U R
P,ℏ(g) −−−→ U R

P,ℏ(g) ⊗̂ U R
P,ℏ(g) (4.12)

described by (4.11) plus the additional constraint that all the T±
i ’s be primitive.

Since the original map ∆ on Uq(g) obey the axioms of a coproduct, the same
holds true for the map in (4.12) as well — though in a topological framework. With
similar arguments, we deal with counit and antipode map, so that we end up with a
(topological) Hopf structure for U R

P,ℏ(g) , uniquely induced from the one on Uq(g) .
Tracking the whole construction, we eventually see that such a structure is described
on generators by (4.8), (4.9) and (4.10), q.e.d.
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Now we consider the case of a realization R :=
(
h ,Π ,Π∨ ) of any kind. By

Lemma 2.1.8, we can then pick a split realization (of the same matrix P as R ),

say Ṙ :=
(
ḣ , Π̇ , Π̇∨ ) and an epimorphism of realizations π : Ṙ −↠ R . By

functoriality (cf. Proposition 4.2.3), such a π induces an epimorphism of FoMp-

QUEAs Uπ : U Ṙ
P,ℏ(g) −↠ U R

P,ℏ(g) , whose kernel Ker
(
Uπ
)
is generated by Ker(π) ,

and the latter is central in U Ṙ
P,ℏ(g) ; moreover, every element in Ker(π) is primitive.

Therefore Ker
(
Uπ
)
is indeed a Hopf ideal in the Hopf algebra U Ṙ

P,ℏ(g) , hence U
R
P,ℏ(g)

automatically inherits via Uπ a quotient Hopf algebra structure from U Ṙ
P,ℏ(g) , which

is again described by the formulas in the statement, q.e.d. □

The following is now immediate:

Corollary 4.3.3. The Cartan subalgebra Uℏ(h) and the Borel subalgebras U R
P,ℏ(b+)

and U R
P,ℏ(b−) are actually (topological) Hopf subalgebras of U

R
P,ℏ(g) , their Hopf struc-

ture being described again via formulas (4.8) and (4.10).
In addition, when R is split we have that U R

P,ℏ(b±)
∼= Uℏ(h±) ⋉̂

Uq(h±)
Uq(b±) , where

Uq(b±) is the multiparameter quantum group corresponding to the Borel subalgebras.

The next result follows at once from the second proof of Theorem 4.3.2 above.

Proposition 4.3.4. Let ϕ : R′ −−−→R′′ be a morphism between realizations of

a same matrix P ∈ Mn

(
k[[ℏ]]

)
. Then the morphism of unital topological k[[ℏ]]–

algebras Uϕ : U R′

P,ℏ (g) −−−→ U R′′

P,ℏ (g) granted by Proposition 4.2.3 is indeed a mor-

phism of (unital topological) Hopf k[[ℏ]]–algebras. If we set k := Ker(ϕ) , then Uℏ(k)
is a unital, ℏ–adically complete k[[ℏ]]–subalgebra of U R′

P,ℏ (g) which is a central Hopf
subalgebra, isomorphic to a quantum Cartan (in the sense of Definition 4.2.2(b)),
and Ker(Uϕ) = U R′

P,ℏ (g)Uℏ(k)
+ — where Uℏ(k)

+ is the augmentation ideal of Uℏ(k) .

In particular, if Uϕ is an epimorphism, then U R′′

P,ℏ (g) ∼= U R′

P,ℏ (g)
/
U R′

P,ℏ (g)Uℏ(k)
+ .

Example 4.3.5. Fix P := DA , r := rk
(
DA
)

and let R̂ :=
(
ĥ , Π̂ , Π̂∨) and

R :=
(
h ,Π ,Π∨) be realizations of DA , where R̂ is straight and split with rk

(
ĥ
)
=

2 (2n − r) while R is straight and small with rk(h) = 2n − r ; more precisely, we
assume T+

i = T−
i in R , for all i ∈ I . With this setup, U R

DA,ℏ(g) is the usual

Drinfeld’s QUEA Uℏ
(
g

A

)
for the Kac-Moody algebra g

A
associated with the Cartan

matrix A as in §2.1.1; in particular, its semiclassical limit is U(g) . Instead, U R̂
DA,ℏ(g)

has semiclassical limit U(gD) , with gD the Manin double of g = g
A

(cf. §2.1.1).

Now, there exists a (non-unique, if r ≨ n ) epimorphism ϕ : R̂ −−↠ R such that

ϕ
(
T̂±
i

)
= T±

i ( i ∈ I ); then z := Ker(ϕ) ⊆
⋂
j∈I

Ker(α̂j) . Since every element of ĥ is

primitive inside U R̂
DA,ℏ(g) , the subalgebra U

R̂
ℏ (z) of U R̂

DA,ℏ(g) generated by z is indeed

a Hopf subalgebra; moreover, it is central in U R̂
DA,ℏ(g) because z ⊆

⋂
j∈I

Ker(α̂j) . Also,

U R̂
ℏ (z) is the ℏ–adic completion of the polynomial k[[ℏ]]–algebra over z∗, so we can

loosely think of it as being a “quantum Cartan algebra” of “rank” 2n− r .
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By Proposition 4.3.4, ϕ yields a (Hopf) epimorphism Uϕ : U
R̂
DA,ℏ(g) −↠ U R

DA,ℏ(g) ;
by construction, the kernel of latter is the two-sided ideal generated by z , that is

Ker
(
Uϕ
)

= U R̂
DA,ℏ(g)U

R̂
ℏ (z)+ U R̂

DA,ℏ(g) = U R̂
DA,ℏ(g)U

R̂
ℏ (z)+ = U R̂

ℏ (z)+ U R̂
DA,ℏ(g),

and we have that U R
DA,ℏ(g)

∼= U R̂
DA,ℏ(g)

/
U R̂
DA,ℏ(g)U

R̂
ℏ (z)

+
.

Finally, if we deal instead with R small and R̂ split such that rk
(
ĥ
)
= 2n and

rk(h) = n , then g = g
A

has to be replaced by the derived algebra g′ associated
with A , and gD by the Manin double of g′. The previous analysis then works again.

Remark 4.3.6. Let us now take any matrix P (of Cartan type), a realization R
of it that is minimal and small with rk(h) = 2n − r — with r := rk

(
P + P T

)
—

and the associated FoMpQUEA U R
P,ℏ(g) ; then we can still find another realization

Ṙ of P that is split with rk(h) = 2 (2n − r) and an epimorphism of realizations
π : Ṙ −−↠ R so that zπ := Ker(π) is again free of rank 2n−r — see Lemma 2.1.8

and its proof. Then the previous analysis — that was based upon ϕ : R̂ −−↠ R and

Uϕ : U R̂
DA,ℏ(g) −−↠ U R

DA,ℏ(g) — can be repeated now, step by step, basing instead

upon π : Ṙ −−↠ R and the associated epimorphism Uπ : U Ṙ
P,ℏ(g) −−↠ U R

P,ℏ(g) of
FoMpQUEAs: this leads to the sequence of Hopf algebra maps

U Ṙ
ℏ (zπ) −−−→ U Ṙ

P,ℏ(g)
Uπ−−−−→ U R

P,ℏ(g) (4.13)

where U Ṙ
ℏ (zπ) is the (central) subalgebra of U Ṙ

P,ℏ(g) generated by zπ , which is again
a “quantum Cartan algebra” of “rank” 2n− r . Again, we obtain that

U R
P,ℏ(g)

∼= U Ṙ
P,ℏ(g)

/
U Ṙ
P,ℏ(g)U

Ṙ
ℏ (zπ)

+

Therefore, the situation in general is much similar to what happens in the special,
“standard” case of P = DA ; what does actually change, indeed, is the explicit
description of zπ — with respect to that of z , that was quite clear — hence of the

“quantum Cartan algebra of rank 2n− r ” U Ṙ
ℏ (zπ) .

4.3.7. The case of split (and) minimal FoMpQUEAs. We consider now the
special case of a FoMpQUEA U R

P,ℏ(g) — as defined in Definition 4.2.2 — for which
the realization R is split and minimal — in short, split minimal. In this case,
it follows by definition that U R

P,ℏ(g) can be described as follows: it is the unital,
associative, topological, ℏ–adically complete algebra over k[[ℏ]] with generators Ei ,
T+
i , T

−
i , Fi (for all i ∈ I ) and relations

T+
i Ej − Ej T

+
i = +pi,j Ej , T−

i Ej − Ej T
−
i = +pj,iEj

T+
i Fj − Fj T

+
i = −pi,j Fj , T−

i Fj − Fj T
−
i = −pj,i Fj

T±
i T

±
j = T±

j T
±
i , Ei Fj − Fj Ei = δi,j

e+ℏT+
i − e−ℏT−

i

q+1
i − q−1

i

, T±
i T

∓
j = T∓

j T
±
i

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji X

1−aij−k
i XjX

k
i = 0 ∀ X ∈ {E ,F} ( i ̸= j )
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and bearing the (topological) Hopf k[[ℏ]]–algebra structure given (for all ℓ ∈ I ) by

∆
(
Eℓ
)
= Eℓ ⊗ 1 + e+ℏT+

ℓ ⊗ Eℓ , ϵ
(
Eℓ
)
= 0 , S

(
Eℓ
)
= −e−ℏT+

ℓ Eℓ

∆
(
T±
ℓ

)
= T±

ℓ ⊗ 1 + 1⊗ T±
ℓ , ϵ

(
T±
ℓ

)
= 0 , S

(
T±
ℓ

)
= −T±

ℓ

∆
(
Fℓ
)
= Fℓ ⊗ e−ℏT−

ℓ + 1⊗ Fℓ , ϵ
(
Fℓ
)
= 0 , S

(
Fℓ
)
= −Fℓ e+ℏT−

ℓ

Note then that in this case U R
P,ℏ(g) depends only on the matrix P . Indeed, in the

spirit of Observation 4.3.1, in this special case the formal MpQUEA U R
P,ℏ(g) is just

a “logarithmic version” of the polynomial MpQUEA Uq(g) in Observation 4.3.1.

In addition, in this case the FoMpQUEA U R
P,ℏ(g) admits an alternative, some-

what significant presentation, as follows. Consider inside U R
P,ℏ(g) the vectors Si :=

2−1
(
T+
i + T−

i

)
and Λi := 2−1

(
T+
i − T−

i

)
— for all i ∈ I ; these clearly form yet

another k[[ℏ]]–basis of h . Then U R
P,ℏ(g) admits the obvious presentation given by

construction and taking into account that
{
T+
i , T

−
i

}
i∈I is a k[[ℏ]]–basis of h , but

also the following, alternative one: it is the ℏ–adically complete, unital k[[ℏ]]–algebra
with generators Ei, Fi, Si, Λi ( i ∈ I ) and relations

[Si , Ej] =
+( pij + pji)

2
Ej = +di aij Ej , [Si , Fj] =

−( pij + pji)

2
Fj = −di aij Fj

[Λi , Ej ] = +( pij − pji)Ej , [Λi , Fj ] = −( pij − pji)Fj

[Λi , Sj ] = 0 , Ei Fj − Fj Ei = δi,j e
+ℏΛ+

i
e+ℏSi − e−ℏSi

q+1
i − q−1

i

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji X

1−aij−k
i XjX

k
i = 0 ∀ X ∈ {E ,F} ( i ̸= j )

Moreover, the Hopf structure of U R
P,ℏ(g) is then described (for all i ∈ I ) by

∆
(
Eℓ
)
= Eℓ ⊗ 1 + e+ℏΛℓe+ℏSℓ⊗ Eℓ

∆
(
Sℓ
)
= Sℓ ⊗ 1 + 1⊗ Sℓ , ∆

(
Λℓ
)
= Λℓ ⊗ 1 + 1⊗ Λℓ

∆
(
Fℓ
)
= Fℓ ⊗ e−ℏSℓe+ℏΛℓ + 1⊗ Fℓ

In particular, this implies that the ℏ–adically complete, unital subalgebra Uℏ(b+) ,
rep. Uℏ(b−) , of U

R
P,ℏ(g) generated by all the Ei’s, resp. all the Fi’s, and all the Si’s is

isomorphic to the “standard” positive, resp. negative, Borel subalgebra in the derived
version of Drinfeld’s QUEA Uℏ(g) . On the other hand, both subalgebras Uℏ(b±) are
not Hopf subalgebras inside U R

P,ℏ(g) , contrary to what happens in Drinfeld’s setup.

4.4. Further results on FoMpQUEAs.

We present now a few more techniques, which provide alternative proofs for our
results about the structure of quantum nilpotent, Cartan and Borel subalgebras, as
well as the triangular decomposition results. This mainly follows in the footpath of
a standard strategy, already used for one-parameter QUEA’s.

4.4.1. Preformal multiparameter QUEAs and special representations. We
introduce now some “preliminary versions of FoMpQUEAs”, essentially defined like
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the FoMpQUEAs but for dropping from their definition the quantum Serre relations.
These “pre-FoMpQUEAs” will be a key tool in our analysis, as well as some special
representations of them that we also introduce presently.

Let U be the unital, associative k[[ℏ]]-algebra generated by the k[[ℏ]]–submodule
h together with elements Ei , Fi (for all i ∈ I ), subject to the same relations as in

(4.5), except the last two — the quantum Serre relations. Let Ũ R
P,ℏ(g) be the ℏ–adic

completion of U . From the proof of Theorem 4.3.2, it follows at once that Ũ R
P,ℏ(g)

is a topological Hopf algebra over k[[ℏ]] .

Let V :=
⊕

i∈I k[[ℏ]].vi be the free k[[ℏ]]–module with basis {vi}i∈I , let Tℏ(V )

be the tensor algebra of V over k[[ℏ]] , and let T̂ℏ(V ) be the ℏ–adic completion of
Tℏ(V ) . Then, Tℏ(V ) is a free k[[ℏ]]–module with basis {vJ}J∈J , where J is the
set of all finite sequences of elements in I and vJ := vj1 ⊗ · · · ⊗ vjr — or simply
vJ := vj1 · · · vjr — is standard monomial notation for all J := (j1, . . . , jr) ∈ J .

For J = (j1, . . . , jr) ∈ J and 1 ≤ k ≤ r , write Ĵk := (j1, . . . , jk−1, jk+1, . . . , jr) ,
Jk := (jk+1, . . . , jr) and αJ :=

∑r
ℓ=1 αjℓ .

Lemma 4.4.2. For every λ ∈ h∗ , there exists a unique representation of U onto
Tℏ(V ) — which is then denoted T λℏ (V ) — such that, for all J = (j1, . . . , jr) ∈ J

Fi . vJ = v(i, J) , T . vJ =
(
λ(T )− αJ(T )

)
vJ

Ei . vJ =
∑

1≤ℓ≤r , jℓ=i

q+λ(T
+
i )−αJℓ

(T+
i )− q−λ(T

−
i )+αJℓ

(T−
i )

q+1
i − q−1

i

vĴℓ

In addition, this representation — of U onto Tℏ(V ) — induces by continuity a

unique representation Ũ R
P,ℏ(g) onto T̂ℏ(V ) , which is hereafter denoted by T̂ λℏ (V ) .

Proof. We must prove that the equalities above do endow Tℏ(V ) with a structure of
U–module: to this end, let us performe a quick check to show that such an action
is well-defined. For every T, T ′ ∈ h we have

T ′.
(
T. vJ

)
=
(
λ(T )−αJ(T )

)
T ′.vJ =

(
λ(T )−αJ(T )

)(
λ(T ′)−αJ(T ′)

)
vJ = T.

(
T ′.vJ

)
Take now T ∈ h and Fi with i ∈ I . Then

T.
(
Fi .vJ

)
− Fi .

(
T.vJ

)
= T.v(i, J) − Fi .

((
λ(T )− αJ(T )

)
vJ
)

=

=
(
λ(T )− α(i, J)(T )− λ(T ) + αJ(T )

)
v(i,J) =

(
− α(i,J)(T ) + αJ(T )

)
v(i,J) =

= −αi(T ) v(i,J) = −αi(T )Fi .vJ

Similarly, for T ∈ h and Ei with i ∈ I we find

T.
(
Ei .vJ

)
=

∑
1≤ℓ≤r , i=jℓ

(
λ(T )− αĴℓ(T )

) q+λ(T
+
i )−αJℓ

(T+
i ) − q−λ(T

−
i )+αJℓ

(T−
i )

q+1
i − q−1

i

vĴℓ

Ei .
(
T.vJ

)
=

∑
1≤ℓ≤r , i=jℓ

(
λ(T )− αJ(T )

) q+λ(T
+
i )−αJℓ

(T+
i ) − q−λ(T

−
i )+αJℓ

(T−
i )

q+1
i − q−1

i

vĴℓ
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Since αJ(T )− αĴℓ(T ) = αjℓ(T ) = αi(T ) for all jℓ = i , we obtain

[T,Ei] .vJ =
∑

1≤ℓ≤r , i=jℓ

αi(T )
q+λ(T

+
i )−αJℓ

(T+
i ) − q−λ(T

−
i )+αJℓ

(T−
i )

q+1
i − q−1

i

vĴℓ = αi(T )Ei .vJ

Finally, to check the commuting relation between Ei and Fj we note first that∑m
n=0

ℏn
n!
T n.vJ =

∑m
n=0

ℏn
n!

(
λ(T )− αJ(T )

)n
.vJ for all T ∈ h and m ≥ 1 . Then,

by the continuity of the linear action, we get that

e+ℏT+
i . vJ = q+(λ(T+

i )−αJ (T
+
i )) vJ and e−ℏT−

i . vJ = q−(λ(T−
i )−αJ (T

−
i )) vJ

Then, for i, j ∈ I with i ̸= j , we have

Ei .
(
Fj .vJ

)
− Fj .

(
Ei .vJ

)
=

= Ei .v(j,J) − Fj .

( ∑
1≤ℓ≤r , i=jℓ

q+λ(T
+
i )−αJℓ

(T+
i ) − q−λ(T

−
i )+αJℓ

(T−
i )

q+1
i − q−1

i

vĴℓ

)
=

= Ei .v(j,J) −
∑

1≤ℓ≤r , i=jℓ

q+λ(T
+
i )−αJℓ

(T+
i ) − q−λ(T

−
i )+αJℓ

(T−
i )

q+1
i − q−1

i

v(j,Ĵℓ)

First, if i ̸= j , then jℓ = i ̸= j and (̂ j , J )ℓ =
(
j , Ĵℓ

)
, α( j, J )ℓ

= αJℓ for all
1 ≤ ℓ ≤ r . Hence

Ei .v(j,J) =
∑

1≤ℓ≤r , i=jℓ

(
q+1
i − q−1

i

)−1(
q+λ(T

+
i )−αJℓ

(T+
i ) − q−λ(T

−
i )+αJℓ

(T−
i )
)
v(j,Ĵℓ)

which implies that Ei .
(
Fj .vJ

)
− Fj .

(
Ei .vJ

)
= 0 .

Assume now that i = j . Then for i = jℓ we have (̂i , J)ℓ = J and α(i,J)ℓ = αJ

for ℓ = 1 , while (̂i , J)ℓ =
(
i , Ĵℓ

)
and α(i,J)ℓ = αJℓ for ℓ > 1 . This implies that

Ei .v(i,J) =
(
q+1
i − q−1

i

)−1(
q+λ(T

+
i )−αJ (T

+
i ) − q−λ(T

−
i )+αJ (T

−
i )
)
vJ +

+
∑

1≤ℓ≤r , i=jℓ

(
q+1
i − q−1

i

)−1(
q+λ(T

+
i )−αJℓ

(T+
i ) − q−λ(T

−
i )+αJℓ

(T−
i )
)
v(i,Ĵℓ)

and consequently

Ei.
(
Fi.vJ

)
− Fi.

(
Ei.vJ

)
=

qλ(T
+
i )−αJ (T

+
i ) − q−λ(T−

i )+αJ (T
−
i )

q+1
i − q−1

i

. vJ =
eℏT

+
i − eℏT−

i

q+1
i − q−1

i

. vJ

Therefore, the formulas above define indeed an action of U onto Tℏ(V ) .
Finally, since this action is k[[ℏ]]–linear, it induces a unique (topological) action

of Ũ R
P,ℏ(g) on T̂ℏ(V ) by completion. This completes the proof. □

With an entirely analogous proof, we obtain the following lemma:

Lemma 4.4.3. For every λ ∈ h∗ , there exists a unique representation of U onto
Tℏ(V ) — which is then denoted λTℏ(V ) — such that, for all J = (j1, . . . , jr) ∈ J

Ei . vJ = v(i, J) , T . vJ =
(
λ(T ) + αJ(T )

)
vJ

Fi . vJ =
∑

1≤ℓ≤r , jℓ=i

q−λ(T
−
i )−αJℓ

(T−
i )− q+λ(T

+
i )+αJℓ

(T+
i )

q+1
i − q−1

i

vĴℓ
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In addition, this representation, of U onto Tℏ(V ) , induces by continuity a unique

representation Ũ R
P,ℏ(g) onto T̂ℏ(V ) , which is hereafter denoted by λT̂ℏ(V ) . □

Denote by U0, resp. U+, resp. U−, the unital associative k[[ℏ]]–subalgebras of U
generated by h , resp. by all the Ei’s, resp. by all the Fi’s ( i ∈ I ). Write Ũ0

(
=

Ũℏ(h) := Ũ R
P,ℏ(h)

)
, resp. Ũ+, resp. Ũ−, for the ℏ–adic completion of them: clearly,

all these are topological k[[ℏ]]–subalgebras of Ũ R
P,ℏ(g) .

As a first consequence of Lemma 4.4.2, we get the following:

Proposition 4.4.4. The Cartan subalgebra Ũ0 = Ũℏ(h) = Ũ R
P,ℏ(h) is the ℏ–adic

completion of Sℏ(h) , the symmetric algebra of h over k[[ℏ]] . In particular, Ũℏ(h)
is independent of P and R (though not of h) — whence the simplified notation.

Proof. We provide two different, independent proofs.

First Proof : Let Tℏ(h) , resp. Sℏ(h) , be the tensor algebra, resp. the symmetric

algebra, of h over k[[ℏ]] , and let T̂ℏ(h) , resp. Ŝℏ(h) be the ℏ–adic completion of

them. By the commutation relations among elements of h in Ũ R
P,ℏ(g) , we have a

diagram of morphisms

T̂ℏ(h)
pℏ,S // // Ŝℏ(h)

pℏ,U // // Ũℏ(h)
� � ιℏ // Ũ R

P,ℏ(g)

Tℏ(h)

OO

pS // // Sℏ(h)

OO 66

pU0 // U0

OO

h

OO 66

where the maps pℏ,S, pℏ,U , pS and pU0 are the canonical epimorphisms, ιℏ is the
canonical inclusion, all vertical arrows are canonical embeddings, and the diagonal
arrows h −→ Sℏ(h) too. We want to show that pℏ,U is in fact an isomomorphism.

Let V :=
⊕

i∈I k[[ℏ]].vi be the free k[[ℏ]]–module with basis {vi}i∈I . Choosing
λ ∈ h∗ and restricting the action defined in Lemma 4.4.2 to the image of iℏ , we

have that Ũℏ(h) acts on T̂
λ
ℏ (V ) by the character λ via T.vJ =

(
λ(T )− αJ(T )

)
vJ ,

for all T ∈ h and for all J =
(
j1 , · · · , jr

)
∈ J . In particular, T.v∅ = T.1 = λ(T )

for all T ∈ h . This action induces an action of Ŝℏ(h) , and of its k[[ℏ]]–subalgebra
Sℏ(h) , on T̂ λℏ (V ) via the epimorphism pℏ,U . By the very definition, this action

coincides with the unique action of Sℏ(h) on T̂
λ
ℏ (V ) defined by the character λ ∈ h∗

by the universal properties of the symmetric and the tensor algebras.
Let t ∈ Sℏ(h) be such that pℏ,U(t) = 0 : then 0 = t.v∅ = λS(t) — extending

λ ∈ h∗ to a k[[ℏ]]–algebra character λS of Sℏ(h) . Since λ is arbitrary, we get
λS(t) = 0 for all λ ∈ h∗ , so that t = 0 . Similarly, λS further extends, canonically

and uniquely, to a ℏ–adically continuous character of Ŝℏ(h) , denoted λŜ . Then for

any t̂ ∈ Ŝℏ(h) such that pℏ,U
(
t̂
)
= 0 we have 0 = t.v∅ = λŜ

(
t̂
)
, thus λŜ

(
t̂
)
= 0

for all λ ∈ h∗ , which implies t̂ = 0 . Hence pℏ,U is injective and Ŝℏ(h) ∼= Ũℏ(h) .
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Second Proof : By definition there is a k[[ℏ]]–linear morphism from h to U R
P,ℏ(g) ,

whose image we denote by h′ ; in other words, h′ is the k[[ℏ]]–submodule of U R
P,ℏ(g)

spanned by the generators T ∈ h . By definition, U R
P,ℏ(h) is (topologically) generated

by h′ , which in turn is a Lie subalgebra inside the Lie algebra of primitive elements
of the Hopf algebra U R

P,ℏ(h) . Since we are in characteristic zero, by Milnor-Moore’s

Theorem we deduce that U R
P,ℏ(h) is indeed nothing but the ℏ–adic completion of

the universal enveloping algebra U
(
h′
)
of h′ ; in turn, the latter coincides with the

symmetric k[[ℏ]]–algebra Sℏ
(
h′
)
— hence its completion coincides with Ŝℏ

(
h′
)
—

because the multiplication therein is commutative, by construction!
Finally, we observe that the built-in epimorphism h −↠ h′ is indeed an isomor-

phism, so that h′ ∼= h . This is proved again making use of Lemma 4.4.2 above,

in particular looking at how h acts on each representation T̂ λℏ (V ) , for all λ ∈ h∗ ,
along the same lines as in the last part of the First Proof above. □

Let U ′ be the k[[ℏ]]–subalgebra of Ũ R
P,ℏ(g) generated by the k[[ℏ]]–subalgebras U−,

U+ and Ũ0 = Ũℏ(h) — the ℏ–adic completion of U0. By Theorem 4.3.2, it follows

that U ′ is a (topological) Hopf k[[ℏ]]–subalgebra of Ũ R
P,ℏ(g) .

We fix some more notation. For any finite sequence J =
(
j1 , j2 , . . . , jr

)
— with

r ≥ 1 — of elements in I, we set T±
∅ := 0 and E∅ := 1 =: F∅ , and in general

T±
J := T±

j1
+ T±

j2
+ · · ·+ T±

jr
, EJ := Ej1Ej2 · · ·Ejr , FJ := Fj1Fj2 · · ·Fjr .

As the coproduct of the elements Ei’s and Fi’s in U ′ and in Ũ R
P,ℏ(g) coincides

with the one defined for the one-parameter polynomial QUEA, the following lemma
follows at once, mutatis mutandis, from [Ja, Lemma 4.12]:

Lemma 4.4.5. Let J be a finite sequence as above. Then there exist Laurent
polynomials c JA,B ∈ Z

[
x , x−1

]
, indexed by finite sequences of elements of I, with

αJ = αA + αB and such that, both in U ′ and in Ũ R
P,ℏ(g) , one has

∆
(
EJ
)
=
∑
A,B

c JA,B(q)EA e
ℏT+

B ⊗EB , ∆
(
FJ
)
=
∑
A,B

c JA,B
(
q−1
)
FA ⊗ eℏT

−
A FB (4.14)

Moreover, one has c JA,∅ = δA,J and c J∅,B = δB,J . □

As an intermediate result, we have now a “triangular decomposition” for Ũ R
P,ℏ(g) :

Proposition 4.4.6. The multiplication maps −→µ3 : Ũ−⊗ Ũℏ(h)⊗ Ũ+−−−→ Ũ R
P,ℏ(g)

and ←−µ3 : Ũ
+⊗ Ũℏ(h)⊗ Ũ−−−−→ Ũ R

P,ℏ(g) induced by restriction of multiplication in

Ũ R
P,ℏ(g) — the tensor products here being the ℏ–adically completed ones — are both

isomorphisms of topological k[[ℏ]]–modules.

Proof. It is enough to prove one case, say that of −→µ3 : Ũ−⊗Ũℏ(h)⊗Ũ+−−→ Ũ R
P,ℏ(g) ,

the other one being similar.

Consider the map µ3
′ : U− ⊗ Ũℏ(h) ⊗ U+ −−−→ U ′ induced by restriction of

multiplication in U ′. We show that this map is bijective.
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We prove first thatµ3
′ is surjective. Let {Hg}g∈G be a k[[ℏ]]–basis of h . Thanks

to the defining relations in the first two lines of (4.5), we see at once that U ′ is
k[[ℏ]]–spanned (in ℏ–adic sense) by the set of “monomials”{

Fi1 · · ·Fin ·Hi , j · Ej1 · · ·Ejm
∣∣∣n, s,m ∈ N , ia, jb ∈ I ∀ a, b , Hi , j ∈ Ũℏ(h)

}
and then this guarantees thatµ3

′ is onto, since

Fii · · ·Fin ·Hi , j · Ej1 · · ·Ejm =µ3
′((Fii · · ·Fin)⊗Hi , j ⊗

(
Ej1 · · ·Ejm

))
Our second, last task is to prove that−→µ3 is injective. Let λ, θ ∈ h∗ and consider the

Ũ R
P,ℏ(g)–modules T̂ λℏ (V ) and θT̂ℏ(V ) given by Lemmas 4.4.2 and 4.4.3, respectively.

Then Ũ R
P,ℏ(g) acts on the tensor product T̂ λℏ (V ) ⊗ θT̂ℏ(V ) too, and this yields by

restriction a U ′–action as well. Assume we have a linear dependence relation∑
J,L

aJ,L FJ HJ,LEL = 0

for finitely many elements aJ,L ∈ k[[ℏ]] , where J , and L are finite sequences of

elements in I and HJ,L ∈ Ũℏ(h) .
In the set of finite sequences of elements in I, we consider the partial order given

by J =
(
j1 , j2 , . . . , jr

)
>
(
ℓ1 , ℓ2 , . . . , ℓs

)
=: L if and only if αJ − αL =

∑
k αjk −∑

k αℓk =
∑

t αit for some simple roots αit . Choose J0 such that aJ0 ,L ̸= 0 for
some L , and such that J0 is maximal with respect to the order given above.

Now, for v∅ ∈ T̂ λℏ (V ) \ {0} and w∅ ∈ θT̂ℏ(V ) \ {0} being (non-zero) “highest
weight vector” and “lowest weight vector”, respectively, definitions give

0 =

( ∑
J,K,L

aJ,L FJ HJ,LEL

)
.(v∅ ⊗ w∅) =

∑
J,L

aJ,L
(
FJ HJ,L

)
.
(
EL.(v∅ ⊗ w∅)

)
=

=
∑
J,L

aJ,L
(
FJ HJ,L

)
.

( ∑
A,B

cLA,B(q)
(
EA e

ℏT+
B

)
.v∅ ⊗

(
EB.w∅

))
=

=
∑
J,L

aJ,L
(
FJ HJ,L

)
.

( ∑
A,B

cLA,B(q) q
λ(T+

B )EA.v∅ ⊗ wB
)

=

=
∑
J,L

aJ,L c
L
∅,L(q) q

λ(T+
L )
(
FJ HJ,L

)
.
(
v∅ ⊗ wL

)
=

=
∑
J,L

aJ,L q
λ(T+

L ) λ
(
(HJ,L)(1)

)
(θ + αL)

(
(HJ,L)(2)

)
FJ .
(
v∅ ⊗ wL

)
=

=
∑
J,L

aJ,L q
λ(T+

L ) λ
(
(HJ,L)(1)

)
(θ + αL)

(
(HJ,L)(2)

)
·

·
( ∑
A,B

c JA,B
(
q−1
)
FA.v∅ ⊗

(
eℏT

−
A FB

)
.wL

)
=

=
∑
J,L

aJ,L q
λ(T+

L ) λ
(
(HJ,L)(1)

)
(θ + αL)

(
(HJ,L)(2)

)
·
∑
A,B

c JA,B
(
q−1
)
vA ⊗

(
eℏT

−
A FB

)
.wL

where we get third and fifth equality from Lemma 4.4.5, and we recall cL∅,L(q) = 1 .
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Consider now those coefficients with J = J0 . Since αJ0 = αA + αB , we have
that A ,B ≤ J0 and A = J0 if and only if B = ∅ . Then we must have

0 =
∑
L

aJ0,L q
λ(T+

L ) λ
(
(HJ0,L)(1)

)
(θ + αL)

(
(HJ0,L)(2)

)
· c J0J0,∅

(
q−1
)
vJ0 ⊗ e

ℏT−
J0 .wL =

=
∑
L

aJ0,L q
λ(T+

L ) λ
(
(HJ0,L)(1)

)
(θ + αL)

(
(HJ0,L)(2)

)
q(θ+αL)(T

−
J0

) vJ0 ⊗ wL

Since
{
vJ ⊗ wL

}
J,L

is a basis of the free k[[ℏ]]–module T̂ λℏ (V ) ⊗ θT̂ℏ(V ) , for all L

such that aJ0,L ̸= 0 we must have

0 = aJ0,L q
λ(T+

L ) λ
(
(HJ0,L)(1)

)
(θ + αL)

(
(HJ0,L)(2)

)
q(θ+αL)(T

−
J0

) =

= aJ0,L q
λ(T+

L )+(θ+αL)(T
−
J0

) (λ ∗ (θ + αL)
)(
HJ0,L

)
where “ ∗ ” denotes the convolution product between characters; this implies that

0 = aJ0,L
(
λ ∗ (θ + αL)

)(
HJ0,L

)
for all λ, θ ∈ h∗ . Since Ũℏ(h) ∼= Ŝℏ(h) , this holds

true if and only if aJ0,L = 0 for all K, a contradiction. Thus, µ′
3 is injective, q.e.d.

Finally, as µ′
3 is a k[[ℏ]]–linear map, it is an isomomorphism between topological

algebras which extends uniquely to an isomorphism −→µ3 on their completions. Since

the completion of U ′ is exactly our Ũ R
P,ℏ(g) , we eventually obtain the isomomorphism

−→µ3 : Ũ− ⊗ Ũℏ(h)⊗ Ũ+−−−→ Ũ R
P,ℏ(g) which is described just like in the claim. □

For the last steps, we need more notation: if X ∈ {F,E} , i , j ∈ I ( i ̸= j ), set

uXij :=

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji X

1−aij−k
i Xj X

k
i ∈ Ũ R

P,ℏ(g)

Let E+, resp. F−, be the closed, two-sided ideal of Ũ+, resp. of Ũ−, generated by
all the uEij’s, resp. u

F
ij’s ( i ̸= j ). Denote by U R

P,ℏ(n±) the unital, ℏ–adically complete

topological k[[ℏ]]–subalgebra of U R
P,ℏ(g) generated by all the Ei’s, resp. Fi’s ( i ∈ I ).

Next result describes explicitly the structure of the Cartan and of the (posi-
tive/negative) nilpotent subalgebras in our FoMpQUEAs:

Proposition 4.4.7.

(a) The closed two-sided ideal of Ũ R
P,ℏ(g) generated by all the uEij’s, resp. all the

uFij’s, is equal to the image of Ũ−⊗ Ũℏ(h)⊗E+ , resp. F−⊗ Ũℏ(h)⊗ Ũ+ , under the

multiplication map −→µ3 : Ũ− ⊗ Ũℏ(h)⊗ Ũ+−−−→ Ũ R
P,ℏ(g) .

An entirely similar claim holds true as well with ←−µ3 replacing −→µ3 .

(b) Ũℏ(h) ∼= U R
P,ℏ(h) through the obvious canonical epimorphism. In particular,

Uℏ(h) := U R
P,ℏ(h) is the ℏ–adic completion of Sℏ(h) , the symmetric algebra of h

over k[[ℏ]] , hence it is independent of P and R (though not of h).

(c) The algebra U R
P,ℏ(n+) , resp. U R

P,ℏ(n−) , is isomorphic to the unital, ℏ–adically
complete topological k[[ℏ]]–algebra generated by all the Ei’s ( i ∈ I), resp. the Fi’s
( i ∈ I), with relations uEij = 0 , resp. uFij = 0 , for all i ̸= j .



54 G. A. GARCÍA , F. GAVARINI

Proof. (a) This follows mutatis mutandis from [Ja, Lemma 4.20].

(b) The first part of the claim follows from the proof of [Ja, Theorem 4.21 d)].
Indeed, let J be the kernel of the canonical, ℏ–adically continuous epimorphism

p : Ũ R
P,ℏ(g) −−↠ U R

P,ℏ(g) ; by construction, it is the closed two-sided ideal generated

by the uEij and u
F
ij for all i ̸= j in I. By (a), we have

J = −→µ3

(
Ũ− ⊗ Ũℏ(h)⊗ E+ + F− ⊗ Ũℏ(h)⊗ Ũ+

)
(4.15)

Now, the kernel of the canonical epimorphism p
∣∣
Ũℏ(h)

: Ũℏ(h) −−↠ Uℏ(h) := U R
P,ℏ(h)

is nothing but J ∩ Ũ R
P,ℏ(h) ; then by (4.15) it is equal to the image under −→µ3 of(

Ũ− ⊗ Ũℏ(h)⊗ E+ + F− ⊗ Ũℏ(h)⊗ Ũ+
)⋂(

k[[ℏ]]⊗ Ũ R
P,ℏ(h)⊗ k[[ℏ]]

)
and since the latter is obviously trivial, we get that J ∩ Ũ R

P,ℏ(h) = 0 . Therefore,

p
∣∣
Ũℏ(h)

: Ũℏ(h) −−−→ U R
P,ℏ(h) is injective, hence it is an isomorphism, q.e.d.

The second part of the claim follows from the first, coupled with Proposition 4.4.4.

(c) This is proved much like item (b), but using that

J ∩ Ũ+= −→µ3

((
Ũ− ⊗ Ũℏ(h)⊗ E+ + F− ⊗ Ũℏ(h)⊗ Ũ+

)⋂ (
k[[ℏ]]⊗ k[[ℏ]]⊗ Ũ+

))
=

= −→µ3

(
k[[ℏ]]⊗ k[[ℏ]]⊗ E+

)
= E+

J ∩ Ũ−= µ̃3

((
Ũ− ⊗ Ũℏ(h)⊗ E+ + F− ⊗ Ũℏ(h)⊗ Ũ+

)⋂ (
Ũ− ⊗ k[[ℏ]]⊗ k[[ℏ]]

))
=

= −→µ3

(
F− ⊗ k[[ℏ]]⊗ k[[ℏ]]

)
= F− □

Observation 4.4.8. An alternative, independent argument which also leads to
prove Proposition 4.4.6 and Proposition 4.4.7 goes as follows.

First, we can state a strict analogue of Lemma 4.2.6 where we replace the k[[ℏ]]–
module UR,⊗

P, ℏ (g) := U− ⊗ Uℏ(h) ⊗ U+ — taking complete tensor product — with

its “parent” ŨR,⊗
P, ℏ (g) := Ũ− ⊗ Ũℏ(h) ⊗ Ũ+ : the claim will be that ŨR,⊗

P, ℏ (g) bears
a structure of ℏ–adically complete, topological k[[ℏ]]–algebra which is uniquely de-
termined by the same recipe (and formulas) as in Lemma 4.2.6 — the proof will be
quite the same, only a bit simpler because there will be less relations to deal with.

Second, we provide a strict analogue of Theorem 4.2.7, now concerning ŨR,⊗
P, ℏ (g)

and Ũ R
P,ℏ(g) instead of UR,⊗

P, ℏ (g) and U R
P,ℏ(g) ; here again, the proof will follow in the

footsteps of the one for the previous case. This last result eventually will be just a
reformulation of Proposition 4.4.6 and Proposition 4.4.7 altogether.

4.4.9. Triangular decomposition — revisited. Using the previous construc-
tions, we present now alternative proofs of “triangular decomposition” for FoM-
pQUEAs. Again, it is enough to prove one of the various isomorphisms in the
statement of Theorem 4.2.9, so now we shall deal with

U R
P,ℏ(n−) ⊗̂k[[ℏ]] Uℏ(h) ⊗̂k[[ℏ]] U

R
P,ℏ(n+)

∼= U R
P,ℏ(g)

where the (would-be) isomorphism is induced by multiplication.
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Second Proof: By construction and by the results reported in Proposition 4.4.7,
we have isomorphisms of (topological) k[[ℏ]]–modules

U R
P,ℏ(g)

∼=
(
Ũ− ⊗ Ũℏ(h)⊗ Ũ+

)/(
F− ⊗ Ũℏ(h)⊗ Ũ+ + Ũ− ⊗ Ũℏ(h)⊗ E+

)
∼=

∼=
(
Ũ−/F−

)
⊗ Ũℏ(h)⊗

(
Ũ+
/
E+
)
∼= U−⊗ Ũℏ(h)⊗U+= U R

P,ℏ(n−)⊗Uℏ(h)⊗U R
P,ℏ(n+)

(using simplified notation for the tensor product), where the isomorphism — from
right to left — is actually induced by multiplication hence we are done. ⋄

Third Proof: The claim amount to saying that the k[[ℏ]]-linear map

µ3−→ : U R
P,ℏ(n−) ⊗̂k[[ℏ]] Uℏ(h) ⊗̂k[[ℏ]] U

R
P,ℏ(n+) −−−−−→ U R

P,ℏ(g) (4.16)

induced by multiplication (on three factors) is in fact bijective.

To begin with, let U−, resp. U0, resp. U+, be the k[[ℏ]]–subalgebra of U R
P,ℏ(g)

generated by all the Fi’ ( i ∈ I ), resp. all of h , resp. Ei’s ( i ∈ I ); then let U−
ℏ :=

U R
P,ℏ(n−) , resp. U

0
ℏ := Uℏ(h) , resp. U

+
ℏ := U R

P,ℏ(n+) . Furthermore, let us define

U↓ := Spank[[ℏ]]

({
F ·H · E

}
F ,H ,E

)
where the F , resp. H , resp. E , are all

possible monomials in the Fi’s ( i ∈ I ), resp. in the H’s (H ∈ h ), resp. in the Ej’s
( j ∈ I ); note that U↓ is a k[[ℏ]]–submodule of U R

P,ℏ(g) , but not a k[[ℏ]]–subalgebra.
Finally, we let U be the k[[ℏ]]–subalgebra of U R

P,ℏ(g) generated by U↓ .
Clearly, the map µ3−→ in (4.16) restricts to a similar map

µ : U− ⊗k[[ℏ]] U
0 ⊗k[[ℏ]] U

+ −−−−−→ U↓ (4.17)

which again is induced by multiplication. We shall presently prove the following

Claim: the map µ in (4.17) is bijective (4.18)

Once this is settled, we have that both µ and its inverse µ−1 will be (mutually in-
verse) isomorphisms of k[[ℏ]]–modules, hence in particular continuous for the ℏ–adic
topology. Then, taking ℏ–adic completion on both sides, µ and µ−1 will canonically
induce (bicontinuous) mutually inverse isomorphisms of topological k[[ℏ]]–modules,
denoted µℏ and µ−1

ℏ , between the ℏ–adic completion of U− ⊗k[[ℏ]] U
0 ⊗k[[ℏ]] U

+

and the ℏ–adic completion of U↓ . Now, by construction the ℏ–adic completion of
U− ⊗k[[ℏ]] U

0 ⊗k[[ℏ]] U
+ is just U−

ℏ ⊗̂k[[ℏ]] U
0
ℏ ⊗̂k[[ℏ]] U

+
ℏ , while the ℏ–adic completion

of U↓ (which coincides with the ℏ–adic completion of U ) is nothing but U R
P,ℏ(g) .

In particular, again by construction µℏ coincides with µ−→3 in (4.16), hence the latter

in turn is an isomorphism of topological k[[ℏ]]–modules, q.e.d.

Thus we are left with the task to prove the Claim in (4.18) above. As it is clear
that µ is surjective, hence we only have to prove that it is injective too. For this, we
use the Hopf structure of U R

P,ℏ(g) , in particular its coproduct, adapting an argument
that does work in the uniparameter case, see e.g. [HK], §3.1, or [KS], §6.1.5.

We saw above that U↓ is k[[ℏ]]–spanned by the set of monomials of the form
F · H · E where each single factor in turn is of type F = Fi1 · · ·Fin , resp. H =
Hℓ1 · · ·Hℓs , resp. E = Ej1 · · ·Ejm , with i1, . . . in, j1, . . . , jm ∈ I (n,m ∈ N ) and
Hℓ1 , . . . , Hℓs ( s ∈ N ) ranging in some fixed, ordered k[[ℏ]]–basis

{
Hℓ

}
ℓ∈L of h .
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Similarly (with same notation), U− ⊗k[[ℏ]] U
0 ⊗k[[ℏ]] U

+ is k[[ℏ]]–spanned by the set
of (tensor) monomial of the form F ⊗H ⊗ E , with F , H and E as before.
To begin with, let G be the free Abelian group with basis {εi}i∈I : we endow it

with the product order, hereafter denoted by ⪯ , induced by the standard order in
Z . We define on U a k[[ℏ]]–algebra G–grading U = ⊕γ∈GUγ given on generators by

∂(Ei) := +εi , ∂
(
H
)
:= 0 , ∂(Fj) := −εj ∀ i , j ∈ I , H ∈ Uℏ(h) \ {0}

— the reader can easily check that these formulas on the generators are indeed
compatible with the relations in (4.5) among them. This restricts to similar G–
gradings on U↓ as well as on U−, U0 and U+ — which then are graded subalgebras
of U with respect to this G–grading — hence on U− ⊗k[[ℏ]] U

0 ⊗k[[ℏ]] U
+ too. Note

then that each one of the monomials F ·H ·E = Fi1 · · ·Fin ·Hℓ1 · · ·Hℓs ·Ej1 · · ·Ejm
and similarly F ⊗H ⊗ E considered above is G–homogeneous of degree

∂
(
Fi1 · · ·Fin ·Hℓ1 · · ·Hℓs · Ej1 · · ·Ejm

)
= εj1 + · · ·+ εjm − εi1 − · · · − εin ∈ G

Now consider the twofold iteration ∆(2) := (∆ ⊗ id) ◦ ∆ = (id⊗∆) ◦ ∆ of the
coproduct map ∆ of U R

P,ℏ(g) . By the very definition of ∆ we easily see that

∆(2)
(
Fi1 · · ·Fin

)
= 1⊗ 1⊗

(
Fi1 · · ·Fin

)
+
∑

t ut ⊗ vt ⊗ wt
∆(2)

(
Ej1 · · ·Ejm

)
=
(
Ej1 · · ·Ejn

)
⊗ 1⊗ 1 +

∑
k ak ⊗ bk ⊗ ck

(4.19)

where the wt’s in the first line of (4.19) are elements in U R
P,ℏ(g) which are G–

homogeneous of degree strictly greater — for the order ⪯ in G— than ∂
(
Fi1 · · ·Fin

)
,

while similarly the ak’s in second line are elements in U R
P,ℏ(g) which are G–homogene-

ous of degree strictly smaller than ∂
(
Ej1 · · ·Ejm

)
; in short,

∂(wt) ⪶ ∂
(
Fj1 · · ·Fjm

)
∀ t , ∂(ak) ⪵ ∂

(
Ei1 · · ·Ein

)
∀ k . (4.20)

Eventually, from (4.19) and (4.20) together we get

∆(2)
(
Fi1 · · ·FinHℓ1 · · ·HℓsEj1 · · ·Ejm

)
= ∆(2)

(
Fi1 · · ·Fin ·H · Ej1 · · ·Ejm

)
=

= ∆(2)
(
Fi1 · · ·Fin

)
∆(2)

(
H
)
∆(2)

(
Ej1 · · ·Ejm

)
=

=
(
Fi1 · · ·Fin ·H(1)

)
⊗H(2) ⊗

(
H(3) · Ej1 · · ·Ejm

)
+
∑

r Φr ⊗ Ξr ⊗Ωr

where each tensor Φr ⊗ Ξr ⊗ Ωr lies in Uϕ ⊗ Uξ ⊗ Uω — with ϕ , ξ and ω being
degrees for the G–grading — and obeys the following condition:

∂
(
Fi1 · · ·Fin

)
⪵ ϕ or ω ⪵ ∂

(
Ej1 · · ·Ejm

)
(4.21)

We have to prove that the map µ in (4.17) is injective. As U− ⊗ U0 ⊗ U+ is
k[[ℏ]]–spanned by all the (tensor) monomials of the form F ⊗H ⊗ E (notation as
above, with the monomial H being also ordered): so we assume now

µ
(∑

σ∈S κσ F σ ⊗H σ ⊗ E σ

)
= 0 (4.22)

— for finitely many κσ ∈ k[[ℏ]] — and we prove that
∑

σ∈S κσ F σ⊗H σ⊗E σ = 0 .
First of all, (4.22) yields∑

σ∈S κσ F σH σ E σ = µ
(∑

σ∈S κσ F σ ⊗H σ ⊗ E σ

)
= 0
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Second, the previous analysis for ∆(2) gives, for all indices σ ,

∆(2)
(
F σH σ E σ

)
=
(
F σ ·

(
H σ

)
(1)

)
⊗
(
H σ

)
(2)
⊗
((
H σ

)
(3)
·E σ

)
+
∑

r Φ
σ
r⊗Ξσ

r ⊗Ωσ
r

with the Φσr ⊗ Ξσ
r ⊗Ωσ

r ’s obeying (4.21) above. Then

0 = ∆(2)(0) = ∆(2)
(∑

σ∈S κσ F σH σ E σ

)
=
∑

σ∈S κσ∆
(2)
(
F σH σ E σ

)
=

=
∑

σ∈S κσ

((
F σ ·

(
H σ

)
(1)

)
⊗
(
H σ

)
(2)
⊗
((
H σ

)
(3)
· E σ

)
+
∑

r Φ
σ
r ⊗ Ξσ

r ⊗Ωσ
r

)
Now, we select those σ in S for which ∂

(
F σ

)
has some minimal value — in

(
G ;⪯

)
— say µ̌ , and simultaneously ∂

(
E σ

)
has a maximal value, say µ̂ ; we denote by Sµ̂µ̌

the subset of such indices. Then by degree comparison, we see — cf. (4.21) — that∑
σ∈Sµ̂

µ̌
κσ

(
F σ ·

(
H σ

)
(1)

)
⊗
(
H σ

)
(2)
⊗
((
H σ

)
(3)
· E σ

)
is the whole homogeneous summand in∑

σ∈S κσ

((
F σ ·

(
H σ

)
(1)

)
⊗
(
H σ

)
(2)
⊗
((
H σ

)
(3)
· E σ

)
+
∑
r

Φσr ⊗ Ξσ
r ⊗Ωσ

r

)
of degree

(
µ̌ , 0 , µ̂

)
with respect to the grading by G × G × G in U ⊗ U ⊗ U

canonically induced by the G–grading of U . For this reason, the identity∑
σ∈S

κσ

((
F σ ·

(
H σ

)
(1)

)
⊗
(
H σ

)
(2)
⊗
((
H σ

)
(3)
· E σ

)
+
∑

r Ω
σ
r ⊗ Ξσ

r ⊗ Φσr
)

= 0

found above implies at once∑
σ∈Sµ̂

µ̌
κσ

(
F σ ·

(
H σ

)
(1)

)
⊗
(
H σ

)
(2)
⊗
((
H σ

)
(3)
· E σ

)
= 0 (4.23)

Now observe that U0 admits as k[[ℏ]]–basis the set of all ordered monomials H
in the Hℓ’s (i.e., we assume that Hℓ1 ⪯ · · · ⪯ Hℓs ), directly by construction and by
Proposition 4.4.4. LetD be the Abelian group of rank t := rk(h) with basis {δℓ}ℓ∈L ,
that we endow with the product order, again denoted by ⪯ , induced by the standard
order in Z . There is a natural D–grading on U0 such that ∂

(
Hℓ

)
= δℓ for all

elements of the fixed basis
{
Hℓ

}
ℓ∈L , whence H = Hℓ1 · · ·Hℓs is D–homogenenous

of degree δℓ1 + · · ·+ δℓs . Also, as the elements of h are primitive in U R
P,ℏ(g) , we have

∆(2)
(
Hℓ1 · · ·Hℓs

)
= 1⊗

(
Hℓ1 · · ·Hℓs

)
⊗ 1 +

∑
r xr ⊗ yr ⊗ zr (4.24)

where the yr’s are elements in U0 which are homogeneous — for the D–grading
mentioned above — of degree strictly lower than that of Hℓ1 · · ·Hℓs , that is

∂(yr) ⪵ ∂
(
Hℓ1 · · ·Hℓs

)
= s ∀ r . (4.25)

The left-hand side of (4.23) belongs to U−
µ̌ ⊗U0⊗U+

µ̂ ; taking into account the D–
grading in U0 mentioned above, the identity (4.23) implies that each homogeneous
component — with respect to the obvious grading of U−⊗U0⊗U+ by G ×D×G
— in the left-hand side of (4.23) must be zero as well. In particular, let us focus on a
single monomial H σ̄ = Hℓσ̄1

· · ·Hℓσ̄s which actually occurs in (4.23), having maximal

degree in
(
D ;⪯

)
: then for the

(
G × D × G

)
–homogeneous component of degree(

µ̌ , ∂
(
H σ̄

)
, µ̂
)
=
(
µ̌ , δℓσ̄1 + · · ·+ δℓσ̄s , µ̂

)
in (4.23) we find, by (4.24) and (4.25)∑

σ∈Sµ̂
µ̌(ℓ)

κσ F σ ⊗H σ ⊗ E σ = 0 (4.26)
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where Sµ̂µ̌(ℓ) :=
{
σ ∈ Sµ̂µ̌

∣∣H σ = H σ̄

}
is a non-empty subset of Sµ̂µ̌ . But now (4.22)

and (4.26) jointly provide the new, shorter linear combination∑
σ∈S\Sµ̂

µ̌
κσ E σ ⊗H σ ⊗ F σ =

∑
σ κσ E σ ⊗H σ ⊗ F σ −

∑
σ∈Sµ̂

µ̌
κσ E σ ⊗H σ ⊗ F σ

that still belongs to Ker(µ) : applying again the same argument, and iterating, we
eventually end up with

∑
σ∈S κσ E σ ⊗H σ ⊗ F σ = 0 , q.e.d. ⋄

4.5. Construction of FoMpQUEAs.

In this section we provide two new, independent constructions (with respect to
what is done in §4) of FoMpQUEAs. Namely, when R is split minimal we construct
a FoMpQUEA U R

P,ℏ(g) — with its whole structure of Hopf algebra — first as (a
slight variation of) a quantum double (or “Drinfeld’s double”), and them as a double
cross product. Then from this special case (via Proposition 2.1.5, Lemma 2.1.8 and
Proposition 4.3.4) we deduce the existence — and explicit presentation — of U R

P,ℏ(g)

for any realization R as a quotient of U R′

P,ℏ (g) for a suitable, split realization R′ .
It is worth explaining a bit what is the general scheme beneath our presenta-

tion. The construction of the quantum double applies to any pair of Hopf algebras
(possibly topological) over a ring R , with an R–valued skew-Hopf pairing between
them. Typically, this applies to any pair of Hopf algebras which are dual to each
other, and their canonical (evaluation) pairing. Now assume we do that for some
QUEA, say Uℏ(g) , together with its dual (in topological sense) Uℏ(g)

∗ =: Fℏ[[G]]
— the latter being a “quantum formal series Hopf algebra” (=:QFSHA), in Drin-
feld’s terminology. Then the corresponding quantum double D

(
Uℏ(g) , Fℏ[[G]]

)
will

be a “quantum object” — isomorphic to Uℏ(g) ⊗ Fℏ[[G]] as a coalgebra — whose
specialization at ℏ = 0 will be the Drinfeld’s double D

(
U(g) , F [[G]]

)
; this means

that, roughly speaking, D
(
Uℏ(g) , Fℏ[[G]]

)
is indeed “half a QUEA” and “half a

QFSHA”. Therefore, if one aims instead to get a new, full QUEA out of the initial
QUEA Uℏ(g) , then one has to modify the previous construction; indeed, there exists
a general recipe to perform such a modification (see [ES], §12.2) which in turn relies
on Drinfeld’s “Quantum Duality Principle” which allows one to “extract” a suit-
able QUEA out of a QFSHA (cf. [Ga2] and references therein). In our presentation
we will not formally apply this general recipe: instead, we will present an ad hoc
construction, tailored to the specific situation we have at hand. However, whatever
we do is directly dictated, step by step, by the general recipe, only we display our
construction in layman’s terms just to spare the reader some extra theoretical tools
that are not needed in full generality. Nevertheless, it is worth stressing that we are
actually applying the general recipe, even we do not show it in full light: yet it is
there, standing in the backstage.

As a first goal, we aim to construct a suitable quantum double of Borel-like
FoMpQUEAs, starting from a pairing among Borel FoMpQUEAs: to this end, we
need to step back and introduce “pre-Borel” FoMpQUEAs instead, a pairing with
values in k((ℏ)) among them, and Borel FoMpQUEAs as quotients of pre-Borel ones.
As second step, we show that this pairing “pushes-forward” to Borel FoMpQUEAs,
hence can be used to perform a quantum double construction; actually, a priori
this would not be feasible, because the pairing is valued in k((ℏ)) rather than k[[ℏ]] :
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nevertheless, we prove that in the present case the quantum double construction
indeed does work (in a suitable sense) over k[[ℏ]] as well, hence we are done.
Along the way, another obstruction we encounter is that the construction of the

pairing we would need actually clashes with ℏ–completeness of (pre-)Borel FoM-
pQUEAs; therefore, we scale down to constructing a pairing defined on some dense,
non-complete subalgebras — of (pre-)Borel FoMpQUEAs — and then we manage
to carry out the quantum double construction we are looking for.

Finally, we will present yet another construction — parallel to that via quantum
doubles — of FoMpQUEAs in terms of double cross products of Borel FoMpQUEAs.

4.5.1. Pre-Borel FoMpQUEAs and their pairings. Our first purpose is to
construct quantum doubles of Borel FoMpQUEAs of split, minimal type; for this,
we need a suitable pairing among such Borel FoMpQUEAs. To this end, we need to
step back and introduce “pre-Borel” FoMpQUEAs instead, a pairing with values in
k((ℏ)) among them, and Borel FoMpQUEAs as quotients of pre-Borel ones.

Definition 4.5.2. Let A :=
(
ai,j
)
i,j∈I be a generalized symmetrizable Cartan

matrix, P :=
(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
a matrix of Cartan type with associated

Cartan matrix A and R =
(
h ,Π ,Π∨ ) a split minimal realization of P , so that

h = Spank[[ℏ]]
({
T+
i , T

−
i

}
i∈I

)
and it has rank 2n (cf. Definition 2.1.2).

We define the positive, resp. negative, pre-Borel formal multiparameter quantum
universal enveloping algebra — in short positive, resp. negative, pre-Borel FoM-
pQUEA — with multiparameter P as being the free unital, associative, topological,

ℏ–adically complete algebra over k[[ℏ]] , denoted by Ũ R
P,ℏ(b+) , resp. by Ũ R

P,ℏ(b−) ,

with generators T+
i , Ei ( i ∈ I ), resp. T−

i , Fi ( i ∈ I ).
Moreover, we give to Ũ R

P,ℏ(b+) , resp. to Ũ
R
P,ℏ(b−) , the unique, topological Hopf

k[[ℏ]]–algebra structure uniquely defined by (for all i ∈ I )
∆
(
T+
i

)
= T+

i ⊗ 1 + 1⊗ T+
i , S

(
T+
i

)
= −T+

i , ϵ
(
T+
i

)
= 0

∆
(
Ei
)
= Ei ⊗ 1 + e+ℏT+

i ⊗ Ei , S
(
Ei
)
= −e−ℏT+

i Ei , ϵ
(
Ei
)
= 0

for Ũ R
P,ℏ(b+) , and for Ũ R

P,ℏ(b−) in turn by (for all i ∈ I )

∆
(
T−
i

)
= T−

i ⊗ 1 + 1⊗ T−
i , S

(
T−
i

)
= −T−

i , ϵ
(
T−
i

)
= 0

∆
(
Fi
)
= Fi ⊗ e−ℏT−

i + 1⊗ Fi , S
(
Fi
)
= −Fi e+ℏT−

i , ϵ
(
Fi
)
= 0 ♢

From now on, we work with fixed positive and negative pre-Borel FoMpQUEAs

Ũ R
P,ℏ(b±) as above; in the following construction the two will play asymmetric roles,

but one can also reverse those roles — switching Ũ R
P,ℏ(b+) and Ũ

R
P,ℏ(b−) among them

— and eventually get exactly the same outcome.

Definition 4.5.3. Let us consider T̄−
t := ℏT−

t , F̄t := ℏFt ∈ Ũ R
P,ℏ(b−) , for t ∈ I .

We define Ũ R
P,ℏ(b−) to be the ℏ–adic closure in Ũ R

P,ℏ(b−) of the unital k[[ℏ]]–
subalgebra generated by

{
T̄−
ℓ , F̄ℓ

}
ℓ∈I .

Similarly, we define Ũ R
P,ℏ(b+) to be the ℏ–adic closure in Ũ R

P,ℏ(b+) of the unital

k[[ℏ]]–subalgebra generated by
{
T̄+
k := ℏT+

k , Ēk := ℏEk
}
k∈I . ♢
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The following, technical result is obvious from definitions

Lemma 4.5.4. Let Ẽ (ℏ)
± := Ker

(
ϵŨ R

P,ℏ(b±)

)⋂
Ũ R
P,ℏ(b±) + ℏ Ũ R

P,ℏ(b±) . Then:

(a) Ũ R
P,ℏ(b±) is complete with respect to the Ẽ (ℏ)

± –adic topology, and
{
T̄+
i , Ēi

}
i∈I ,

resp.
{
T̄−
j , F̄j

}
j∈I , is a set of topological generators of it;

(b) Ũ R
P,ℏ(b±) is a Hopf k[[ℏ]]–subalgebra (in topological sense) of Ũ R

P,ℏ(b±) . □

The key point with pre-Borel FoMpQUEAs is our next result, whose proof is more
or less standard in Hopf theory.

Proposition 4.5.5. There exists a k[[ℏ]]–linear skew-Hopf pairing

π̃ : Ũ R
P,ℏ(b+) ⊗̂

k[[ℏ]]
Ũ R
P,ℏ(b−) −−−−−−→ k[[ℏ]]

uniquely given — for all i , j ∈ I — by

π̃
(
T+
i , T̄

−
j

)
= αi

(
T−
j ) = αj(T

+
i ) = pij , π̃

(
T+
i , 1

)
= 0 = π̃

(
1 , T̄−

j

)
π̃
(
T+
i , F̄j

)
= 0 = π̃

(
Ei , T̄

−
j

)
, π̃

(
1, F̄j

)
= 0 = π̃

(
Ei , 1

)
π̃
(
1 , 1

)
= 1 , π̃

(
Ei , F̄j

)
=

δij ℏ
q+1
i − q−1

i

Proof. Assume first that such a skew-Hopf pairing exists: then it is uniquely deter-

mined by its values on the (topological) algebra generators of Ũ R
P,ℏ(b+) and Ũ R

P,ℏ(b−)

chosen in the sets
{
T+
i , Ei

}
i∈I and

{
T̄−
j , F̄j

}
j∈I , respectively; indeed, this follows

from repeated applications of formulas (4.1) and (4.2) in Definition 4.1.2 along with

the fact that Ũ R
P,ℏ(b−) is a Hopf (sub)algebra. Therefore, once the above mentioned

values are specified as in the statement, this proves uniqueness.
To show that such a pairing exists, it is equivalent to prove, as usual, that

there exists an algebra anti-homomorphism γ : Ũ R
P,ℏ(b+) −−−−→ Ũ R

P,ℏ(b−)
∗
, where

Ũ R
P,ℏ(b−)

∗
is the linear dual Ũ R

P,ℏ(b−)
∗
:= Homk[[ℏ]]

(
Ũ R
P,ℏ(b−) ,k[[ℏ]]

)
. This is known

once it is assigned on the free (topological) generators of Ũ R
P,ℏ(b+) picked from{

T+
i , Ei

}
i∈I , and to define γ on those elements we use the coproduct on them,

because Ũ R
P,ℏ(b−) is freely (topologically) generated by

{
T̄−
j , F̄j

}
i∈I .

Given an augmented R–algebra (A , ϵ ) over a ring R , a map d : A −→ R is called
a derivation if d(xy) = d(x)ϵ(y) + ϵ(x)d(y) for all x, y ∈ A . More generally, for
two algebra maps α , β ∈ AlgR(A,R ) , an (α, β )–derivation is a map d : A −→ R
such that d(xy) = d(x)α(y) + β(x) d(y) for all x, y ∈ A .

Taking into account that the T+
i ’s are primitive, the Ki := e+ℏT+

i are group-like

and the Ei’s are (1, Ki)–primitive, for all i ∈ I , we define in Ũ R
P,ℏ(b−)

∗
the derivation

τi , the algebra morphism κi and the (ϵ, κi)–derivation ηi by

τi
(
T̄−
j

)
:= pij , τi

(
F̄j
)

:= 0 κi
(
T̄−
j

)
:= pij , κi

(
F̄j
)

:= 0 ∀ j ∈ I

ηi
(
T̄−
j

)
:= 0 , ηi

(
F̄j
)

:= δij ℏ
(
q+1
i − q−1

i

)−1 ∀ j ∈ I
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Now consider Ũ R
P,ℏ(b−)

∗
as an algebra with the convolution product, that is,

(fg)(x) := f
(
x(1)
)
g
(
x(2)
)

for all f, g ∈ Ũ R
P,ℏ(b−)

∗
and x ∈ Ũ R

P,ℏ(b−) . As Ũ R
P,ℏ(b+)

is the free (topological) algebra generated by
{
T+
i , Ei

}
i∈I , one has an algebra

anti-homomorphism γ : Ũ R
P,ℏ(b+) −−−→ Ũ R

P,ℏ(b−)
∗

given by γ
(
T+
i

)
:= τi and

γ(Ei) := ηi for all i ∈ I . Let π̃ : Ũ R
P,ℏ(b+)⊗k[[ℏ]] Ũ R

P,ℏ(b−) −−−→ k[[ℏ]] be the linear

map defined by π̃
(
x, y
)
:=
(
γ(x)

)
(y) for all x ∈ Ũ R

P,ℏ(b+) and y ∈ Ũ R
P,ℏ(b−) ; then by

the very construction of γ , condition (4.2) is satisfied. On the other hand, condition
(4.1) is satisfied because it is satisfied on the generators T+

i and Ei ( i ∈ I ) and the
comultiplication is an algebra map; the same holds for the conditions (4.3). Finally,
one may prove conditions (4.4) concerning the antipode using again the values on the
generators, as both S and S−1 are algebra and coalgebra anti-homomorphisms. □

Remark 4.5.6. It is clear by construction that one can also introduce a topological

Hopf subalgebra Ũ R
P,ℏ(b+) of Ũ R

P,ℏ(b+) , for which the analog of Lemma 4.5.4 holds

true, and a suitable skew-Hopf pairing π̃ : Ũ R
P,ℏ(b+) ⊗̂

k[[ℏ]]
Ũ R
P,ℏ(b−) −−−−−−→ k[[ℏ]]

similar to the one in Proposition 4.5.5, and denoted again by π̃ . Moreover, both

Ũ R
P,ℏ(b+) ⊗̂

k[[ℏ]]
Ũ R
P,ℏ(b−) and Ũ R

P,ℏ(b+) ⊗̂
k[[ℏ]]

Ũ R
P,ℏ(b−) will embed in Ũ R

P,ℏ(b+) ⊗̂
k[[ℏ]]

Ũ R
P,ℏ(b−) ,

their intersection will coincide with Ũ R
P,ℏ(b+) ⊗̂

k[[ℏ]]
Ũ R
P,ℏ(b−) , and the restrictions to

this last submodule of the two pairings considered so far will coincide.

4.5.7. From pre-Borel FoMpQUEAs to Borel FoMpQUEAs. We introduce
now Borel FoMpQUEAs, as quotients of pre-Borel FoMpQUEAs: indeed, the former
are carefully devised so to inherit from the latter all possible “good” properties.

Definition 4.5.8. Let pre-Borel FoMpQUEAs Ũ R
P,ℏ(b±) be given as in Definition

4.5.2. We define Ĩ+ to be the closure — in the ℏ–adic topology — of the two-sided

ideal in Ũ R
P,ℏ(b+) generated by the elements

T+
i,j := T+

i T
+
j − T+

j T
+
i , E

(T )
i,j := T+

i Ej − Ej T
+
i − αj(T

+
i )Ej ( i, j ∈ I )

Ei,j :=

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i ( i ̸= j )

and we define Ĩ− to be the closure — in the ℏ–adic topology — of the two-sided

ideal in Ũ R
P,ℏ(b−) generated by all the elements

T−
i,j := T−

i T
−
j − T−

j T
−
i , F

(T )
i,j := T−

i Fj − Fj T
−
i + αj(T

−
i )Ej ( i, j ∈ I )

Fi,j :=

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i FjF

k
i ( i ̸= j )

Moreover, we define the positive, resp. negative, Borel formal multiparameter
quantum universal enveloping algebra— in short positive, resp. negative, Borel FoM-

pQUEA — with multiparameter P as being the quotient U R
P,ℏ(b+) := Ũ R

P,ℏ(b+)
/
Ĩ+ ,



62 G. A. GARCÍA , F. GAVARINI

resp. U R
P,ℏ(b−) := Ũ R

P,ℏ(b−)
/
Ĩ− . With a standard abuse of notation, hereafter we

shall denote with the same symbol any element in Ũ R
P,ℏ(b±) as well as its image (via

the quotient map) in the quotient algebra U R
P,ℏ(b±) := Ũ R

P,ℏ(b±)
/
Ĩ± . ♢

We need also similar definitions for the (topological) Hopf subalgebras Ũ R
P,ℏ(b±) :

Definition 4.5.9. Let Ũ R
P,ℏ(b±) be defined as in Definition 4.5.3, and consider in it

Ẽ (ℏ)
± := Ker

(
ϵŨ R

P,ℏ(b±)

)⋂
Ũ R
P,ℏ(b±) + ℏ Ũ R

P,ℏ(b±) . We define Ĩ+ to be the closure, in

the Ẽ (ℏ)
+ –adic topology, of the two-sided ideal in Ũ R

P,ℏ(b+) generated by the elements

T̄+
i,j := T̄+

i T̄
+
j − T̄+

j T̄
+
i , Ē

(T )
i,j := T̄+

i Ēj − Ēj T̄
+
i − ℏαj

(
T̄+
i

)
Ēj ( i, j ∈ I )

Ēi,j :=

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji Ē

1−aij−k
i ĒjĒ

k
i ( i ̸= j )

and we define Ĩ− to be the closure — in the Ẽ (ℏ)
− –adic topology — of the two-sided

ideal in Ũ R
P,ℏ(b−) generated by the elements

T̄−
i,j := T̄−

i T̄
−
j − T̄−

j T̄
−
i , F̄

(T )
i,j := T̄−

i F̄j − F̄j T̄
−
i + ℏαj

(
T̄−
i

)
F̄j ( i, j ∈ I )

F̄i,j :=

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F̄

1−aij−k
i F̄jF̄

k
i ( i ̸= j )

Accordingly, we consider the quotients U R
P,ℏ(b±) := Ũ R

P,ℏ(b±)
/
Ĩ± , and, with

standard abuse of notation, we shall denote with the same symbol any element in

Ũ R
P,ℏ(b±) as well as its coset in the quotient algebra U R

P,ℏ(b±) := Ũ R
P,ℏ(b±)

/
Ĩ± . ♢

The key point concerning Borel FoMpQUEAs is the following:

Proposition 4.5.10.

(a) Ĩ± is a Hopf ideal of Ũ R
P,ℏ(b±) , so that U R

P,ℏ(b±) := Ũ R
P,ℏ(b±)

/
Ĩ± is a

quotient Hopf algebra. Similarly, Ĩ± is a Hopf ideal of Ũ R
P,ℏ(b±) , therefore the

quotient U R
P,ℏ(b±) := Ũ R

P,ℏ(b±)
/
Ĩ± is in fact a Hopf algebra.

Moreover, U R
P,ℏ(b±) is a Hopf subalgebra (in topological sense) inside U R

P,ℏ(b±) .

(b) The ideal Ĩ+ , resp. Ĩ− , is contained in the left, resp. right, radical of the

pairing π̃ : Ũ R
P,ℏ(b+) ⊗̂ Ũ R

P,ℏ(b−) −−−→ k[[ℏ]] in Proposition 4.5.5.

Similarly, the ideal Ĩ+ , resp. Ĩ− , is contained in the left, resp. right, radical of

the pairing π̃ : Ũ R
P,ℏ(b+) ⊗̂ Ũ R

P,ℏ(b−) −−−→ k[[ℏ]] in Remark 4.5.6.

(c) The two skew-Hopf pairings π̃ : Ũ R
P,ℏ(b+) ⊗̂ Ũ R

P,ℏ(b−) −−−−−→ k[[ℏ]] and

π̃ : Ũ R
P,ℏ(b+) ⊗̂ Ũ R

P,ℏ(b−) −−−−−→ k[[ℏ]] mentioned in (b) uniquely induce skew-Hopf

pairings π : U R
P,ℏ(b+) ⊗̂ U R

P,ℏ(b−) −→ k[[ℏ]] and π : U R
P,ℏ(b+) ⊗̂U R

P,ℏ(b−) −→ k[[ℏ]]
described by obvious formulas as in Proposition 4.5.5.
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Proof. Claim (c) follows at once from (a) and (b), so now we prove the latter ones.

As to (a), computations show that the T+
i,j’s are primitive, while the E

(T )
i,j ’s are

skew-primitive, namely ∆
(
E

(T )
i,j

)
= E

(T )
i,j ⊗1+e+T̄

+
j ⊗E(T )

i,j ; similarly, again direct

computations prove also that ∆(Ei,j) = Ei,j ⊗ 1 + e+(1−aij) ℏT+
i +ℏT+

j ⊗ Ei,j . This

implies that Ĩ+ is a Hopf ideal of Ũ R
P,ℏ(b+) , as claimed.

With similar arguments, one proves the claim for Ĩ− and for Ĩ± as well.
Finally, the statement about being a Hopf subalgebra follows by construction.

As to (b), again direct computation shows that Ĩ+ lies in the left radical of the
pairing π̃ . For instance, the functional π̃

(
T+
i T

+
j , −

)
is non-zero only when it is

evaluated in elements of the form T̄−
k T̄

−
ℓ for some 1 ≤ k, ℓ ≤ n ; in this case,

π̃
(
T+
i T

+
j , T̄

−
k T̄

−
ℓ

)
= π̃

(
T+
i , T̄

−
ℓ

)
π̃
(
T+
j , T̄

−
k

)
+ π̃

(
T+
i , T̄

−
k

)
π̃
(
T+
j , T̄

−
ℓ

)
=

= piℓ pjk + pik pjℓ = π̃
(
T+
j T

+
i , T̄

−
k T̄

−
ℓ

)
so the generators T+

i,j := T−
i T

−
j − T−

j T
−
i of Ĩ+ lie in the left radical for all i, j ∈ I .

Similarly, we saw that the generators E
(T )
i,j := T+

i Ej − Ej T
+
i − αj(T

+
i )Ej are

skew-primitive again, namely ∆
(
E

(T )
i,j

)
= E

(T )
i,j ⊗ 1+ e+T̄

+
j ⊗E(T )

i,j . Thanks to this,

in order to prove that the E
(T )
i,j ’s are contained in the left radical it is enough to

show that they kill the generators of Ũ R
P,ℏ(b−) , because

π̃
(
E

(T )
i,j , x y

)
= π̃

(
E

(T )
i,j , x

)
π̃(1 , y) + π̃

(
e+T̄

+
j , x

)
π̃
(
E

(T )
i,j , y

)
∀ x, y ∈ Ũ R

P,ℏ(b−)

Now, from π̃
(
Eℓ , 1

)
= 0 for all ℓ ∈ I , the properties of the skew-Hopf pairing

imply that π̃
(
E

(T )
i,j , 1

)
= 0 too, for all i, j ∈ I . Similarly, direct computation gives,

using notation π̃⊗(a⊗ b , u⊗ v) := π̃(a , u) π̃(b , v) ,

π̃
(
E

(T )
i,j , T̄

−
k

)
= π̃

(
T+
i Ej − Ej T

+
i − αj(T

+
i )Ej , T̄

−
k

)
=

= π̃⊗

(
T+
i ⊗ Ej − Ej ⊗ T+

i − αj(T
+
i )Ej ⊗ 1 , ∆

(
T̄−
k

))
=

= π̃⊗
(
T+
i ⊗ Ej − Ej ⊗ T+

i − αj(T
+
i )Ej ⊗ 1 , T̄−

k ⊗ 1 + 1⊗ T̄−
k

)
= 0

exactly because π̃
(
Ej , 1

)
= 0 = π̃

(
Ej , T̄

−
k

)
for all j, k ∈ I . Likewise, we also have

π̃
(
E

(T )
i,j , F̄k

)
= π̃

(
T+
i Ej − Ej T

+
i − αj(T

+
i )Ej , F̄k

)
=

= π̃⊗

(
T+
i ⊗ Ej − Ej ⊗ T+

i − αj(T
+
i )Ej ⊗ 1 , ∆

(
F̄k
))

=

= π̃⊗

(
T+
i ⊗ Ej − Ej ⊗ T+

i − αj(T
+
i )Ej ⊗ 1 , F̄k ⊗ e−T̄

−
k + 1⊗ F̄k

)
= 0

because when we expand the last line the only non-trivial summands are

−π̃
(
Ej , F̄k

)
· π̃
(
T+
i , e

−T̄−
k

)
= +δj,k ℏ

(
q+1
j − q−1

j

)−1 · αk
(
T+
i

)
and

−αj
(
T+
i

)
π̃
(
Ej , F̄k

)
· π̃
(
1 , e−T̄

−
k

)
= −αj

(
T+
i

)
δj,k ℏ

(
q+1
j − q−1

j

)−1 · 1

which add up to zero, q.e.d.
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Finally, the Ei,j’s are skew-primitives too, so again it is enough to show that they

kill the generators of Ũ R
P,ℏ(b−) . This follows again by direct calculation, for instance

π̃
(
Ei,j , F̄k

)
= π̃

(∑1−aij
s=0 (−1)s

[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji E

1−aij−s
i EjE

s
i , F̄k

)
=

=
1−aij∑
s=0

(−1)s
[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji π̃

(3)
⊗

(
E

1−aij−s
i ⊗ Ej ⊗ Es

i , ∆
(3)
(
F̄k
))

=

=
1−aij∑
s=0

(−1)s
[
1− aij
s

]
qi

q
+s/2
ij q

−s/2
ji ×

× π̃
(3)
⊗

(
E

1−aij−s
i ⊗ Ej ⊗ Es

i , F̄k ⊗ e−T̄
−
k ⊗ e−T̄

−
k + 1⊗ F̄k ⊗ e−T̄

−
k + 1⊗ 1⊗ F̄k

)
so that for all s we get

π̃
(3)
⊗

(
E

1−aij−s
i ⊗ Ej ⊗ Es

i , F̄k ⊗ e−T̄
−
k ⊗ e−T̄

−
k + 1⊗ F̄k ⊗ e−T̄

−
k + 1⊗ 1⊗ F̄k

)
= 0

because π̃
(
Ej , e

−T̄−
k

)
= 0 = π̃

(
Ej , 1

)
and π̃

(
E

1−aij−s
j , 1

)
= 0 . □

Remarks 4.5.11. (a) Constructions imply that U R
P,ℏ(b±) in Proposition 4.5.10(a)

coincide with the Borel FoMpQUEAs from Definition 4.2.2(c), with their whole Hopf
structure (cf. Proposition 4.3.3), so we use again same notation and terminology.

(b) Denote by r+ and R− , respectively R+ and r− , the left and the right radical

of the skew-Hopf pairing π̃ : Ũ R
P,ℏ(b+) ⊗̂ Ũ R

P,ℏ(b−) −−−−−−→ k[[ℏ]] , respectively

π̃ : Ũ R
P,ℏ(b+) ⊗̂ Ũ R

P,ℏ(b−) −−−−−−→ k[[ℏ]] ; all these are Hopf ideals, and then
— in both cases — the pairings π̃ induce similar skew Hopf pairings between the

quotient Hopf algebras Ũ R
P,ℏ(b+)

/
r+ and Ũ R

P,ℏ(b−)
/
R− , resp. Ũ R

P,ℏ(b+)
/
R+ and

Ũ R
P,ℏ(b−)

/
r− , which are non-degenerate. When the matrix P is symmetric, hence

equal to DA , basing on [Ka], §Theorem 9.11, one can prove that the relations in
Definition 4.5.8, resp. in Definition 4.5.9, generate the Hopf ideals r± , resp. R∓ ,

hence one has that Ũ R
P,ℏ(b±)

/
r± ∼= U R

P,ℏ(b±) and Ũ R
P,ℏ(b±)

/
R± ∼= U R

P,ℏ(b±) .

Next result points out a technical property of the Borel FoMpQUEAs.

Lemma 4.5.12. The algebras U R
P,ℏ(b±) are topologically free, i.e. they are torsion-

free as k[[ℏ]]–modules and they are separated and complete for the ℏ–adic topology.

Proof. It is proved in Theorem 5.2.14(b) later on — in a way independent of whatever
follows from here to there — that in the split minimal case the FoMpQUEA U R

P,ℏ(g)
is just a deformation (in a proper sense) of Drinfeld’s Uℏ(g) — in “double version”,
i.e. with Cartan subalgebra of rank 2 |I| ; in particular, U R

P,ℏ(g) and Uℏ(g) have
the same k[[ℏ]]–module structure. Now Uℏ(g) is known to be topologically free, so
the same holds for U R

P,ℏ(g) , and then this property is inherited by the subalgebras

U R
P,ℏ(b±) too. Alternatively, the proof of Theorem 5.2.14(b) also applies directly to

U R
P,ℏ(b±) , proving that the former are suitable deformations of Drinfeld’s Uℏ(b±) :

the latter are known to be topologically free, so the same holds for U R
P,ℏ(b±) too. □
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4.5.13. FoMpQUEAs as quasi-doubles of Borel FoMpQUEAs. The analysis
carried on from §4.5.7 on provides skew-Hopf pairings between Borel FoMpQUEAs
U R
P,ℏ(b±) and U R

P,ℏ(b∓) . Following the recipe in Definition 4.1.2, we can then consider
the associated (Drinfeld’s) quantum doubles, that we denote by

−→
D R
P,ℏ(g) := D

(
U R
P,ℏ(b+) ,U R

P,ℏ(b−) , π
)

←−
D R
P,ℏ(g) := D

(
U R
P,ℏ(b+) , U

R
P,ℏ(b−) , π

) (4.27)

By the very definition of Drinfeld’s quantum double, there exists an isomorphism

of (topological) k[[ℏ]]–coalgebras
−→
D R
P,ℏ(g)

∼= U R
P,ℏ(b+) ⊗̂

k[[ℏ]]
U R
P,ℏ(b−) . Even more,

both U R
P,ℏ(b+) and U R

P,ℏ(b−) embed into
−→
D R
P,ℏ(g) — via u 7→ u⊗1 and v̄ 7→ 1⊗ v̄ ,

respectively — as Hopf subalgebras, and these (Hopf) subalgebras actually generate

all of
−→
D R
P,ℏ(g) , as a topological algebra. A similar analysis applies to

←−
D R
P,ℏ(g) .

Note that here we apply Lemma 4.5.12: by it, U R
P,ℏ(b±) is topologically free, thus

also U R
P,ℏ(b±) is, hence the products U R

P,ℏ(b±) ⊗̂
k[[ℏ]]
U R
P,ℏ(b∓) are topologically free too.

Our next result is an explicit description of these quantum double Hopf algebras.

Proposition 4.5.14. With assumptions as above, the quantum double Hopf algebra−→
D R
P,ℏ(g) in (4.27) admits the following presentation: it is the unital, associative,

topological, ℏ–adically complete algebra over k[[ℏ]] with generators Ei , T+
i , T̄−

j ,

F̄j , (for all i, j ∈ I ) and relations (for all i , j ∈ I )

T+
i T

+
j = T+

j T
+
i , T+

i Ej − Ej T
+
i = +pij Ej

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i = 0 ( i ̸= j )

T̄−
i T̄

−
j = T̄−

j T̄
−
i , T̄−

i F̄j − F̄j T̄
−
i = −ℏ pji F̄j

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F̄

1−aij−k
i F̄jF̄

k
i = 0 ( i ̸= j )

T̄−
i Ej − Ej T̄

−
i = +ℏ pjiEj , T+

i F̄j − F̄j T
+
i = −pij F̄j

T+
i T̄

−
j = T̄−

j T
+
i , Ei F̄j − F̄j Ei = δi,j ℏ

e+ℏT+
i − e−T̄

−
i

q+1
i − q−1

i

(4.28)

with Hopf structure given on the above generators (for all i ∈ I ) by

∆
(
Ei
)
= Ei ⊗ 1 + e+ℏT+

i ⊗ Ei , ϵ
(
Ei
)
= 0 , S

(
Eℓ
)
= −e−ℏT+

i Ei

∆
(
T+
i

)
= T+

i ⊗ 1 + 1⊗ T+
i , ϵ

(
T+
i

)
= 0 , S

(
T+
i

)
= −T+

i

∆
(
T̄−
i

)
= T̄−

i ⊗ 1 + 1⊗ T̄−
i , ϵ

(
T̄−
i

)
= 0 , S

(
T̄−
i

)
= −T̄−

i

∆
(
F̄i
)
= F̄i ⊗ e−T̄

−
i + 1⊗ F̄i , ϵ

(
F̄i
)
= 0 , S

(
F̄i
)
= −e+T̄

−
i F̄i

(4.29)

A similar result provides a likewise presentation of
←−
D R
P,ℏ(g) .
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Proof. Recall that we have an isomorphism
−→
D R
P,ℏ(g)

∼= U R
P,ℏ(b+) ⊗̂

k[[ℏ]]
U R
P,ℏ(b−) as

(topological) k[[ℏ]]–coalgebras, and through it both U R
P,ℏ(b+) and U R

P,ℏ(b−) embed

into
−→
D R
P,ℏ(g) , via u 7→ u⊗1 and v̄ 7→ 1⊗v̄ — as Hopf subalgebras, which generate

−→
D R
P,ℏ(g) , as a topological algebra. In particular, as a matter of notation we shall

write u for u ⊗ 1 and v̄ for 1 ⊗ v̄ . From all this it follows that
−→
D R
P,ℏ(g) admits

a presentation with generators Ei , T
+
i , T̄−

j , F̄j , ( i, j ∈ I ) — as these generate

U R
P,ℏ(b+) and U R

P,ℏ(b−) — and relations given by the first two lines in (4.28) —

because these are the relations among the Ei’s and T
+
i ’s inside U

R
P,ℏ(b+) — and the

mid two lines in (4.28) — since these are those among the T̄−
j ’s and F̄j’s inside

U R
P,ℏ(b−) — plus the additional relations, given at the end of Definition 4.1.2, that

link the generators Ei and T
+
i ( i ∈ I ) inside U R

P,ℏ(b+) with the generators T̄−
j and F̄j

( j ∈ I ) inside U R
P,ℏ(b−) . Concerning these last set of relations, direct computation

proves that they are given by the last two lines in (4.28), q.e.d.
For example, taking x = T̄−

j and y = T+
i we have that

x(1) y(1) π
(
y(2) , x(2)

)
=

= T̄− T+
i π( 1 , 1) + T̄−

j π
(
T+
i , 1

)
+ T+

i π
(
1 , T̄−

j

)
+ π

(
T+
i , T̄

−
j

)
= T̄−

j T
+
i + pij

π
(
y(1) , x(1)

)
y(2) x(2) =

= π
(
T+
i , T̄

−
j

)
+ π

(
T+
i , 1

)
T̄−
j + π

(
1 , T̄−

j

)
T+
i + π( 1 , 1)T+

i T̄
−
j = pij + T+

i T̄
−
j

which yields T+
i T̄

−
j = T̄−

j T
+
i for all i, j ∈ I ; similarly, for x = F̄j , y = Ei , we get

x(1) y(1) π
(
y(2) , x(2)

)
= F̄j Ei π

(
1 , e−T̄

−
j
)
+ F̄j e

ℏT+
i π
(
Ei , e

−T̄−
j
)
+

+Ei π
(
1 , F̄j

)
+ eℏT

+
i π
(
Ei , F̄j

)
= F̄j Ei + δi,j ℏ eℏT

+
i
(
q+1
i − q−1

i

)−1

π
(
y(1) , x(1)

)
y(2) x(2) = π

(
Ei , F̄j

)
e−T̄

−
j + π

(
Ei , 1

)
F̄j +

+π
(
e+ℏT+

i , F̄j
)
Ei e

−T̄−
j + π

(
e+ℏT+

i , 1
)
Ei F̄j = δi,j ℏ e−T̄

−
j
(
q+1
i − q−1

i

)−1
+ Ei F̄j

which yields the relation Ei F̄j − F̄j Ei = δi,j ℏ
eℏT

+
i − eℏT−

i

q+1
i − q−1

i

for all i, j ∈ I .

Finally, the Hopf structure is given once we know how it looks on generators,
hence it is given by (4.29) because U R

P,ℏ(b+) and U R
P,ℏ(b−) are Hopf subalgebras.

A parallel argument yields a similar presentation for
←−
D R
P,ℏ(g) . □

We still need some auxiliary ingredients:

Definition 4.5.15.

(a) We denote by
−→
D R
P,ℏ(g) the ℏ–adic completion of the k[[ℏ]]–subalgebra gener-

ated in
−→
D R
P,ℏ(g) by the set

{
Ei , T

+
i , T

−
i = ℏ−1T̄−

i , Fi = ℏ−1F̄i
}
i∈I .

(b) We denote by
←−
D R
P,ℏ(g) the ℏ–adic completion of the k[[ℏ]]–subalgebra gener-

ated in
←−
D R
P,ℏ(g) by the set

{
Ei = ℏ−1Ēi , T

+
i = ℏ−1T̄+

i , T
−
i , Fi

}
i∈I . ♢

We are finally ready for the main result we are looking for:



FORMAL MULTIPARAMETER QUANTUM GROUPS 67

Theorem 4.5.16. Let A :=
(
ai,j
)
i,j∈I be a generalized symmetrizable Cartan ma-

trix, and let P :=
(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
be a matrix of Cartan type with associ-

ated Cartan matrix A . With assumptions as above, both
−→
D R
P,ℏ(g) and

←−
D R
P,ℏ(g) are

topological, ℏ–adically complete Hopf k[[ℏ]]–algebras, which are isomorphic to the
FoMpQUEA U R

P,ℏ(g) given in Definition 4.2.2.

Proof. The claim follows directly from the construction of
−→
D R
P,ℏ(g) and

←−
D R
P,ℏ(g) ,

and from Proposition 4.5.14 above: in fact, all this yields a presentation for
−→
D R
P,ℏ(g)

and one for
←−
D R
P,ℏ(g) — with generating set

{
Ei , T

+
i , T

−
i , Fi

}
i∈I , in both cases —

that just coincide, hence these two algebras are isomorphic. At the same time, the

formulas for the Hopf structure in
−→
D R
P,ℏ(g) and

←−
D R
P,ℏ(g) show that these algebras

inherit the Hopf structure as well. Comparing this presentation with the one defining
U R
P,ℏ(g) one sees that they coincide again, whence the last part of the claim. □

4.5.17. Construction as double cross products. In this subsection we imple-
ment an alternative construction of U R

P,ℏ(g) as a subalgebra of a double cross product,
which is also an alternative way of constructing a quantum double. We follow Majid
[Mj, §7.2] for the description of the double cross product. We begin by introducing
the construction in the general context of matched pairs of Hopf algebras.

Definition 4.5.18. [Mj, Definition 7.2.1] Two bialgebras or Hopf algebras A and
H form a right-left matched pair if H is a right A–module coalgebra and A is a left
H–module coalgebra with mutual actions ◁ : H ⊗ A −→ H , ▷ : H ⊗ A −→ A
that obey the compatibility conditions

(hg) ◁ a =
(
h ◁
(
g(1) ▷ a(1)

))(
g(2) ◁ a(2)

)
, 1 ◁ a = ϵ(a)

h ▷ (ab) =
(
h(1) ▷ a(1)

)(
(h(2) ◁ a(2)

)
▷ b
)

, h ▷ 1 = ϵ(h)(
h(1) ◁ a(1)

)
⊗
(
h(2) ▷ a(2)

)
=
(
h(2) ◁ a(2)

)
⊗
(
h(1) ▷ a(1)

)
Theorem 4.5.19. [Mj, Theorem 7.2.2]

Given a matched pair of bialgebras (A,H) , there exists a double cross product
bialgebra A ▷◁ H built on the vector space A⊗H with product

(a⊗ h) · (b⊗ g) := a
(
h(1) ◁ b(1)

)
⊗
(
h(2) ▷ b(2)

)
g ∀ a, b ∈ A , h, g ∈ H

and tensor product unit, counit and coproduct maps. Moreover, A and H are subbial-
gebras via the canonical inclusions, and A ▷◁ H is generated by them with relations

h · a =
(
h(1) ◁ b(1)

)
⊗
(
h(2) ▷ b(2)

)
∀ h ∈ H , a ∈ A

If A and H are Hopf algebras, then so is their double cross product, with antipode

S(a⊗ h) =
(
1⊗ S(h)

)(
S(a)⊗ 1

)
=
(
S
(
h(2)
)
◁ S
(
b(2)
))
⊗
(
S
(
h(1)
)
▷ S
(
b(1)
))

□

4.5.20. From skew-Hopf pairings to double cross products. Let R be a ring,
let A , H be two R–bialgebras and let η : H ⊗ A −→ R be a skew-Hopf pairing
which is convolution invertible. Then H is a right A–module coalgebra and A is a
left H–module coalgebra via the actions

h ▷ a := h(2) η
−1
(
h(1), a(1)

)
η
(
h(3), a(2)

)
, h ◁ a := a(2) η

−1
(
h(1), a(1)

)
η
(
h(2), a(3)

)
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for all h ∈ H and a ∈ A . In particular, then, there exists a double cross product
bialgebra A ▷◁ H built upon A ⊗H ; as we know, it has the tensor product unit,
counit and coproduct, while its product now explicitly reads, in terms of the pairing,
as follows — see [Mj, Example 7.2.7]:

(a⊗ h) · (b⊗ g) := η−1
(
h(1), b(1)

)
a b(2) ⊗ h(2) g η

(
h(3), b(3)

)
In addition, when both A and H are Hopf algebras then such is A ▷◁ H as well.

4.5.21. FoMpQUEAs as double cross products. Using the skew-Hopf pairing
between our Borel FoMpQUEAs given by Proposition 4.5.10, namely

π : U R
P,ℏ(b+) ⊗̂ U R

P,ℏ(b−) −−−→ k[[ℏ]] and π : U R
P,ℏ(b+) ⊗̂U R

P,ℏ(b−) −−−→ k[[ℏ]]
we may apply the general construction in §4.5.20 above and define two Hopf algebras

U R
P,ℏ(b−) ▷◁ U

R
P,ℏ(b+) and U R

P,ℏ(b−) ▷◁ U R
P,ℏ(b+)

Following the recipe in §4.5.20, the actions of U R
P,ℏ(b−) on U

R
P,ℏ(b+) and of U R

P,ℏ(b+)

on U R
P,ℏ(b−) via the skew-Hopf paring π are given by (for all i, j ∈ I )

T+
i ▷ T̄−

j = 0 , T+
i ◁ T̄−

j = 0 , T+
i ◁ F̄j = 0 , Ei ▷ T̄

−
j = 0

T+
i ▷ F̄j = −pijF̄j , Ei ◁ T̄

−
j = −ℏ pijEi

Ei ▷ F̄j = δij
ℏ
(
1− e−T̄

−
j
)

q+1
i − q−1

i

, Ei ◁ F̄j = δij
ℏ
(
e+ℏT+

i − 1
)

q+1
i − q−1

i

X ▷ 1 = 0 , 1 ◁ X = 0 ∀ X ∈
{
Ei, T

+
i , F̄i, T̄

−
i

}
i∈I

It is clear that these formulae completely define the cross product structure on

U R
P,ℏ(b−) ▷◁ U

R
P,ℏ(b+) . For example, let us compute Ei◁F̄j explicitly. Set Lj = e−T̄

−
j

and Ki = eT̄
+
i : then computations give

Ei ▷ F̄j =
(
F̄j
)
(2)
η−1
(
(Ei)(1),

(
F̄j
)
(1)

)
η
(
(Ei)(2),

(
F̄j
)
(3)

)
=

= Lj η
−1
(
Ei, F̄j

)
η(1, Lj) + Lj η

−1
(
Ki, F̄j

)
η(Ei, Lj) + F̄j η

−1(Ei, 1) η(1, Lj)+

+ F̄j η
−1(Ki, 1) η(Ei, Lj) + 1 η−1(Ei, 1) η

(
1, F̄j

)
+ 1 η−1(Ki, 1) η

(
Ei, F̄j

)
=

= Lj η
−1
(
Ei, F̄j

)
+ η

(
Ei, F̄j

)
= Lj η

(
Ei,S

(
F̄j
))

+ η
(
Ei, F̄j

)
=

= Lj η
(
Ei,−F̄jL−1

j

)
+ η

(
Ei, F̄j

)
= (1− Lj) η

(
Ei, F̄j

)
= δij

ℏ (1− Lj)
q+1
i − q−1

i

Now, the formulae above show that actually even
(
U R
P,ℏ(b−), U

R
P,ℏ(b+)

)
is indeed

a matched pair of Hopf algebras, with actions uniquely induced in the obvious way
from the actions for the pair

(
U R
P,ℏ(b−), U

R
P,ℏ(b+)

)
which are explicitly given by

T+
i ▷ T−

j = 0 , T+
i ◁ T−

j = 0 , T+
i ◁ Fj = 0 , Ei ▷ T

−
j = 0

T+
i ▷ Fj = −pijFj , Ei ◁ T

−
j = −pijEi

Ei ▷ Fj = δij

(
1− e−ℏT−

j
)

q+1
i − q−1

i

, Ei ◁ Fj = δij

(
e+ℏT+

i − 1
)

q+1
i − q−1

i

Y ▷ 1 = 0 , 1 ◁ Y = 0 ∀ Y ∈
{
Ei, T

+
i , Fi, T

−
i

}
i∈I
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Therefore, a well-defined double cross product U R
P,ℏ(b−) ▷◁ U

R
P,ℏ(b+) exists, which

is a Hopf algebra containing both U R
P,ℏ(b+) and U

R
P,ℏ(b−) as Hopf subalgebras.

With a similar situation as for Theorem 4.5.16, we may then obtain our FoM-
pQUEA U R

P,ℏ(g) as a double cross product Hopf algebra, namely the following holds:

Theorem 4.5.22. Let A :=
(
ai,j
)
i,j∈I be a generalized symmetrizable Cartan ma-

trix, and let P :=
(
pi,j
)
i,j∈I ∈Mn

(
k[[ℏ]]

)
be a matrix of Cartan type with associated

Cartan matrix A . With assumptions as above, U R
P,ℏ(b−) ▷◁ U

R
P,ℏ(b+) is a topologi-

cal, ℏ–adically complete Hopf k[[ℏ]]–algebra, which is isomorphic to the FoMpQUEA
U R
P,ℏ(g) given in Definition 4.2.2. □

Observation 4.5.23. Here again, it is worth pointing out that the procedure we
followed above to construct U R

P,ℏ(b−) ▷◁ U
R
P,ℏ(b+) follows a general recipe. Namely,

starting with a QUEA Uℏ and its dual QFSHA U ∗
ℏ := Fℏ , one has the right-left

matched pair
(
Uℏ , Fℏ

)
, with Uℏ acting on Fℏ by coadjoint action, and viceversa; thus

one can construct Uℏ ▷◁ Fℏ , which is isomorphic to the quantum double D
(
Uℏ , Fℏ

)
and, as such, is not yet the kind of object we are looking for. Then one observes
— see [AT], §A.5 — that the right-left matched pair

(
Uℏ , Fℏ

)
induces another

similar right-left matched pair
(
Uℏ , U

∨
ℏ
)
, where U∨

ℏ denotes (in notation of [AT]) the
QUEA that is associated by Drinfeld’s Quantum Duality Principle with the QFSHA
Fℏ . Finally, we can consider the double cross product Uℏ ▷◁ U

∨
ℏ — isomorphic to(

Uℏ , U
∨
ℏ
)
— which is now exactly the kind of QUEA we are looking for.

Instead of applying verbatim the recipe sketched above, in the previous construc-
tion we followed an explicit, concrete approach that seems totally independent;
however, it is important to understand that what we did is in fact nothing but a
concrete “realization” of the general recipe, even though it is not formally apparent.

4.5.24. The general case: third proof of Theorem 4.3.2. The previous anal-
ysis provides an explicit construction of any FoMpQUEA defined on a realization
R which is split minimal; now, out of this, we can deduce also a construction of a
FoMpQUEA on R of any type, by a process of “extension and quotient”. In the
end, we find another proof for Theorem 4.3.2.

Let P be a multiparameter matrix (of Cartan type), let R :=
(
h ,Π ,Π∨ ) be any

realization of it, and let U R
P,ℏ(g) be the associated (topological, unital, associative)

k[[ℏ]]–algebra, as in Definition 4.2.2.

By Lemma 2.1.8, we can also pick a split realization of P , say Ṙ :=
(
ḣ , Π̇ , Π̇∨ ) ,

and ḣ
T
:= Span

({
T±
i

}
i∈I

)
inside ḣ . Then we take the FoMpQUEA U Ṙ

P,ℏ(g) associ-

ated with Ṙ : inside it, we consider the Cartan subalgebras Uℏ
(
ḣ
)
:= U Ṙ

P,ℏ
(
ḣ
)
and

Uℏ
(
ḣ

T

)
:= U Ṙ

P,ℏ
(
ḣ

T

)
— both independent of R and P , as for every Cartan subal-

gebra — and also the complete, unital k[[ℏ]]–subalgebra generated by ḣ
T
, the Ei’s

and the Fi’s: the latter is clearly yet another FoMpQUEA, namely U R̊
P,ℏ(g) , where

R̊ :=
(
ḣ

T
, Π̊ ,Π∨ ) — with Π̊ :=

{
α̊i := αi

∣∣
ḣ
T

}
i∈I

— is again a realization of P ,



70 G. A. GARCÍA , F. GAVARINI

now split and minimal. Thanks to Theorem 4.5.16 then, there exists a Hopf algebra

structure on U R̊
P,ℏ(g) , which is described by formulas as in (4.8), (4.9), (4.10).

On the other hand, definitions imply that U Ṙ
P,ℏ(g)

∼= Uℏ
(
ḣ
)
⊗̂

Uℏ(ḣT)

U R̊
P,ℏ(g) . Then

there exists only one way to extend the (topological) Hopf structure in U R̊
P,ℏ(g) men-

tioned above to a Hopf structure on U Ṙ
P,ℏ(g)

∼= Uℏ
(
ḣ
)
⊗̂

Uℏ(ḣT)

U R̊
P,ℏ(g) so that all ele-

ments in ḣ are primitive; in other words, there exists a unique (topological) Hopf

structure in Uℏ
(
ḣ
)
⊗̂

Uℏ(ḣT)

U R̊
P,ℏ(g)

∼= U Ṙ
P,ℏ(g) which coincides with the given one on the

right-hand factor and makes all elements of ḣ primitive in the left-hand factor.
Finally, again by Lemma 2.1.8, there exists an epimorphism of realizations π :

Ṙ −↠ R . By functoriality, we get an epimorphism Uπ : U Ṙ
P,ℏ(g) −↠ U R

P,ℏ(g) with

Ker
(
Uπ
)
generated by Ker(π) — cf. Proposition 4.2.3; moreover, every element in

Ker(π) is primitive and is central in U Ṙ
P,ℏ(g) . Thus Ker

(
Uπ
)
is a Hopf ideal in the

Hopf algebra U Ṙ
P,ℏ(g) , hence U

R
P,ℏ(g) inherits via Uπ a quotient Hopf algebra structure

from U Ṙ
P,ℏ(g) , again described by the formulas in (4.8), (4.9), (4.10), q.e.d. □

Remark 4.5.25. We expect that our definition (and construction) of FoMpQUEAs,
and all related results presented hereafter, can be extended to the case when the
symmetrizable generalized Cartan matrix A is replaced by a more general sym-
metrizable Borcherds-Cartan matrix — see [ApS] and references therein. However,
due to additional technical difficulties, we do not pursue such a goal in this paper.

5. Deformations of formal multiparameter QUEAs

After introducing formal MpQUEAs in the previous section, now we go and study
their deformations, either by twist or by 2–cocycle — both of “toral type”, say.

5.1. Deformations of FoMpQUEAs by toral twists.

We discuss now suitable twist deformations (of “toral type”) of FoMpQUEAs,
proving that they are again FoMpQUEAs. By the results in [ESS] one can show that
all possible twist elements F for Drinfeld’s Uℏ(g) can be constructed from data as-
sociated with Belavin-Drinfeld triples which classify classical r–matrices for g itself:
in this respect, our “toral” twists correspond to the trivial Belavin-Drinfeld triples.

5.1.1. Toral twist deformations of U R
P,ℏ(g) . We fix P :=

(
pi,j
)
i,j∈I ∈Mn

(
k[[ℏ]]

)
of Cartan type with associated Cartan matrix A , a realization R :=

(
h ,Π ,Π∨ ) of

it and the FoMpQUEA U R
P,ℏ(g) , as in §2 and §4; in particular, di := pii/2 ( i ∈ I ),

and h is a free k[[ℏ]]–module of finite rank t := rk(h) . We fix in h any k[[ℏ]]–basis{
Hg

}
g∈G , where |G| = rk(h) = t . Pick Φ =

(
ϕgk
)
g,k∈G ∈ sot

(
k[[ℏ]]

)
, and set

JΦ :=
t∑

g,k=1

ϕgkHg ⊗Hk ∈ h⊗ h ⊆ UR
P,ℏ(h)⊗ UR

P,ℏ(h)



FORMAL MULTIPARAMETER QUANTUM GROUPS 71

By direct check, we see that the element

FΦ := e ℏ 2
−1JΦ = exp

(
ℏ 2−1

∑t
g,k=1ϕgkHg ⊗Hk

)
(5.1)

in UR
P,ℏ(h) ⊗̂UR

P,ℏ(h) is actually a twist for U R
P,ℏ(g) in the sense of §4.1.4. Using it,

we construct a new (topological) Hopf algebra
(
U R
P,ℏ(g)

)FΦ , isomorphic to U R
P,ℏ(g)

as an algebra but with a new, twisted coalgebra structure, as in §4.1.4. A direct
calculation yields explicit formulas for the new coproduct on generators, namely

∆Φ
(
Eℓ
)

= Eℓ ⊗ L+1
Φ,ℓ + e+ℏT+

ℓ K+1
Φ,ℓ ⊗ Eℓ

(
∀ ℓ ∈ I

)
∆Φ
(
T
)

= T ⊗ 1 + 1⊗ T
(
∀ T ∈ h

)
∆Φ
(
Fℓ
)

= Fℓ ⊗ L−1
Φ,ℓ e

−ℏT−
ℓ + K−1

Φ,ℓ ⊗ Fℓ
(
∀ ℓ ∈ I

)
with LΦ,ℓ := e+ℏ 2−1

∑t
g,k=1 αℓ(Hg)ϕgkHk , KΦ,ℓ := e+ℏ 2−1

∑t
g,k=1 αℓ(Hg)ϕkgHk (∀ ℓ ∈ I ) .

Similarly, the “twisted” antipode SΦ := SFΦ and the counit ϵΦ := ϵ are given by

SΦ
(
Eℓ
)
= −e−ℏT+

ℓ K−1
Φ,ℓEℓ L

−1
Φ,ℓ , ϵΦ

(
Eℓ
)
= 0

(
∀ ℓ ∈ I

)
SΦ
(
T
)
= −T , ϵΦ

(
T
)
= 0

(
∀ T ∈ h

)
SΦ
(
Fℓ
)
= −K+1

Φ,ℓ Fℓ L
+1
Φ,ℓ e

+ℏT−
ℓ , ϵΦ

(
Fℓ
)
= 0

(
∀ ℓ ∈ I

)
Remark 5.1.2. The twist FΦ is an example of Reshetikhin’s twist as in [Re], only
“adapted” to the present case of our more general FoMpQUEA U R

P,ℏ(g) . When g is
a simple Lie algebra, this twist corresponds to empty datum of the Belavin-Drinfeld
triple with respect to the classification in [ESS] of twists for Uℏ(g) .

5.1.3. Twisted generators. From the explicit description of the coproduct ∆Φ , it

follows that
(
U R
P,ℏ(g)

)FΦ is generated by group-likes and skew-primitive elements; in

particular, it is a pointed Hopf algebra. Moreover, both Hopf algebras U R
P,ℏ(g) and(

U R
P,ℏ(g)

)FΦ have the same coradical and the same space of skew-primitive elements.
As the coproduct is changed by the twist, one sees that the skew-primitive generators
of U R

P,ℏ(g) , which are (1, g)– or (g, 1)–primitive for some g ∈ G
(
U R
P,ℏ(g)

)
, with

respect to ∆ , become (h, k)–primitive for ∆Φ . Looking at the coradical filtration,
and the associated graded Hopf algebra, one may find from that set of generators

some new (1, ℓ)– or (ℓ, 1)–primitives for
(
U R
P,ℏ(g)

)FΦ . This leads to devise (new)

twisted generators and a corresponding presentation for
(
U R
P,ℏ(g)

)FΦ , which yields

a Hopf algebra isormorphism between
(
U R
P,ℏ(g)

)FΦ and a new FoMpQUEA with
suitable multiparameter matrix and realization.

Motivated by the above analysis, we introduce now in
(
U R
P,ℏ(g)

)Fϕ the “twisted”

generators (for all ℓ ∈ I ) EΦ
ℓ := L−1

Φ,ℓEℓ , F Φ
ℓ := FℓK+1

Φ,ℓ and the twisted
“distinguished toral elements” (or “coroots”) that were already defined in (2.3), i.e.

T±
Φ,ℓ := T±

ℓ ±
t∑

g,k=1

αℓ(Hg)ϕkgHk . Still from §2.2.1, we recall also PΦ :=
(
pΦ
i,j

)
i,j∈I

and RΦ :=
(
h ,Π ,Π∨

Φ

)
, the latter being a realization of the former.
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Second, the commutation relations in the algebra
(
U R
P,ℏ(g)

)FΦ give new com-
mutation relations between twisted generators. Namely, by straightforward com-

putations — for instance using that KΦ,j Ei = eℏ 2
−1

∑t
g,k=1 αj(Hg)ϕkgαi(Hk)EiKΦ,j

and that e+ℏT±
Φ,i = e+ℏT±

i

(
KΦ,i L−1

Φ,i

)±1
— one proves that inside

(
U R
P,ℏ(g)

)FΦ the
following identities hold true (for all T, T ′, T ′′ ∈ h , i , j ∈ I , X ∈ {E ,F} ):

T EΦ

j − EΦ

j T = +αj(T )E
Φ

j , T F Φ

j − F Φ

j T = −αj(T )F Φ

j

T ′ T ′′ = T ′′ T ′ , EΦ

i F
Φ

j − , F Φ

j E
Φ

i = δi,j
e+ℏT+

Φ,i − e−ℏT−
Φ,i

q+1
i − q−1

i

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

(
qΦij
)+k/2 (

qΦji
)−k/2 (

XΦ

i

)1−aij−kXΦ

j

(
XΦ

i

)k
i
= 0 ( i ̸= j )

with qΦi,j := eℏ p
Φ
i,j ( i, j ∈ I ) — so that qΦi,i = eℏ p

Φ
i,i = eℏ pi,i = eℏ 2di = q 2

i .

Third, the Hopf operations on the “twisted” generators read (for ℓ ∈ I , T ∈ h )

∆Φ
(
EΦ
ℓ

)
= EΦ

ℓ ⊗ 1 + e+ℏT+
Φ,ℓ ⊗ EΦ

ℓ , SΦ
(
EΦ
ℓ

)
= −e−ℏT+

Φ,ℓEΦ
ℓ , ϵΦ

(
EΦ
ℓ

)
= 0

∆Φ
(
T
)
= T ⊗ 1 + 1⊗ T , SΦ

(
T
)
= −T , ϵΦ

(
T
)
= 0

∆Φ
(
F Φ
ℓ

)
= F Φ

ℓ ⊗ e
−ℏT−

Φ,ℓ + 1⊗ F Φ
ℓ , SΦ

(
F Φ
ℓ

)
= −F Φ

ℓ e
+ℏT−

Φ,ℓ , ϵΦ
(
F Φ
ℓ

)
= 0

In a nutshell, the above analysis proves the following result:

Theorem 5.1.4. There exists an isomomorphism of topological Hopf algebras

fΦ

P : URΦ
PΦ, ℏ(g)

∼=
↪−−−↠

(
UR
P, ℏ(g)

)FΦ

given by Ei 7→ EΦ
i , T 7→ T and Fi 7→ F Φ

i for all i ∈ I , T ∈ h .

In particular, the class of all FoMpQUEAs of any fixed Cartan type and of fixed
rank is stable by toral twist deformations. Moreover, inside it the subclass of all such
FoMpQUEAs associated with straight, resp. small, realizations is stable as well.

Similar, parallel statements hold true for the Borel FoMpQUEAs, namely there

exist isomorphisms fΦ
P,± : URΦ

PΦ, ℏ(b±)
∼=

↪−−↠
(
UR
P, ℏ(b±)

)FΦ given by formulas as above.

In fact, the previous result can be somehow reversed, as the following shows:
in particular, loosely speaking, we end up finding that every straight small FoM-
pQUEA can be realized as a toral twist deformation of the “standard” FoMpQUEA
by Drinfeld — cf. claim (c) in Theorem 5.1.5 here below.

Theorem 5.1.5. With assumptions as above, let P and P ′ be two matrices of Cartan
type with the same associated Cartan matrix A .

(a) Let R be a straight realization of P and let U R
P,ℏ(g) be the associated FoMp-

QUEA. Then there exists a straight realization Ř′ of P ′ and a matrix Φ ∈sot
(
k[[ℏ]]

)
such that for the associated twist element FΦ as in (5.1) we have

U Ř′

P ′, ℏ(g)
∼=
(
UR
P, ℏ(g)

)FΦ

In a nutshell, if P ′
s = Ps then from any straight FoMpQUEA over P we can obtain

by toral twist deformation a straight FoMpQUEA (of the same rank) over P ′.
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Conversely, if R′ is any straight realization of P ′ and UR′

P ′, ℏ(g) is the associated

FoMpQUEA, then there exists a straight realization R̂ of P and a matrix Φ ∈
sot
(
k[[ℏ]]

)
such that for the associated twist element FΦ as in (5.1) we have

UR′

P ′, ℏ(g)
∼=
(
U R̂
P, ℏ(g)

)FΦ

(b) Let R and R′ be straight small realizations of P and P ′ respectively, with
rk(R) = rk(R′) = t , and let U R

P,ℏ(g) and UR′

P ′, ℏ(g) be the associated FoMpQUEAs.

Then there exists a matrix Φ ∈sot
(
k[[ℏ]]

)
such that for FΦ as in (5.1) we have

UR′

P ′, ℏ(g)
∼=
(
UR
P, ℏ(g)

)FΦ

In other words, if P ′
s = Ps any straight small FoMpQUEA over P ′ is isomorphic to

a toral twist deformation of any straight small FoMpQUEA over P of same rank.

(c) Every straight small FoMpQUEA is isomorphic to some toral twist deforma-
tion of Drinfeld’s standard FoMpQUEA (over DA = Ps ) of the same rank.

(d) Similar, parallel statements hold true for the Borel FoMpQUEAs.

Proof. (a) By Theorem 5.1.4 it is enough to find Φ ∈ sot(k) such that P ′ = PΦ ,
that is P ′ = P − AΦA T ; but this is guaranteed by Lemma 2.2.5, so we are done.

(b) Like for Theorem 3.3.4(b), this follows from claim (a), along with the unique-
ness of straight small realizations, by Proposition 2.1.5(b), and Proposition 3.2.4.

(c) This follows applying (b), with UR′

P ′, ℏ(g) the given straight small FoMpQUEA

and UR
P, ℏ(g) the “standard” FoMpQUEA UR

P, ℏ
(
gD

P

)
over P := DA = P ′

s as in Drin-
feld’s definition (up to “taking the double”), which is straight and split minimal. □

Observation 5.1.6. Theorems 5.1.4 and 5.1.5 have the following interpretation.
Our FoMpQUEAs U R

P,ℏ(g) are quantum objects depending on the multiparameter

P ; but when we perform onto U R
P,ℏ(g) a deformation by twist as in §5.1.1, the output

UR,Φ
P,ℏ (g) :=

(
U R
P,ℏ(g)

)FΦ depends on two multiparameters, namely P and Φ . Thus

all these UR,Φ
P,ℏ (g)’s form a seemingly richer family of “twice-multiparametric” formal

QUEAs. Nonetheless, Theorem 5.1.4 above proves that this family actually coincides
with the family of all FoMpQUEAs, although the latter seems a priori smaller.

In short, Theorems 5.1.4 and 5.1.5 show the following. The dependence of the
Hopf structure of UR,Φ

P,ℏ (g) on the “double parameter” (P ,Φ) is “split” in the al-
gebraic structure (ruled by P ) and in the coalgebraic structure (ruled by Φ); now
Theorems 5.1.4 and 5.1.5 enable us to “polarize” this dependence so to codify it
either entirely within the algebraic structure (while the coalgebraic one is reduced
to a “canonical form”), so that the single multiparameter PΦ is enough to describe
it, or entirely within the coalgebraic structure (with the algebraic one being reduced
to the “standard” Drinfeld’s one), so that the multiparameter ΦP alone is enough.

Observation 5.1.7. As the subclass of split realizations is not closed under twist
(cf. the end of §2.2.8), the subclass of all “split” FoMpQUEAs is not closed too
under twist deformation; this is a quantum analogue of Observations 3.3.5(b).
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5.2. Deformations of FoMpQUEAs by toral 2-cocycles.

We consider now some 2–cocycle deformations (called “of toral type” again) of the
formal MpQUEAs U R

P,ℏ(g) , and we prove that these are again formal MpQUEAs.

5.2.1. Special 2–cocycles of UP,ℏ(h) . Fix again P :=
(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
of

Cartan type with associated Cartan matrix A , a realization R :=
(
h ,Π ,Π∨ ) of

it and the (topological) Hopf algebra U R
P,ℏ(g) , as in §2 and §4, setting di := pii/2 for

all i ∈ I and DP := diag
(
d1 , . . . , dn

)
. We consider special 2–cocycles of U R

P,ℏ(g) ,
called “toral” as they are induced from the quantum torus. To this end, like in §5.1.1,
we fix in h a k[[ℏ]]–basis

{
Hg

}
g∈G , where G is an index set with |G| = rk(h) = t .

Like in §2.3.1, we fix an antisymmetric, k[[ℏ]]—bilinear map χ : h×h −−→ k[[ℏ]] ,
that corresponds to some X =

(
χgγ
)
g,γ∈G ∈ sot

(
k[[ℏ]]

)
via χgγ = χ(Hg , Hγ) . We

also consider the antisymmetric matrix X̊ :=
(
χ̊ij = χ

(
T+
i , T

+
j

))
i,j∈I
∈ son(k[[ℏ]]) .

Any such map χ induces uniquely an antisymmetric, k[[ℏ]]–bilinear map

χ̃U : UR
P,ℏ(h)× UR

P,ℏ(h) −−−−→ k[[ℏ]]

as follows. By definition, UR
P,ℏ(h) is an ℏ–adically complete topologically free Hopf

algebra isomorphic to Ŝk[[ℏ]](h) := ̂⊕
n∈N

S n
k[[ℏ]](h) — the ℏ–adic completion of the

symmetric algebra Sk[[ℏ]](h) =
⊕
n∈N

S n
k[[ℏ]](h) — hence the following makes sense:

Definition 5.2.2. We define χ̃U as the unique k[[ℏ]]–linear (hence ℏ–adically con-

tinuous) map UR
P,ℏ(h)⊗UR

P,ℏ(h)
χ̃U−−→k[[ℏ]] such that (with identifications as above)

χ̃U(z, 1) := ϵ(z) =: χ̃U(1, z) , χ̃U(x, y) := χ(x, y) ∀ z ∈ Ŝk[[ℏ]](h) , x, y ∈ S 1
k[[ℏ]](h)

χ̃U(x, y) := 0 ∀ x ∈ S r
k (h) , y ∈ S s

k (h) : r, s ≥ 1 , r + s > 2 ♢

By construction, χ̃U is a normalized Hochschild 2–cocycle on UR
P,ℏ(h) , that is

ϵ(x) χ̃U(y, z) − χ̃U(xy, z) + χ̃U(x, yz) − χ̃U(x, y) ϵ(z) = 0 ∀ x, y, z ∈ UR
P,ℏ(h)

Now recall that, given two linear maps η, ϑ : UR
P,ℏ(h) ⊗ UR

P,ℏ(h) −−→ k[[ℏ]] , one

may define the convolution product map η ∗ϑ : UR
P,ℏ(h)

⊗2 −−−→ k[[ℏ]] — using the

standard coalgebra structure of UR
P,ℏ(h)

⊗2 ∼= Ŝk[[ℏ]](h)
⊗2 ∼= Ŝk[[ℏ]](h ⊕ h) — by the

formula (η ∗ ϑ)(x ⊗ y) := η(x(1), y(1))ϑ(x(2), y(2)) for all x, y ∈ UR
P,ℏ(h) . Then by

η∗m we denote the m–th power with respect to the convolution product of any map
η as above; in particular, we set η∗ 0 := ϵ⊗ ϵ .

The following result describes the powers of our map χ̃U :

Lemma 5.2.3. For all H+, H− ∈ h and k, ℓ,m ∈ N+ , we have

χ̃ ∗m
U

(
H k

+, H
ℓ
−
)

=

{
δk,m δℓ,m

(
m!
)2
χ(H+, H−)

m for m ≥ 1 ,

δk,0 δℓ,0 for m = 0 .

Proof. The proof follows by a direct computation. □
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Definition 5.2.4. Keep notation as above. We define χU as the unique k[[ℏ]]–linear
map from UR

P,ℏ(h) ⊗
k[[ℏ]]

UR
P,ℏ(h) to k((ℏ)) given by the exponentiation of ℏ−1 2−1 χ̃U , i.e.

χU := eℏ
−12−1χ̃U =

∑
m≥0 ℏ

−m χ̃ ∗m
U

/
2mm! ♢

Lemma 5.2.5. The map χU is a well defined, normalized, k((ℏ))–valued Hopf 2–
cocycle for UR

P,ℏ(h) , such that, for all H+ , H− ∈ h , and setting K± := e ℏH± ,

χ±1
U (H+, H−) = ±ℏ−1 2−1χ(H+, H−) , χU(K+, K−) = eℏ 2

−1χ(H+,H−)

Proof. The identities follow from Lemma 5.2.3, hence χU is well defined. The other
claims follow from the proof of [Sw, Theorem 4.1], see also [GM, Lemma 4.1]. □

5.2.6. Toral 2–cocycles of U R
P,ℏ(g) . The previous construction provides, starting

from χ , a normalized Hopf 2–cocycle χU : UR
P,ℏ(h)× UR

P,ℏ(h) −−−→ k((ℏ)) .
We assume now that the map χ satisfies the additional requirement (2.10), in

other words we require that χ ∈ AltSk[[ℏ]](h) — notation of §2.3. The latter map

canonically induces a k[[ℏ]]–bilinear map χ : h × h −−→ k[[ℏ]] , where h := h
/
s

with s := Spank[[ℏ]]
(
{Si }i∈I

)
, given by

χ
(
T ′+ s , T ′′+ s

)
:= χ

(
T ′, T ′′) ∀ T ′, T ′′ ∈ h

Now, replaying the construction above but with h and χ replacing h and χ , we
can construct a normalized Hopf 2–cocycle χU : UR

P,ℏ
(
h
)
× UR

P,ℏ
(
h
)
−−→ k((ℏ)) ;

for the latter, the analogue of Lemma 5.2.5 holds true again. Moreover, note that

UR
P,ℏ
(
h
) ∼= Ŝk[[ℏ]]

(
h
)
, and, thanks to (2.10), there exists a unique Hopf algebra

epimorphism π : U R
P,ℏ(g) −−↠ UR

P,ℏ
(
h
)

given by π(Ei) := 0 , π(Fi) := 0 — for

i ∈ I — and π(T ) := (T + s) ∈ h ⊆ UR
P,ℏ
(
h
)
— for T ∈ h . Then we consider

σχ := χU ◦ (π × π) : U R
P,ℏ(g)× U R

P,ℏ(g) −−−−↠ k((ℏ))

which is automatically a normalized, k((ℏ))–valued Hopf 2–cocycle on U R
P,ℏ(g) .

Definition 5.2.7. We shall call all normalized Hopf 2–cocycles σχ of U R
P,ℏ(g) ob-

tained — from all χ ∈ AltSk[[ℏ]](h) — via the above construction as “of toral type”,

or “toral 2–cocycles”; we denote by Z 2

(
U R
P,ℏ(g)

)
the set of all of them — which is

actually independent of the multiparameter P , indeed. ♢

5.2.8. Formulas for the σχ–deformed product. Let σχ ∈ Z 2

(
U R
P,ℏ(g)

)
be

a toral 2–cocycle as above. Following §4.1.4, using σχ we introduce in U R
P,ℏ(g) a

“deformed product”, hereafter denoted by σ̇χ ; then X(n)σχ = X σ̇χ · · · σ̇χX will
denote the n–th power of any X ∈ U R

P,ℏ(g) with respect to this deformed product.
Directly from definitions, sheer computation yields the following formulas, relating

the deformed product with the old one (for all T ′, T ′′, T ∈ h , i , j ∈ I ):
T ′

σ̇χT
′′ = T ′ T ′′ , Ei σ̇χFj = Ei Fj , Fj σ̇χEi = Fj Ei

T σ̇χEj = T Ej + 2−1χ
(
T, T+

j

)
Ej , Ej σ̇χT = Ej T + 2−1χ

(
T+
j , T

))
Ej

T σ̇χFj = T Fj + 2−1χ
(
T, T−

j

)
Fj , Fj σ̇χT = Fj T + 2−1χ

(
T−
j , T

)
Fj
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E
(m)σχ
i =

∏m−1
ℓ=1 σχ

(
e+ℏ ℓ T+

i , e+ℏT+
i

)
Em
i = Em

i

Em
i σ̇χE

n
j = σχ

(
e+ℏmT+

i , e+ℏnT+
j

)
Em
i E n

j = e+ℏmn 2−1χ̊ijEm
i E n

j

E
(m)σχ
i σ̇χEj σ̇χE

(n)σχ
k =

(∏m−1
ℓ=1 σχ

(
e+ℏ ℓ T+

i , e+ℏT+
i

))(∏n−1
t=1 σχ

(
e+ℏ t T+

k , e+ℏT+
k

))
·

· σχ
(
e+ℏmT+

i , e+ℏT+
j

)
σχ

(
e+ℏ (mT+

i +T+
j ), e+ℏnT+

k

)
Em
i Ej E

n
k

F
(m)σχ
i =

∏m−1
ℓ=1 σ

−1
χ

(
e−ℏ ℓ T−

i , e−ℏT−
i

)
F m
i = F m

i

F m
i σ̇χF

n
j = σ−1

χ

(
e−ℏmT−

i , e−ℏnT−
j

)
F m
i F n

j = e−ℏmn 2−1χ̊ijF m
i F n

j

F
(m)σχ
i σ̇χ Fj σ̇χ F

(n)σχ
k =

=
(∏m−1

ℓ=1 σ
−1
χ

(
e−ℏ ℓ T−

i , e−ℏT−
i

))(∏n−1
t=1 σ

−1
χ

(
e−ℏ t T−

k , e−ℏT−
k

))
·

· σ−1
χ

(
e−ℏmT−

i , e−ℏT−
j

)
σ−1
χ

(
e−ℏ (mT−

i +T−
j ), e−ℏnT−

k

)
F m
i Fj F

n
k

F
(m)σχ
i σ̇χ Fj σ̇χ F

(n)σχ
k =

(∏m−1
ℓ=1 σ

−1
χ

(
e−ℏ ℓ T−

i , e−ℏT−
i

))(∏n−1
t=1 σ

−1
χ

(
e−ℏ t T−

k , e−ℏT−
k

))
·

· σ−1
χ

(
e−ℏmT−

i , e−ℏT−
j

)
σ−1
χ

(
e−ℏ (mT−

i +T−
j ), e−ℏnT−

k

)
F m
i Fj F

n
k

It is also worth remarking that the identity T ′
σ̇χT

′′ = T ′ T ′′ (for T ′, T ′′ ∈ h ) also
implies that T (n)σχ = T n (for T ∈ h and n ∈ N ) — i.e., each “deformed” power of
any toral element coincides with the corresponding “undeformed” power. It follows
then that the exponential of any toral element with respect to the deformed product
σ̇χ is the same as with respect to the old one.

Observation 5.2.9. Observe that the whole procedure of 2–cocycle deformation
by σχ should apply to the scalar extension k((ℏ)) ⊗k[[ℏ]] U

R
P,ℏ(g) , since a priori the

2–cocycle σχ takes values in k((ℏ)) rather than in k[[ℏ]] . Nevertheless, the formulas
above show that U R

P,ℏ(g) is actually closed for the deformed product “ σ̇χ” provided

by this procedure, hence the deformation eventually “restricts” to U R
P,ℏ(g) itself, so

that we eventually end up with a well-defined 2–cocycle deformation
(
U R
P,ℏ(g)

)
σχ
.

A first, direct consequence of these formulas is the following:

Proposition 5.2.10. With notations as above, the deformed algebra
(
U R
P,ℏ(g)

)
σχ

is

still generated by the elements Ei , Fi and T (with i ∈ I and T ∈ h ) of U R
P,ℏ(g) .

5.2.11. Toral 2–cocycle deformations of U R
P,ℏ(g) . Our key result concerns 2–

cocycle deformations by means of toral 2–cocycles. In order to state it, we need
some more notation, which we now settle.

Let P :=
(
pij
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
be a multiparameter matrix of Cartan type

with associated Cartan matrix A — cf. Definition 2.1.2 — and fix a realization
R =

(
h ,Π ,Π∨) of P . Fix an antisymmetric k[[ℏ]]–bilinear map χ : h× h−→k[[ℏ]]

enjoying (2.10) — that is, χ ∈ AltSk[[ℏ]](h) — we associate with it the matrix X̊ :=(
χ̊ij = χ

(
T+
i , T

+
j

))
i,j∈I

as above. Note that +χ
(
– , T+

j

)
= −χ

(
– , T−

j

)
for all



FORMAL MULTIPARAMETER QUANTUM GROUPS 77

j ∈ I , as direct consequence of (2.10). Basing on the above, like in §2.3 we define

P(χ) := P + X̊ =
(
p
(χ)
ij := pij + χ̊ij

)
i,j∈I

, Π(χ) :=
{
α
(χ)
i := αi ± χ

(
– , T±

i

)}
i∈I

Then, still from §2.3 we know that P(χ) is a matrix of Cartan type — the same of

P indeed — and R(χ) =
(
h ,Π(χ) ,Π

∨ ) is a realization of it.

We are now ready for our result on toral 2–cocycle deformations. Note in particu-
lar that, though toral 2–cocycles have values in k((ℏ)) , the deformed multiplication
is still well defined within our initial FoMpQUEA, which is defined over k[[ℏ]] .

Theorem 5.2.12. There exists an isomorphism of topological Hopf algebras(
U R
P,ℏ(g)

)
σχ
∼= U

R(χ)

P(χ), ℏ(g)

which is the identity on generators. In short, every toral 2–cocycle deformation of
a FoMpQUEA is another FoMpQUEA, whose multiparameter P(χ) and realization
R(χ) depend on the original P and R , as well as on χ , as explained in §2.3.

Similar statements hold true for the Borel FoMpQUEAs and their deformations

by σχ , namely there exist isomorphisms
(
UR
P, ℏ(b±)

)
σχ
∼= U

R(χ)

P(χ), ℏ(b±) .

Proof. We begin by noting the following key

Fact: The generators of U R
P,ℏ(g) , when thought of as elements of the deformed

algebra
(
U R
P,ℏ(g)

)
σχ

, obey the defining relations of the (same name) generators of

U
R(χ)

P(χ), ℏ(g) — with respect to the deformed product σ̇χ .

Indeed, most relations follow at once from the formulas in §5.2.8. Namely, the
identities T ′

σ̇χT
′′ = T ′ T ′′ imply T ′

σ̇χT
′′ = T ′′

σ̇χT
′ — for all T ′, T ′′ ∈ h . Also,

from T σ̇χEj = T Ej + 2−1χ
(
T, T+

j

)
Ej and Ej σ̇χT = Ej T + 2−1χ

(
T+
j , T

)
Ej

— for all T ∈ h and j ∈ I — we get (since χ is antisymmetric)

T σ̇χEj − Ej σ̇χT =
(
αj(T ) + 2−1

(
χ− χ T

)(
T , T+

j

))
Ej = +α

(χ)
j (T )Ej

A similar, straightforward analysis also yields T σ̇χFj − Fj σ̇χT = −α(χ)
j (T )Fj .

The identities Ei σ̇χFj = Ei Fj and Fj σ̇χEi = Fj Ei in turn imply

Ei σ̇χFj − Fj σ̇χEi = Ei Fj − Fj Ei = δi,j
e+ℏT+

i − e−ℏT−
i

e+ℏ pii/2 − e−ℏ pii/2

Eventually, since pii = p
(χ)
ii by definition, and the exponential of toral elements with

respect to σ̇χ is the same as with respect to the old product, we conclude that

Ei σ̇χFj − Fj σ̇χEi = δi,j
e
+ℏT+

i
σχ − e

−ℏT−
i

σχ

e+ℏ p(χ)
ii /2 − e−ℏ p(χ)

ii /2

where eXσχ denotes the exponential of any X with respect to σ̇χ .

What is less trivial instead is proving the quantum Serre relations for the deformed
product; we do this only for the relation involving the Ei’s, leaving the relation
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involving the Fi’s as an exercise for the reader. To this end, set

q
(χ)
ij := eℏ p

(χ)
ij = eℏ (pij+χ̊ij) for all i, j ∈ I

Note that, as
(
P(χ)

)
s
= Ps = DA , we have q

(χ)
ii = qii and q

(χ)
i = e+ℏ p(χ)

ii /2 = qi for
all i ∈ I . Then, for all i ̸= j ∈ I we have to prove that

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

(
q
(χ)
ij

)+k/2 (
q
(χ)
ji

)−k/2
E

(1−aij−k)σχ
i σ̇χEj σ̇χE

(k)σχ
i = 0

In order to prove the equality, we analyze the factors in the summands separately.

Claim 1 : For all i ̸= j ∈ I , we have
(
q
(χ)
ij

)+k/2 (
q
(χ)
ji

)−k/2
= q

+k/2
ij q

−k/2
ji eℏ k χ̊ij

This follows by direct computation. Next claim instead follows from §5.2.8:

Claim 2 : Fix i ̸= j ∈ I and write m := 1− aij . Then

E
(m−k)σχ
i σ̇χEj σ̇χE

(k)σχ
i = σχ

(
Km−k
i , Kj

)
σχ
(
Km−k
i Kj , K

k
i

)
Em−k
i Ej E

k
i

Now we evaluate the value of the toral 2–cocycle using the exponentials.

Claim 3 : For all i, j ∈ I and m, k, ℓ ∈ N , we have

(a) σχ
(
Kℓ
i , Kj

)
= eℏ ℓ 2

−1χ̊ij

(b) σχ
(
Km−k
i Kj , K

k
i

)
= eℏ k 2

−1χ̊ji

(c) σχ
(
Km−k
i , Kj

)
σχ
(
Km−k
i Kj , K

k
i

)
= eℏ (m−2k) 2−1χ̊ij

All assertions follow by computation using Lemma 5.2.5. Indeed, for (a) we have

σχ
(
Kℓ
i , Kj

)
= χU

(
Kℓ
i , Kj

)
= eℏ 2

−1χ(ℓ T+
i ,T

+
j ) = eℏ ℓ 2

−1χ̊ij

For item (b), Lemma 5.2.5 yields

σχ
(
Km−k
i Kj , K

k
i

)
= χU

(
Km−k
i Kj , K

k
i

)
= χU

(
eℏ ((m−k)T+

i +T+
j ), eℏ k T

+
i
)

=

= eℏ 2
−1χ((m−k)T+

i +T+
j , k T

+
i ) = eℏ k 2

−1χ̊ji

Now, putting altogether (a) and (b) we eventually get (c), because

σχ
(
Km−k
i , Kj

)
σχ
(
Km−k
i Kj , K

k
i

)
= eℏ (m−k) 2−1χ̊ij eℏ k 2

−1χ̊ji = eℏ (m−2k) 2−1χ̊ij

Finally, Claims 1, 2 and 3 altogether yield, for m := 1− aij ,
m∑
k=0

(−1)k
[
m

k

]
qi

(
q
(χ)
ij

)+k/2 (
q
(χ)
ji

)−k/2
E

(m−k)σχ
i σ̇χEj σ̇χE

(k)σχ
i =

=
m∑
k=0

(−1)k
[
m

k

]
qi

q
+k/2
ij q

−k/2
ji eℏ k χ̊ij eℏ (m−2k) 2−1χ̊ijEm−k

i Ej E
k
i =

= eℏm 2−1χ̊ij

m∑
k=0

(−1)k
[
m

k

]
qi

q
+k/2
ij q

−k/2
ji Em−k

i Ej E
k
i = 0

where the last equality follows from the quantum Serre relation.
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Now, the Fact above implies that there exists a well-defined homomorphism of

topological Hopf algebras ℓ : U
R(χ)

P(χ), ℏ(g) −−−→
(
U R
P,ℏ(g)

)
σχ

given on generators by

ℓ(Ei) := Ei , ℓ(Fi) := Fi , ℓ
(
T ) := T ( i ∈ I , T ∈ h ) — in short, it is the

identity on generators. Moreover, thanks to Proposition 5.2.10 this is in fact an
epimorphism. As an application of this result, there exists also an epimorphism of

topological Hopf algebras ℓ′ : U R
P,ℏ(g) −−−−−→

(
U

R(χ)

P(χ), ℏ(g)
)
σ−χ

which again is the

identity on generators — just replace χ with −χ and P with P(χ) .
Mimicking what we did for U R

P,ℏ(g) , we can construct, out of χ , a normalized Hopf

2–cocycle σ̇χ for
(
U

R(χ)

P(χ), ℏ(g)
)
σ−χ

; then we also have a similar 2–cocycle σ′
χ on U

R
P,ℏ(g)

defined as the pull-back of σ̇χ via ℓ′ , and a unique, induced Hopf algebra homomor-

phism ℓ′σ̇χ :
(
U R
P,ℏ(g)

)
σ′
χ
−−−−−→

((
U

R(χ)

P(χ), ℏ(g)
)
σ−χ

)
σ̇χ

between deformed Hopf

algebras, which is once more the identity on generators. Now, tracking the whole
construction one sees at once that σ′

χ = σχ , so that
(
U R
P,ℏ(g)

)
σ′
χ
=
(
U R
P,ℏ(g)

)
σχ

, and((
U

R(χ)

P(χ), ℏ(g)
)
σ−χ

)
σ̇χ

= U
R(χ)

P(χ), ℏ(g) . But then composition gives two homomorphisms

ℓ′σ̇χ◦ ℓ : U
R(χ)

P(χ), ℏ(g) −−−→
(
U R
P,ℏ(g)

)
σχ
−−−→ U

R(χ)

P(χ), ℏ(g)

ℓ ◦ ℓ′σ̇χ :
(
U R
P,ℏ(g)

)
σχ
−−−→ U

R(χ)

P(χ), ℏ(g) −−−→
(
U R
P,ℏ(g)

)
σχ

which (both) are the identity on generators: hence in the end we get ℓ′σ̇χ◦ ℓ = id
and ℓ ◦ ℓ′σ̇χ = id , thus in particular ℓ is an isomorphism, q.e.d. □

Remark 5.2.13. With notation of Theorem 5.2.12 above, we have P(χ)−P = Λ for

some antisymmetric matrix Λ ∈ son
(
k[[ℏ]]

)
. Conversely, under mild assumptions

on P , this result can be “reversed” as it is shown below.

Theorem 5.2.14. Let P, P ′ ∈ Mn

(
k[[ℏ]]

)
be two matrices of Cartan type with the

same associated Cartan matrix A .

(a) Let R be a split realization of P and U R
P,ℏ(g) be the associated FoMpQUEA.

Then there exists a split realization Ř′ of P ′, a matrix X̊ =
(
χ̊ij
)
i,j∈I ∈ son

(
k[[ℏ]]

)
and a toral 2–cocycle σχ such that

U R′

P ′, ℏ(g)
∼=
(
U R
P, ℏ(g)

)
σχ

In a nutshell, if P ′
s = Ps then from any split FoMpQUEA over P we can obtain

a split FoMpQUEA (of the same rank) over P ′ by a toral 2–cocycle deformation.

(b) Let R be a split minimal realization of P . Then the FoMpQUEA U R
P,ℏ(g)

is isomorphic to a toral 2–cocycle deformation of the Drinfeld’s standard double
QUEA, that is there exists some bilinear map χ ∈ AltSk[[ℏ]](h) such that

U R
P,ℏ(g)

∼=
(
UDA,ℏ(g)

)
σχ

(c) Similar, parallel statements hold true for the Borel FoMpQUEAs.
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Proof. (a) By Proposition 2.3.5(a), there exists χ ∈ AltSk[[ℏ]](h) such that P ′ = P(χ)

and the triple — constructed as in §2.3 — R′ := R(χ) =
(
h ,Π(χ) ,Π

∨ ) is a split

realization of P ′ = P(χ) . Then U R′

P ′,ℏ(g)
∼=
(
U R
P,ℏ(g)

)
σχ

by Theorem 5.2.12.

(b) Drinfeld’s UDA,ℏ(g) is — in our language — nothing but the FoMpQUEA
built upon a split minimal realization Rst =

(
h ,Πst ,Π

∨
st

)
of DA , for which we

write Π∨
st =

{
T±
i

}
i∈I and Πst =

{
α
(st)
i

}
i∈I . From Proposition 2.3.5(b) we have

a suitable form χ ∈ AltSk[[ℏ]](h) such that the realization
(
Rst

)
(χ)

obtained as toral

2–cocycle deformation of Rst through χ coincides with R . Then, by Theorem 5.2.12
we get U R

P,ℏ(g)
∼=
(
UDA,ℏ(gD)

)
σχ

as desired. □

6. Specialization and quantization: FoMpQUEAs vs. MpLbA’s

This section dwells upon the interplay of specialization — applied to quantum
objects as our FoMpQUEAs — and, conversely, of quantization — performed onto
such semiclassical objects as our MpLbA’s.

First of all, we shall see that the specialization of a FoMpQUEA yields a suitable
MpLbA; conversely, any MpLbA has at least one quantization, in the form of a well
defined FoMpQUEA. Then, we shall investigate the interaction between the process
of specialization — at ℏ = 0 — of any FoMpQUEA and the process of deformation
— either by (toral) twist or by (toral) 2–cocycle — of the same FoMpQUEA or of
the MpLbA which is its semiclassical limit. In particular we will find out that, in a
suitable, natural sense, the two processes commute with each other.

6.1. Deformation vs. specialization for FoMpQUEAs and MpLbA’s.

Recall that a deformation algebra is a topological, unital, associative k[[ℏ]]–algebra
A which is topologically free as a k[[ℏ]]–module. Conversely, a deformation of a
(unital, associative) k–algebra A0 is by definition a deformation algebra A such that
A0
∼= A

/
ℏA . The same criteria apply to the notion of “deformation Hopf algebra”,

just replacing “topological, unital, associative k[[ℏ]]–algebra” with “topological Hopf
k[[ℏ]]–algebra”. Following Drinfeld, we say that a deformation Hopf algebra H is a
quantized universal enveloping algebra (or QUEA in short) if H

/
ℏH ∼= U(g) for

some Lie algebra g . In particular, the Lie bracket in g comes from the multiplication
in U(g) ∼= H

/
ℏH . Moreover, this g inherits a Lie coalgebra structure from the

QUEA, making it into a Lie bialgebra, thanks to the following result:

Theorem 6.1.1. (cf. [CP, Proposition 6.2.7], [ES, Theorem 9.1]) Let H be a quan-
tized universal enveloping algebra with H

/
ℏH ∼= U(g) . Then the Lie algebra g is

naturally equipped with a Lie bialgebra structure, whose Lie cobracket is defined by

δ(x) :=
∆(x)−∆op(x)

ℏ
(
mod ℏ

)
(6.1)

where x ∈ H is any lifting of x ∈ g ⊆ U(g) ∼= H
/
ℏH . □
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Definition 6.1.2. [CP, ES] The semiclassical limit of a quantized universal envelop-
ing algebra H is the Lie bialgebra

(
g , [−,−] , δ

)
where g is the Lie algebra such

that H
/
ℏH ∼= U(g) and δ is defined as above. Conversely, we say that H is a

quantization of the Lie bialgebra
(
g , [−,−] , δ

)
. ♢

6.1.3. Formal MpQUEAs vs. MpLbA’s. In this section we finally compare
our FoMpQUEAs with our MpLbA’s. Mainly, we show that the FoMpQUEAs are
indeed quantized universal enveloping algebras; in particular, we prove that their
specialization at ℏ = 0 is a universal enveloping algebra of a MpLbA as those
in §3. Thus the specialization of each FoMpQUEA is a MpLbA; conversely, any
FoMpQUEA is the quantization of some MpLbA. The other way round is true as
well: every MpLbA admits a FoMpQUEA as its quantization.

Second, we describe the interplay between the process of specializing/quantizing
(switching between FoMpQUEAs and MpLbA’s) and the process of deforming within
either family of FoMpQUEAs or MpLbA’s, separately — by twist or by 2–cocycle.

We fix a matrix P :=
(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
of Cartan type with associated

Cartan matrix A , and a realization R :=
(
h ,Π ,Π∨ ) of P . Then we have the

associated (topological) Hopf algebra U R
P,ℏ(g) , as in Definition 2.1.2 and §4. Simi-

larly, we also have the MpLbA gR̄
P̄ introduced in §3.2.3, where we use (loose) obvious

notation such as R̄ := R (mod ℏ ) and P̄ := P (mod ℏ ) .
Our first result points out that, roughly speaking, FoMpQUEAs and MpLbA’s are

in bijection through the specialization/quantization process, as one might expect:

Theorem 6.1.4. With assumptions as above, U R
P,ℏ(g) is a quantized universal en-

veloping algebra in the sense of §6.1, whose semiclassical limit is U
(
gR̄

P̄

)
.

In short, for each pair (P,R) as above — R being a realization of P — and for
the FoMpQUEA U R

P,ℏ(g) and the MpLbA gR̄
P̄ associated with (P,R) , we have: gR̄

P̄ is

the specialization of U R
P,ℏ(g) , or — equivalently — U R

P,ℏ(g) is a quantization of gR̄
P̄ .

Proof. First of all, we note that H := U R
P,ℏ(g) is topologically free. We prove that

by reducing the problem to the case of Drinfeld’s standard double QUEA. Namely,
we begin assuming that U R

P,ℏ(g) is split minimal, i.e. such is the realization R .

Then by Theorem 5.2.14(c) we have U R
P,ℏ(g)

∼=
(
UDA,ℏ(g)

)
σχ

as topological Hopf

k[[ℏ]]–algebras, where
(
UDA,ℏ(g)

)
σχ

is a suitable 2–cocycle deformation of Drinfeld’s

standard double QUEA UDA,ℏ(g) . As the latter is known to be a topologically
free k[[ℏ]]–module, and 2–cocycle deformation does not affect the k[[ℏ]]–module
structure, we conclude that U R

P,ℏ(g) is topologically free as well, q.e.d.

Now assume that U R
P,ℏ(g) is just split (possibly not minimal): then, by defini-

tion, Π∨ :=
{
T+
i , T

−
i

}
i∈I can be completed to a k[[ℏ]]–basis of h , hence h′ :=

Spank[[ℏ]]
(
Π∨) has a direct sum complement h′′ so that h = h′ ⊕ h′′ ; therefore

Uℏ(h) = Uℏ
(
h′
)
⊗̂Uℏ

(
h′′
)

as algebras. Furthermore, the realization R clearly “re-
stricts” to another realization R′ of P whose Cartan (sub)algebra is h′ , which in
addition is split minimal: then as Uℏ(h) = Uℏ

(
h′
)
⊗̂Uℏ

(
h′′
)
one also gets easily

U R
P,ℏ(g)

∼= U R′

P,ℏ (g) ⊗̂ Uℏ
(
h′′
)

as k[[ℏ]]–modules (6.2)
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(by construction). Indeed, by definition we have a natural monomorphism of realiza-
tions R′ ↪−→ R induced by the monomorphism h′ ↪−→ h of Cartan (sub)algebras;
by Propositions 4.2.3 and 4.3.4, this induces a monomorphism U R′

P,ℏ (g) ↪−−→ U R
P,ℏ(g)

between FoMpQUEAs — the image of the latter is the (complete) k[[ℏ]]–subalgebra
generated by the Ei’s, the T

±
i ’s and the Fi’s ( i ∈ I ). Now, applying twice Theorem

4.2.9 — yielding triangular decompositions for U R
P,ℏ(g) and U

R′

P,ℏ (g) — we get

U R
P,ℏ(g)

∼= U R
P,ℏ(n−) ⊗̂Uℏ(h) ⊗̂U R

P,ℏ(n+)
∼=

∼= U R
P,ℏ(n−) ⊗̂Uℏ

(
h′
)
⊗̂Uℏ

(
h′′
)
⊗̂U R

P,ℏ(n+)
∼=

∼= U R
P,ℏ(n−) ⊗̂Uℏ

(
h′
)
⊗̂U R

P,ℏ(n+) ⊗̂Uℏ
(
h′′
) ∼= U R′

P,ℏ (g) ⊗̂Uℏ
(
h′′
)

— where we applied also Uℏ
(
h′′
)
⊗̂U R

P,ℏ(n+)
∼= U R

P,ℏ(n+) ⊗̂Uℏ
(
h′′
)
, which is clear,

and Uℏ(h) = Uℏ
(
h′
)
⊗̂Uℏ

(
h′′
)
— which proves our claim.

Therefore, as U R′

P,ℏ (g) is topologically free by the previous analysis (as R′ is split

minimal) and Uℏ
(
h′′
)
is also topologically free by construction, from (6.2) we deduce

the same for U R
P,ℏ(g) as well.

Finally, let’s cope with the general case. By Lemma 2.1.8 there exists an epi-
morphism π : Ṙ −−↠ R , where Ṙ :=

(
ḣ , Π̇ , Π̇∨ ) is a split realization of P :

by Proposition 4.3.4, this induces an epimorphism of Hopf algebras (though, for

us, it is enough to be one of algebras, indeed) U Ṙ
P,ℏ(g)

Uπ

−−−↠U R
P,ℏ(g) whose kernel

is generated by Uℏ(k)
+ with k := Ker(π) , where π : ḣ −−↠ h is the epimor-

phism of Cartan (sub)algebras associated with π . As h is free of finite rank, we

have ḣ = k ⊕ h′ ∼= k ⊕ h for some free submodule h′ ∼= h inside ḣ ; therefore
Uℏ
(
ḣ
)
= Uℏ(k) ⊗̂Uℏ(h) ∼= Uℏ(k) ⊗ Uℏ(h) as algebras, whence, as in (6.2), one gets

U Ṙ
P,ℏ(g)

∼= Uℏ(k) ⊗̂ U R
P,ℏ(g) as k[[ℏ]]–modules. As U Ṙ

P,ℏ(g) is topologically free by

the previous analysis and Uℏ(k) is too, we deduce the same for U R
P,ℏ(g) as well.

Second, we must prove that U R
P,ℏ(g)

/
ℏU R

P,ℏ(g) , as a co-Poisson Hopf algebra,

is isomorphic to U
(
gR̄

P̄

)
. Indeed, from the presentation of U R

P,ℏ(g) we get that

U R
P,ℏ(g)

/
ℏU R

P,ℏ(g) is generated by the cosets (modulo ℏU R
P,ℏ(g) ) of the Fi’s, T ’s

and Ei’s ( i ∈ I , T ∈ h ); moreover, these cosets X := X mod ℏU R
P,ℏ(g) obey all

relations induced modulo ℏ by the defining relations among the original generators
X of U R

P,ℏ(g) . On the other hand, by construction the Lie bialgebra gR̄
P̄ is endowed

with a built-in presentation (as a Lie algebra) by generators — the Fi’s, T ’s and Ei’s
— and relations, and explicit formulas for the value of the Lie cobracket δ on the
given generators. From this, a presentation of U

(
gR̄

P̄

)
is obtained in the obvious way,

where the generators are again the Fi’s, T ’s and Ei’s as before, as well as explicit
formulas for the value of the Poisson cobracket δ on each one of those generators.

Comparing, the presentation of U
(
gR̄

P̄

)
with that of U R

P,ℏ(g)
/
ℏU R

P,ℏ(g) we find
that all the given relations among generators of the latter algebra do correspond
to identical relations among the corresponding generators in the former: namely,
mapping X to X — for all X ∈

{
Ei , Fi

∣∣ i ∈ I } ∪ h — turns every given relation

among the X’s into a same-look relation among the X’s. In the end, this means
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that a well-defined epimorphism of Hopf algebras

ϕ : U
(
gR̄

P̄

)
−−↠ U R

P,ℏ(g)
/
ℏU R

P,ℏ(g) , Ei 7→ Ei , T 7→ T , Fi 7→ Fi (6.3)

( i ∈ I , T ∈ h ) exists; moreover, comparing the formulas on both sides for the co-
Poisson bracket on generators we see that this is also a co-Poisson Hopf epimorphism.

On the other hand, we can make U
(
gR̄

P̄

)
into a k[[ℏ]]–algebra by scalar restriction

— via k[[ℏ]] −−↠ k[[ℏ]]
/
ℏ k[[ℏ]] ∼= k . Then the same remark about relations

implies that there exists a well-defined k[[ℏ]]–algebra epimorphism

ψ ′ : U R
P,ℏ(g) −−↠ U

(
gR̄

P̄

)
, Ei 7→ Ei , T 7→ T , Fi 7→ Fi ( i ∈ I , T ∈ h )

whose kernel contains ℏU R
P,ℏ(g) ; so a k–algebra epimorphism

ψ : U R
P,ℏ(g)

/
ℏU R

P,ℏ(g) −−−↠ U
(
gR̄

P̄

)
, Ei 7→ Ei , T 7→ T , Fi 7→ Fi (6.4)

( i ∈ I , T ∈ h ) is induced too. Comparing (6.3) and (6.4) shows that ϕ and ψ are
inverse to each other, hence ψ is a Hopf morphism too and we are done. □

6.2. Blending specialization and deformation.

In this section we compare the process of deformation at the quantum level or at
the semiclassical level. The outcome is very neat, and can be put in a nutshell as
follows: deformation (by twist or by 2–cocycle) commutes with specialization.

6.2.1. Blending specialization and twist deformation. Once more, we fix
again P :=

(
pi,j
)
i,j∈I ∈Mn

(
k[[ℏ]]

)
of Cartan type, a realization R :=

(
h ,Π ,Π∨ )

of it, and the associated FoMpQUEA U R
P,ℏ(g) and MpLbA gR̄

P̄ . As h is a free k[[ℏ]]–
module of finite rank t , we fix a k[[ℏ]]–basis

{
Hg

}
g∈G , with |G| = rk(h) = t .

Pick an antisymmetric matrix Ψ =
(
ψgk
)
g,k∈G ∈ sot

(
k[[ℏ]]

)
. Out of it, we define

jΨ̄ :=
∑t

g,k=1 ψgk Hg ⊗Hk ∈ h⊗ h as in (3.7)

FΨ := exp
(
ℏ 2−1

∑t
g,k=1ψgkHg ⊗Hk

)
∈ U R

P,ℏ(g) ⊗̂U R
P,ℏ(g) as in (5.1)

with jΨ̄ being a (toral) twist for the Lie bialgebra gR̄
P̄ and FΨ is a (toral) twist for

the Hopf algebra U R
P,ℏ(g) . Then we consider the deformation

(
gR̄

P̄

)jΨ of gR̄
P̄ by the

(Lie) twist jΨ̄ and the deformation
(
U R
P,ℏ(g)

)FΨ of U R
P,ℏ(g) by the (Hopf) twist FΨ .

Again out of Ψ , we define also the matrix PΨ and its realization RΨ :=
(
h ,Π ,Π∨

Ψ

)
,

as in Proposition 2.2.2. Then we have the FoMpQUEA U RΨ
PΨ,ℏ(g) and the MpLbA

gR̄Ψ
P̄Ψ

, again linked with each other by a quantization/specialization relationship.

We can now state our result, which in particular claims (roughly speaking) that
“deformation by twist commutes with specialization”.

Theorem 6.2.2. With assumptions as above, we have that
(
U R
P,ℏ(g)

)FΨ is a quanti-

zed universal enveloping algebra, whose semiclassical limit is U
((
gR̄

P̄

)jΨ̄) . More

precisely, we have
(
U R
P,ℏ(g)

)FΨ ∼= U RΨ
PΨ,ℏ(g) and

(
gR̄

P̄

)jΨ̄ ∼= gR̄Ψ
P̄Ψ

.



84 G. A. GARCÍA , F. GAVARINI

Proof. The claim follows, as direct application, from the isomorphisms(
U R
P,ℏ(g)

)FΨ
5.1.4∼= U RΨ

PΨ,ℏ(g) , U RΨ
PΨ,ℏ(g)

/
ℏU RΨ

PΨ,ℏ(g)
6.1.4∼= Uℏ

(
gR̄Ψ

P̄Ψ

)
, gR̄Ψ

P̄Ψ

3.3.3∼=
(
gR̄

P̄

)jΨ̄
which come from Theorem 5.1.4, Theorem 6.1.4 and Theorem 3.3.3. □

6.2.3. Blending specialization and 2–cocycle deformation. Now we analyze
what happens when combining deformations by 2–cocycle — for both FoMpQUEAs
and MpLbA’s — with the specialization process (from the former to the latter ones).

We start with P :=
(
pi,j
)
i,j∈I ∈ Mn

(
k[[ℏ]]

)
of Cartan type, a realization R :=(

h ,Π ,Π∨ ) of P , and a fixed k[[ℏ]]–basis
{
Hg

}
g∈G of h , with |G| = rk(h) = t .

Then we have also U R
P,ℏ(g) and gR̄

P̄ , interlocked via quantization/specialization.

Like in §5.2.1, let χ : h× h −−→ k[[ℏ]] be an antisymmetric k[[ℏ]]–bilinear map
which obeys (3.8). Taking everything modulo ℏ , this χ defines a similar antisymmet-

ric, k–bilinear map γ :=
(
χ mod ℏ

)
: h0 × h0 −−→ k — where h0 := h

/
ℏ h = h

— which obeys (3.8) again, up to replacing “χ” with “γ”. Following §5.2.6, we con-
struct out of χ a k((ℏ))–valued toral 2–cocycle σχ : U R

P,ℏ(g) ⊗ U R
P,ℏ(g) −−−→ k((ℏ)) ,

and then out of this the 2–cocycle deformed Hopf algebra
(
U R
P,ℏ(g)

)
σχ

. Similarly,

out of γ we construct, as in §3.4 (but replacing “χ” with “γ”) a toral 2–cocycle γg
for the Lie bialgebra gR̄

P̄ , and out of it the 2–cocycle deformed Lie bialgebra
(
gR̄

P̄

)
γg
.

Still out of χ , we define the matrix P(χ) and its realization R(χ) :=
(
h , Π(χ) , Π

∨ ) ,
as in Proposition 2.3.2; similarly, out of γ we get the matrix P(γ) and its realization
R(γ) : then by construction P(γ) = P̄(χ) and R(γ) = R̄(χ) . Attached to these we

have U
R(χ)

P(χ), ℏ(g) and g
R(γ)

P (γ)
= g

R̄(χ)

P̄ (χ)
, again connected via quantization/specialization.

Next result claims that “deformation by 2–cocycle commutes with specialization”.

Theorem 6.2.4. With assumptions as above, we have that
(
U R
P,ℏ(g)

)
σχ

is a quanti-

zed universal enveloping algebra, with semiclassical limit U
(
(gR

P )γg

)
.

Proof. The claim follows, as direct application, from the isomorphisms(
U R
P,ℏ(g)

)
σχ

5.2.12∼= U
R(χ)

P(χ), ℏ(g) , U
R(χ)

P(χ), ℏ(g)
/
ℏU R(χ)

P(χ), ℏ(g)
6.1.4∼= Uℏ

(
g

R(γ)

P (γ)

)
, g

R(γ)

P (γ)

3.4.3∼= (gR
P )γg

which come from Theorem 5.2.12, Theorem 6.1.4 and Theorem 3.4.3. □

6.3. Final overview.

In this paper we studied multiparametric versions of formal quantum universal en-
veloping algebras and their semiclassical limits. As these are presented by generators
and relations, their very definition highlights the relation between the multiparame-
ters and the action of a fixed commutative subalgebra: like for Kac-Moody algebras,
this is encoded in the notion of realization of a multiparameter matrix P related to
a symmetrizable Cartan matrix. This tool allows us to relate the quantum objects
with the semiclassical limit, and also the multiparameter objects with the standard
ones: the latter is done via deformation(s) and an explicit change of generators.



FORMAL MULTIPARAMETER QUANTUM GROUPS 85

In conclusion, loosely speaking, one may say that:

(a) multiparameters are encoded in realizations;
(b) FoMpQUEAs are quantizations of MpLbAs;
(c) multiparameter objects are given by deformation of either the algebra or the

coalgebra structure (both options being available) of standard objects.

Finally, we provide a “pictorial sketch” of the global picture. Keeping notation as
before, what we have in one single glance is summed up in the following diagram:

U RΨ
PΨ, ℏ(g)

∼=
(
U R
P,ℏ(g)

)FΨ

OO

Theorem 6.1.4

��

U R
P,ℏ(g)

//Theorem 5.1.5oo
OO

Theorem 6.1.4

��

ooTheorem 5.2.14//
(
U R
P,ℏ(g)

)
σχ
∼= U

R(χ)

P(χ), ℏ(g)
OO

Theorem 6.1.4

��

U
(
gR̄Ψ

P̄Ψ

)
∼= U

((
gR̄
P̄

)jΨ̄) U
(
gR̄
P̄

)
//

Theorem 3.3.4
oo oo

Theorem 3.4.3
// U
((
gR̄
P̄

)
χ̄

)
∼= U

(
g
R̄(χ)

P̄(χ)

)

Note that in this diagram each vertical arrow (with dotted shaft) denotes a “quan-
tization/specialization (upwards/downwards) relationship” — which involves the
“continuous parameter” ℏ — whereas each horizontal arrow (having a waving shaft)
denotes a relationship “via deformation” — which involves “discrete parameters”.
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[Gar] G. A. Garćıa, Multiparameter quantum groups, bosonizations and cocycle deformations,
Rev. Un. Mat. Argentina 57 (2016), no. 2, 1–23.
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