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A B S T R A C T   

Water scarcity is a global concern that has become one of the main problems for agricultural activities, especially 
in countries with arid and semi-arid climates like Iran. Sirjan city, a sweltering and arid city in Iran, is one of the 
locations where its economy mainly relies on pistachio orchards and other agricultural activities, which are 
highly affected by poor water quality and high TDS of wells. This city’s climate, high solar irradiation, sunny sky, 
and the high requirement for distilled water for irrigation make utilizing solar power and solar-still desalination 
systems a reasonable choice. However, the low water production rate of conventional solar still systems prevents 
the use of this technology in field-scale projects and real agricultural activities. Therefore, we mixed solar still 
and solar power, to enhance the water production rate and provide water with proper TDS for a pistachio orchard 
in Sirjan City. In comparison to conventional solar still, the proposed continuous heating-enhanced solar still 
benefits from several improvements, including passing water through the grooved glass that leads to lowering the 
glass temperature, increasing water basing temperature by a heating element, polyurethane isolation of basin 
and capability of working during day and night. The mentioned improvements will lead to an increase in daily 
water production by 21% from 5.5 to 6.6, 24% from 5.5 to 6.8, 31% from 5.5 to 7.2, and 44% from 5.5 to 7.92 
respectively. Therefore, utilizing all the mentioned approaches leads to a 120% increase in daily water pro
duction from 5.5 to 12.17 L and in comparison, to the conventional mechanisms, significantly reduces the 
required area for the system. The results showed that the proposed method is highly effective and could be used 
in real agricultural activities in arid and semi-arid climates.   

Introduction 

Water scarcity which defined as the point where the supply or quality 
of water cannot meet all consumption sectors including ecology and 
environment [1], is a widespread problems that cause competition for 
water and currently at least 4 billion people around world experiencing 
it consequences [2]. Considering the 72 % proportion of agricultural 
activity of total water usage [3], it is predictable that people living in 
agricultural areas are one of the most affected sector by water scarcity 
and research also shows almost 3.2 billion people in these areas face 
high water shortage [4]. It seems, in addition to the demand for agri
cultural products which has risen in recent years and is projected to 

grow by 70 % by 2050 [5], failure in securing farmers training, new 
irrigation methods, proper management of digging licenses [6], and 
cheap tariffs for irrigation water usage are the main factors that aggra
vate severe conditions, especially in third generation countries [5]. As a 
consequence, in many arid and semi-arid climates, like Kerman province 
in Iran, which the economy of local society highly relied in agricultural 
activities, farmers have been facing great concern about water shortage 
and in some cases its high salinity, which even harden water stress sit
uation [7,8]. To address this issue, and align with SDGs, developing 
more sustainable desalination approaches using renewable energy and 
passive solutions which required low maintenance and material usage, 
not only could provide proper water for irrigation with low environ
mental impacts [9–11], also it can improve the quality of agricultural 
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products and consequently enhance the economy of local community. 
Although industrial desalination methods are common solutions, 

especially in Middle East (ME) [12], these projects mostly utilized ap
proaches such as reverse osmosis [13], multi-effect desalination [14], 
multi-stage flash [15], ion exchange [16], phase change and electrodi
alysis [17], which some main parameters such as setup cost, operational 
cost, operating temperature, required maintenance, electrical energy 
consumption, thermal energy consumption, and waste production could 
be the drawbacks of these systems [18,19]. Therefore, easy to use and 
environmental-friendly methods like solar still are of great interest for 
irrigation water desalination. The popularity of this method is so high 
that researchers have been trying to provide a more optimal system with 
the same fundamental mechanism and small changes. As a result, 
different enhancement of solar stills including single-slope solar stills 
[20,21], that are conventional configuration, double-slope solar stills 
[22], which are designed in order to used more solar irradiation and a 
wider basin, pyramid solar stills [23], single basin solar stills [24], 
multiple basin solar stills [25], inclined solar stills [26], stepped solar 
stills [27], that are designed to increase the thermal conductivity be
tween water and basin with a constant basin area and spherical solar 
stills [28], evacuated solar collector [29], heat pipe solar collector [30], 
that are trying to increase water temperature before entering to the 
basin, flat plate solar collector [31], that utilized to increase the solar 
irradiation entering to the solar still, photovoltaic modules that trying to 
increase the water temperature in the basin, tubular solar still [32,33], 
humidification-de-humidification solar desalination [34] and utilization 
of graphite and nanoparticles in solar still have been developed [35,36]. 
In addition, [37] show that, solar power systems are more efficient than 
using diesel generators in desalination systems and, which directed our 
mine into using solar power system for providing required electricity. 
These finding are alight with results published by Niajaili et al. [37] 
which they reported that though the initial outlay of the PV system is 
about 9 times of the conventional systems the total lifecycle costs of the 
PV pumping system is just 65.6 % costs of the conventional pumping 
system. Especially that in comprising to other renewable energies 
sources, like wind, it can be run with no need to huge construction. 

However, in most of the researches, 4 issues have not been investi
gated. First, almost all of the research, and technologies just focused on 
desalination efficiency and water production rate during day, which 
limits the water production to 10 to 12 h a day and turning this system to 
an improper system for using in farmland, especially in arid and warm 
area that need to distilled water is significant. Secondly, the setup and 
maintenance of high-technological materials and systems like the use of 

nanomaterials did not consider the limitations of the farmers’ technical, 
scientific abilities and economics in third-generation countries. Thirdly, 
high solar irradiation and sunny days increase the need for distilled 
water, especially in areas that economic condition relies on proper water 
for irrigation, why we don’t use of solar energy for heating the water in 
the solar still system and enhancing the water production rate? still 
systems are based on the temperature difference and reducing the 
temperature of the glass in solar still systems can increase water pro
duction rate. How, we can reduce the glass temperature without using 
any power? 

The authors believe that the enhancement of solar-still using con
ventional materials, that its maintenance does not require expert staffs is 
of great importance. In this regard, we proposed a solar power 
enhancement for solar still desalination systems. Proposed continuous 
heating-enhanced solar still (CHeSS) not only uses solar renewable en
ergy to run heating elements placed in basin of solar still systems, but 
also uses grooves on glass to reduce the glass temperature and increase 
water temperature before feeding into basin of solar still. This method 
can enhance the efficiency of system using heating element during day 
and night, increase the temperature of the water in the system and 
improve the evaporation rate. Because of higher different temperature 
of water in basin and ambient temperature, desalination rate will highly 
be improved, which help to securing proper water in less area and using 
less CHeSS panels. In addition, lowering the temperature of glass and 
increasing the temperature of water before entering the basing signifi
cantly enhance the water production rate. In this research, the design 
and evaluation of water production capacity of proposed CHeSS has 
been conducted for a real pistachio farm in Sirjan, Iran, which highly 
suffered from water shortage and high TDS. 

Material and methods 

In this research we aim to design and evaluate a CHeSS farm to 
supply proper irrigation water for a pistachio orchard in Sirjan. The 
specifications of the land, the required water and the calculation equa
tions are described below. 

Study area 

As shown in Fig. 1, Sirjan city (28◦ 30′- to 30◦ 0′ N, 55◦ 0′- 56◦ 30′ E) is 
located at the south of Iran with an average height of 1170 m. Required 
meteorological information including daily graph of wind speed, solar 
radiation, and ambient temperature for this city was extracted based on 

Nomenclature 

Term Description 
A Surface area, m2 

cp Specific heat, J/kg oC 
hconv

sw− g Convective HTC from seawater to glass, W/K m2 

hrad
sw− g Radiative HTC from seawater to glass, W/K m2 

hevap
sw− g Evaporative HTC from seawater to glass, W/ K m2 

htot
b− amb Overall HTC between ambient and basin 

kb Basin thermal conductivity, W/ m oC 
kins Insulation thermal conductivity, W/ m per oC 
qtot

b− amb Rate of total heat transfer within basin and ambient, W/m2 

qconv
sw− g Rate of convective heat transfer within seawater and glass, 

W/m2 

qrad
sw− g Rate of radiative heat transfer within seawater and glass, 

W/m2 

qevap
sw− g Rate of evaporative heat transfer within seawater and 

glass, W/m2 

lair Thickness of air, m 
HTC Heat transfer coefficient 
Term Description 
Isun Intensity of solar radiation, W/m2 

lins Insulation thickness, m 
lb Basin thickness, m 
Psw Partial saturated vapor pressure in seawater temperature, 

Pa 
Pg Partial saturated vapor pressure in glass temperature, Pa 
Tsw Seawater temperature, oC 
Tg Glass temperature, oC 
Tb Basin temperature, oC 
ρ Density, kg/m3 

t Time, s 
σ Stephan Boltzman, W/m2 oK4 

εeff Emissivity 
lins Thickness of Insulation, m  
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provided information at national meteorological organization website 
[38]. The average wind speed, average ambient temperature and total 
day radiation is equal to 2.7 m/s, 16 C◦ and 6.6 Kw/m2 respectively. In 
spite of the challenging arid climate that characterizes Sirjan, this region 
has earned a distinguished reputation as one of the foremost global hubs 
for pistachio production. 

As shown in Table 1, TDS of current irrigation water in this area is 
10000 ppm which is categorized as unsatisfactory for irrigation [40] and 
much higher than proper irrigation water. High salinity of water, relying 
the economy of local community on pistachio production and presence 
of Sirjan city in the list of deprived places of Iran, makes this city a 
remarkable candidate for this research. As the considered pistachio farm 
already have one URD152 water pump produced by Pump Iran co. (5 Kw 
and 6 m3/hr) that uses 2-inch pipe water pump which extract ground
water from 200 m depth and a 100 m3 capacity storage tank, we 
continued our calculations based on the as-built situation and trying to 

efficiently improve and complete the current irrigation system. 

Energy analysis 

An approach to assess the energy efficiency of a solar still system 
involves computing the ratio of system’s productivity to the total solar 
energy absorbance. The equation presented below is a highly effective 
method for quantifying energy efficiency [41]. 

ηdaily =
mev × hfg

It × Ab
(1)  

The variables It (W/m2), mev (L/h), and hfg indicate the entire solar 
energy in a day, water production in a day, and the latent heat, 
respectively. 

Fig. 1. Geographical location, wind rose and solar irradiation counter of Sirjan city [38,39].  
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Thermal calculations 

The design carried out in this research as in Fig. 2 includes, the 
calculation of the volume of desalination water production, the calcu
lation of the desalinated water capacity at the presence of the heating 
element required working time of well pump, the electricity required to 
run the pumps, calculating the electricity required by the heating ele
ments, calculating the solar panels needed to supply electricity and 
determining the number of desalination panels required. All the calcu
lation conducted using Microsoft Excel 2020 and considering energy 
balance equations for glass, water, and basin and parameter mentioned 
in Table 2 [42]. For better understanding the equation and calculation 
steps, Fig. 3 presented below [43–45]. 

X volume of waterTDS=5000 = mixing (
x
2

volume of waterTDS=10000

+
x
2

volume of waterTDS=0)
(2)  

Required well pump working time per days1 and s2 = 1400m3Ã⋅180Ã⋅4
m3

hr
(3)  

Required well pump working time per days3 and s4 = 3600m3Ã⋅180Ã⋅4
m3

hr
(4)  

RequiredKwhforrunningwellpumpperday = 5Kw × requiredtimeperday (5) 

The energy balance of the glass cover: 

MgCpg
dTg

dt
= Qc

w− g +Qr
w− g +Qe

w− g − Qc
g− a − Qr

g− s + αgAgI(t) (6)  

The energy balance for the water: 

MwCpw
dTw

dt
= Qc

b− w − Qc
w− g − Qr

w− g − Qe
w− g − Qfw + αwτgAwI(t) (7)  

The energy balance for the basin: 

MbCpb
dTw

dt
= − Qc

b− w − Qloss + αbτwτgAbI(t) (8)  

The hourly water production of the solar still: 

mev =
he

w− g

(
Tw − Tg

)
× 3600

hfg
(9)  

In the mentioned equations, hc
w− g, hr

w− g, he
w− g, and hc

b− w are the heat 
transfer coefficient of convection between the water and the glass, the 
radiation between the water and the glass, the evaporation between the 
water and the glass, and the connection between the basin and the 
water, respectively 

he
w− g = 0.016237 × hc

w− g ×

(
Pw − Pg

)

Tw − Tg
(10)  

hfg = (2401, 67 − (2, 389 × Tw) ) × 103 (11)  

The convection heat transfer between the water and the glass can be 
calculated as [46,47] 

Qc
w− g = hc

w− gAw(Tw − Tg) (12)  

hc
w− g = 0.884 ×

[

Tw − Tg +

(
Pw − Pg

)
× (Tw + 273.15)

268900 − Pw

]1
3

(13)  

Pw = exp
[

25, 314 −
(

5144
Tw + 273

)]

(14)  

Pg = exp
[

25, 314 −
(

5144
Tg + 273

)]

(15) 

The radiation heat transfer between the water and the glass can be 
calculated as: 

Qr
w− g = hr

w− g(Tw − Tg) (16)  

Table 1 
Information for irrigation and chemical properties of untreated water.  

Data Amount Unit Data amount Unit 

Orchard Area 10,000 m2 Total required 
water in a year 

5,000 m3 

Required irrigations 
per S2, S3 

9 – Adequate TDS for 
irrigation of farm 

5,000 ppm 

Required irrigations 
per S1, S4 

5 – Untreated water 
TDS 

10,000 ppm 

Required water in 
each irrigation for 
S3 and S4 

400 m3 Total required 
water in a year 

5,000 m3 

Required water in 
each irrigation for 
S1 and S2 

280 m3 Total required 
distilled water 

2,500 m3 

* Data is provided based on conducted analysis by the certified Gehrzamin 
laboratory in Sirjan City. 
** S1, S2, S3 and S4 are represent the season 1, season 2, season 3 and season 4. 

Fig. 2. Schematic diagram of the energy balance of the solar still single slope.  
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hr
w− g = εeff×σ ×

(Tw + 237.15)4
− (Tw + 237.15)4

Tw − Tg
(17)  

εeff =

(
1
εw

+
1
εg

− 1
)− 1

(18)  

The evaporation heat transfer between the water and the glass can be 
calculated as [45,46,48]: 

Qe
w− g = he

w− gAw(Tw − Tg) (19)  

he
w− g = 16.273 × 10− 3 × hc

w− g

[
Pw − Pg

Tw − Tg

]

(20)  

The convection heat transfer between the basin and the water can be 
calculated as: 

Qc
b− w = hc

b− wAb(Tb − Tw) (21)  

To facilitating the calculation and by considering equal temperature of 
basin and water which almost is a correct assumption, Eqs. (6) and (7) 
can be combined and Eq. (21) will be extracted. In this research we 
utilized this equation. So, as it shown in Fig. 3, we consider water and 
basin as a system and we consider input and output energy to this system 
(Table 3). 

MwCpw
dTw

dt
+MbCpb

dTw

dt
= − Qc

w− g − Qr
w− g − Qe

w− g − Qfw − Qloss

+ αbτwτgAbI(t)+ αwτgAwI(t)
(22)  

Verifying mathematical calculations 

In order to ensure the applicability and reliability of the results, 
validation of utilized mathematical models is of great importance. In this 

Table 2 
Numerical parameters.  

Parameter Value Parameter Value Parameter Value 

ρg  2500 
(

kgm− 3
) ρb  7800 

(
kgm− 3

)
Water thickness 1 cm 

Cpg  840 
(

Jkg− 1 K− 1
) Cpb  460 

(
Jkg− 1 K− 1

)
Insolation thickness 5 cm 

Glass thickness  4 mm Basin thickness  2 mm Isolation Ki 0.059 
(
Wm− 1 K− 1)

αg(irradiation sorption)  0.05 αw(irradiation sorption)  0.05 αb 0.9 
τg(irradiation passing)  0.9 τw(irradiation passing)  0.95 Ab(area of the basin) 1 m2  

Fig. 3. Model and calculation comparison with previous published research.  

Table 3 
Number of required solar panel.  

Data Amount Unit Data amount Unit 

Q of the water 
pump 

6 m3/ 
hr 

Conventional solar 
still water 
production (S3, S4) 

5.5 lit/ 
day. 
m2 

Required 
working time 
of pump (S3, 
S4) 

3.3 hr/ 
day 

Conventional solar 
still water 
production (S1,S2) 

2.35 lit 
\day. 
m2 

Required 
working time 
of pump (S1, 
S2) 

1.3 hr/ 
day 

Required area for 
solar still (S3, S4) 

1819 m2 

Required KW. 
hr for pump 
(S3, S4) 

15.2 Kw. 
hr/ 
day 

Required area for 
solar still (S1, S2) 

1490 m2 

Required KW. 
hr for pump 
(S1, S2) 

5.2 Kw. 
hr/ 
day 

Proposed solar still 
water production 
(S3, S4) 

12.2 Lit/ 
day. 
m2 

Total required 
water in a 
year 

5,000 m3 Proposed solar still 
water production 
(S1, S2) 

5.3 Lit/ 
day. 
m2 

Adequate TDS 
for irrigation 
of farm 

5,000 ppm Required area for 
new solar still (S3, 
S4) 

820 m2 

Untreated 
water TDS 

10,000 ppm Required area for 
new solar still (S1, 
S2) 

660 m2  
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regard, mathematical equations and input data, such as ambient tem
perature, radiation intensity, and area of the solar still from a previous 
research published by [49] have been utilized to validate the calculation 
process. As Fig. 3 shows, our calculations are accurate enough that the 
modeling, calculation, facilitating assumptions and outcome results are 
considered correct. 

Proposed desalination system 

According to the climatic conditions of the study area and previous 
studies in south Iran, despite of initial high cost, the use of solar energy is 
a good option for electricity supply in a long period of time. In addition, 
previous research show that the water production rate of solar desali
nation systems is almost 0.5 L/m2 h, which according to this project’s 
requirements, 2700 m2 of solar still farm is needed. Therefore, it does 
not seem reasonable to use conventional solar still in this project unless 
utilizing a modifications approach can be greatly reduce the required 
area. As a result, in this project, an effort has been made to provide the 
required water and electricity for pistachio farm irrigation with the 
minimum required number of solar panels and solar still systems with no 
advanced system or high-tech materials. Four main drawbacks of con
ventional solar still systems are, high required irradiation energy for 
heating the water, elevated temperature of the glass during the working 
time, high energy loss and limited working time. 

As it is shown in Fig. 4, in order to overcome to these drawbacks, a 
novel and innovative enhanced solar still system has been introduced in 

this research. In the proposed new system, the water entrance pathway 
changed, and after passing through the grooves of the top glass, the 
heated water feeds into the basin. Using grooved glass that water can 
move through, extremely help reducing glass temperature, increasing 
the water temperature before entering to the basin of the solar still and 
improve the water production rate. Passing water through groves has 
two different advantages. The thermal energy balance between feeding 
water and glass makes a new equal temperature balance between 
feeding water and glass. This condition reduces the glass temperature 
and increases the water temperature. As a result, more temperature 
differences between basin water and glass first lead to higher water 
production rates. secondly, the higher temperature of feeding water 
results in lower energy needs for the evaporation of basin water, which 
increases water production. Therefore, passing water through the glass 
could enhance the efficiency of the water production rate and the sys
tem. In addition, an 80-watt heating element, thermostat and poly
urethane foam are used to monitor the temperature of the water, 
increasing water temperature and reducing the heat loss from basin 
during day and night which lead to an enhanced water production rate, 
even at night. Although, utilizing heating element with higher watt can 
highly improve the water production rate, as we consider using 400-watt 
solar panel for each solar still, 80-watt heating element has been chosen 
that solar panel can provide required energy for working of heating 
element. Considering 12 h sun light a day, ideally during a day solar 
panel can produce 2.4 kw a day which 1.92 kw is consumed by heating 
element, so each solar still system can provide extra 0.08 kw electricity. 

Fig. 4. Top view, side view, section and schematic water circulation of proposed solar still system.  
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The extra provided power can be used for running water pump. 

Results and discussion 

Sirjan city receives high solar irradiation and is sunny most of the 
year, therefore, a solar power plant is a good choice for providing 
required electricity for pistachio orchard and water desalination system. 
In this regards, proposed CHeSS system utilizes solar power as an on the 
mentioned enhancement mechanism. To clarifying effects of enhance
ment steps, water production per hour is presented in Fig. 5, and as it can 
be seen, these enhancements can improve the water production rate 
more than 120 %. Specially that Using heating element during the night, 
elevated the water temperature in the basin and the water can get warm 
under solar irradiation easier. As it is shown in Fig. 5, grooved glass 
method that is design in this research could improve the water pro
duction rate and the enhancement increases from early hours of day to 
almost 13 pm and after that, the amount of improvement is dramatically 
reduced. This reduction mainly is because of elevated ambient and 
water temperature and lowering the glass temperature due to the 
decreasing solar irradiation. Therefore, the effects of passing water 
through glass reduces. 

Energy-water nexus analysis 

While a few studies have attempted to improve the solar stills pro
duce water, they have utilized advanced components such as nano
materials or integrated the solar still system with other systems that 
occupy more land. However, these efforts have resulted in negligible 
improvements in the water-production rate. For example, in a study 
referenced as [50], nanomaterials and phase exchange materials were 
employed to increase the water production rate by 136 %. However, the 
complicated design of this system, which includes wicks, trays, and 
nanomaterials, poses challenges in terms of construction and mainte
nance, particularly in Less privileged areas of southern Iran. Kabeel et al. 
[51] enhanced the rate of heat transmission by using hollowed fins. This 
modification does not pose any significant challenges in terms of 
building or operation. Nevertheless, it just has the potential to augment 
water output by 1.6 L, resulting in a daily increase from 4 L to 5.6 L. Xiao 
et al. [52] used solar panel arrays to improve water productivity. 
However, the limited working hours aligned with solar irradiation hours 
restrict the extent of water production augmentation compared to our 
research design. 

Fig. 5 illustrates the hourly fluctuation in freshwater production by 

Fig. 5. Water production per hour per day (a) and cumulative water production per day (b) of proposed chess.  
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both the traditional and proposed systems. The water generation trend is 
similar at different hours in both cases. The maximum hourly produc
tion, as determined, was 0.7 L/m2 and 1.5 L/m2, respectively, achieved 
at 1p.m. The results demonstrated that the daily distillate production of 
the traditional and proposed methods was 12.17 L/m2 and 5.5 L/m2, 
respectively. The production increased by 121.3 % compared to that of 
passive ones. The creation of water persisted in the evening after 6p.m. 
even under low solar radiation in both. Furthermore, the amount of 
energy produced during the night in an active system was greater than in 
a passive system as a result of using storage energy in batteries for 
running heating element [53,54]. 

As mentioned, this pistachio orchard needs about 5,000 m3 of water 
annually with a TDS of 5,000 ppm. Given that the TDS of produced 
water by solar still is zero, 1 L of saline water with a TDS of 10,000 ppm 
can be mixed with 1 L of fresh water with a TDS of 0 and the result of this 
mixture will be 2 L of suitable water with a TDS of 5000, so about 2500 
m3 distilled water is needed which dictate using 820 CHeSS solar still 
systems. 

Economic analysis 

In this section, the economic study of this project for supplying 
agricultural water with using 820 CheSS solar still systems have been 
studied. First, Capital expenditures (CAPEX) and current investment 
costs (operating expenses (OPEX cost)) for this project are calculated, 
and then the Internal rate of return (IRR) of this project is analyzed by 
calculating the profit from the sale of agriculture water. It is assumed 
that the cost of buying land and other side costs of this project will be 
insignificant. The construction cost for the reconstruction and con
struction rectangle of the land is about 5000 dollars. The cost of pur
chasing the device and solar panels in this project is about 143 thousand 
dollars. Other fixed costs such as cable, tank and pump equivalent to 16 
thousand dollars are taken into consideration. The fixed investment cost 
(CAPEX) of this project is about 159,005 dollars. operation costs 
(OPEX), such as the cost of electricity supply, manpower, and mainte
nance, are considered to be about 5 % of the fixed cost, equivalent to 
$7,950 per year. Considering that in this project, 2,500 m3 of water 
without salt is produced in a year, and by adding salt water, about 5,000 
m3 of water is calculated for agriculture. The cost of buying each cubic 
meter of water in Iran is about 5.5 dollars (Due to the lack of water in 
Iran, this price will increase in the coming years [55]), and the cost of 
selling this amount of water will be equal to 27,500 dollars. Considering 
the fixed and operation costs as well as the selling price of water, the 
Internal rate of return (IRR) of this project is equal to 13.3 %. 

Conclusions 

Pistachio is a main product of Kerman province in Iran and local 
economy is highly depended on agricultural activity which affected by 
high temperature, high solar irradiation, lack of proper water and lack of 
access to high technology. In this paper, a solar still farm is designed by 
mixing salt water with fresh water to prepare proper water for irrigating 
a pistachio orchard with an area of 10,000 m2. The results showed that 
about 5,000 m3 of suitable water with a TDS of 5,000 ppm is needed for 
agriculture. However, low water production rate of conventional solar 
still systems, dictate a very high area requirement which reduce 
acceptability of using this system by farmers. Using the proposed system 
that designed to provides total amount of required water for irrigation of 
the pistachio orchard, can increase the daily water production from 
almost 5.5 L/day to almost 12 L/day, which can be highly applicable to 
field-scale projects of providing water for less privileged rural areas or 
farmers who are faced with high-TDS water sources. In addition, 
although the efficiency of the proposed system is higher than that of the 
conventional mechanism, the decreasing rate after noon is also higher, 
which illustrates the significant need to use methods to lower the energy 
loss of the system. This research illustrates the capability of solar still 

systems to integrate with other systems. For future research, the 
following information can be provided: As a result, we proposed an 
enhanced solar still which increase the water production rate by 120 % 
and reduces the required area for solar still farm. For future investiga
tion, the following elements could be recommended:  

• Research advanced materials for construction to improve heat 
transfer from the storage area to the water.  

• Implement solar tracking sensors to precisely monitor the path of the 
sun from sunrise to sunset. This ensures that the solar still maximizes 
its exposure to sunlight throughout the entire day.  

• Analyze the environmental consequences of the solar desalination 
system and aim for its sustainable operation in the long run. This may 
involve employing environmentally friendly materials, employing 
recycling procedures, and minimizing any negative effects on the 
surrounding ecosystem. 
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