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The geometry and combinatorics of
cographic toric face rings

Sebastian Casalaina-Martin, Jesse Leo Kass and Filippo Viviani

In this paper, we define and study a ring associated to a graph that we call the
cographic toric face ring or simply the cographic ring. The cographic ring is the
toric face ring defined by the following equivalent combinatorial structures of a
graph: the cographic arrangement of hyperplanes, the Voronoi polytope, and the
poset of totally cyclic orientations. We describe the properties of the cographic
ring and, in particular, relate the invariants of the ring to the invariants of the
corresponding graph.

Our study of the cographic ring fits into a body of work on describing rings
constructed from graphs. Among the rings that can be constructed from a graph,
cographic rings are particularly interesting because they appear in the study of
compactified Jacobians of nodal curves.

Introduction

In this paper, we define and study a ring R(0) associated to a graph 0 that we call
the cographic toric face ring or simply the cographic ring. The cographic ring R(0)
is the toric face ring defined by the following equivalent combinatorial structures
of 0: the cographic arrangement of hyperplanes C⊥0 , the Voronoi polytope Vor0,
and the poset of totally cyclic orientations OP0. We describe the properties of the
cographic ring and, in particular, relate the invariants of the ring to the invariants of
the corresponding graph.

Our study of the cographic ring fits into a body of work on describing rings
constructed from graphs. Among the rings that can be constructed from a graph,
cographic rings are particularly interesting because they appear in the study of
compactified Jacobians.

The authors establish the connection between R(0) and the local geometry
of compactified Jacobians in [Casalaina-Martin et al. 2011]. The compactified
Jacobian J d

X of a nodal curve X is the coarse moduli space parametrizing sheaves
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on X that are rank-1, semistable, and of fixed degree d . These moduli spaces have
been constructed by Oda and Seshadri [1979], Caporaso [1994], Simpson [1994],
and Pandharipande [1996], and the different constructions are reviewed in Section 2
of [Casalaina-Martin et al. 2011]. In Theorem A of the same work, it is proved that
the completed local ring of J d

X at a point is isomorphic to a power series ring over
the completion of R(0) for a graph 0 constructed from the dual graph of X .

Also in [Casalaina-Martin et al. 2011], we studied the local structure of the
universal compactified Jacobian, which is a family of varieties over the moduli
space of stable curves whose fibers are closely related to the compactified Jacobians
just discussed. (See Section 2 of [loc. cit.] for a discussion of the relation between the
compactified Jacobians from the previous paragraph and the fibers of the universal
Jacobian). Caporaso [1994] first constructed the universal compactified Jacobian,
and Pandharipande [1996] gave an alternative construction. In [Casalaina-Martin
et al. 2011, Theorem A] we gave a presentation of the completed local ring of the
universal compactified Jacobian at a point, and we will explore the relation between
that ring and the affine semigroup ring defined in Section 5A in the upcoming paper
[Casalaina-Martin et al. 2012].

Cographic toric face rings are examples of toric face rings. Recall that a toric
face ring is constructed from the same combinatorial data that is used to construct
a toric variety: a fan. Let HZ be a free, finite-rank Z-module and F be a fan
that decomposes HR = HZ⊗Z R into (strongly convex rational polyhedral) cones.
Consider the free k-vector space with basis given by monomials X c indexed by
elements c ∈ HZ. If we define a multiplication law on this vector space by setting

X c
· X c′
=

{
X c+c′ if c, c′ ∈ σ for some σ ∈ F,
0 otherwise

and extending by linearity, then the resulting ring R(F) is the toric face ring (over k)
that is associated to F.

We define the cographic toric face ring R(0) of a graph 0 to be toric face
ring associated to the fan that is defined by the cographic arrangement C⊥0 . The
cographic arrangement is an arrangement of hyperplanes in the real vector space HR

associated to the homology group HZ := H1(0,Z) of the graph. Every edge of 0
naturally induces a functional on HR, and the zero locus of this functional is a
hyperplane in HR, provided the functional is nonzero. The cographic arrangement
is defined to be the collection of all hyperplanes constructed in this manner. The
intersections of these hyperplanes define a fan F⊥0 , the cographic fan. The toric
face ring associated to this fan is R(0).

We study the fan F⊥0 in Section 3. The main result of that section is Corollary 3.9,
which provides two alternative descriptions of F⊥0 . First, using a theorem of Amini,
we prove that F⊥0 is equal to the normal fan of the Voronoi polytope Vor0. As a
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consequence, we can conclude that F⊥0 , considered as a poset, is isomorphic to the
poset of faces of Vor0 ordered by reverse inclusion. Using work of Greene and
Zaslavsky, we show that this common poset is also isomorphic to the poset OP0 of
totally cyclic orientations.

The combinatorial definition of R(0) does not appear in [Casalaina-Martin et al.
2011]. Rather, the rings in that paper appear as invariants under a torus action.
The following theorem, proven in Section 6 (Theorem 6.1), shows that the rings in
[Casalaina-Martin et al. 2011] are (completed) cographic rings:

Theorem A. Let 0 be a finite graph with vertices V (0), oriented edges EE(0), and
source and target maps s, t : EE(0)→ V (0). Let

T0 :=
∏

v∈V (0)

Gm and A(0) :=
k[U Ee,UEe : e ∈ E(0)]
(U EeUEe : e ∈ E(0))

.

If we make T0 act on A(0) by

λ ·UEe = λs(Ee)UEeλ−1
t (Ee),

then the invariant subring A(0)T0 is isomorphic to the cographic ring R(0).

The cographic ring R(0) has reasonable geometric properties. Specifically, in
Theorem 5.7, we prove that R(0) is

• of pure dimension b1(0)= dimR H1(0,R),

• Gorenstein,

• seminormal, and

• semi log canonical.

We also compute invariants of R(0) in terms of the combinatorics of 0. The
invariants we compute are

• a description of R(0) in terms of oriented subgraphs (Section 5B),

• the number of minimal primes in terms of orientations (Theorem 5.7(i)),

• the embedded dimension of R(0) in terms of circuits (Theorem 5.7(vi)), and

• the multiplicity of R(0) (Theorem 5.7(vii)).

Finally, it is natural to ask what information is lost in passing from 0 to R(0). An
answer to this question is given by Theorem 7.1, which states that R(0) determines0
up to three-edge connectivization.

Combinatorially defined rings, such as the cographic toric face ring, have long
been used in the study of compactified Jacobians and, more generally, degenerate
abelian varieties (see, e.g., [Mumford 1972; Oda and Seshadri 1979; Faltings
and Chai 1990; Namikawa 1980; Alexeev and Nakamura 1999; Alexeev 2004]).
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In particular, the ring R(0) we study here is a special case of the rings R0(c)
studied by Alexeev and Nakamura [1999, Theorem 3.17]. There the rings appear
naturally as a by-product of Mumford’s technique for degenerating an abelian
variety. Alexeev and Nakamura [1999, Lemma 4.1] proved that R0(c) satisfies the
Gorenstein condition, and the seminormality was established by Alexeev [2002].
In personal correspondence, Alexeev informed the authors that the techniques of
those papers can also be used to establish other results in this paper such as the fact
that R(0) is semi log canonical.

In a different direction, the cographic ring is defined by the cographic fan F⊥0 ,
which is the normal fan to the Voronoi polytope Vor0 . There is a body of work study-
ing similar polytopes and the algebra-geometric objects defined by these polytopes.
Altmann and Hille [1999] define the polytope of flows associated to an oriented graph
(or quiver). Associated to this polytope is a toric variety that they relate to a moduli
space. There are also a number of recent papers that study the modular/integral flow
polytope in H1(0,R). This study is motivated by the work of Beck and Zaslavsky
[2006] on interpreting graph polynomials in terms of lattice points. Some recent
papers on this topic are [Beck and Zaslavsky 2006; Breuer and Dall 2010; Breuer and
Sanyal 2012; Chen 2010]. The paper [Breuer and Dall 2010], in particular, studies
graph polynomials using tools from commutative algebra. The Voronoi polytope
does not equal the modular/integral flow polytope or the polytope of flows of an ori-
ented graph. It would, however, be interesting to further explore the relation between
these polytopes. (We thank the anonymous referee for pointing out this literature.)

This paper suggests several other questions for further study. First, in Section 5A,
we exhibit a collection of generators Vγ , indexed by oriented circuits γ , for
R(0 \ T, φ). What is an explicit set of generators for the ideal of relations between
the variables Vγ ? This problem is posed as Problem 5.5. Second, in Theorem 5.7,
we give a formula for the multiplicity of R(0) in terms of the subdiagram volume
of certain semigroups associated to 0. Problem 5.8 is to find an expression for this
multiplicity in terms of well-known graph theory invariants. Third, we also prove in
Theorem 5.7 that Spec(R(0)) is semi log canonical. In Problem 5.9, we ask: which
graphs 0 have the stronger property that R(0) is semi divisorial log canonical?

1. Preliminaries

In this section, we review the definitions of the graph-theoretic objects considered
in this paper. This will provide the reader with enough background to follow the
main ideas of the proof of Theorem A (proven in Section 6) as well as the proofs
of many of the geometric properties of cographic rings (proven in Section 4).

1A. Notation. Following notation of Serre [1980, §2.1], a graph 0 will consist
of the data ( EE s //

t // V,
EE

ι
−→ EE), where V and EE are sets, ι is a fixed-point free
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involution, and s and t are maps satisfying s(Ee)= t (ι(Ee)) for all Ee ∈ EE . The maps
s and t are called the source and target maps, respectively. We call V =: V (0)
the set of vertices. We call EE =: EE(0) the set of oriented edges. We define the set
of (unoriented) edges to be E(0)= E := EE/ι. An orientation of an edge e ∈ E
is a representative for e in EE ; we use the notation Ee and Ee for the two possible
orientations of e. An orientation of a graph 0 is a section φ : E→ EE of the quotient
map. An oriented graph consists of a pair (0, φ) where 0 is a graph and φ is an
orientation. Given an oriented graph, we say that φ(e) is the positive orientation of
the edge e. Given a subset S ⊆ E , we define ES ⊆ EE to be the set of all orientations
of the edges in S.

1B. Homology of a graph. Given a ring A, let C0(0, A)= EC0(0, A) be the free
A-module with basis V (0) and EC1(0, A) be the A-module generated by EE(0) with
the relations Ee =−Ee for every e ∈ E(0). If we fix an orientation, then a basis for
EC1(0, A) is given by the positively oriented edges; this induces an isomorphism
with the usual group of 1-chains of the simplicial complex associated to 0. These
modules may be put into a chain complex. Define a boundary map ∂ by

∂ : EC1(0, A)→ EC0(0, A)= C0(0, A), Ee 7→ t (Ee)− s(Ee).

We will denote by H•(0, A) the groups obtained from the homology of EC•(0, A).
The homology groups H•(0, A) coincide with the homology groups of the topolog-
ical space associated to 0.

1C. The bilinear form. The vector space EC1(0,R) is endowed with a positive
definite bilinear form

( · , · ) : EC1(0,R)⊗ EC1(0,R)→ R

that is uniquely determined by (Ee, Ee)= 1, (Ee, Ee)=−1, and (Ee, Ef )= 0 if Ef 6= Ee, Ee.
As above, fixing an orientation induces a basis for EC1(0,R), and in terms of such a
basis, this is the standard inner product. By restriction, we get a positive definite
bilinear form on H1(0,R)⊆ EC1(0,R). The pairing ( · , · ) allows us to form the
product (Ee, v) of an oriented edge Ee with a vector v ∈ EC1(0,R) but not the product
(e, v) of v with an unoriented vector. However, we will write (e, v)= 0 to mean
(Ee, v)= 0 for one (equivalently all) orientations of e.

1D. Cographic arrangement. We review the definition of the cographic arrange-
ment C⊥0 of 0 [Greene and Zaslavsky 1983, §8; Novik et al. 2002, §5].1 To begin,

1The name “cographic arrangement” suggests the fact that C⊥0 depends on the cographic matroid
associated to 0. The notation C⊥0 is used in [Novik et al. 2002] while in [Greene and Zaslavsky
1983] the cographic arrangement is denoted by H⊥[0]. There is a dual notion, namely that of the
graphic arrangement, which depends only on the graphic matroid associated to 0 and is denoted by
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let H be the coordinate hyperplane arrangement in EC1(0,R). More precisely,

H =
⋃
e∈E

{v ∈ EC1(0,R) : (v, e)= 0}.

The restriction of this hyperplane arrangement to H1(0,R) is called the cographic
arrangement C⊥0 . More precisely,

C⊥0 =
⋃
e∈E

H1(0,R)*ker( · ,e)

{v ∈ EC1(0,R) : (v, e)= 0}.

The cographic arrangement partitions H1(0,R) into a finite collection of strongly
convex rational polyhedral cones. These cones, together with their faces, form a
(complete) fan that is defined to be the cographic fan and is denoted F⊥0 .2 We give
a more detailed enumeration of the cones of this fan in Section 3, where we discuss
the poset of totally cyclic orientations.

Remark 1.1. The following observation used in the proof of Theorem A is proven
in Corollary 3.4. We emphasize it here so that the reader may follow the proof of
Theorem A having read just Section 1. Let c =

∑
e∈E aeEe and c′ =

∑
e∈E a′eEe be

cycles in H1(0,Z). Then c and c′ lie in a common cone of F⊥0 if and only if, for all
e ∈ E, aea′e ≥ 0. In words, two cycles lie in a common cone if and only if every
common edge is oriented in the same direction.

1E. Toric face rings. We recall the definition of a toric face ring associated to
a fan. In [Ichim and Römer 2007, §2; Bruns et al. 2008, §2], the authors define
more generally the toric face ring associated to a monoidal complex. The following
definition is a special case:

Definition 1.2. Let HZ be a free Z-module of finite rank, and let F be a fan of
(strongly convex rational polyhedral) cones in HR = HZ⊗Z R with support Supp F.
The toric face ring Rk(F) is the k-algebra whose underlying k-vector space has
basis {X c

: c ∈ HZ ∩Supp F} and whose multiplication is defined by

X c
· X c′
=

{
X c+c′ if c, c′ ∈ σ for some σ ∈ F,
0 otherwise.

(1-1)

We will write R(F) if we do not need to specify the base field k.

Remark 1.3. It follows from the definition that R(F) is a reduced ring finitely
generated over k. See also Section 5, especially (5-4), for more on generators and
relations.

C0 in [Novik et al. 2002] and H[0] in [Greene and Zaslavsky 1983, §7]. The graphic arrangement of
hyperplanes is also studied in [Orlik and Terao 1992, §2.4], where it is denoted by A(0).

2We use the notation F⊥0 and the name “cographic fan” in order to be consistent with the nota-
tion C⊥0 used in [Novik et al. 2002] for the cographic arrangement of hyperplanes.
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A cographic toric face ring is the toric face ring associated to a cographic fan.

Definition 1.4. Let 0 be a finite graph. The cographic toric face ring Rk(0) is the
toric face k-ring R(F⊥0 ) associated to the cographic fan F⊥0 . We will write R(0) if
we do not need to specify the base field k.

1F. The Voronoi polytope. Following [Bacher et al. 1997], we define the Voronoi
polytope of 0 by

Vor0 := {v ∈ H1(0,R) : (v, v)≤ (v− λ, v− λ) for all λ ∈ H1(0,Z)}.

The reader familiar with the Voronoi decomposition of Rn will recognize this
polytope as the unique cell containing the origin in the Voronoi decomposition
associated with the lattice H1(0,Z) endowed with the scalar product defined in
Section 1C (see [Erdahl 1999; Alexeev 2004, §2.5] for more details).

To the Voronoi polytope, we can associate its normal fan N(Vor0), which is
defined as follows. Given a face δ of Vor0 , we define the (strongly convex rational
polyhedral) cone Cδ by

Cδ = {α ∈ H1(0,R) : (α, r)≥ (α, r ′) for all r ∈ δ and r ′ ∈ Vor0}.

The normal fan N(Vor0) of Vor0 is the fan whose cones are the cones Cδ.

Remark 1.5. In Proposition 3.8, we will prove that the cographic fan F⊥0 is equal
to the normal fan of the Voronoi polytope N(Vor0).

2. Totally cyclic orientations

Here we define and study totally cyclic orientations of a graph. We also define
an oriented circuit on a graph and describe the relation between these circuits and
totally cyclic orientations.

2A. Subgraphs. In this subsection, we introduce some special subgraphs that will
play an important role throughout the paper.

Given a graph 0 and a collection S ⊂ E(0) of edges, we define 0 \ S to be
the graph, called a spanning subgraph (see, e.g., [Oda and Seshadri 1979, §4]),
obtained from 0 by removing the edges in S and leaving the vertices unmodified.
In other words, 0 \ S consists of the data

(
−−−−−→
E(0) \ S

s
//

t
// V,
−−−−−→
E(0) \ S

ι
−→
−−−−−→
E(0) \ S).

Of particular significance is the special case where S = {e} consists of a single
edge. If 0 \ {e} has more connected components than 0, then we say that e is a
separating edge. The set of all separating edges is written E(0)sep.
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Given a chain c ∈ EC1(0,R), we would like to refer to the underlying graph having
only those edges in the support of c. More precisely, given c ∈ EC1(0,R), let Supp(c)
denote the set of all edges e with the property that (e, c) 6= 0. We define 0c to be the
subgraph of 0 with V (0c) := V (0) and E(0c) := Supp(c). There is a distinguished
orientation φc of 0c given by setting φc(e) equal to Ee if (Ee, c)> 0 and to Ee otherwise.
Using this subgraph, we can write c as

c =
∑

e∈Supp(c)

mc(e)φc(e) (2-1)

with all mc(e) > 0. Indeed, we have mc(e)= (φc(e), c).

2B. Totally cyclic orientations and oriented circuits. Totally cyclic orientations
will play a dominant role in what follows. We are going to review their definition
and their basic properties.

Definition 2.1. If 0 is connected, then we say that an orientation φ of 0 is totally
cyclic if there does not exist a nonempty proper subset W ⊂ V (0) such that every
edge e between a vertex in W and a vertex in the complement V (0)\W is oriented
from W to V \W (i.e., the source of φ(e) lies in W and the target of φ(e) lies
in V (0) \W ). If 0 is disconnected, then we say that an orientation of 0 is totally
cyclic if the orientation induced on each connected component of 0 is totally cyclic.

Observe that if 0 is a graph with no edges, then the empty orientation of 0
is a totally cyclic orientation. Totally cyclic orientations are closely related to
oriented circuits. Recall that a graph 1 is called cyclic if it is connected, free from
separating edges, and satisfies b1(1) = 1. A cyclic graph together with a totally
cyclic orientation is called an oriented circuit. A cyclic graph admits exactly two
totally cyclic orientations.

Let
−→
Cir(0) denote the set of all oriented circuits on 0; that is, γ = (1, φ1)

is an element of
−→
Cir(0) if 1 is a cyclic subgraph of 0 and φ1 is a totally cyclic

orientation of 1. We call E(1) the support of γ = (1, φ1) ∈
−→
Cir(0). There is a

natural map
−→
Cir(0)→ H1(0, A),

γ = (1, φ1) 7→ [γ ] =
∑

e∈E(1)

φ1(e).

With respect to the orientation φ of 0, we can consider Cirφ(0)⊂
−→
Cir(0), the

subset that consists of oriented circuits on 0 of the form (1, φ|1) (i.e., oriented
circuits whose orientation is compatible with φ).

Remark 2.2. The oriented circuits on 0, i.e., the elements of
−→
Cir(0), are the

(signed) cocircuits of the cographic oriented matroid M∗(0) of 0 or, equivalently,
the (signed) circuits of the oriented graphic matroid M(0) of 0 [Björner et al. 1999,
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§1.1]. Many of the combinatorial results that follow can be naturally stated using
this language. We will limit ourselves to pointing out the connection with the theory
when relevant.

The next lemma clarifies the relationship between totally cyclic orientations
and compatibly oriented circuits. Recall that an oriented path from w ∈ V (0) to
v ∈ V (0) is a collection of oriented edges {Ee1, . . . , Eer } ⊂ EE(0) such that s(Ee1)=w,
t (Eei )= s(Eei+1) for any i = 1, . . . , r − 1, and t (Eer )= v. If φ is an orientation of 0,
a path compatibly oriented with respect to φ is an oriented path as before of the
form {φ(e1), . . . , φ(er )}.

Lemma 2.3. Let 0 be a graph.

(1) The graph 0 admits a totally cyclic orientation if and only if E(0)sep =∅.

(2) Fix an orientation φ on 0. The following conditions are equivalent:

(a) The orientation is totally cyclic.
(b) For any distinct v,w ∈ V (0) belonging to the same connected component

of 0, there exists a path compatibly oriented with respect to φ from w to v.
(c) The cycles [γ ] associated to the γ ∈ Cirφ(0) generate H1(0,Z), and

E(0)sep =∅.
(d) Every edge e ∈ E is contained in the support of a compatibly oriented

circuit γ ∈ Cirφ(0).

Proof. For part (1), see, e.g., [Caporaso and Viviani 2010, Lemma 2.4.3(1)] and
the references therein. Part (2) is a reformulation of [Caporaso and Viviani 2010,
Lemma 2.4.3(2)]. The only difference is that part (2) is proved in [loc. cit.] under the
additional hypothesis that E(0)sep =∅. Note, however, that each of the conditions
(a), (b), and (d) imply that E(0)sep =∅; hence, we deduce part (2) as stated above.

�

The following well-known lemma can be thought of as a modification of (c) above.
We no longer require that the oriented circuits on 0 be oriented compatibly. The
statement is essentially that any cycle c in H1(0,Z) is a positive linear combination
of cycles associated to circuits supported on c.

Lemma 2.4. Let 0 be a graph, and let c ∈ EC1(0,Z). Then c ∈ H1(0,Z) if and only
if c can be expressed as

c =
∑

γ∈Cirφc (0c)

nc(γ )[γ ] (2-2)

for some natural numbers nc(γ ) ∈ N.

Proof. A direct proof follows from the definitions and is left to the reader. Alterna-
tively, one can use the fact that a covector of an oriented matroid can be written as
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a composition of cocircuits conformal to it [Björner et al. 1999, Proposition 3.7.2]
together with Remark 2.2. �

The oriented circuits can be used to define a simplicial complex that will be used
in Section 5B.

Definition 2.5. Two oriented circuits γ = (1, φ) and γ ′ = (1′, φ′) are said to be
concordant, written γ � γ ′, if for any e ∈ E(1)∩ E(1′) we have φ(e) = φ′(e).
We write γ 6� γ ′ if γ and γ ′ are not concordant.

Definition 2.6. The simplicial complex of concordant circuits 1(
−→
Cir(0)) is defined

to be the (abstract) simplicial complex whose elements are collections σ ⊆
−→
Cir(0)

of oriented circuits on 0 with the property that any two circuits are concordant (i.e.,
if γ1, γ2 ∈ σ , then γ1 � γ2).

2C. The poset OP0 of totally cyclic orientations. Totally cyclic orientations natu-
rally form a poset. We recall the definition for the sake of completeness.

Definition 2.7 [Caporaso and Viviani 2010, Definition 5.2.1]. The poset OP0 of
totally cyclic orientations of 0 is the set of pairs (T, φ) where T ⊂ E(0) and
φ : E(0 \ T )→ EE(0 \ T ) is a totally cyclic orientation of 0 \ T ,3 endowed with
the partial order

(T ′, φ′)≤ (T, φ) ⇐⇒ 0 \ T ′ ⊆ 0 \ T and φ′ = φ|E(0\T ′).

We call T the support of the pair (T, φ).

Using Lemma 2.3(2)(d), we get that

(T ′, φ′)≤ (T, φ) ⇐⇒ Cirφ′(0 \ T ′)⊆ Cirφ(0 \ T ). (2-3)

The set Cirφ(0\T ) is a collection of concordant cycles. Another connection between
orientations and totally cyclic orientations is given by the following definition:

Definition 2.8. Let σ ∈1(
−→
Cir(0)) be a collection of concordant circuits. To σ we

associate the pair (Tσ , φσ ) ∈ OP0 , which is defined as follows. Set Tσ equal to the
set of all edges that are not contained in a circuit γ ∈ σ . The orientation φσ of
0 \ Tσ is defined by setting

φσ (e) :=
{
Ee if (Ee, [γ ]) > 0 for all γ ∈ σ ,
Ee if ( Ee, [γ ]) > 0 for all γ ∈ σ .

Observe that the orientation φσ on 0 \ Tσ is a totally cyclic orientation by
Lemma 2.3(2)(d) and that σ ⊆ Cirφσ (0 \ Tσ ). The following lemma, whose proof
is left to the reader, will be useful in the sequel:

3The choice of orientation on the complement of T , rather than on T itself, has to do with the
importance of the notion of spanning subgraphs of 0, all of which are of this form. In graph theory, it
is customary to denote spanning subgraphs in this way, so we follow that convention.
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Lemma 2.9. The maximal elements of the poset OP0 are given by (E(0)sep, φ)

as φ varies among the totally cyclic orientations of 0 \ E(0)sep. �

Remark 2.10. The poset OP0 of totally cyclic orientations is isomorphic to the
poset of covectors of the cographic oriented matroid M∗(0) of 0 [Björner et al.
1999, §3.7]. Equivalently, the poset obtained from OP0 by adding an element 1 and
declaring that 1≥ (T, φ) for any (T, φ) ∈ OP0 is isomorphic to the big face lattice
Fbig(M∗(0)) of the cographic oriented matroid M∗(0) [Björner et al. 1999, §4.1].

3. Comparing posets: the cographic arrangement, the Voronoi polytope, and
totally cyclic orientations

In this section, we prove that the poset OP0 of totally cyclic orientations of 0 is
isomorphic to the poset of cones (ordered by inclusion) of the cographic fan F⊥0 ,
which we also show is the normal fan of the Voronoi polytope Vor0 of 0.

3A. Cographic arrangement. Let us start by describing the cographic arrangement
C⊥0 associated to 0 in the language of totally cyclic orientations.

For every edge e ∈ E(0), we can consider the linear subspace of H1(0,R)

{( · , e)= 0} := {v ∈ H1(0,R) : (v, e)= 0}.

This subspace is a proper subspace (i.e., a hyperplane) precisely when e is not a
separating edge, and the collection of all such hyperplanes is defined to be the
cographic arrangement. Similarly, for any oriented edge Ee ∈ EE(0), we set

{( · , Ee)≥ 0} := {v ∈ H1(0,R) : (v, Ee)≥ 0}.

As mentioned, the elements of the cographic arrangement partition H1(0,R)

into a finite collection of rational polyhedral cones. These cones, together with their
faces, form the cographic fan F⊥0 . We can enumerate these cones and make their
relation to totally cyclic orientations more explicit by introducing some notation.

Given a collection T of edges and an orientation φ of 0 \ T (not necessarily
totally cyclic), we define (possibly empty) cones σ(T, φ) and σ o(T, φ) by

σ(T, φ) :=
⋂
e/∈T

{( · , φ(e))≥ 0} ∩
⋂
e∈T

{( · , e)= 0}, (3-1)

σ o(T, φ) :=
⋂
e/∈T

{( · , φ(e)) > 0} ∩
⋂
e∈T

{( · , e)= 0}. (3-2)

The cone σ o(T, φ) is a subcone of σ(T, φ), and it is the relative interior of
σ(T, φ) provided σ o(T, φ) is nonempty. The cone σ(T, φ) is an element of the
cographic fan, and every cone in the fan can be written in this form. While every
element of F⊥0 can be written as σ(T, φ), the pair (T, φ) is not uniquely determined
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by the cone. The pair (T, φ) is, however, uniquely determined if we further require
that (T, φ) ∈ OP0. This fact is proven in the following proposition, which is
essentially a restatement of some results of Greene and Zaslavsky [1983, §8]:

Proposition 3.1. (i) Every cone σ ∈ F⊥0 can be written as σ = σ(T, φ) for a
unique element (T, φ) ∈ OP0.

(ii) For any (T, φ) ∈ OP0, the linear span of σ(T, φ) is equal to

〈σ(T, φ)〉 =
⋂
e∈T

{( · , e)= 0} = H1(0 \ T,R)

and has dimension b1(0 \ T ).

(iii) For any (T, φ) ∈ OP0 , the extremal rays of σ(T, φ) are the rays generated by
the elements [γ ] for γ ∈ Cirφ(0 \ T ).

Proof. Part (i) follows from [Greene and Zaslavsky 1983, Lemma 8.2]. Note that
in [ibid.] the authors assume that E(0)sep =∅. However, it is easily checked that
the inclusion map 0 \ E(0)sep ⊆ 0 induces natural isomorphisms F⊥0\E(0)sep

∼= F⊥0
and OP0\E(0)sep

∼= OP0. Therefore, the general case follows from the special case
treated in [ibid.].

Let us now prove part (ii). The linear subspace
⋂

e∈T {( · , e)= 0} ⊆ H1(0,R) is
generated by all the cycles of 0 that do not contain edges e ∈ T in their support and
is therefore equal to H1(0 \ T,R), which has dimension equal to b1(0 \ T ). Now,
to complete the proof, let us establish that 〈σ(T, φ)〉 =

⋂
e∈T {( · , e)= 0}. First, if

σ(T, φ)◦ =∅, i.e., if σ(T, φ)= {0}, then b1(0 \ T )= 0 by Lemma 2.3(2)(d). But
then

⋂
e∈T {( · , e)= 0} = H1(0 \ T,R)= 0, and we are done. On the other hand,

if σ(T, φ)◦ 6=∅, then σ o(T, φ) is the relative interior of σ(T, φ), and hence, the
linear span of σ(T, φ) is equal to

⋂
e∈T {( · , e)= 0}.

Finally, let us prove part (iii). From [Greene and Zaslavsky 1983, Lemma 8.5],
it follows that the extremal rays of σ(T, φ) are among the rays generated by
the elements [γ ] for γ ∈ Cirφ(0 \ T ). We conclude by showing that for any
γ ∈Cirφ(0\T ), the ray generated by [γ ] is extremal for σ(T, φ). By contradiction,
suppose that we can write

[γ ] =
∑

γ ′∈Cirφ(0\T )
γ ′ 6=γ

mγ ′[γ
′
] (3-3)

for some mγ ′ ∈ R≥0. Consider a cycle γ0 ∈ Cirφ(0 \ T ) \ {γ } such that mγ0 > 0
(which clearly exists since [γ ] 6= 0). Since γ and γ0 are concordant and distinct,
there should exist an edge e ∈ E(γ0)\ E(γ ). Now returning to the expression (3-3),
on the left-hand side, neither the oriented edge Ee nor Ee can appear. On the other hand,
on the right-hand side, the oriented edge φ(e) appears with positive multiplicity
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because it appears with multiplicity mγ0 > 0 in mγ0[γ0] and all the oriented circuits
appearing in the summation are concordant. This is a contradiction. �

Corollary 3.2. The association

(T, φ) 7→ σ(T, φ)

defines an isomorphism between the poset of OP0 and the poset of cones of F⊥0
ordered by inclusion.4 In particular, the number of connected components of the
complement of C⊥0 in H1(0,R) is equal to the number of totally cyclic orientations
on 0 \ E(0)sep.

Proof. According to Proposition 3.1(i), the map in the statement is bijective. We
have to show that

σ(T, φ)⊆ σ(T ′, φ′) ⇐⇒ (T, φ)≤ (T ′, φ′).

The implication ⇐H is clear by the definition (3-1) of σ(T, φ).
Conversely, assume that σ(T, φ) ⊆ σ(T ′, φ′). There is nothing to show if

σ(T, φ)= {0} is the origin. Otherwise, by Proposition 3.1(ii), the relative interior
σ o(T, φ) of σ(T, φ) is nonempty, so pick c ∈ σ o(T, φ). By formula (3-2), for every
e /∈ T , we have that (c, φ(e)) > 0. Since c ∈ σ(T ′, φ′), by definition (3-1), we must
have e /∈ T ′ and φ′(e) = φ(e). This shows that T ⊇ T ′ and that φ′0\T = φ or in
other words that (T, φ)≤ (T ′, φ′).

The last assertion follows from the first one using the fact that the connected
components of the complement of C⊥0 in H1(0,R) are the maximal cones in F⊥0
and Lemma 2.9. �

Remark 3.3. The last assertion of Corollary 3.2 is due to Green and Zaslavsky
[1983, Lemma 8.1]. Moreover, Greene and Zaslavsky [1983, Theorem 8.1] give a
formula for the number of totally cyclic orientations of a graph free from separating
edges.

The following well-known result plays a crucial role in the proof of Theorem 6.1:

Corollary 3.4. Let
c =

∑
e∈E

aeEe and c′ =
∑
e∈E

a′eEe

be cycles in H1(0,Z). Then there is a cone of F⊥0 containing c and c′ if and only if ,
for all e ∈ E , aea′e ≥ 0.

Proof. From Proposition 3.1(i), it follows that c and c′ belong to the same cone
of F⊥0 if and only if there exists (T, φ)∈OP0 such that c, c′∈σ(T, φ). We conclude
by looking at the explicit description (3-1). �

4Note that the poset of cones of F⊥0 is anti-isomorphic to the face poset L(C⊥0 ) of the arrangement
C⊥0 [Orlik and Terao 1992, Definition 2.18].
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Remark 3.5. Corollary 3.2 together with Remark 2.10 imply that the cographic ori-
ented matroid M∗(0) is represented by the cographic hyperplane arrangement C⊥0 in
the sense of [Björner et al. 1999, §1.2(c)]. Using this, Corollary 3.4 is a restatement
of the fact that two elements of H1(0,Z) belong to the same cone of F⊥0 if and
only if their associated covectors are conformal [Björner et al. 1999, §3.7].

3B. Voronoi polytope. The following description of the faces of Vor0 is a restate-
ment, in our notation, of a result of Omid Amini [Amini 2010], which gives a
positive answer to a conjecture of Caporaso and Viviani [2010, Conjecture 5.2.8(i)]:

Proposition 3.6 (Amini). (i) Every face of the Voronoi polytope Vor0 is of the form

F(T, φ) := {v ∈ Vor0 : (v, [γ ])= 1
2([γ ], [γ ]) for any γ ∈ Cirφ(0 \ T )} (3-4)

for some uniquely determined element (T, φ) ∈ OP0.

(ii) For any (T, φ) ∈ OP0 , the dimension of the affine span of F(T, φ) is equal to
b1(0(T ))= b1(0)− b1(0 \ T ).

(iii) For any (T, φ)∈OP0 , the codimension-1 faces of Vor0 containing F(T, φ) are
exactly those of the form F(S, ψ), where (S, ψ)≤ (T, φ) and b1(0 \ S)= 1.

Proof. Part (i) follows by combining [Amini 2010, Theorem 1, Lemma 7]. Part (ii)
follows from the remark after [Amini 2010, Lemma 10]. Part (iii) follows from
[Amini 2010, Lemma 7]. �

Corollary 3.7 (Amini). The association

(T, φ) 7→ F(T, φ)

defines an isomorphism of posets between the poset OP0 and the poset of faces
of Vor0 ordered by reverse inclusion. In particular, the number of vertices of Vor0
is equal to the number of totally cyclic orientations on 0 \ E(0)sep.

Proof. The first statement is a reformulation of [Amini 2010, Theorem 1]. The last
assertion follows from the first one together with Lemma 2.9. �

We now show that the cographic fan F⊥0 is the normal fan N(Vor0) of the Voronoi
polytope Vor0 . The cones of the normal fan, ordered by inclusion, form a poset that
is clearly isomorphic to the poset of faces of Vor0, ordered by reverse inclusion.

Proposition 3.8. The cographic fan F⊥0 is equal to N(Vor0), the normal fan of the
Voronoi polytope Vor0.

Proof. By Propositions 3.1 and 3.6, it is enough to show that, for any (T, φ) ∈ OP0 ,
the normal cone in N(Vor0) to the face F(T, φ) ⊂ Vor0 is equal to σ(T, φ). Fix
a face F(T, φ) of Vor0 for some (T, φ) ∈ OP0. If (T, φ) is equal to the minimal
element 0= (E(0)sep,∅) of the poset OP0 , then F(0)=Vor0 and its normal cone
is equal to the origin in H1(0,R), which is equal to σ(0).
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Suppose now that b1(0 \ T )≥ 1. Denote by {(Si , ψi )} all the elements of OP0

such that (Si , ψi ) ≤ (T, φ) and b1(0 \ Si ) = 1. Let γi be the unique oriented
circuit of 0 such that Cirψi (0 \ Si ) = {γi }. According to Proposition 3.6(iii),
the codimension-1 faces of Vor0 containing F(T, φ) are exactly those of the
form F(Si , ψi ). Therefore, the normal cone of F(T, φ) is the cone whose extremal
rays are the normal cones to the faces F(Si , ψi ), which, using (3-4), are equal
to σ(Si , ψi )= R≥0 · [γi ]. By Proposition 3.1(iii), the cone whose extremal rays are
given by R≥0 · [γi ] is equal to σ(T, φ), which completes the proof. �

Combining Corollaries 3.2 and 3.7 and Proposition 3.8, we get the following
incarnations of the poset OP0 of totally cyclic orientations:

Corollary 3.9. The following posets are isomorphic:

(1) the poset OP0 of totally cyclic orientations,

(2) the poset of faces of the Voronoi polytope Vor0, ordered by reverse inclusion,

(3) the poset of cones in the normal fan N(Vor0), ordered by inclusion, and

(4) the poset of cones in the cographic fan F⊥0 , ordered by inclusion.

Remark 3.10. Corollary 3.9 together with Remark 2.10 imply that the cographic
oriented matroid M∗(0) is represented by the Voronoi polytope Vor0 (which is a
zonotope; see, e.g., [Erdahl 1999]) in the sense of [Björner et al. 1999, §2.2].

4. Geometry of toric face rings

Let HZ be a free Z-module of finite rank b, and let F be a fan of (strongly convex
rational polyhedral) cones in HR = HZ⊗Z R. The aim of this section is to study
the toric face ring R(F)= Rk(F) associated to F as in Definition 1.2. We will pay
special attention to fans F that are complete, i.e., such that every x ∈ HR is contained
in some cone σ ∈ F, or polytopal, i.e., the normal fans of rational polytopes in H∗R.
Note that a polytopal fan is complete, but the converse is false if b≥3 (see [Oda 1988,
p. 84] for an example). In the subsequent sections, we will apply the results of this
section to the cographic fan F⊥0 of a graph 0, which is polytopal by Proposition 3.8.

Note that the fan F is naturally a poset: given σ, σ ′ ∈ F, we say that σ ≥ σ ′ if
σ ⊇ σ ′. The poset (F,≥) has some nice properties, which we now describe. Recall
the following standard concepts from poset theory. A (finite) poset (P,≤) is called
a meet-semilattice if every two elements x, y ∈ P have a meet (i.e., an element,
denoted by x ∧ y, that is uniquely characterized by conditions x ∧ y ≤ x, y and,
if z ∈ P is such that z ≤ x, y, then z ≤ x ∧ y). In a meet-semilattice, every finite
subset of elements {x1, . . . , xn} ⊂ P admits a meet, denoted by x1 ∧ · · · ∧ xn . A
meet-semilattice is called bounded (from below) if it has a minimum element 0. A
bounded meet-semilattice is called graded if, for every element x ∈ P , all maximal
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chains from 0 to x have the same length. If this is the case, we define a function,
called the rank function, ρ : P → N by setting ρ(x) equal to the length of any
maximal chain from 0 to x . A graded meet-semilattice is said to be pure if all the
maximal elements have the same rank, and this maximal rank is called the rank of
the poset and is denoted by rk P . A graded meet-semilattice is said to be generated
in maximal rank if every element of P can be obtained as the meet of a subset
consisting of maximal elements.

Having made these preliminary remarks, we now collect some of the properties
of the poset (F,≥) that we will need later.

Lemma 4.1. The poset (F,≥) has the following properties:

(i) (F,≥) is a meet-semilattice, where the meet of two cones is equal to their
intersection.

(ii) (F,≥) is bounded with minimum element 0 given by the zero cone {0}.

(iii) (F,≥) is a graded semilattice with rank function given by ρ(σ) := dim σ .

(iv) If F is complete, then (F,≥) is pure of rank rk F= b.

(v) If F is complete, then (F,≥) is generated in maximal rank. �

We will denote by Fmax the subset of F consisting of the maximal cones of F.

4A. Descriptions of R(F) as an inverse limit and as a quotient. In this subsection,
we give two descriptions of the toric face ring R(F).

The first description of R(F) is as an inverse limit of affine semigroup rings. For
any cone σ ∈ F, consider the semigroup

C(σ ) := σ ∩ HZ ⊂ HZ, (4-1)

which, according to Gordan’s lemma (e.g., [Bruns and Herzog 1993, Proposition
6.1.2]), is a positive normal affine semigroup, i.e., a finitely generated semigroup iso-
morphic to a subsemigroup of Zd for some d ∈N such that 0 is the unique invertible
element and such that if m · z ∈ C(σ ) for some m ∈ N and z ∈ Zd then z ∈ C(σ ).

Definition 4.2. We define Rk(σ ) := k[C(σ )] to be the affine semigroup ring asso-
ciated to C(σ ) (in the sense of [Bruns and Herzog 1993, §6.1]), i.e., the k-algebra
whose underlying vector space has basis {X c

: c ∈ C(σ )} and whose multiplication
is defined by X c

· X c′
:= X c+c′ . We will write R(σ ) if we do not need to specify

the base field k. If Fσ is the fan induced by σ (consisting of the cones in F that
are faces of σ ), then clearly R(σ )= R(Fσ ).

The following properties are well-known.

Lemma 4.3. R(σ ) is a normal, Cohen–Macaulay domain of dimension equal to
dim σ .
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Proof. By definition, we have R(σ ) ⊂ k[HZ] = k[x±1
1 , . . . , x±1

b ]; hence, R(σ )
is a domain. R(σ ) is normal by [Bruns and Herzog 1993, Theorem 6.1.4] and
Cohen–Macaulay by a theorem of Hochster [loc. cit., Theorem 6.3.5(a)]. Finally, it
follows easily from [loc. cit., Proposition 6.1.1] that the (Krull) dimension of R(σ )
is equal to dim σ . �

Given two elements σ, σ ′ ∈F such that σ ≥ σ ′, or equivalently such that σ ⊇ σ ′,
there exists a natural projection map between the corresponding affine semigroup
rings of Definition 4.2

rσ/σ ′ : R(σ )� R(σ ′), X c
7→

{
X c if c ∈ σ ′ ⊆ σ ,
0 if c ∈ σ \ σ ′.

With respect to these maps, the set {R(σ ) : σ ∈F} forms an inverse system of rings.
From [Bruns et al. 2008, Proposition 2.2], we deduce the following description of
R(F):

Proposition 4.4. Let F be a fan. We have an isomorphism

R(F)= lim
←−
σ∈F

R(σ ).

We denote by rσ : R(F)→ R(σ ) the natural projection maps.
The second description of R(F) is as a quotient of a polynomial ring. For any

cone σ ∈ F, the semigroup C(σ )= σ ∩ HZ has a unique minimal generating set,
called the Hilbert basis of C(σ ) and denoted by Hσ [Miller and Sturmfels 2005,
Proposition 7.15]. Therefore, we have a surjection

πσ : k[Vα : α ∈Hσ ]� R(σ ), Vα 7→ Xα. (4-2)

In the terminology of [Sturmfels 1996, Chapter 4], the kernel of πσ , which we
denote by Iσ , is the toric ideal associated to the subset Hσ . In the terminology of
[Miller and Sturmfels 2005, Chapter II.7], Iσ is the lattice ideal associated with the
kernel of the group homomorphism

pσ : ZHσ → HZ, u = {uα}α∈Hσ
7→

∑
α∈Hσ

uαα.

From [Sturmfels 1996, Lemma 4.1] (see also [Miller and Sturmfels 2005, Theorem
7.3]), we get that Iσ is a binomial ideal with the explicit presentation

Iσ = 〈V u
− V v

: u, v ∈ NHσ ⊂ ZHσ with pσ (u)= pσ (v)〉, (4-3)

where, for any u = (uα)α∈Hσ
∈ NHσ , we set V u

:=
∏
α∈Hσ

V uα
α ∈ k[Vα : α ∈Hσ ].

If we set HF :=
⋃
σ∈F Hσ , then, from Definition 1.2, it follows that we have a

surjection
πF : k[Vα : α ∈HF]� R(F), Vα 7→ Xα. (4-4)

We denote by IF the kernel of πF. In order to describe the ideal IF, we introduce the
abstract simplicial complex1F on the vertex set HF whose faces are the collections
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of elements of HF that belong to the same cone of F. The minimal nonfaces of 1F

are formed by pairs {α, α′} of elements of HF such that α and α′ do not belong to
the same cone of F; hence, 1F is a flag complex [Stanley 1996, Chapter III, §4].
Consider the Stanley–Reisner ring (or face ring)

k[1F] :=
k[Vα : α ∈HF]

(VαVα′ : {α, α′} /∈1F)

associated to the flag complex1F (see [Stanley 1996, Chapter II] for an introduction
to Stanley–Reisner rings). Observe that if {α, α′} /∈ 1F, then X [α] · X [α

′
]
= 0 by

Definition 1.2. This implies that the surjection πF factors as

πF : k[Vα : α ∈HF]�
k[Vα : α ∈HF]

(VαVα′ : {α, α′} /∈1F)
= k[1F]� R(F)

or in other words that (VαVα′ : {α, α′} /∈1F)⊆ IF.
Moreover, observe also that the surjection πF of (4-4) is compatible with the

surjections πσ of (4-2) for every σ ∈F in the sense that we have a commutative di-
agram

k[Vα : α ∈HF]

θ
����

πF
// // R(F)

rσ
����

k[Vα : α ∈Hσ ]
πσ
// //

s

UU

R(σ )

(4-5)

where θ is the surjective ring homomorphism given by sending Vα 7→ Vα if
α ∈ Hσ ⊆ HF and Vα 7→ 0 if α ∈ HF \Hσ . Both the vertical surjections have
natural sections: the left map has a section s obtained by sending Vα 7→ Vα for
any α ∈ Hσ ⊂ HF, and the left map has a section obtained by sending X c into
X c for any c ∈ C(σ )= σ ∩ HZ ⊂ HZ. Therefore, we can regard Iσ as an ideal of
k[Vα : α ∈HF] by extensions of scalars and, by the above commutative diagram,
we have that Iσ ⊆ IF.

From [Bruns et al. 2008, Propositions 2.3 and 2.6], we get the following descrip-
tion of the ideal IF:

Proposition 4.5. Let F be a fan. The kernel IF of the map πF of (4-4) is given by

IF = (VαVα′ : {α, α′} /∈1F)+
∑
σ∈F

Iσ = (VαVα′ : {α, α′} /∈1F)+
∑

σ∈Fmax

Iσ ,

where, as usual, Fmax denotes the subset of F consisting of the maximal cones.

4B. Prime ideals of R(F). We now want to describe the prime ideals of the ring
R(F). Observe that, from the Definition 1.2, it follows that R(F) has a natural
Zb ∼= HZ-grading.

Recall the following notions for a Zn-graded ring R (see, e.g., [Uliczka 2009]). A
graded ideal is an ideal I of R with the property that for any x ∈ I all homogenous
components of x belong to I as well; this is equivalent to I being generated by
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homogenous elements. For any ideal I of R, the graded core I ∗ of I is defined as
the ideal generated by all homogenous elements of I . It is the largest graded ideal
contained in I . If p is a prime ideal of R, then p∗ is a prime ideal [Uliczka 2009,
Lemma 1.1(ii)].

For any σ ∈F, the kernel of the natural projection map rσ : R(F)� R(σ ), which
is explicitly equal to

pσ := ({X c
: c /∈ σ }), (4-6)

is graded since it is generated by homogeneous elements and is prime by Lemma 4.3.
From [Ichim and Römer 2007, Lemma 2.1], we deduce the following description
of the graded ideals of R(F):

Proposition 4.6. The assignment σ 7→ pσ gives an isomorphism between the poset
(F,≥) and the poset of graded prime ideals of R(F) ordered by reverse inclusion.
In particular, m= p{0} is the unique graded maximal ideal of R(F), which is also a
maximal ideal in the usual sense.

From Proposition 4.6, we can deduce a description of the minimal primes of R(F).

Corollary 4.7. The minimal primes of R(F) are the primes pσ as σ varies among
all the maximal cones of F. In particular, if F is complete, then R(F) is of pure
dimension b.

Proof. Observe that if p is a minimal ideal of R(F), then p∗ = p by the minimality
of p; hence, p is graded. Conversely, if p is a graded ideal of R(F) that is minimal
among the graded ideals of R(F), then p is also a minimal ideal of R(F): indeed,
if q⊆ p, then q∗ = p by the minimality properties of p; hence, q= p.

It is now clear that the first assertion follows from Proposition 4.6. The last
assertion follows from the first one together with Lemmas 4.1(iv) and 4.3. �

Definition 4.8. The poset of strata of R(F), denoted by Str(R(F)), is the set of all
the ideals of R(F) that are sums of minimal primes with the order relation given
by reverse inclusion.

Geometrically, the poset Str(R(F)) is the collection of all scheme-theoretic
intersections of irreducible components of Spec R(F) ordered by inclusion.

Corollary 4.9. If F is complete, then the assignment σ 7→ pσ gives an isomorphism
between (F,≥) and Str(R(F)).

Proof. The statement will follow from Proposition 4.6 if we show that the ideals
that are sums of minimal primes of R(F) are exactly those of the form pσ for some
σ ∈F. Indeed, given minimal primes pσi for i = 1, . . . , n (see Corollary 4.7), we
have that

⋂n
i=1 σi = σ for some σ ∈ F and, from (4-6), it follows that

n∑
i=1

pσi =

(
X c
: c /∈

n⋂
i=1

σi

)
= pσ . (4-7)
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Conversely, every cone σ ∈F is the intersection of the maximal dimensional cones σi

containing it by Lemma 4.1(v). Therefore, (4-7) shows that pσ ∈ Str(R(F)). �

4C. Gorenstein singularities. The aim of this subsection is to prove the following:

Theorem 4.10. If F is a polytopal fan, then R(F) is a Gorenstein ring and its
canonical module ωR(F) is isomorphic to R(F) as a graded module.

Proof. This is a consequence of two results from [Ichim and Römer 2007]. The first
is Theorem 1.1, stating that a toric face ring R(F) is Cohen–Macaulay provided
that the fan F is shellable (see p. 252 of that paper for the definition). The second
is Theorem 1.4, stating that R(F) is Gorenstein and its canonical module ωR(F) is
isomorphic to R(F) as a graded module provided that R(F) is Cohen–Macaulay
and F is Eulerian (see Definition 6.4 in the same paper).

Now it is enough to recall that a polytopal fan is Eulerian (see, e.g., [Stanley
1994, p. 302]) and shellable by the Bruggesser–Manni theorem [Bruns and Herzog
1993, Theorem 5.2.14]. �

4D. The normalization. In this subsection, we prove that the toric face ring of any
fan is seminormal and we describe its normalization.

Recall that, given a reduced ring R with total quotient ring Q(R), the normaliza-
tion of R, denoted by R, is the integral closure of R inside Q(R). R is said to be
normal if R = R (see [Huneke and Swanson 2006, Definition 1.5.1], for example).
Moreover, we need the following:

Definition 4.11. Let R be a Mori ring, i.e., a reduced ring such that R is finite
over R. The seminormalization of R, denoted by +R, is the biggest subring of R
such that the induced pull-back map Spec(+R)→ Spec R is bijective with trivial
residue field extension. We say that R is seminormal if +R = R.

For the basic properties of seminormal rings, we refer to [Greco and Traverso
1980; Swan 1980]. Observe that R(F) is a Mori ring since it is reduced and finitely
generated over a field k (see Remark 1.3).

Theorem 4.12. Let F be any fan.

(i) The normalization of R(F) is equal to

R(F)=
∏

σ∈Fmax

R(σ ),

where Fmax is the subset of F consisting of all the maximal cones of F.

(ii) R(F) is a seminormal ring.
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Proof. Let us first prove part (i). By [Huneke and Swanson 2006, Corollary 2.1.13]
and Corollary 4.7, we get that the normalization of R(F) is equal to

R(F)=
∏

σ∈Fmax

R(σ ).

We conclude by Lemma 4.3, which says that each domain R(σ ) is normal.
Let us now prove part (ii). According to Proposition 4.4 and Lemma 4.3, the

ring R(F) is an inverse limit of normal domains. Then the seminormality of R(F)
follows from [Swan 1980, Corollary 3.3]. �

4E. Semi log canonical singularities. In this subsection, we prove that Spec R(F)
has semi log canonical singularities provided that F is a polytopal fan.

We first recall the definitions of log canonical and semi log canonical pairs (see
[Kollár and Mori 1998] for log canonical pairs and [Abramovich et al. 1992; Fujino
2000] for semi log canonical pairs). For the relevance of slc singularities in the
theory of compactifications of moduli spaces, see [Kollár 2010].

Definition 4.13. Let X be an S2 variety (i.e., such that the local ring OX,x of X at any
(schematic) point x ∈ X has depth at least min{2, dim OX,x}) of pure dimension n
over a field k and 1 be an effective Q-Weil divisor on X such that K X +1 is
Q-Cartier.

(i) We say that the pair (X,1) is log canonical (or lc for short) if
• X is smooth in codimension 1 (or equivalently X is normal) and
• there exists a log resolution f : Y → X of (X,1) such that

KY = f ∗(K X +1)+
∑

i

ai Ei ,

where Ei are divisors on Y and ai ≥−1 for every i .

We say that X is lc if the pair (X, 0) is lc, where 0 is the zero divisor.

(ii) We say that the pair (X,1) is semi log canonical (or slc for short) if
• X is nodal in codimension 1 (or equivalently, X is seminormal and Goren-

stein in codimension 1) and
• if µ : Xµ

→ X is the normalization of X and 2 is the Q-Weil divisor on X
given by

K Xµ +2= µ
∗(K X +1), (4-8)

then the pair (Xµ,2) is lc.

We say that X is slc if the pair (X, 0) is slc, where 0 is the zero divisor.

Theorem 4.14. If F is a polytopal fan, then the variety Spec R(F) is slc.



1802 Sebastian Casalaina-Martin, Jesse Leo Kass and Filippo Viviani

Proof. Observe that Spec R(F) is Gorenstein by Theorem 4.10 and seminormal
by Theorem 4.12(ii); hence, in particular, it is S2 and nodal in codimension 1
[Greco and Traverso 1980, §8]. Moreover, Spec R(F) is of pure dimension rk F by
Corollary 4.7. Consider now the normalization morphism (see Theorem 4.12(i))

µ : Spec R(F)=
∐

σ∈Fmax

Spec R(σ )→ Spec R(F).

If we apply the formula (4-8) to the above morphism µ and we use the fact
that 1 = 0 (by hypothesis) and K X = 0 by Theorem 4.10, then we get that the
divisor 2 restricted to each connected component Spec R(σ ) of the normalization
Spec R(F) is equal to −KSpec R(σ ). Therefore, from Definition 4.13(ii), we get that
Spec R(F) is slc if and only if the pair (Spec R(σ ),−KSpec R(σ )) is lc for every
σ ∈ Fmax. Therefore, we conclude using the fact that for any toric variety Z the
pair (Z ,−K Z ) is lc [Fujino and Sato 2004, Proposition 2.10; Cox et al. 2011,
Corollary 11.4.25]. �

4F. Embedded dimension. In this subsection, we compute the embedded dimen-
sion of R(F) at its unique graded maximal ideal m. In doing this, we also compute
the embedded dimension of the affine semigroup ring R(σ ) of Definition 4.2 at the
maximal ideal (X c

: c ∈ C(σ ) \ {0}), which, by a slight abuse of notation, we also
denote by m.

Recall that given a maximal ideal m of a ring R with residue field k := R/m,
the embedded dimension of R at m is the dimension of the k-vector space m/m2.
Geometrically, the embedded dimension of R at m is the dimension of the Zariski
tangent space of Spec(R) at the point m ∈ Spec(R).

Theorem 4.15. Let F be a fan.

(i) The embedded dimension of R(σ ) at m is equal to the cardinality of the Hilbert
basis Hσ (see Section 4A).

(ii) The embedded dimension of R(F) at m is equal to the cardinality of HF

(=
⋃
σ∈F Hσ ).

Proof. Consider the presentation (4-2) of the ring R(σ ). Since the elements of the
Hilbert basis Hσ cannot be written in a nontrivial way as N-linear combinations of
elements in the semigroup C(σ ) [Miller and Sturmfels 2005, proof of Proposition
7.15], we get that the ideal Iσ = kerπσ satisfies

Iσ ⊂ n2, (4-9)

where n := (Vα :α∈Hσ )⊂ k[Vα :α∈Hσ ]. Part (i) now follows from (4-2) and (4-9).
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In order to prove part (ii), consider the presentation (4-4) of the ring R(F). It is
enough to prove that the ideal IF = kerπF satisfies

IF ⊂ o2, (4-10)

where o := (Vα : α ∈HF)⊂ k[Vα : α ∈HF]. Consider the generators of IF given in
Proposition 4.5. Clearly the generators of the form VαVα′ (for {α, α′} /∈1F) belong
to o2. In order to deal with the other generators of IF, consider the diagram (4-5).
As in the discussion that precedes Proposition 4.5, we view Iσ as included in IF

via the section s. By applying the section s to the inclusion (4-9) and using the
obvious inclusion s(n2)⊆ o2, we get the desired inclusion (4-10). �

4G. Multiplicity. In this subsection, we study the multiplicity em(R(F)) of R(F)
at its unique graded maximal ideal m.

Recall (see, e.g., [Serre 1965, Chapter IIB, Theorem 3]) that the Hilbert–Samuel
function

n 7→ dimk R(F)/mn

is given, for large values of n ∈ N, by a polynomial (called the Hilbert–Samuel
polynomial) that is denoted by Pm(R(F); n). The degree of Pm(R(F); n) is equal
to dim R(F) [Serre 1965, Chapter IIIB, Theorem 1]. We can therefore write

Pm(R(F); n)= em(R(F))
ndim R(F)

dim R(F)!
+ O(ndim R(F)−1),

where O(nt) denotes a polynomial of degree less than or equal to t and em(R(F))
is, by definition, the multiplicity of R(F) at m [Serre 1965, Chapter VA]. The
following result is a special case of [Matsumura 1989, Theorem 14.7]:

Theorem 4.16. If F is a fan of dimension d (i.e., such that the maximum of the
dimension of the cones in F is d) in Rb, then R(F) has dimension d and its
multiplicity is equal to

em(R(F))=
∑

dim σ=d

em(R(σ )),

where m is the unique graded maximal ideal of the rings in question.

Proof. The theorem is the special case of [Matsumura 1989, Theorem 14.7], where
A = R(F) and q = m. Indeed, the rings R(σ ) are the localizations of R(F) at
minimal primes q satisfying dim R(F)/q= d by Corollary 4.7. �

The above result reduces the computation of the multiplicity of R(F) at m (for a
complete fan F) to that of the affine semigroup rings R(σ ) at m for σ a cone of F

of maximal dimension. These latter multiplicities can be computed geometrically
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v1

v3

σ

v2

Figure 1. A two-dimensional cone σ whose associated semigroup
C(σ ) has Hilbert basis Hσ = {v1, v2, v3}. The shaded region is the
subdiagram part K−(C(σ )) of C(σ ).

from the affine semigroup C(σ ) as we now explain following Gel′fand, Kapranov,
and Zelevinsky [Gel′fand et al. 1994].

To that aim, we need to recall some definitions. Given a cone σ ∈ F, set
C(σ )Z := 〈σ 〉 ∩ HZ and C(σ )R := 〈σ 〉 ∩ HR. We denote by volC(σ ) the unique
translation-invariant measure on C(σ )R such that the volume of a standard unimod-
ular simplex 1 (i.e., 1 is the convex hull of a basis of HZ together with 0) is 1.
Following [Gel′fand et al. 1994, p. 184], denote by K+(C(σ )) the convex hull of
the set C(σ )\ {0} and K−(C(σ )) the closure of σ \ K+(C(σ )). The set K−(C(σ ))
is a bounded (possibly not convex) lattice polyhedron in C(σ )R that is called the
subdiagram part of C(σ ).

Definition 4.17 [Gel′fand et al. 1994, Chapter 5, Definition 3.8]. The subdiagram
volume of C(σ ) is the natural number

u(C(σ )) := volC(σ )Z(K−(C(σ ))).

The multiplicity of R(σ ) at m can be computed in terms of the subdiagram
volume of C(σ ) as asserted by the following result, whose proof can be found in
[Gel′fand et al. 1994, Chapter 5, Theorem 3.14]:

Theorem 4.18. The multiplicity of R(σ ) at m is equal to

em(R(σ ))= u(C(σ )).

5. Geometry of cographic rings

The aim of this section is to describe the properties of the cographic ring R(0)
associated to a graph 0. The main results are Theorem 5.7 and the descriptions of
the cographic ring in Section 5B. Recall from Definition 1.4 that R(0) is the toric
face ring associated to the cographic fan F⊥0 in H1(0,R), which is a polytopal fan
by Proposition 3.8.
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According to Proposition 3.1(i), every cone of F⊥0 is of the form

σ(T, φ) :=
⋂
e/∈T

{( · , φ(e))≥ 0} ∩
⋂
e∈T

{( · , e)= 0}

for some uniquely determined element (T, φ)∈OP0 , i.e., a totally cyclic orientation
φ on 0 \ T . We will denote the positive normal affine semigroup associated to
σ(T, φ) as in (4-1) by

C(0 \ T, φ) := C(σ (T, φ))= σ(Y, φ)∩ H1(0,Z)

and its associated affine semigroup ring (as in Definition 4.2)

R(0 \ T, φ) := k[C(0 \ T, φ)].

5A. Affine semigroup rings R(0 \ T, φ). Let us look more closely at the affine
semigroup rings R(0 \ T, φ) for a fixed (T, φ) ∈ OP0.

The ring R(0 \ T, φ) is a normal, Cohen–Macaulay domain of dimension equal
to dim σ(T, φ) = b1(0 \ T ) as follows from Lemma 4.3 and Proposition 3.1(ii).
However, the ring R(0 \ T, φ) need not be Gorenstein and indeed not even Q-
Gorenstein as the following example shows:

Example 5.1. Consider the totally cyclic oriented graph (0, φ) depicted in Figure 2.
Consider the pointed rational polyhedral cone σ(∅, φ)⊂ H1(0,R) and its dual

cone σ(∅, φ)∨ ⊂ H1(0,R)∨ defined by

σ(∅, φ)∨ := {` ∈ H1(0,R)∨ : `(v)≥ 0 for every v ∈ σ(∅, φ)}.

Since for any edge e ∈ E(0), the graph 0 \ {e} with the orientation induced by φ is
totally cyclic, we get that the cone σ(∅, φ) has five codimension-1 faces defined by
the equations {( · , φ(ei ))= 0} for i = 1, . . . , 5 (see Corollary 3.2). This implies that
the extremal rays of σ(∅, φ)∨ are the rays generated by ( · , φ(ei )) for i = 1, . . . , 5.

It follows from [Dais 2002, proof of Theorem 3.12] that R(0, φ) is Q-Gorenstein
if and only if there exists an element m∈H1(0,Q) such that (m, φ(ei ))=1 for every

•

oo
e4

oo
e5

oo
e3

//
e2

//
e1

v1 v2
•

Figure 2. A totally cyclic oriented graph (0, φ) with R(0, φ) not
Q-Gorenstein.
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i = 1, . . . , 5. However, these conditions force m to be equal to m =
∑5

i=1 φ(ei ),
which is a contradiction since ∂

(∑5
i=1 φ(ei )

)
= v1− v2 6= 0.

Denote by H(0\T,φ) the Hilbert basis (i.e., the minimal generating set) of the
positive affine normal semigroup C(0 \ T, φ). From Lemma 2.4, we get the
following explicit description of H(0\T,φ):

Proposition 5.2. The Hilbert basis of C(0 \ T, φ) is equal to

H(0\T,φ) := {[γ ] : γ ∈ Cirφ(0 \ T )} ⊂ H1(0 \ T,Z)⊆ H1(0,Z).

The Hilbert basis H(0\T,φ) of C(0 \ T, φ) enjoys the following remarkable
properties:

Lemma 5.3. Let (T, φ) ∈ OP0.

(i) The group Z ·H(0\T,φ) ⊆ H1(0 \ T,Z) generated by H(0\T,φ) coincides with
H1(0 \ T,Z).

(ii) The ray R≥0 · [γ ] is extremal for the cone σ(T, φ) = R≥0 ·H(0\T,φ) for each
[γ ] ∈H(0\T ).

Proof. Part (i) follows from Lemma 2.3(2)(c). Part (ii) follows from Proposition
3.1(iii). �

We warn the reader that the Hilbert basis H(0\T,φ) need not be unimodular as we
show in Example 5.4 below. Recall that a subset A⊂ Zd is said to be unimodular
if A spans Rd and, moreover, if we represent the elements of A as column vectors
of a matrix A with respect to a basis of Zd , then all the nonzero d × d minors of A
have the same absolute value [Sturmfels 1996, p. 70].

Example 5.4. Consider the totally cyclic oriented graph (0, φ) depicted in Figure 3.
One can check that b1(0)= 4 and that H(0,φ) consists of the eight elements

[γi jk] = φ(e1
i )+φ(e

2
j )+φ(e

3
k)

•

??

e1
0

??
e1

1

��

e2
0

��
e2

1

• oo

e3
0
oo

e3
1

•

Figure 3. A totally cyclic oriented graph (0, φ) with H(0,φ) not
totally unimodular.
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for i, j, k ∈ {0, 1}. The elements B := {[γ000], [γ100], [γ010], [γ001]} form a basis
of H1(0,Z). If we order the elements of H(0,φ) as

{[γ000], [γ100], [γ010], [γ001], [γ110], [γ101], [γ011], [γ111]},

then the elements of H(0,φ), with respect to the basis B, are the column vectors of
the matrix

A =


1 0 0 0 −1 −1 −1 −2
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 .
The minor A1234 (i.e., the minor corresponding to the first four columns) is equal
to 1 while the minor A2348 is equal to 2; hence, H(0,φ) is not unimodular.

According to (4-2) and (4-3), the affine semigroup ring R(0 \ T, φ) admits the
presentation

R(0 \ T, φ) :=
k[Vγ : γ ∈ Cirφ(0 \ T )]

I(0\T,φ)
, (5-1)

where I(0\T,φ) := Iσ(T,φ) is a binomial ideal, called the toric ideal associated to
H(0\T,φ) in the terminology of [Sturmfels 1996, Chapter 4]. The following problem
seems interesting:

Problem 5.5. Find generators for the binomial toric ideal I(0\T,φ).

We warn the reader that the toric ideal I(0\T,φ) need not to be homogeneous as
shown by the following example:

Example 5.6. Consider the totally cyclicly oriented graph (0, φ) depicted in
Figure 4.

•

??
e1

��
e4

��
e2

__
e6

• oo
e3
//
e5

•

Figure 4. A totally cyclic oriented graph (0, φ) with I(0,φ) not homogeneous.
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It is easy to see that b1(0)= 4 and that H(0,φ) consists of the five elements

[γ1] := φ(e1)+φ(e4),

[γ2] := φ(e2)+φ(e6),

[γ3] := φ(e3)+φ(e5),

[γ4] := φ(e1)+φ(e2)+φ(e3),

[γ5] := φ(e4)+φ(e4)+φ(e6).

The binomial ideal I(0,φ) is generated by Vγ1 Vγ2 Vγ3 − Vγ4 Vγ5 ; hence, it is not
homogeneous.

5B. Descriptions of R(0) as an inverse limit and as a quotient. Using the general
results of Section 4A, the ring R(0) admits two explicit descriptions.

The first description of R(0) is as an inverse limit of affine semigroup rings (see
Proposition 4.4):

R(0)= lim
←−

(T,φ)∈OP0

R(0 \ T, φ). (5-2)

The second description is a presentation of R(0) as a quotient of a polynomial
ring. In order to make this explicit for R(0), observe first that the union of all the
Hilbert bases of the cones σ(T, φ), as (T, φ) varies in OP0, is equal to the set of
all oriented circuits of 0, i.e.,

HF⊥0
=
−→
Cir(0). (5-3)

Moreover, Corollary 3.4 implies that the simplicial complex 1F⊥ introduced in
Section 4A coincides with the simplicial complex 1(

−→
Cir(0)) of concordant circuits

as in Definition 2.5, or in symbols,

1F⊥ =1(
−→
Cir(0)).

From (4-4), Proposition 4.5, and Lemma 2.9, we get the presentation of R(0)

R(0)=
k[Vγ : γ ∈

−→
Cir(0)]

I0
, (5-4)

where I0 := IF⊥0
is explicitly given by

I0 = (Vγ Vγ ′ : γ 6� γ ′)+
∑

(T,φ)∈OP0

I(0\T,φ) = (Vγ Vγ ′ : γ 6� γ ′)

+

∑
(E(0)sep,φ)∈OP0

I(0\E(0)sep,φ). (5-5)

From Proposition 4.6, we get that the graded prime ideals of R(0) are given by

p(T,φ) := ({X c
: c /∈ σ(T, φ)}) (5-6)

as (T, φ) varies in OP0.
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5C. Singularities of R(0). In this subsection, we analyze the singularities of the
ring R(0).

Theorem 5.7. Let 0 be a graph and R(0) its associated cographic ring. Then we
have the following:

(i) R(0) is a reduced finitely generated k-algebra of pure dimension equal to
b1(0). The minimal prime ideals of R(0) are given by p(E(0)sep,φ) as φ varies
among all the totally cyclic orientations of 0 \ E(0)sep.

(ii) R(0) is Gorenstein, and its canonical module ωR(0) is isomorphic to R(0) as
a graded module.

(iii) R(0) is a seminormal ring.

(iv) The normalization of R(0) is equal to

R(0)=
∏
φ

R(0 \ E(0)sep, φ),

where the product is over all the totally cyclic orientations φ of E(0)\E(0)sep.

(v) The variety Spec R(0) is slc.

(vi) The embedded dimension of R(0) at m is equal to the cardinality of
−→
Cir(0),

the set of oriented circuits on 0.

(vii) The multiplicity of R(0) at m is equal to

em(R(0))=
∑
φ

em(R(0 \ E(0)sep, φ))=
∑
φ

u(C(0 \ E(0)sep, φ)),

where the sum is over all the totally cyclic orientations φ of 0 \ E(0)sep and
m is the unique graded maximal ideal of the rings in question.

Proof. Part (i) follows from Remark 1.3, Corollary 4.7, and Lemma 2.9. Part (ii)
follows Theorem 4.10 using that F⊥0 is a polytopal fan by Proposition 3.8. Part
(iii) follows from Theorem 4.12(ii). Part (iv) follows from Theorem 4.12(i) and
Lemma 2.9. Part (v) follows from Theorem 4.14 using that F⊥0 is polytopal. Part (vi)
follows from Theorem 4.15(ii) and (5-3). Part (vii) follows from Theorem 4.16,
Theorem 4.18, and Lemma 2.9. �

Problem 5.8. Express the multiplicity of R(0) at m in terms of well-known graph
invariants.

Problem 5.9. Characterize the graphs 0 that have the property that Spec(R(0)) is
semi divisorial log terminal. (See [Fujino 2000, Definition 1.1] for the definition of
semi divisorial log terminal.)
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Problem 5.9 is motivated by moduli theory. The singularities of R(0) are the
singularities that appear on compactified Jacobians, and compactified Jacobians
arise as limits of abelian varieties. Fujino [2011] shows that, in a suitable sense, it
is possible to degenerate an abelian variety to a semi divisorial log terminal variety.
If R(0) is semi divisorial log terminal, then compactified Jacobians are examples
of Fujino’s degenerations. For a general discussion of singularities and their role in
moduli theory, we direct the reader to [Kollár 2010].

Following the proof of Theorem 4.14, Problem 5.9 is equivalent to the following
one: characterize the totally cyclic orientations φ of a graph 0 that have the property
that the pair (Spec R(0, φ), −K R(0,φ)) is divisorial log terminal (in the sense of
[Kollár and Mori 1998]). Note that the pair (Spec R(0, φ),−K R(0,φ)) does not
satisfy the stronger condition of being Kawamata log terminal (and so Spec R(0)
is not semi Kawamata log terminal) because −K R(0,φ) is effective and nonzero.

6. The cographic ring R(0) as a ring of invariants

In [Casalaina-Martin et al. 2011], the completion of the ring R(0) with respect to
the maximal ideal m= p0 appears naturally as a ring of invariants. In this section,
we explain this connection. Consider the multiplicative group

T0 :=
∏

v∈V (0)

Gm .

The elements of T0(S) for a k-scheme S can be written as λ = (λv)v∈V (0) with
λv ∈ Gm(S)= O∗S .

Consider the ring

A(0) :=
k[U Ee,UEe : e ∈ E(0)]
(U EeUEe : e ∈ E(0))

.

If we make the group T0 act on A(0) via

λ ·UEe = λs(Ee)UEeλ−1
t (Ee),

then the invariant subring is described by the following theorem:

Theorem 6.1. The invariant subring A(0)T0 is isomorphic to the cographic toric
ring R(0).

Proof. We prove the theorem by exhibiting a k-basis for the invariant subring that
is indexed by H1(0,Z) in such a way that multiplication satisfies Equation (1-1).
We argue as follows. Grade A(0) by the EC1(0,Z)-grading induced by the obvious
grading of k[U Ee,UEe : e ∈ E(0)] (so the weight of UEe is Ee).

This grading is preserved by the action of T0 on A(0), so the invariant subring is
generated by invariant homogeneous elements. Furthermore, given a homogeneous
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element Mc
=
∏

U a(Ee)
Ee of weight c =

∑
a(Ee)Ee, an element λ ∈ T0 acts as

λ ·Mc
=

∏
Ee

λs(Ee)UEeλ−1
t (Ee) =

(∏
v

λb(v)
v

)
Mc,

where b(v) is defined by ∂(c)=
∑

b(v)v. In particular, we see that Mc is invariant
if and only if ∂(c)= 0, or in other words, c ∈ H1(0,Z).

We can conclude that the invariant subring is generated by the homogeneous
elements Mc whose weight c lies in H1(0,Z). In fact, these elements freely generate
the invariant subring because distinct elements have distinct weights.

To complete the proof, observe that multiplication satisfies

Mc
·Mc′

=

{
0 if (c, Ee) > 0 and (c′, Ee) < 0 for some Ee,
Mc+c′ otherwise.

(6-1)

The condition that there exists an oriented edge Ee with (c, Ee) > 0 and (c′, Ee) < 0 is
equivalent to the condition that c and c′ do not lie in a common cone by Corollary 3.4.
We can conclude that the rule X c

7→ Mc defines an isomorphism between the
cographic ring R(0) and the invariant subring of A(0). �

7. A Torelli-type result for R(0)

In this section, we investigate when two graphs give rise to the same cographic
toric face ring. Before stating the result, we need to briefly recall some operations
in graph theory introduced in [Caporaso and Viviani 2010, §2]. Two graphs 0
and 0′ are said to be cyclic equivalent (or 2-isomorphic) if there exists a bijection
ε : E(0)→ E(0′) inducing a bijection on the circuits. The cyclic equivalence
class of 0 is denoted by [0]cyc. Given a graph 0, a 3-edge connectivization of 0 is
a graph that is obtained from 0 by contracting all the separating edges of 0 and
by contracting, for every separating pair of edges, one of the two edges. While a
3-edge connectivization of 0 is not unique (because of the freedom that we have in
performing the second operation), its cyclic equivalence class is well-defined; it is
called the 3-edge connected class of 0 and denoted by [0]3cyc.

Theorem 7.1. Let 0 and 0′ be two graphs. Then R(0) ∼= R(0′) if and only if
[0]3Cyc = [0

′
]
3
Cyc.

Proof. Assume first that [0]3Cyc = [0
′
]
3
Cyc. From [Caporaso and Viviani 2010,

proof of Proposition 3.2.3], it follows that C⊥0
∼= C⊥0′ , i.e., that there exists an R-

linear isomorphism φ : H1(0,R)→ H1(0
′,R) that sends H1(0,Z) isomorphically

onto H1(0
′,Z) and such that φ sends the hyperplanes of C⊥0 bijectively onto the

hyperplanes of C⊥0′ . Since F⊥0 is the fan induced by the arrangement of hyper-
planes C⊥0 , the above map φ will send the cones of F⊥0 bijectively onto the cones
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of F⊥0′ . Therefore, the map

R(0)→ R(0′), X c
7→ Xφ(c)

is an isomorphism of rings.
Conversely, if R(0) ∼= R(0′), then clearly Str(R(0)) ∼= Str(R(0′)) (see Defi-

nition 4.8). By Corollary 4.9, we deduce that OP0
∼= OP0′ , which implies that

[0]3Cyc = [0
′
]
3
Cyc by [Caporaso and Viviani 2010, Theorem 5.3.2]. �
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