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Abstract: Two-dimensional full conformal field theories have been studied in vari-
ous mathematical frameworks, from algebraic, operator-algebraic to categorical. In this
work, we focus our attention on theories with chiral components having pointed braided
tensor representation subcategories, namely having automorphisms whose equivalence
classes necessarily form an abelian group. For such theories, we exhibit the explicit
Hilbert space structure and construct primary fields as Wightman fields for the two-
dimensional full theory. Given a finite collection of chiral components with automor-
phism categories with trivial total braiding, we also construct a local extension of their
tensor product as a chiral component. We clarify the relations with the Longo–Rehren
construction, and illustrate these results with concrete examples including the U(1)-
current.

1. Introduction

Two-dimensional conformal field theories (CFTs) have been studied extensively
[DMS97] and have attracted the interest of mathematicians for their algebraic, analytic
and geometric structures. In particular, the conformal symmetry in two-dimensional
Minkowski spacetime is described by the diffeomorphism group of the lightrays, there-
fore it is infinite-dimensional. This allows to study first the theories that depend only on
one of the lightray coordinates (the chiral components) and then their two-dimensional
(full) extensions.

From the operator-algebraic point of view (Haag–Kastler axioms), a general quantum
field theory can be formulated as a net of von Neumann algebras associated with the
open spacetime regions [Haa96]. The relations between the full theory and the chiral
components have been obtained, e.g., in [Reh00], and they resulted in classification
schemes for certain classes of two-dimensional CFTs, see, e.g., [KL04b,BKL15]. In
this course, it was important that from two copies of a single chiral theory and a family
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of charged sectors, one can construct two-dimensional theories as extensions of the two-
dimensional theory obtained just by taking tensor products of the chiral components,
and then extended it by introducing non-chiral (bulk) fields. Among such extensions, the
most studied ones are the “diagonal” extensions, obtained by letting the chiral theories
act simultaneously on a direct sum of copies of their vacuum representation, and then
introducing “charged” fields that mix the different components.

Since [LR95], in the operator-algebraic setting, the (finite index, i.e., “relatively
small”) extensions can be equivalently well described by Q-systems (i.e., C∗-Frobenius
algebra objects) in the unitary braided tensor representation category of the net that
one wants to extend. Locality of the extension can also be characterized by means of a
commutativity condition on the associated Q-system. In the operator-algebras context,
the Q-system associated with a finite index “diagonal” extension is called a Longo–
Rehren Q-system.

It is worth mentioning that the method of Q-systems applies both to chiral and to
two-dimensional theories (in fact even in four-dimensions), and that similar ideas (com-
mutative Frobenius algebra objects in tensor categories) emerged independently in other
algebraic approaches to CFT, such as vertex operator algebras [HKL15,KO02], both in
one and two dimensions, see, e.g., [FRS02,HK07,Kon07,RFFS07]. In the unitary VOA
[CKLW18,DL14,Gui22] and unitary tensor category context [GLR85,DR89b,LR97],
these notions (Frobenius algebras, C∗-Frobenius algebras, Q-systems, to describe ex-
tensions) have been recently shown to be equivalent [CGGH23].

The relationship between chiral and full two-dimensional CFTs (not restricted to a
single Minkowski spacetime) can also be cast and studied [BGS22] in the more general
categorical/operadic framework of locally covariant AQFT [BFV03,BSW19,BSW21].

Let us note, however, that most of the purely algebraic frameworks, see, e.g., [HK07],
are designed particularly for conformal field theories, and do not apply, as they are, to
massive theories.On the other hand, it is natural to expect that a two-dimensional fullCFT
can be described in amore traditional framework for quantumfield theory, theWightman
axioms [SW00]. Wightman fields are operator-valued distributions on a Hilbert space,
and a reasonable description of such fields and the Hilbert space would be desirable.

Having explicitWightman fields is not just interesting on its own, but could be a start-
ing point for constructing non-conformal field theory, e.g., by perturbing the dynamics
of the CFT by these fields. Such an idea is presented in [Zam89], where certain massive
integrable fields are associated with charged fields in CFT. Perturbing the dynamics
of the free field on the same Hilbert space has been carried out on the de Sitter space
[BJM23]. Therefore, developing a theory of Wightman fields in two dimensions will be
a basis for rigorously studying the relations between CFT and massive models [JT23].

In this paper, we study full two-dimensional CFTs whose chiral components admit
a (finite or infinite) collection of automorphisms (invertible objects in the language of
tensor categories) among their irreducible representations (superselection sectors). We
will define and construct both two-dimensional conformal Haag–Kastler nets and two-
dimensional conformal Wightman fields explicitly in terms of the Hilbert space of the
chiral components and of their charged sectors. We introduce charged primary fields
as operators between different charged sectors of the chiral components, and combine
them to obtain local bulk fields.

To be more specific, let AL and AR be chiral conformal nets on S1 admitting a
family of automorphisms (including the defining vacuum representation) among their
charged representations (in the sense of Doplicher–Haag–Roberts [DHR69a,DHR69b,
DHR71,DHR74], but in one and two dimensions instead of four) parametrized by the
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same abelian group G. These automorphisms, respectively denoted by L(g) and R(g),
g ∈ G, are defined on the same Hilbert spaces, but we denote them as HL(g)

L ,HR(g)
R to

distinguish the representation. On the Hilbert space
⊕

g∈G HL(g)
L ⊗ HR(g)

R , the chiral
observables AL ⊗ AR act diagonally. We will add charged fields that shift the sectors
in the direct sum, under some condition on their braiding (which is satisfied in many
cases, see, e.g., the end of Sect. 6) and obtain full two-dimensional conformal nets and
conformal Wightman fields. Moreover, with a similar technique, we construct some
(presumably new) local conformal nets on S1 by taking the tensor product of a family
of conformal nets and then extending it, in such a way that a certain trivial total braiding
condition is fulfilled. This generalizes the well-known extensions of a single chiral U(1)-
current net [BMT88], and it can be seen as a variation of the “gluing” construction due
to [CKM22] for VOAs.

We describe explicitly the fields for the U(1)-current algebra. Charged primary fields
of a single chiral component are given as formal series between charged sectors [TZ12,
TL97]. We expect that our construction works for loop group nets (for a simply laced,
simple, simply connected, compact group) at level 1 as well [Was98,TL97].With a more
involved combination of left and right chiral components, it should also be possibile to
generalize it to other completely rational nets (when the charged fields are available),
in the presence of irreducible representations with statistical dimension greater that 1
(i.e., in the non-pointed tensor category case).

This paper is organized as follows. InSection2,we recall the fact that two-dimensional
conformal field theories extend to the Einstein cylinder, then set out the operator-
algebraic formulation of the chiral components and of the full two-dimensional CFTs.
We also collect some facts about representations and charged fields of chiral components,
in the case of automorphisms. In Section 3, from a family of chiral components equipped
with a collection of automorphisms and satisfying certain conditions on the braiding,
we construct an extension of their tensor product on S1. In Section 4, we take a pair of
left and right chiral components with a collection of automorphisms and assume that
their braidings cancel in a certain sense, and we construct a full two-dimensional CFT
extending the tensor product of the chiral components. In Section 5, we study the case
where the charged primary fields are given as formal series. Under similar assumptions
on the braiding and assuming energy bounds, we exhibit the Wightman fields responsi-
ble for the extensions at the level of nets constructed in the previous sections. In Section
6, we consider the explicit example of the U(1)-current. We exhibit its superselection
charge structure, the associated braiding and charged fields, and we show that they fit
in the general construction of the previous sections. In Section 7, we summarize our
outlook.

Notations
In order to keepuniformnotations throughout the paper,we label chiral (one-dimensional)
objects, while we use symbols without a label for two-dimensional objects.

• Aκ , φκ, j , ψκ,AL,AR, ψL, ψR: chiral net/chiral fields/chiral charged fields.

• AK , ψK : chiral extension/chiral charged local fields.
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• A: two-dimensional net.

• Ã, ψ̃ : two-dimensional net/two-dimensional charged local fields.

2. Preliminaries

2.1. Einstein cylinder. As suggested by [LM75], it is natural to study four-dimensional
conformally covariant Wightman fields on the Einstein cylinder1. Moreover, the confor-
mal group acts on the Einstein cylinder in a natural way and the fields are covariant with
respect to its action. In two dimensions, an analogous procedure can be carried out with
one more step because the two-dimensional Einstein cylinder is not simply connected.
To state these results, let us first discuss the conformal geometry. We follow [KL04b],
and start the discussion with the lightrays R in R

1+1.
The Möbius group PSL(2, R) ∼= Möb acts on the one-point compactification S1 of

R, where R is identified with S1 \ {−1} through the stereographic projection. Hence, by
lifting such action, its universal covering groupMöb acts onR, the universal covering of
S1. The original lightray R is identified with the interval (−π, π) in R as the universal
covering of S1. For an interval I such that I ⊂ (−π, π), there is a neighborhood U of
the unit element in Möb such that if γ ∈ U , then γ · I ⊂ (−π, π). In this sense, the
group Möb acts locally on the lightray.

The two-dimensional Minkowski space R
1+1 has the metric (a, b) = a0b0 − a1b1,

where a, b ∈ R
1+1. With the lightcone coordinates (a−, a+) =

(
a0−a1√

2
, a0+a1√

2

)
, the

Minkowski space is the product of two lightrays R
1+1=R × R (in the lightcone coordi-

nates, not the (a0, a1)-coordinates) and themetric canbewritten as (a, b) = a−b++a+b−.
A conformal transformation of R

1+1 is, by definition, a transformation of R
1+1 that pre-

serves the metric up to a scalar. From the above expression, it is clear that a product of
any pair of orientation-preserving diffeomorphisms of lightrays is a conformal transfor-
mation.

The diamond D0 = {(a−, a+) : −π < a± < π} can be mapped to the Minkowski
spaceR

1+1 by the conformal transformation (a−, a+) �→ (tan( 12a−), tan( 12a+)). Through
this transformation, R

1+1 can be identified with D0. On D0 = (−π, π) × (−π, π), the
group Möb × Möb acts locally in the sense above.

Let Rt be the lift of the rotation by t in Möb. In a two-dimensional conformal field
theory, the correlation functions are invariant under the local action of Möb×Möb, and
moreover, the spacelike 2π -rotations R := {R2nπ × R−2nπ : n ∈ Z} are often trivial.
If this holds, the field theory can be extended to the Einstein cylinder2 E = R

1+1/R. In
the most favorable case, the theory extends to E and there is also a local action of the
conformal group C = Diff+(S1) × Diff+(S1)/R (Fig. 1).

1 More precisely, [LM75] showed that, assuming that there are Wightman fields and their Euclidean n-
point functions are invariant under Euclidean conformal group, the representation of the Poincaré group can
be extended to SO(4, 2). See [KQR21, Section 8.3] for a recent review.

2 This is topologically equivalent to S1 × R, but the product structure is different from the lightray decom-
position.
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a1

a0

R
1+1

a+a−

Fig. 1. The Minkowski space R
1+1, depicted as the diamond. When the spacelike rotation R2π × R−2π is

trivial, the dotted lines are identified and it is a subset of the Einstein cylinder E

2.2. Chiral components and representation theory.

2.2.1. Conformal net on S1. Among two-dimensional conformal fields, there are those
that do not depend on one of the lightray coordinates. They are called chiral fields,
and can be restricted to the lightray, then extended to the circle S1 by locality. We put
the index κ to the objects in this section, although we study a single chiral field theory
at a time. Note that we do not use the index κ to distinguish between left and right
chiral components. This convention will be useful later when we combine different
chiral fields on either component of a two-dimensional conformal field theory, while we
denote two-dimensional objects without index.

Let us start with a net on R, and see how it extends to S1. Note that if a unitary
projective Uκ representation of Diff+(S1) on a Hilbert space Hκ is restricted to the
semisimple subgroup Möb, there is a unique true (non-projective) representation whose
quotient in PU(Hκ) coincides with Uκ . In this sense, we can consider the spectrum of
Uκ restricted to Möb without ambiguity [Bar54, Theorem 7.1].

We call a triple (Aκ ,Uκ ,�κ) a conformal net on R if Aκ assigns to each open
non-dense non-empty interval I ⊂ R a von Neumann algebraAκ(I ) on a Hilbert space
Hκ , Uκ is a unitary projective representation of Diff+(S1) and �κ ∈ Hκ such that

(1dCN1) Isotony: if I1 ⊂ I2, then Aκ(I1) ⊂ Aκ(I2).
(1dCN2) Locality: if I1 and I2 are disjoint, then Aκ(I1) ⊂ Aκ(I2)′.
(1dCN3) Diffeomorphism covariance: For a bounded interval I ⊂ R, there is a neigh-

borhood U of the unit element of Diff+(S1) such that if γ ∈ U then γ · I ⊂ R

and
Uκ(γ )Aκ(I )Uκ(γ )∗ = Aκ(γ · I ).

Furthermore, if supp γ is disjoint from I , then AdUκ(γ )(x) = x for
x ∈ Aκ(I ).

(1dCN4) Positivity of energy: the restriction of Uκ to the translation subgroup
R ⊂ Möb has the spectrum contained in R+.

(1dCN5) Vacuum and the Reeh-Schlieder property: there exists a unique (up to a
phase) vector �κ∈Hκ such that Uκ(g)�κ=�κ for g∈Möb and Aκ(I )�κ =
Hκ .

If we assume only the covariance with respect to Möb, we call it a Möbius-covariant
net.
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If Uκ factors through Diff+(S1) as a projective representation, that is, if Uκ(R2nπ ),

n ∈ Z is a scalar, thenAκ can be extended to a net defined on the set I of non-dense, non-
trivial open intervals on S1 and it satisfies the usual axioms of conformal net on S1, that
is a triple (Aκ ,Uκ ,�κ) satisfying isotony, locality, Diff+(S1)-covariance, positivity of
energy and the vacuum properties. See, e.g., [KL04a, Section 2.1], [CKLW18, Chapter
3].

We also recall that Uκ can be made into a unitary multiplier representation (rather
than projective) of Diff+(S1), that is, Uκ(γ1)Uκ(γ2) = c(γ1, γ2)Uκ(γ1γ2) for some
c(γ1, γ2) ∈ C [Car04, Theorem A.2], [FH05, Proposition 5.1]. Such c is called the
cocycle of the multiplier representation.

Proposition 2.1. Let (Aκ ,Uκ ,�κ) be a conformal net on R. Assume furthermore that
Uκ(R2π ) = 1 (in PU(Hκ)), that is, the lift of 2π -rotation is trivial. Then (Aκ ,Uκ ,�κ)

extends to S1.

Proof. If Uκ(R2π ) = 1, then its adjoint action is trivial, and the natural extension of
Aκ on (−π, π) to R (the universal covering of S1) is periodic, hence we can regard it as
a net on S1. It is known that the positivity of energy restricted to the rotation subgroup
and that to the translation subgroup are equivalent (see, e.g., [Wei06, Lemma 3.1]). The
remaining axioms of [KL04a, Section 2.1] follow easily. ��

The assumptionUκ(R2π ) = 1 is necessary, but we do not know whether this follows
from more general assumptions (cf. the Bisognano–Wichmann property is necessary
and sufficient [GLW98, Theorem 1.4], but we are not aware whether it is automatic for
conformal nets on R).

There is an example of a net on R with a weaker covariance and not extending
to S1 (Uκ is only a projective representation of the group generated by translations,
dilations and diffeomorphisms of R with compact support): the U(1)-current net with
the perturbed stress-energy tensor [BSM90], see also the discussion in [MT19, Section
5.2].

2.2.2. Representations of chiral conformal nets. A representation of a conformal net
Aκ (or more precisely of (Aκ ,Uκ ,�κ)) on S1 is a family of representations ρ = {ρI }
of {Aκ(I )}I∈I on a single Hilbert space Hρ

κ , which is compatible in the sense that if
I1 ⊂ I2, then ρI2 |Aκ (I1) = ρI1 . If Hρ

κ is equal to Hκ and ρI (Aκ(I )) = Aκ(I ), equiva-
lently if the C∗-tensor categorical or statistical dimension dρ equals 1, we say that ρ is
an automorphism of Aκ .

Let us summarize the general theory of representations in the case of automorphisms
(cf. [MTW18, Section 6]):

• Any automorphism is irreducible, hence diffeomorphism covariant in the following
sense (cf. [DFK04, Theorem 6] for projective representations, [CDVIT21, Section
3.2] for local multiplier representations): there is a local unitary multiplier repre-
sentation Uρ

κ of a neighborhood U of the unit element of Diff+(S1) with the same
cocycle as that of Uκ such that Uρ

κ (γ ) = ρ(Uκ(γ )) if supp γ ⊂ I for some I and
AdUρ

κ (γ )(ρ(x)) = ρ(AdUκ(γ )(x)) for x ∈ Aκ(I ) for some I , γ ∈ U (the last
restriction is why we call it a local representation).Uρ

κ extends to Diff+(S1) as a pro-
jective representation because Diff+(S1) is simply connected. Moreover, its restric-
tion to Möb is a true representation and it has automatically positive energy [Wei06,
Theorem 3.8]. Therefore, the lowest eigenvalue of the generator of lift rotations Lρ

0 is
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uniquely determined, and we denote it by Dκ,ρ . This is called the conformal dimen-
sion. As the 2π -rotation is trivial, the spectrum of Lρ

0 is contained in Dκ,ρ +(N∪{0}).
By the first part of the proof of [FH05, Theorem 5.1], the representation Uρ

κ extends
to a unitary multiplier representation of Diff+(S1).

• If ρ, ρ′ are two representations of Aκ and there is a unitary V ∈ U(Hκ) such that
VρI (x) = ρ′

I (x)V , for every x ∈ Aκ(I ) and for all I ∈ I we say that they are
unitarily equivalent. We also say that V is a unitary intertwiner between ρ and ρ′.

• An automorphism is said to be localized in I if ρI ′ = id, where I ′ is the interior
of S1 \ I . In this case, ρI maps Aκ(I ) to itself, i.e., it is an endomorphism (in this
case an automorphism) of Aκ(I ), by Haag duality on S1, [GF93, Theorem 2.19]
(i.e., Aκ(I ′) = Aκ(I )′ for every I ∈ I, cf. [BSM90]). Given ρ localized in I1, one
can always find a unitarily equivalent automorphism localized in another interval I2.
(More generally, every representation of a conformal net on a separable Hilbert space
can be localized in any given interval, [GF93, Lemma 4.6]). If I1 ∪ I2 is not dense
in S1, one can take a proper interval I that contains I1 ∪ I2, and by Haag duality on
S1, the unitary operator V implementing the equivalence belongs to Aκ(I ). Such a
V is called a charge transporter.

• The operator zκ,ρ(γ ) := Uκ(γ )Uρ
κ (γ )∗ for γ ∈ Diff+(S1) is a charge transporter

between ρ and ργ , where ργ := AdUκ(γ ) ◦ ρ ◦AdUκ(γ −1) is localized in γ · I if
ρ is localized in I . We call zκ,ρ(γ ) the covariance cocycle, or just cocycle, of ρ.

• The DHR tensor (or monoidal) product of representations ρ1 and ρ2 is defined
by the composition of the associated endomorphisms (automorphisms in this case)
localized in each I . Note that the tensor product is not given by considering the tensor
product Hilbert space, which would not give a well-defined family of representations
of the local algebras. In symbols, (ρ1)I ⊗ (ρ2)I := (ρ1)I ◦ (ρ2)I , or just (ρ1)I (ρ2)I ,
for short. The resulting representation is denoted by ρ1⊗ρ2, or just by ρ1ρ2. See, e.g.,
[GF93, Section IV.2]. For strongly additive conformal netsAκ on S1 (i.e.,Aκ(I1) ∨
Aκ(I2) = Aκ(I ) for every I ∈ I and I1, I2 ∈ I arising as connected components of
I � {p}, p ∈ I ), or equivalently for conformal nets on R that satisfy Haag duality on
R, the tensor product can be defined globally, see, [KLM01, Appendix B], [GR18,
Section 2], which is closer in spirit to the original definition of Doplicher–Haag–
Roberts [DHR69a,DHR69b].

• Letρ1, ρ2 be two automorphisms localized in I . In order to define theDHRbraiding
[DHR71,FRS89] between ρ1 and ρ2, let us choose a point on S1, identified with
the point at infinity by means of the corresponding stereographic projection onto

R. Take ρ̃1, ρ̃2 localized in Ĩ1, Ĩ2, respectively, such that Ĩ1 ∩ Ĩ2 = ∅, Ĩ1, Ĩ2 are
away from infinity, and take charge transporters V1, V2 between ρ1 and ρ̃1, ρ2 and
ρ̃2, respectively. The operator ε±

ρ1,ρ2
:= ρ2(V ∗

1 )V ∗
2 V1ρ1(V2), where ± depends on

whether I1 is on the left or right of I2, is a unitary intertwiner between ρ1ρ2 and ρ2ρ1
with all the properties of a unitary braiding in a unitary tensor category. It does not
depend on the choice of ρ̃1, ρ̃2 or V1, V2 under the same configuration of Ĩ1, Ĩ2, or
on the chosen point at infinity, see, e.g., [GF93, Section IV.4].

• Let ρ be an automorphism localized in I . The conjugate automorphism ρ of ρ is
the automorphism localized in I ′ given by j ◦ ρ ◦ j , where j = Ad JI and JI is the
modular conjugation ofAκ(I ) with respect to the vacuum. It follows that ρ ◦ρ ∼= id,
see [GL92, Theorem 8.3], [GL96, Theorem 2.11].

Let (Bκ ,Uκ ,�κ) be a conformal net on S1 and let {Aκ}I∈I be a family of von
Neumann subalgebras Aκ(I ) ⊂ Bκ(I ) satisfying covariance with respect to Uκ . Then,
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on the subspaceHAκ
= ⋃

I∈I Aκ(I )�κ , (Aκ |HAκ
,Uκ |HAκ

, �κ) is aMöbius-covariant
net with respect to Uκ because Uκ(γ )x�κ = AdUκ(γ )(x)�κ ∈ A(γ · I )� for x ∈
Aκ(I ), thus Uκ(γ ) preserves HAκ

. The restriction of Uκ |HAκ
to Möb often extends to

Diff+(S1) and Aκ |HAκ
is covariant with respect to it, in which case we say that Aκ is

a (conformal) subnet of Bκ and write Aκ ⊂ Bκ for simplicity. In this case, we say that
Bκ is an extension of Aκ .

2.2.3. Charged fields associated with automorphisms. Let {(Aκ ,Uκ ,�κ)} be a confor-
mal net on S1. In this section, we assume that among its irreducible representations there
are non-trivial automorphisms. In the language of tensor categories, the representations
of Aκ contain a (braided) pointed tensor subcategory.

The construction of charged fields and extensions performed in this section is inspired
by [DHR69b,DR89a,DR90] in the four-dimensional context, cf. [Bau95, Chapter 3],
where the unitary tensor categories in question are in addition symmetrically braided
(hence dual to a compact group [DR90]). In [DHR69b] the pointed case is investigated, as
in our case. See also [Müg01] for comparison with the one and two-dimensional context.

Fix an interval I ∈ I. Let
κ be a choice of mutually inequivalent automorphisms of
Aκ localized in I , one for each unitary equivalence class, including the trivial automor-
phism id (the defining vacuum representation) ofAκ . Under the present assumption, the
equivalence classes of automorphisms form a discrete (finite or infinite) abelian group
G under class multiplication [ρ][σ ] = [ρσ ] (where ρσ is the composition of auto-
morphisms) and inversion [ρ]−1 = [ρ−1]. Let us assume that G is finitely generated,
whose elements we denote by g, h, g−1, . . ., and we denote by ι the identity element. Let
κ(g) ∈ 
κ , for every g ∈ G, be the previouslymade choice of automorphisms ofAκ .We
assume that κ(ι) = id. Without loss of generality, by suitably changing the localization
of the automorphisms inside I , we may assume that κ(g)κ(h) = κ(h)κ(g) for every
g, h ∈ G. Note that we are not assuming κ(g)κ(h) = κ(gh), as 
κ need not be closed
under composition and inverses. For every g, h ∈ G, let V g,h be a unitary intertwiner in
Aκ(I ) between κ(gh) and κ(g)κ(h) realizing the equivalence [κ(gh)] = [κ(g)][κ(h)].
Namely, V g,hκ(gh)(x) = κ(g)(κ(h)(x))V g,h for every x ∈ Aκ(I ). We may assume
that V g,h = V h,g and that V g,ι = V ι,h = 1.

For each g ∈ G, we define the operator ψ
g
κ acting on the Hilbert space

Ĥκ := ⊕
g∈G Hκ(g)

κ , where Hκ(g)
κ := Hκ the vacuum Hilbert space of Aκ , by setting
(ψg

κ )h := V g,h()gh,

for every  ∈ Ĥκ . We call the ψ
g
κ charged field operators. They satisfy the following:

• Each ψ
g
κ is unitary on Ĥκ and it maps Hκ(h)

κ toHκ(gh)
κ for every h ∈ G.

• Consider the representation κ̂(x) := ⊕
h∈G κ(h)(x) of x ∈ Aκ(I ) on Ĥκ . Then

(ψg
κ κ̂(x))h = V g,h (

κ̂(x)
)
gh

= V g,hκ(gh)(x) ()gh

= κ(g)(κ(h)(x))V g,h ()gh

= κ(h)(κ(g)(x))V g,h ()gh

= κ(h)(κ(g)(x))
(
ψg

κ 
)
h

= (
κ̂(κ(g)(x))ψg

κ 
)
h ,
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for every  ∈ Ĥκ , where we used that κ(h) and κ(g) commute in the 4th equality.
Therefore, we have the “charged field intertwiner” property (in the sense of
Doplicher–Roberts [DR72]) together with its conjugate (by substituting x with
κ(g)−1(x∗)):

ψg
κ κ̂(x) = κ̂(κ(g)(x))ψg

κ ,

(ψg
κ )∗κ̂(x) = κ̂(κ(g)−1(x))(ψg

κ )∗, (2.1)

for every x ∈ Aκ(I ), as operators on Ĥκ .
• The covariance cocycles zκ(g)(γ ) for γ ∈ Diff+(S1) are unitary charged transporters
between κ(g) and κ(g)γ , and they fulfill the following tensoriality property.
Tensoriality of cocycles: zκ(g)(γ )κ(g)(zκ(h)(γ )) = zκ(g)κ(h)(γ ), or equivalentlywrit-
ten as zκ(g)(γ ) ⊗ zκ(h)(γ ) = zκ(g)⊗κ(h)(γ ).
See [Lon97, Appendix A], [DG18, Section 7], [MTW18, Proposition 6.1].

• Let Ûκ(γ ) := ⊕
h∈G U κ(h)

κ (γ ) be a representation of Diff+(S1). As in [DG18,
Theorem 7.7], [MTW18, Section 6], we get

(Ûκ(γ )ψg
κ Ûκ(γ )∗)h = U κ(h)

κ (γ )(ψg
κ Ûκ(γ )∗)h

= U κ(h)
κ (γ )V g,h(Ûκ(γ )∗)gh

= U κ(h)
κ (γ )V g,hU κ(gh)

κ (γ )∗()gh

= U κ(h)
κ (γ )U κ(g)κ(h)

κ (γ )∗V g,h()gh

= U κ(h)
κ (γ )U κ(ι)

κ (γ )∗U κ(ι)
κ (γ )U κ(g)κ(h)

κ (γ )∗V g,h()gh

= zκ(h)(γ )∗zκ(h)κ(g)(γ )V g,h()gh

= κ(h)(zκ(g)(γ ))V g,h()gh

= (κ̂(zκ(g)(γ ))ψg
κ )h,

for every  ∈ Ĥκ . We used that U κ(g)
κ (γ ) = κ(g)(Uκ(γ )) if supp γ ⊂ I in the

4th equality (see Sect. 2.2.2), the definition of zκ(g)(γ ) in the 6th equality, and the
tensoriality of the cocycles in the 7th equality.
Therefore, we have the following “covariance property” of the charged fields: for
every γ ∈ Diff+(S1), as operators on Ĥκ ,

Ad Ûκ(γ )(ψg
κ ) = κ̂(zκ(g)(γ ))ψg

κ ,

Ad Ûκ(γ )((ψg
κ )∗) = κ̂(zκ(g)−1(γ ))(ψg

κ )∗, (2.2)

whereweused that (ψg
κ )∗κ̂(zκ(g)(γ )∗)= κ̂(κ(g)−1(zκ(g)(γ )∗))(ψg

κ )∗ = κ̂(zκ(g)−1(γ ))

(ψ
g
κ )∗ by the charged field intertwiner property of (ψ

g
κ )∗ and the tensoriality of co-

cycle.

Remark 2.2. Note that the charged fields constructed above are highly non-canonical,
as they depend, e.g., on the choice of V g,h for every g, h ∈ G (each V g,h is unique
up to unitary equivalence). Note also that we are demanding neither ψ

g
κ ψh

κ = ψ
gh
κ ,

nor ψ
g
κ

∗ = ψ
g−1

κ for g, h ∈ G, i.e., the charged field operators need not form a group,
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cf. [Reh90a, Section 3]. Nevertheless, by the intertwiner and covariance properties, for
every choice of V g,h , they give rise to relatively local (but possibly neither irreducible,
nor factorial) extensions of Aκ .

Later we shall need the condition ψ
g
κ ψh

κ = ψh
κ ψ

g
κ (established in Proposition 2.3

below) on the charged fields just defined, in order to produce local extensions of tensor
products by “gluing” conformal nets. Note that ψ

g
κ ψh

κ = ψh
κ ψ

g
κ , alone, does not mean

locality of the extension. Note also that the groupmultiplication conditionψ
g
κ ψh

κ = ψ
gh
κ

would imply the commutativity condition ψ
g
κ ψh

κ = ψh
κ ψ

g
κ , as G is abelian.

Proposition 2.3. In the notation of this section, suppose that G = Zn whose elements
we label by {0, 1, . . . , n − 1} modulo n, and let α ∈ 
κ be an automorphism localized
in I such that αk ∈ 
κ for all k = 0, 1, . . . , n − 1 and [αn] = [id]. Choose a unitary
V ∈ Aκ(I ) intertwining id with αn, i.e., V x = αn(x)V for every x ∈ Aκ(I ). Let the
V g,h, g, h ∈ G, be defined by V g,h := V if g + h ≥ n, where g, h ∈ {0, 1, · · · , n − 1}
are thought of as representatives, and by V g,h := 1 if g + h < n. Then ψ

g
κ ψh

κ = ψh
κ ψ

g
κ

and (ψ
g
κ )∗ψh

κ = ψh
κ (ψ

g
κ )∗ for every g, h ∈ G.

Proof. Only in this proof, we use the additive notation g + h for the group operation.
We first note that with our choice V g,hκ(g + h) = κ(g)κ(h)V g,h . By taking the

representative g, h ∈ {0, 1, . . . , n − 1}, this can be checked by cases depending on
whether g + h ≥ n or g + h < n and using that κ(g) = κ(1)g .

From the definition, it is straightforward thatψ1
κ (where the upper index 1 is the group

element, not the exponent) is the product of a shift on
⊕

g∈G Hκ(g)
κ = ⊕

g∈G Hκ as a

Hilbert space followed by 1 or V , and thatψg
κ = (ψ1

κ )g , again with g ∈ {0, 1, . . . , n−1}.
From this it is clear that ψg

κ , (ψ
g
κ )∗ and ψh

κ commute. ��
Now letG be a finitely generated abelian group. Then it is isomorphic to a finite prod-

uct of cyclic groups Zn or Z. Let us assume that 
κ is a choice of mutually inequivalent
automorphisms of Aκ localized in I and their equivalence classes form G as a group.
For each of the finite cyclic groups Zn in G, we can choose a generator in 
κ localized
in a smaller interval I ⊂ I . For each of these generators, we choose V h,g ∈ A(I ) as
in Proposition 2.3, constructing the operator ψh

κ for such h, g ∈ Zn . We can make this
choice for each copy of Zn by choosing finitely many mutually disjoint smaller intervals
inside I , obtaining commuting operators ψh

κ , ψ
g
κ where g, h are in different finite cyclic

groups inG. For each of the copies of the infinite cyclic groupZ, we can take a generator
1 and we may assume that κ(g) = κ(1)g for all g ∈ Z, thus we can set V g,h := 1 and
ψ

g
κ ψh

κ = ψ
gh
κ for every g, h ∈ Z. Altogether, we obtain charged fields ψh

κ for every
h ∈ G, satisfying ψh

κ ψ
g
κ = ψ

g
κ ψh

κ .

Remark 2.4. Even if G is not finitely generated, if there is a choice of 
κ such that
κ(g)κ(h) = κ(gh), then one can construct ψh

κ satisfying ψ
g
κ ψh

κ = ψ
gh
κ = ψh

κ ψ
g
κ as

in [MTW18, Section 6], thus (ψg)∗ = ψg−1
and the rest of our construction works as

well. This happens with the U(1)-current net with G = Q or R.

2.3. Two-dimensional conformal nets. In [KL04b], it was shown that any Haag–Kastler
net on R

1+1 that is locally conformally covariant extends to the Einstein cylinder, using
a slight modification of the conformal spin-statistics theorem [GL96], [MT19, Theorem
A.5]. To state this result precisely, let us start with a net on R

1+1. We call a triple
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(A,U,�) a conformal net on R
1+1 if A assigns to each open region O ⊂ R

1+1 a von
Neumann algebra A(O) on a Hilbert space H, U is a unitary projective representation
of Diff+(S1) × Diff+(S1) and � ∈ H satisfying

(2dCN1) Isotony: if O1 ⊂ O2, then A(O1) ⊂ A(O2).
(2dCN2) Locality: if O1 and O2 are spacelike separated, then A(O1) ⊂ A(O2)

′.
(2dCN3) Diffeomorphism covariance: For a bounded region O ⊂ R

1+1, there is a
neighborhood U of the unit element of Diff+(S1) × Diff+(S1) such that if
γ ∈ U then γ · O ⊂ R

1+1 and

U (γ )A(O)U (γ )∗ = A(γ · O).

Furthermore, if supp γ is disjoint from O , then AdU (γ )(x) = x for A(O).
(2dCN4) Positivity of energy: the restriction of U to the translation subgroup R

2 ⊂
Möb×Möb has the joint spectrum contained in the closed forward light cone
V+ = {(a0, a1) ∈ R

1+1 : a20 − a21 ≥ 0, a0 ≥ 0}.
(2dCN5) Vacuum and the Reeh-Schlieder property: there exists a unique (up to a

phase) vector � ∈ H such thatU (g)� = � for g ∈ Möb and is cyclic for any
local algebra, namely A(O)� = H.

If there is a conformal net on R
1+1 as above, we can consider it as a net on the diamond

D0 = (−π, π)× (−π, π) as in Sect. 2.1. With this identification, the group Diff+(S1)×
Diff+(S1) acts on R × R, and we can extend the net A by covariance. However, this
extension is not very natural. Indeed, it often happens that the conformal net extends to
E rather than toR×R. We say that (A,U,�) is a conformal net on E ifA is defined for
regions inE , covariantwith respect toU along the natural action ofDiff+(S1)×Diff+(S1)
and local in the sense that A(O1) and A(O2) commute whenever there is a translation
γ of the cylinder such that D0 contains γ · O1, γ · O2 and they are spacelike there.
A sufficient condition is given in [MT19, Theorem A.5] (the Bisognano–Wichmann
property for wedges), however, it is not immediate to check it in the examples we
construct. Instead, the following is easier to check and gives immediately the desired
extension.

Proposition 2.5. Let (A,U,�) be a conformal net on R
1+1. Assume furthermore that

U (R2π × R−2π ) = 1 (in PU(H)), that is, the spacelike 2π -rotation is trivial. Then
(A,U,�) extends to a conformal net on E .
Proof. This is parallel to Proposition 2.1.

As U (R2π × R−2π ) = 1, the representation U factors through the group C (see
Sect. 2.1). Furthermore, asU (R2π × R−2π ) = 1, for any region O ,A(O) andA(R2π ×
R−2π ·O) coincide. Therefore, we can identify any point x onR×R and R2π ×R−2π ·x ,
and obtain the Einstein cylinder E . Covariance follows by definition, and locality in the
sense above follows from covariance and locality in D0. ��
In the situation of Proposition 2.5, our net (A,U,�) is equivalent to a local conformal
net in the sense of [KL04b, Section 2].

Rehren introduced the maximal chiral nets of a two-dimensional conformal net
(A,U,�) that extends toE [Reh00]: let IL×IR be adiamond inR

1+1.DefineAmax
L (IL) =

A(IL × IR) ∩ U (ι × Diff+(S1))′, where ι is the unit element of Diff+(S1). Then Amax
L

is a priori a conformal net on R defined on the Hilbert subspace HL = Amax
L �, and

satisfies the condition of Proposition 2.1, therefore, it extends to S1. Similarly, one can
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defineAmax
R onHR. The original full netA contains the tensor productAmax

L ⊗Amax
R on

the subspaceHL ⊗HR ⊂ H (more precisely, there is a natural injective homomorphism
from Amax

L ⊗ Amax
R into A). In this sense, a generic two-dimensional conformal net A

is an extension of the tensor product net Amax
L ⊗ Amax

R .

3. One-Dimensional Gluing from Trivial Total Braiding

In this Section, from a family of conformal nets on S1 satisfying certain conditions, we
construct local extensions of their tensor products. Let us start with a finite collection
conformal nets {(Aκ ,Uκ ,�κ)}κ∈K on S1 labelled by κ ∈ K , |K | < ∞. We fix an
interval I ∈ I. We assume that each Aκ admits a (not necessarily finite) collection

κ of mutually inequivalent and commuting automorphisms localized in I , containing
the trivial automorphism idκ , and whose fusion rules (up to unitary equivalence) are
isomorphic to the same abelian group G, as in Sect. 2.2.3. This group G should be either
a finitely generated abelian group, or we assume that we can choose elements in 
κ

and charged fields ψh
κ as in Sect. 2.2.3, fulfilling the conclusions of Proposition 2.3 (for

each κ ∈ K ). Denote also by κ : G → 
κ a bijection (not necessarily an isomorphism,
as each 
κ need not be closed under composition and inverses), such that κ(ι) = idκ ,
for each κ ∈ K . Here κ is used as an index as well as a map, with a slight abuse of
notations, hence κ(g) is an automorphism of Aκ . Furthermore, we assume that, for all
g1, g2, g ∈ G,

• ∏
κ ε±

κ(g1),κ(g2)
= 1,

• ∏
κ ε±

κ(g1)−1,κ(g2)
= 1,

• ∑
κ Dκ,κ(g) ∈ Z,

where the choice of ± above is common for all κ , and we denoted by the same symbol
ε±
κ(g1),κ(g2)

the phase multiple of 1 (the trivial intertwiner between κ(g1)κ(g2) and itself)
associated with the braiding of κ(g1) and κ(g2). This makes sense by the commutativity
assumption on 
κ , namely κ(g1)κ(g2) = κ(g2)κ(g1).

Now we construct a conformal net AK on S1 as follows.

• The Hilbert space of our net is HK := ⊕
g∈G

⊗
κ∈K Hκ(g)

κ . On this space, we let

any operator of the form
⊗

κ xκ ∈ ⊗
κ Aκ(I ) act3 as

⊕
g∈G

⊗
κ κ(g)(xκ). Denote

this representation of the tensor product net
⊗

κ Aκ by K .

• We also consider an auxiliary tensor product space ĤK := ⊗
κ∈K

⊕
g∈G Hκ(g)

κ ⊃
HK . The representation of the element

⊗
κ xκ on this space is denoted by K̂ (

⊗
κ xκ).

We have K̂ (
⊗

κ xκ)|HK = K (
⊗

κ xκ).

• The vacuum vector of the net AK will be �K := ⊗
κ �κ ∈ ⊗

κ Hκ(ι)
κ , belonging

to the ι-th component of HK .
• The covariance is given by UK (γ ) := ⊕

g∈G
⊗

κ U
κ(g)
κ (γ ), which is a unitary

multiplier representation of Diff+(S1). By the condition that
∑

κ Dκ,κ(g) ∈ Z, UK
satisfies the assumptions of Proposition 2.1 and is a unitary multiplier representation
of Diff+(S1). Thus by ignoring the phase, it is a unitary projective representation of
Diff+(S1). This also extends naturally to ÛK on ĤK .

3 To clarify the notation once more, κ in xκ and 
κ works as an index to distinguish different tensor
components, while κ in κ(g) indicates the choice of automorphism in 
κ labelled by g ∈ G. Therefore,
κ(g)(xκ ) is a bounded operator on Hg

κ . In general, κ works as an index except for κ(g).
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• For each element g ∈ G, we introduce the charged field operator ψ
g
K as follows.

Our Hilbert spaceHK = ⊕
g∈G

⊗
κ Hκ(g)

κ is a “diagonal” subspace of the auxiliary

Hilbert space ĤK = ⊗
κ Ĥκ = ⊗

κ

⊕
g∈G Hκ(g)

κ in a natural way, where recall that

Ĥκ was defined and used in Sect. 2.2.3. Let

ψ
g
K :=

⊗

κ

ψg
κ ,

whereψ
g
κ are charged fields acting as in Sect. 2.2.3 on Ĥκ , henceψ

g
K acts on

⊗
κ Ĥκ

but preserves HK . Now, for the ψ
g
κ we make the choice of the V g,h leading to the

conclusions of Proposition 2.3 and comments thereafter. Namely, we choose charged
fields such that ψg

κ ψh
κ = ψh

κ ψ
g
κ and (ψ

g
κ )∗ψh

κ = ψh
κ (ψ

g
κ )∗ for every g, h ∈ G.

• From the charged intertwiner property (2.1), it follows that

ψ
g
K K̂ (

⊗

κ

xκ) = K̂

(
⊗

κ

κ(g)(xκ)

)

ψ
g
K , (3.1)

(ψ
g
K )∗ K̂ (

⊗

κ

xκ) = K̂

(
⊗

κ

κ(g)−1(xκ)

)

(ψ
g
K )∗. (3.2)

• The local algebras are given as follows. For the interval I fixed above, we set

AK (I ) := K̂

(
⊗

κ

Aκ(I )

)

∨ {ψg
K , (ψ

g
K )∗}g∈G .

For any other interval γ · I ⊂ R given by the action of a diffeomorphism γ , we set
AK (γ · I ) := AdUK (γ )(AK (I )). We will show below that this net is well-defined,
diffeomorphism covariant, local, and it extends to S1.

Theorem 3.1. Let {(Aκ ,Uκ ,�κ)}κ∈K as above and assume that {
κ}κ∈K , their braid-
ing and Dκ,κ(g) satisfy the conditions stated at the beginning of this section. Then the net
(AK ,UK ,�K ) satisfies (1dCN1)–(1dCN5) and the condition of Proposition 2.1, hence
provides a conformal net on S1, extending the chiral tensor product net

⊗
κ Aκ .

Proof. Although the calculations will be similar to those of [MTW18, Section 6], the
setting is different because we construct a chiral net on S1, instead of two-dimensional
on E . Let us present the proofs to exhibit why this works for tensor products of |K |
factors.

Let usfirst compute on the auxiliaryHilbert space
⊗

κ Ĥκ with ÛK (γ ) := ⊗
κ Ûκ(γ ),

where Ûκ(γ ) = ⊕
h∈G U κ(h)

κ (γ ) was defined and used in Sect. 2.2.3. Using the covari-
ance property of charged fields (2.2) (i.e., the formula for the adjoint action of Ûκ(γ )

on ψ
g
κ acting on each Ĥκ ), we get

Ad ÛK (γ )(ψ
g
K ) = K̂

(
⊗

κ

zκ(g)(γ )

)

ψ
g
K ,

Ad ÛK (γ )((ψ
g
K )∗) = K̂

(
⊗

κ

zκ(g)−1(γ )

)

(ψ
g
K )∗.
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Furthermore, we also have ψ
g
Kψh

K = ψh
Kψ

g
K , (ψ

g
K )∗ψh

K = ψh
K (ψ

g
K )∗ by the commuta-

tion condition we imposed on the charged fields ψ
g
κ , ψh

κ , and (ψ
g
κ )∗.

We have to make sure that AK (γ · I ) is well-defined, that is, the definition does
not depend on the choice of γ . This question reduces to whether AdUK (γ )(AK (I )) =
AK (I ) if γ · I = I . This is true because we can check the inclusion for γ with compact
support and generating elements of AK (I ):

AdUK (γ )

(

K

(
⊗

κ

xκ

))

= K

(
⊗

κ

AdUκ(γ )(x)

)

∈ AK (I ),

Ad ÛK (γ )(ψ
g
K ) = K̂

(
⊗

κ

zκ(g)(γ )

)

ψ
g
K ∈ AK (I ),

Ad ÛK (γ )((ψ
g
K )∗) = K̂

(
⊗

κ

zκ(g)−1(γ )

)

(ψ
g
K )∗ ∈ AK (I ).

because zκ(g)(γ ) ∈ Aκ(I ). As a generalγ can bewritten as a product of diffeomorphisms
with compact supports, this gives the inclusion AdUK (γ )(AK (I )) ⊂ AK (I ), and the
converse inclusion is obtained by applying this to γ −1.

With this well-definedness, the first part of covariance (1dCN3) follows by definition.
Concerning the second part, if supp γ is disjoint from I , then UK (γ ) commutes both
with K̂

(⊗
κ Aκ(I )

)
by covariance of Aκ . Furthermore, UK (γ ) commutes with ψ

g
K

because componentwise ψ
g
K is a product of the shift and an element in

⊗
κ Aκ(I ),

while UK (γ ) ∈ K̂
(⊗

κ Aκ(I ′)
)
and this commutes with the shift because the κ(g) are

localized in I .
Positivity of energy (1dCN4) follows because UK is a direct sum of positive-energy

representations. The vacuum �K is invariant under UK |Möb because it is the tensor
product of the vacuum vectors of Aκ . It is cyclic for AK (I1), where I1 ⊂ I ′, because
AK (I1)�K spans

⊗
κ Hκ due to the cyclicity of the vacua of Aκ , and the whole HK ,

since AK (I1) contains the shifts K̂ (zg(γ ))ψ
g
K (up to a unitary on the left). From the

assumption
∑

κ Dκ,κ(g) ∈ Z for each g ∈ G, we can apply Proposition 2.1.
As for locality, we take γ such that γ · I is disjoint from I .We have to show that gener-

ating elements K̂ (
⊗

κ xκ),ψg1
K ofAK (I ) andAdUK (γ )

(
K̂ (

⊗
κ yκ)

)
,AdUK (γ )

(
ψ

g2
K

)

ofAK (γ · I ) commute. This is easy except the one involving ψ
g1
K and AdUK (γ )(ψ

g2
K ).

As we have seen, AdUK (γ )(ψ
g
K ) = K̂

(⊗
κ zκ(g)(γ )

)
ψ

g
K . Therefore, to compute the

commutator,

ψ
g1
K AdUK (γ )(ψ

g2
K ) = ψ

g1
K K̂

(
⊗

κ

zκ(g2)(γ )

)

ψ
g2
K

= K̂

(
⊗

κ

κ(g1)(zκ(g2)(γ ))

)

ψ
g1
K ψ

g2
K ,

and

AdUK (γ )(ψ
g2
K )ψ

g1
K = K̂

(
⊗

κ

zκ(g2)(γ )

)

ψ
g2
K ψ

g1
K .
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Now observe that zκ(g2)(γ )∗κ(g1)(zκ(g2)(γ )) = ε±
κ(g1),κ(g2)

(the DHR braiding, a scalar
in the case of automorphisms κ(g1) and κ(g2))where the± sign depends only onwhether
γ moves I to the left or to the right, and the choice of ± is common for all κ). Hence
the two left hand sides above are equal if and only if

∏
κ ε±

κ(g1),κ(g2)
= 1 and ψ

g1
K ψ

g2
K =

ψ
g2
K ψ

g1
K for every g1, g2 ∈ G. The commutation between (ψ

g1
K )∗ and AdUK (γ )(ψ

g2
K )

follows too by replacing κ(g1) by κ(g1)−1 and using the condition
∏

κ ε±
κ(g1)−1,κ(g2)

= 1

and (ψ
g1
K )∗ψg2

K = ψ
g2
K (ψ

g1
K )∗. Locality for general intervals follows from the previous

paragraph and covariance. ��

If all Aκ are strongly additive, that is, Aκ(I3) = Aκ(I1) ∨ Aκ(I2) where I1, I2 is
obtained by removing one point from I3, then AK is strongly additive, too. This can
be seen by taking I1 = I , then AK (I3) is generated by the same ψ

g
K ∈ AK (I ) and

K (
⊗

κ xκ ), xκ ∈ Aκ(I3) = Aκ(I ) ∨ Aκ(I2).
This construction can be carried out even if there is only one index κ , if the condi-

tion ε±
κ(g1),κ(g2)

= 1 is satisfied. When applied to the U(1)-current net, this gives the
extensions considered in [BMT88], cf. Sect. 6, where G = Z, the map κ is a group
isomorphism, and κ(g1), κ(g2) are powers of the same fixed automorphism κ(h) having
ε±
κ(h),κ(h) = 1 (bosonic automorphism).

4. Two-Dimensional Conformal Field Theory Arising from Braiding–Cancelling
Map

With an idea similar to that of Sect. 3, we construct conformal nets onR
1+1. Here we start

with left and right chiral components, take their tensor product as a two-dimensional
conformal net, then find extensions of it. The problem of constructing extensions on
R
1+1 by adding “charged fields” associated with suitable subgroups of automorphisms

on top of a tensor product theory has also been tackled in [Reh90b, Section 5], see in
particular [Reh90b, Proposition 5.5], within the framework of the reduced field bundle
[FRS89,FRS92].

4.1. Extensions with pointed tensor category. Let us start with a pair of conformal nets
AL,AR on S1.Wefix an interval I ⊂ S1. As in Sect. 3, we assume thatAL andAR admit,
respectively, a family
L,
R (finite or infinite) ofmutually inequivalent and commuting
automorphisms localized in I , containing the trivial automorphism idL, idR, and whose
fusion rules (up to unitary equivalence) are isomorphic to the same abelian group G, cf.
Sect. 2.2.3. This group G should be either finitely generated, or we assume that we can
choose elements in 
L,
R and charged fields ψ

g
L , ψ

g
R with the commuting property as

in the conclusions of Proposition 2.3 (for κ = L,R) and comments thereafter. In this
section, we denote by L,R (instead of κ) the bijections from G to 
L,
R, respectively,
corresponding to the choice of automorphisms, and by DL(g), DR(g), where g ∈ G, the
conformal dimensions of the associated automorphisms.

We assume that

• 
L and
R contain the trivial automorphisms idL, idR ofAL andAR, corresponding
to the identity element ι of G via L(ι) = idL, R(ι) = idR.
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• For every g1, g2 ∈ G, it holds that ε±
L(g1),L(g2)

= ε∓
R(g1),R(g2)

and ε±
L(g1),L(g2)−1 =

ε∓
R(g1),R(g2)−1 (braiding cancellation), and DL(g) − DR(g) ∈ Z for every g ∈ G.

We denote by the same symbol ε±
L(g1),L(g2)

the phase multiple of 1 (the trivial inter-
twiner between L(g1)L(g2) = L(g2)L(g1) and itself) associated with the braiding of
L(g1) and L(g2). Similarly for R(g1) and R(g2).

Remark 4.1. LetAL = AR. If G is cyclic, then the braiding cancellation is automatic if
we take
L = 
R and L(g) = R(g)−1 for every g ∈ G. Indeed, in general, for commut-

ing automorphisms, it holds that ε±
L(g1),L(g2)

= ε∓
L(g2)−1,L(g1)−1 . Now, for automorphisms

L(g1), L(g2) that are powers of the same L(h), namely L(g1) = L(h)n , L(g2) = L(h)m

for n,m ∈ Z, it holds ε±
L(g1),L(g2)

= (ε±
L(h),L(h))

nm = ε±
L(g2),L(g1)

(namely, the nm-th
power of the statistical phase of L(h)). Hence g1 and g2 can be exchanged and we have
braiding cancellation.

With this input, we construct a conformal net Ã on R
1+1 as follows.

• The full Hilbert space is H̃ := ⊕
g∈G HL(g)

L ⊗ HR(g)
R . On H̃, any operator of the

form xL ⊗ xR ∈ AL(IL) ⊗ AR(IR) acts as
⊕

g∈G L(g)(xL) ⊗ R(g)(xR) (see the
footnote 3 for this notation). Denote this representation by τ̃ .

• The vacuum vector of Ã is �L ⊗ �R ∈ HL(ι)
L ⊗ HR(ι)

R .

• The covariance is given by Ũ (γL × γR) := ⊕
g∈G UL(g)

L (γL) ⊗ UR(g)
R (γR), which

is a unitary projective representation of Diff+(S1) × Diff+(S1). By the assumption
that DL(g) − DR(g) ∈ Z, Ũ satisfies the condition of Proposition 2.5.

• Note that H̃ can be seen as a subspace of ĤL ⊗ ĤR :=
(⊕

g∈G HL(g)
L

)
⊗

(⊕
g∈G HR(g)

R

)
in a natural way. We denote L̂ := ⊕

g∈G L(g), R̂ := ⊕
g∈G R(g).

• Letψg
L , ψ

g
R be as in Sect. 2.2.3, with the V g,h chosen as in Proposition 2.3. For each

g ∈ G, we introduce the charge operator ψ̃g as follows

ψ̃g := ψ
g
L ⊗ ψ

g
R ∈ B(ĤL) ⊗ B(ĤR). (4.1)

It is then clear that ψ̃g preserves H̃.
From this definition and by (2.1), it follows that

ψ̃gL̂(xL) ⊗ R̂(xR) = L̂(L(g)(xL)) ⊗ R̂(R(g)(xR))ψ̃g, (4.2)

just as in (3.1).
• The local algebras of Ã are given as follows: For the diamond I × I , we set Ã(I ×
I ) := τ̃ (AL(I ) ⊗AR(I )) ∨ {ψ̃g, (ψ̃g)∗}g∈G . For any other diamond γL · I × γR · I ,
we set Ã(γL · I × γR · I ) := Ad Ũ (γL × γR)(Ã(I × I )).

Theorem 4.2. Thenet (Ã, Ũ , �̃) satisfies (2dCN1)–(2dCN5)and the conditionofPropo-
sition2.5, henceprovides a conformal net onE , extending the two-dimensional conformal
net AL ⊗ AR.

Proof. Most of the properties, well-definedness of Ã, (2dCN1)–(2dCN5) except
for (2dCN2) and the condition of Proposition 2.5 can be verified as in
[MTW18, Section 6], using the assumption DL(g) − DR(g) ∈ Z. As for locality, in
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the proof of [MTW18, Section 6], it is only important that ε±
L(g1),L(g2)

= ε∓
R(g1),R(g2)

as

scalars, which we assume. The commutation between (ψ̃g1)∗ and AdU (γL × γR)(ψ̃g2)

follows from ε±
L(g1)−1,L(g2)

= ε∓
R(g1)−1,R(g2)

. Therefore, the proof of locality (2dCN2)
works as well. ��

4.2. ComparisonwithLongo–Rehren extensions. In this section,we review the so-called
Longo–Rehren extensions introduced in [LR95, Proposition 4.10], see also [Mas00],
[KLM01, Appendix A], [BKLR15, Section 3.3] and references therein, and we interpret
them as “generalized shift constructions”. Later, we shall relate them to the extensions
presented in the previous sections.

LetN be an infinite factor (e.g.,N = Aκ(I ) a local algebra of a conformal net on S1).
Let C be a unitary fusion category (not necessarily braided, for the moment) realized as
a full subcategory of End(N ), the set of normal injective unital *-endomorphisms ofN .
For the preliminaries on unitary fusion categories (realized, without loss of generality,
as endomorphisms of von Neumann algebras) we refer, e.g., to [BKLR15,EGNO15].
We use the notation HomC(ρ, σ ) for the spaces of intertwiners V ∈ N between ρ and
σ objects in C, namely Vρ(x) = σ(x)V for every x ∈ N , the arrows in our subcategory
of endomorphism.

For every unitary equivalence class of irreducible objects in C, choose one repre-
sentative ρi , i = 0, . . . , n, with ρ0 = id, and denote 
 := {ρ0, . . . , ρn}. Note that,
if C,D ⊂ End(N ) are two unitary fusion categories, then the Deligne tensor product
C � D [BK01, Definition 1.1.15] can be realized in End(N ⊗̄N ), where N ⊗̄N is the
spatial tensor product4 von Neumann algebra. Next, let J : N → NJ be an anti-
linear isomorphism of von Neumann algebras, where NJ := J (N ), e.g., the natural
involution J : x �→ x∗, where NJ ∼= N opp. Consider the unitary fusion category
CJ ⊂ End(NJ ) with objects ρJ := J ◦ ρ ◦ J −1 ∈ End(NJ ), where ρ is an object
in C, and with arrows tJ := J (t), where t is an arrow in C.

The Longo–Rehren extension of the spatial tensor product von Neumann algebra
N ⊗̄NJ (an irreducible finite index unital inclusion of factorsN ⊗̄NJ ⊂ M) is speci-
fied by the irreducible Q-system (�LR,WLR, XLR) in C�CJ ⊂ End(N ⊗̄NJ ) defined
as follows. Let

�LR :=
⊕

i=0,...,n

ρi ⊗̄ρJ
i ∈ End(N ⊗̄NJ ).

The direct sum is defined by choosing a family of n + 1 isometries Ti,i ∈ N ⊗̄NJ , i =
0, . . . , n, “mutually orthogonal” in the sense that T ∗

i,i Ti ′,i ′ = δi,i ′1, and “complete” in the

sense that
∑

i=0,...,n Ti,i T
∗
i,i = 1, and letting �LR(x) := ∑

i=0,...,n Ti,iρi ⊗̄ρJ
i (x)T ∗

i,i

for every x ∈ N ⊗̄NJ . Hence, by definition, Ti,i ∈ HomC�CJ (ρi ⊗̄ρJ
i ,�LR) for every

i = 0, . . . , n. Note that the endomorphism �LR is not a “simple tensor” in C � CJ ,
unless n = 0.

Let WLR := T0,0 ∈ HomC�CJ (id ⊗̄ id,�LR) be the unit of the Q-system and let

XLR :=
∑

i, j,k=0,...,n

√
d(ρi )d(ρ j )

d(ρk)
(Ti,i ⊗ Tj, j )(

∑

V

V ⊗̄VJ )T ∗
k,k ∈ HomC�CJ (�LR, �2

LR)

4 In this section, we denote by ⊗̄ the spatial tensor product of operators, in order to distinguish it from the
categorical tensor product functor ⊗, which we shall employ below on intertwiners.
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be the comultiplication of the Q-system, where V ∈ N runs in a chosen orthonormal ba-
sis of Nk

i, j (= the multiplicity of ρk in ρiρ j , possibly 0) isometries of HomC(ρk, ρiρ j )

(whose dimension indeed equals Nk
i, j ) for every fixed i, j, k = 0, . . . , n, with respect to

the inner product V ∗V ′ = δV,V ′1. The definition of XLR is independent of this choice
because J is antilinear. Note that Ti,i ⊗ Tj, j denotes the tensor product of arrows in the
category of endomorphisms, and that both XLR andWLR belong toN ⊗̄NJ . The normal-
izations read W ∗

LRWLR = 1 and X∗
LRXLR = (

∑
i d(ρi )

2)1. Being (�LR,WLR, XLR) a
Q-system, see [LR95, Proposition 4.10] for the proof and cf. [BKLR15, Definition 3.8],
[BKLR15, Proposition 3.19], then by [Lon94]�LR ∈ End(N ⊗̄NJ ) is a dual canonical
endomorphism of an irreducible finite index unital extension N ⊗̄NJ ⊂ M realized
on the Hilbert spaceH⊗̄HJ ifN andNJ are respectively realized onH andHJ . The
beginning of the Jones/canonical tunnel, see [LR95, Section 2.5], reads

M−2 ⊂ M−1 ⊂ N ⊗̄NJ ⊂ M,

whereM−2 := �LR(N ⊗̄NJ ) is the imageof�LR, andM−1 :=〈�LR(N ⊗̄NJ ), XLR〉
is the von Neumann algebra generated together with XLR. The two subfactors M−2 ⊂
M−1 and N ⊗̄NJ ⊂ M are spatially isomorphic. The Q-system (�LR,WLR, XLR)

also specifies a (unique, by irreducibility, normal faithful) conditional expectation E
from M onto N ⊗̄NJ with Jones projection e ∈ M1 (the Jones extension of M with
respect to E), or equivalently E−2(·) := �LR(W ∗

LR · WLR) from M−1 onto M−2 with
Jones projection e−2 := WLRW ∗

LR.

Remark 4.3. Choosing a state ω onN ⊗̄NJ (e.g., the vacuum state in the QFT context)
andworking in theGNSHilbert space of (M, ω◦E) yields themore commondescription
in QFT of the extension N ⊗̄NJ ⊂ M with a vacuum vector � (cyclic and separating
for M and inducing an E-invariant state) such that e = [N ⊗̄NJ �], cf. the proof of
[LR95, Theorem 4.9].

Let ψ j, j := �LR(T ∗
j, j )XLR ∈ M−1, for every j = 0, . . . , n. Each ψ j, j has the

“charged field intertwiner” property onM−2 ⊂ M−1 in the sense of Doplicher–Roberts
[DR72], i.e.,

ψ j, j�LR(x) = �LR(ρ j ⊗̄ρJ
j (x))ψ j, j , x ∈ N ⊗̄NJ .

We refer to the ψ j, j as the charged fields of the Longo–Rehren Q-system (�LR,WLR,

XLR). Such charged fields can be defined for every other Q-system of endomorphisms.
As XLR = ∑

j=0,...,n �LR(Tj, j )ψ j, j , because
∑

j=0,...,n Tj, j T ∗
j, j = 1, it holds

M−1 = 〈M−2, ψ0,0, . . . , ψn,n〉.
Note that ψ0,0 = �LR(T ∗

0,0)XLR = �LR(W ∗
LR)XLR = 1.

Setting H j, j := Tj, j T ∗
j, jH⊗̄HJ , for every j = 0, . . . , n, yields an orthogonal

decomposition

H⊗̄HJ =
⊕

j=0,...,n

H j, j . (4.3)

Note that H0,0 is the range of the Jones projection e−2 = T0,0T ∗
0,0 = WLRW ∗

LR.
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Moreover, by definition of XLR and Ti,i ⊗ Tj, j = �LR(Tj, j )Ti,i , it follows

ψ j, j =
∑

i,k=0,...,n

√
d(ρi )d(ρ j )

d(ρk)
Ti,i (

∑

V

V ⊗̄VJ )T ∗
k,k,

where the first sum runs over all i, k such that Hom(ρk, ρiρ j ) �= 〈0〉 for fixed j ,
and the second sum runs over V in the chosen orthonormal basis of isometries in
HomC(ρk, ρiρ j ). Note that, while M−2 acts diagonally on H⊗̄HJ by the very def-
inition of �LR, the charged fields ψ j, j ’s mix different components.

Remark 4.4. In the special case of pointed unitary fusion categories C (in particular,
d(ρi ) = d(ρ j ) = d(ρk) = 1 and the fusion ring is a finite group), then all vector
spaces HomC(ρk, ρiρ j ) have either dimension 1 or 0. In this case each ψ j, j operates as
a “right j−1 shift operator” on the grading of H⊗̄HJ , mapping each subspace Hk,k ,
k = 0, . . . , n, to the subspace Hi,i such that [ρk] = [ρiρ j ], i.e., [ρkρ−1

j ] = [ρi ].
Moreover, for every j, j ′ = 0, . . . , n,

ψ j, jψ j ′, j ′ =
∑

i,k=0,...,n

Ti,i (V ⊗̄VJ )T ∗
k,k

∑

i ′,k′=0,...,n

Ti ′,i ′(V
′⊗̄V ′J )T ∗

k′,k′

where i, k, i ′, k′ are such that dim(HomC(ρk, ρiρ j )) = 1 anddim(HomC(ρk′ , ρi ′ρ j ′)) =
1. Note that, as
 is fixed, V, V ′ are both unique up to a phase factor, andJ is antilinear,
hence the irrelevance of their choice is immediately evident in the pointed case. If we
could choose 
 to be a group (i.e., closed under multiplication, as ρ0 = id), then using
T ∗
k,kTi ′,i ′ = δk,i ′1 and VV ′ ∈ Hom(ρk′ , ρiρ jρ j ′) = Hom(ρk′ , ρiρh) for some ρh ∈ 


such that ρ jρ j ′ = ρh , then it would follow that ψ j, jψ j ′, j ′ = ψh,h . If we chose the
inverse (which is a conjugate in the case of automorphisms) of some ρ j to be some
ρl ∈ 
, together with ρ0 = id, then ψ∗

j, j = ψl,l .

If C is in addition braided, not necessarily pointed, and CJ is endowed with the
braiding induced by J , then the Longo–Rehren Q-system is commutative. See the dis-
cussion following the proof of [LR95, Proposition 4.10] and cf. [BKLR15, Proposition
4.21]. Let ε±

ρi ,ρ j
be the braiding in C and its opposite, then the commutativity condition

reads ε±
�LR,�LR

XLR = XLR, i.e., for every i, j = 0, . . . , n,

ε±
ρi ,ρ j

⊗̄ ε±,J
ρi ,ρ j

ψi,iψ j, j = ψ j, jψi,i , (4.4)

where ε±
ρi ,ρ j

⊗̄ ε±,J
ρi ,ρ j

is the braiding between ρi ⊗̄ρJ
i and ρ j ⊗̄ρJ

j in C � CJ , the irre-
ducible summands of �LR.

Remark 4.5. If C is braided and pointed, then each braiding ε±
ρi ,ρ j

is a phase multiple of
any fixed unitary intertwinerU ∈ HomC(ρiρ j , ρ jρi ) (both ρiρ j and ρ jρi are automor-
phisms hence irreducible). Thus ε±

ρi ,ρi
⊗̄ ε±,J

ρi ,ρi
= 1⊗̄1 for i = j , by taking U = 1 and

by the antilinearity of J . Equivalently, the statistical phase of each ρi ⊗̄ρJ
i is +1 (all

bosonic automorphisms in C � CJ ) being equal to the (phase associated with the) self-
braiding in the case of automorphisms. If, in addition, ρiρ j = ρ jρi for every i �= j as
automorphisms ofN (e.g., by spacelike localization in the case of DHR automorphisms
and N = Aκ(I ), or if ρi and ρ j are different powers of the same automorphism as for
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cyclic groups), then one can take U = 1 as well, and ε±
ρi ,ρ j

⊗̄ ε±,J
ρi ,ρ j

= 1⊗̄1 for every
i, j = 0, . . . , n. In the latter case of commuting automorphisms, the commutativity of
the Longo–Rehren Q-system for braided pointed fusion categories reads

ψi,iψ j, j = ψ j, jψi,i .

If we take C to be the representation category of a (completely) rational conformal net
on R or S1, then C is necessarily unitary fusion (finitely many sectors) and braided (also
modular, see, e.g., [BK01]), equipped with the DHR braiding, by a result of [KLM01].
Then the Longo–Rehren Q-system provides an irreducible finite index local (by the
commutativity property (4.4)) and “diagonal” extension ÃLR of the tensor product con-
formal netAκ⊗̄AJ

κ on R
1+1 (with equal left and right chiral components), by choosing

N ⊗̄NJ = Aκ(I )⊗̄Aκ(I )J , where I is an interval on R symmetric around the origin,
and J the modular conjugation with respect toAκ(R+),�κ (with this choice, ρJ

i
∼= ρ̄i ,

hence in particular ρJ
i

∼= ρ−1
i in the pointed case). See [LR95, Theorem 4.9], cf. [DG18,

Theorem 6.8], for the general construction of extensions from arbitrary Q-systems in
the representation category of a local net, and the comments after the proof of [LR95,
Proposition 4.10] for the Longo–Rehren Q-system.

5. Conformal Wightman Fields from Charged Primary Fields

5.1. Conformal Wightman axioms. Here we show that to some of the extensions we
discussed in Sects. 3 and 4 we can associate conformal Wightman fields, as we define
below. It is natural to expect that such Wightman fields on R

1+1 also extend to E as
conformal nets do, and hence we formulate Wightman fields on E .

For simplicity, let us start with chiral fields on S1. Let us see S1 ⊂ C and the
counterclockwise direction as the lightlike direction when S1 is seen as the one-point
compactification of R as in Sect. 2.1.

A conformal Wightman field on S1 with conformal dimension D is a quantum field

that transforms as the tensor field f d
dθ

⊗D−1
under diffeomorphisms as (1dW2) below,

and such a field is called a primary field: For D ∈ N, γ ∈ Diff+(S1) and f ∈ C∞(S1),
we set (cf. [RTT22])

Xγ (eiθ ) := −i
d

dθ
log(γ (eiθ )),

(βD(γ ) f )(z) := (Xγ (γ −1(z)))D−1 f (γ −1(z)).

Note that γ is orientation-preserving, hence X is strictly positive and (Xγ (γ −1(z)))D−1

is bounded below by some positive number for a fixed γ .
A conformal Wightman field theory on S1 is a family of operator-valued distri-

butions {φκ, j } (κ is a fixed label, while j indexes the family) on S1, closed under the
conjugate (φ†

κ, j is also in the family), with corresponding conformal dimensions {Dκ, j }
defined on a common invariant dense domain D ⊂ Hκ , a unitary projective representa-
tion Uκ of Diff+(S1) and a vector �κ ∈ Hκ such that

(1dW1) Locality: for f, g ∈ C∞(S1) with disjoint supports, [φκ, j1( f ), φκ, j2(g)] = 0
on D .
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(1dW2) Diffeomorphism covariance: Uκ(γ ) preserves D and it holds that

AdUκ(γ )(φκ, j ( f )) = φκ, j (βDκ, j (γ ) f ), for γ ∈ Diff+(S
1).

(1dW3) Positivity of energy: the spectrum of rotations of Uκ is contained in N ∪ {0}.
(1dW4) Vacuum and the Reeh-Schlieder property: there exists a unique (up to a

phase) vector �κ ∈ Hκ such that Uκ(γ )�κ = �κ for γ ∈ Möb and vectors
of the form φκ, j1( f1) · · · φκ, j� ( f�)�κ , where f1, · · · , f� ∈ C∞(S1), are total
inHκ .

As fields φκ, j are operator-valued distributions, they can be smeared with functions
en(θ) = einθ to give their Fourier components φκ, j,n = φκ, j (en). Let Lκ,0 be the
generator ofUκ(Rt ), where Rt ∈ Möb are rotations. We assume thatD = C∞(Lκ,0) :=⋂

�∈NDom(L�
κ,0). Furthermore,

(1dW5) Polynomial energybounds: there are r j ,p j ,C>0 such that, for ∈C∞(Lκ,0),

‖φκ, j,n‖ ≤ C(1 + |n|)r j ‖(Lκ,0 + 1)p j ‖
According to [CKLW18, Section 6], polynomial energy bounds allow one to

define the smeared fields. For f ∈ C∞(S1) whose Fourier components are fn =
1
2π

∫ π

−π
f (e−inθ )dθ , we define

φκ, j ( f ) :=
∑

n∈Z
fnφκ, j,n .

This is convergent on any vector  ∈ C∞(Lκ,0) and φκ, j ( f ) preserves the domain
C∞(Lκ,0).

We know from (the proofs of) [CKLW18, Proposition 6.4, Theorem 8.3] the follow-
ing:

Lemma 5.1. Let {φκ, j } satisfy polynomial energy bounds with p j ≤ 1. Then it holds that
AdU (γ )(φκ, j ( f )) = φκ, j (βDκ, j (γ )( f )) and φκ, j1( f ) and φκ, j2(g) commute strongly
for f, g with disjoint supports.

A general two-dimensional conformal field is not chiral and depends on both light-
like variables. There are fields called primary fields and they are distinguished by the
conformal dimensions (DL, DR), where DL, DR > 0 and can be non-integer. We set
βDL,DR (γ ) = βDL(γL)βDR (γR) for γ = γL × γR ∈ Diff+(S1) × Diff+(S1). This can
be extended to C if DL − DR ∈ Z, which we always assume (cf. Section 4.1). Let H
be the generator of {Rt × Rt : t ∈ R} in U , which plays a similar role to that of L0 in
chiral fields.

A conformal Wightman field theory on E is a family of operator-valued distribu-
tions {ψ̃ j } on E , closed under conjugation, with corresponding conformal dimensions
{(DL, j , DR, j )} defined on a common invariant domain D ⊂ H consisting of vectors of
the form ψ̃ j1( f1) · · · ψ̃ jn ( fn)�, a unitary projective representation U of C and a vector
� ∈ H such that

(2dW1) Locality: for f, g ∈ C∞(E) with spacelike separated supports, it holds that
[ψ̃ j1( f ), ψ̃ j2(g)] = 0.
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(2dW2) Diffeomorphism covariance: U (γ ) preserves D and it holds that

AdU (γ )(ψ̃ j ( f )) = ψ̃ j (βDL, j ,DR, j (γ ) f ), for γ ∈ C

(2dW3) Positivity of energy: the joint spectrum of the translation subgroup of R
1+1

in U is contained in the closed forward light cone V+ = {(a0, a1) ∈ R
1+1 :

a20 − a21 ≥ 0, a0 ≥ 0}.
(2dW4 Vacuum and the Reeh-Schlieder property: there exists a unique (up to a

phase) vector � ∈ H such that U (γ )� = � for γ ∈ Möb×Möb/R andH is
spanned by vectors of the form ψ̃ j1( f1) · · · ψ̃ jk ( fk)�.

(2dW5) Polynomial energy bounds: it holds that D = C∞(H) and there are p j > 0
such that, for  ∈ C∞(H),

‖ψ j ( f )‖ ≤ C f ‖H pj ‖,
for some C f > 0 depending only on f .

As iswell-known, linear energy bounds (p j = 1) assure that the conformalWightman
fields commute strongly.

Lemma 5.2. Let {ψ̃ j } satisfy the bound ‖ψ̃ j ( f )‖ ≤ C f, j‖H‖. Then ψ̃ j1( f ) and
ψ̃ j2(g) commute strongly for f, g with spacelike supports.

Proof. As H is the generator of the one-parameter group Rt × Rt in Möb × Möb,
we have [H, ψ̃ j ( f )] = iψ̃ j ( f ′) as in [CDVIT21, (3.7)], where f ′ is the derivative
of f with respect to translations Rt × Rt of the cylinder E . Furthermore, we have
‖[H, ψ̃ j ( f )]‖ = ‖ψ̃ j ( f ′)‖ ≤ C f ′, j‖H‖. By applying commutator with H ,
‖δk(ψ̃ j ( f ))‖ = ‖ψ̃ j ( f (k))‖ ≤ C f (k), j‖H‖, k = 2, 3, where δ(A) = i[H, A].
Therefore, ψ̃1( f ) and ψ̃2(g) satisfy the assumption of Theorem A.2 with H as the
reference operator and they strongly commute. ��

5.2. Formal series of operators. Let As be a family of operators parametrized by s ∈ R.
By a formal series we mean a symbol of the form

∑
s Aszs , where the summation

actually has no meaning. We refer to As as Fourier components of a formal series. One
can consider sums and scalar multiples of such formal series:

∑
s Aszs +

∑
s Bszs =∑

s(As + Bs)zs , c
∑

s Aszs = ∑
s cAszs . The product of two formal series is not always

defined, but in some cases there is a natural product. We define the product of
∑

s Aszs

and
∑

s Bszs as the formal series
∑

s Cszs with the coefficient Cs = ∑
t∈R As−t Bt ,

whenever these sums make sense.
Similarly, we consider formal series in two or more variables. If we have two formal

series in two different variables z, w, the product
∑

s Aszs
∑

t Btw
t = ∑

s,t As Bt zswt

makes always sense. A product of such formal series in two variables is defined similarly
as above.

A typical case we use in this paper is when the vector spaces are graded as V j =
⊕

t∈N+h j
V j
t , where j = 1, 2, h j ∈ R and As are operators V 1

t → V 2
t−s and they are

nonzero only for s ∈ Z + D for some D ∈ R and t − s ∈ N + h2. We also consider the
situation where V = ⊕

j V
j and

∑
s As is a formal series on V , that has the form for

each pair V j1 , V j2 as above (and Dj1, j2 may depend on j1, j2).
Let

∑
s Aszs,

∑
s Bszs such two formal series with [As1 , Bs2 ] = 0 for all s1, s2 ∈ R.

In the situation of the previous paragraph,we can define the product
∑

s Aszs
∑

t Bs zs =
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∑
s z

s ∑
t As−t Bt (this is a special case of normal product, see [CTW23, Section 2.1]):

indeed, for each vector  ∈ V the sum over t is finite because either As−t or Bt

vanishes for large |t |. Therefore, the sum ∑
t As−t Bt defines an operator on V and this

is a formal series on V .

5.3. Charged primary fields. We continue studying a single chiral component, but we
omit κ from certain parameters that do not appear later. We assume that a conformal net
(Aκ ,Uκ ,�κ) on S1 is generated by conformal Wightman fields {φκ, j } which commute
strongly when smeared with test functions with disjoint supports.

Unitary operators eiφκ, j ( f ) with compactly supported f are represented in a represen-
tation ρ as a unitary operator, and the question arises whether the operator ρ(φκ, j ( f ))
makes sense and whether it is the generator of ρ(eiφκ, j ( f )). This property is called
strong integrability, and veryfing it in examples is a non-trivial problem (although it
holds in interesting cases, like the U(1)-current [CWX,Gui20]). Furthermore, we can
also consider localized unbounded intertwiners between representations and there is
the problem whether the commutation relations between them hold strongly (strong
intertwining property and strong braiding) [Gui20], see also [Ten19b,Ten19a]. These
properties should be useful in comparing the extension of nets and Wightman fields, see
Remark 5.8.

Let κ(g) be an automorphism of the conformal net Aκ for g ∈ G as in Sect. 2.2. We
consider the Fourier components of chiral fields and assume that they have corresponding
operators φ

κ(g)
κ, j,n on the representation spaces Hκ(g),fin

κ , where Vfin denotes the linear
span of eigenspaces Vt = ker(Lκ,0 − t) of Lκ,0, where Lκ,0 is represented on V as

an unbounded operator. We denote the algebraic direct sum of the φ
κ(g)
κ, j,n over g ∈

G by φ̂κ, j,n defined on the (algebraic) linear span
⊕alg

g∈G Hκ(g),fin
κ in

⊕
g∈G Hκ(g),fin

κ .

Similarly,we denote L̂κ,n = ⊕
g∈G Lκ(g)

κ,n , where Lκ(g)
κ,n is a representation of theVirasoro

algebra on Hκ(g),fin
κ .

Let (Aκ ,Uκ ,�κ) be a conformal net on S1 generated by fields {φκ, j }with conformal
dimensions {Dj } as above and a collection 
κ of automorphisms to which there is a
bijective map κ from a group G. A charged primary field {ψh

κ (ξ, s)}s∈R is a family
of operators (labelled by h ∈ G and ξ in some index set5 � depending on κ and h),
acting on the domain

⊕alg
g∈G Hκ(g),fin

κ with the associated formal series ψh
κ (ξ, z) =

∑
s∈R ψh

κ (ξ, s)z−s−Dh , where Dh > 0 is the conformal dimension and z is the formal
variable, such that

• ψh
κ (ξ, s) maps Hκ(g),fin

κ to Hκ(hg),fin
κ , and there is �h,g ∈ R such that ψh

κ (ξ, s) �= 0
only for s ∈ �h,g + Z.

• (primarity) [L̂κ,m, ψh
κ (ξ, s)] = ((Dh − 1)m − s)ψh

κ (ξ,m + s).
• (relative locality) [φ̂κ, j,m, ψh

κ (ξ, s)] = ∑
ξ ′ X

ξ

j,ξ ′ψh
κ (ξ ′,m + s), where X ξ

j,ξ ′ ∈ C.

5 Examples where we need all these labels are the WZW models associated with a simply laced, simply
connected, simple, connected compact group G (different from the group above) at level 1. The sectors are
parametrized by the center Z(G), which can be identified with �W /�R , the weight lattice quotiented by the
root lattice [TL97, Lemma I.2.1.1]. The primary fields are of the form �μ(z), where μ is a minimal weight
of G [TL97, Section V.5.3]. In this example, h is μ + �R ∈ �W /�R , while μ is one of minimal weights,
playing the role of ξ in our notations. See [TL97, Theorem V.5.3.2] for relative locality of these fields.
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• As formal series, the braiding relation holds:

(1 − z
w

)α(h1,h2)wα(h1,h2)ψ
h1
κ (ξ1, w)ψ

h2
κ (ξ2, z) = (1 − w

z )α(h1,h2)zα(h1,h2)ψ
h2
κ (ξ1, z)ψ

h1
κ (ξ2, w)

where α(h1, h2) ∈ R. Recall that (1 − u)β = ∑
n≥0

(
β
n

)
(−u)n as a formal series,

where
(
β
n

) = β(β−1)···(β−n+1)
n! .

• We assume that the family of charged primary fields is closed under conjugation, in
the sense that for given h, ξ there are h̄, ξ̄ such that ψh

κ (ξ, z)∗ = ψ h̄
κ (ξ̄ , z), with the

convention z∗ = z−1 in the formal series expansion.

We further assume polynomial energy bounds:

• for each h, there are rξ , pξ ,Cξ ≥ 0 such that ‖ψh
κ (ξ, s)‖ ≤ Cξ (1+ |s|)rξ ‖(Lκ,0 +

1)pξ ‖ for  ∈ C∞(Lκ,0).

This allows us to define smeared charged primary fields: For f ∈ C∞(S1\{−1}), we
put fs = 1

2π

∫ π

−π
f (eiθ )e−isθdθ and

ψh
κ (ξ, f ) :=

∑

s∈R
fsψ

h
κ (ξ, s),

and this defines operators on C∞(L̂κ,0) (the sum makes sense because ψh
κ (ξ, s) = 0

except for countable s on each Hκ(g)
κ,t ).

Let6ε+κ(h1),κ(h2)
:= lim�ζ>0,ζ→−1 ζ α(h1,h2), where �ζ is the imaginary part of ζ ,

wα(h1,h2) = eα(h1,h2) logw and we take the branch of logw on C\(−∞, 0] such that
logw ∈ R on (0,∞).

Lemma 5.3. Let f, g ∈ C∞(S1\{−1}) such that arg supp f < arg supp g, that is, they
are in the counterclockwise order on S1\{−1}. Then it holds thatψh1

κ (ξ1, f )ψh2
κ (ξ2, g) =

ε+κ(h1),κ(h2)
ψ

h2
κ (ξ2, g)ψ

h1
κ (ξ1, f ).

Proof. Let z0 ∈ S1, z0 �= −1 such that arg supp f < arg z0 < arg supp g, and I+
be the interval on S1 from z0 to −1 (counterclockwise) while I− be the interval on
S1 from −1 to z0, hence we have supp f ⊂ I−, supp g ⊂ I+ (see Fig. 2), and put
fs = 1

2π

∫ π

−π
f (eiθ )e−isθdθ , gt = 1

2π

∫ π

−π
g(eiθ )e−i tθdθ . As f, g are smooth, these

coefficients are rapidly decaying.
The product ψ

h1
κ (ξ1, w)ψ

h2
κ (ξ2, z) is a formal series in w, z. For finite-energy

vectors 1, 2 in some Hκ(h3),fin
κ ,Hκ(h4),fin

κ , the scalar product
ϕ1(w, z) := 〈1, ψ

h1
κ (ξ1, w)ψ

h2
κ (ξ2, z)2〉 can be considered as a formal series in

w, z with coefficients in C, and by the first assumption on charged primary fields, it
is just a countable sum. Furthermore, these coefficients of ws zt vanish for s large and

t small, because each Hκ(h j ),fin
κ is a positive-energy representation of the Virasoro al-

gebra. By polynomial energy bounds, it can be seen as a distribution in w, z, which
we denote again by ϕ1(w, z). Then it holds that ϕ1( f, g) = ∑

ϕ1(s, t) fsgt , where
ϕ1(s, t) is the coefficient of the formal series ϕ1(w, z) of ws zt (with a slight abuse of
notation).

6 We use the same notation for the braiding of the charged fields and the braiding of sectors in Sect. 2.2.
We plan to show that they are indeed equal under assumptions such as strong braiding [Gui20] in a separate
publication.
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−1
z0

supp f
w

supp g
z

Fig. 2. The circle, the point of infinity (−1) and two functions with disjoint supports

Let a < 1 and b > 1.We introduce ϕ
a,b
1 (z, w) := 〈1, ψ

h1
κ (ξ1, bw)ψ

h2
κ (ξ2, az)2〉,

then it has only finitely many terms with negative powers in z and those with positive
powers in w, therefore, it is a convergent series for |z| = |w| = 1 again by the poly-
nomial energy bounds and the choice a < 1, b > 1. Now it can be seen as a function
on I− × I+, thus defines a distribution and ϕ

a,b
1 ( f, g) = ∑

ϕ
a,b
1 (s, t) fsgt , in the sense

above. Furthermore, as a → 1, b → 1, this converges to ϕ1( f, g).
The formal series (1− z

w
)α(h1,h2) has only negative powers in w and positive powers

in z, therefore, the product

〈1, (1 − z
w

)α(h1,h2)ψ
h1
κ (ξ1, w)ψ

h2
κ (ξ2, z)2〉

makes sense again as a formal series (see the remark on formal series above). Again by
polynomial energy bounds, these coefficients grow only polynomially in s, t . Therefore,
it can be seen as a distribution with two variables w ∈ I−, z ∈ I+, which we denote by
ϕ2(w, z). Define also ϕ

a,b
2 (w, z) = ϕ2(bw, az). As a → 1, b → 1, each coefficients

converge, and ϕ
a,b
2 ( f, g) converge as distributions to ϕ2( f, g) by polynomial energy

bounds.
Note that the expansion (1 − u)β = ∑

n≥0

(
β
n

)
(−u)n converges for |u| < 1, and

can be analytically continued to C \ [1,∞). This expansion coincides with the defini-

tion (1 − u)β = eβ log(1−u) as an analytic function in u ∈ C\[1,∞), where logw is
defined on C\(−∞, 0] and logw ∈ R when w ∈ (0,∞) (the last condition fixes a
branch of logw uniquely). We use the same continuation for logw when wβ = eβ logw

is considered as a function. If we consider (1 − w
z )α(h1,h2) as a function in w, z,

we can multiply it to the above distribution ϕ1 and obtain a distribution in I− × I+,
which we denote by ϕ3(w, z). We also introduce ϕ

a,b
3 (w, z) = ϕ3(bw, az). Then

ϕ
a,b
3 ( f, g) converges to ϕ3( f, g) as a → 1, b → 1 because both ϕ

a,b
1 (w, z) and

(1 − bw
az )α(h1,h2) converge as distributions and smooth functions on I− × I+, respec-

tively.
This shows that ϕ2( f, g) = ϕ3( f, g). That is, (1 − z

w
)α(h1,h2)ψ

h1
κ (ξ1, w)ψ

h2
κ (ξ2, z)

can be seen as the operator-valued distribution multiplied by a smooth function (1 −
z
w

)α(h1,h2) on I− × I+.

Similarly, (1 − w
z )α(h1,h2)ψ

h2
κ (ξ1, z)ψ

h1
κ (ξ2, w) can be seen as an operator-valued

distribution. Therefore, by the braiding relation of the primary fields, we have the equal-
ity

(1 − z
w

)α(h1,h2)wα(h1,h2)ψ
h1
κ (ξ1, w)ψ

h2
κ (ξ2, z) = (1 − w

z )α(h1,h2)zα(h1,h2)ψ
h2
κ (ξ1, z)ψ

h1
κ (ξ2, w)
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in the sense of operator-valueddistributions, under the restriction on the supports of f and
g. Seen as functions, the quotient of (1− w

z )α(h1,h2)zα(h1,h2) by (1− z
w

)α(h1,h2)wα(h1,h2)

is exactly lim�ζ>0,ζ→−1 ζ α(h1,h2). Therefore, by dividing the equation by the former
factor, we obtain

ψh1
κ (ξ1, w)ψh2

κ (ξ2, z) = ε+κ(h1),κ(h2)ψ
h2
κ (ξ1, z)ψ

h1
κ (ξ2, w)

as desired, as operator-valued distributions. ��
The following is essentially due to [CKL08, Section 6.3], where the case D = 1

2 is
treated, see also [CKLW18, Proposition 6.4], [TL99].

Lemma 5.4. Assume that a charged primary field ψh
κ has conformal dimension D and

satisfies polynomial energy bounds as above (we omit the dependence on ξ ). Then it
is diffeomorphism covariant, that is, with Ûκ the projective unitary representation of
Diff+(S1), Ad Ûκ(γ )(ψh

κ ( f )) = ψh
κ (βD(γ )( f )).

Proof. Let us sketch the arguments of [CKL08, Section 6.3]. Note that L̂κ,n is a repre-
sentation of the Virasoro algebra on the dense domain Ĥfin

κ in the Hilbert space Ĥκ . By
polynomial energy bounds they extend to C∞(L̂κ,0). Furthermore, on this domain we
have the commutation relations

i[L̂κ( f1), ψ
h
κ ( f2)] = ψh

κ (Df ′
1 f2 − f1 f

′
2).

From this, the following relation follows:

d

dt
ψh

κ (βD(exp(t f1)) f2)|t=0 = i[L̂κ( f1), ψ
h
κ ( f2)].

Again by energy bounds for L̂κ,n , it holds that Uκ(exp(t f )) preserves the domain
C∞(Lκ,0).

For  ∈ C∞(L̂κ,0), we can consider two vector-valued funtions of t ∈ R

1(t) = ψh
κ (βD(exp(t f1) f2)Ûκ(exp(t f1)),

2(t) = Ûκ(exp(t f1))ψ
h
κ ( f2),

and they both satisfy the differential equation  ′(t) = i L̂κ( f )(t). As they satisfy the
same initial condition 1(0) = 2(0) = ψh

κ ( f2), they must coincide. Therefore, we
have Ad Ûκ(exp(t f1))(ψ( f2)) = ψh

κ (βD(exp(t f1)) f2).
Recall that Diff+(S1) is algebraically simple [Thu74] while the subgroup generated

by one-parameter groups is a normal subgroup of Diff+(S1). Therefore, they must co-
incide. This implies that any element in Diff+(S1) is a product of elements in some
one-parameter group and an element in the center {R2πn}.

Now the relation holds for all γ ∈ Diff+(S1) which is a product of elements in one-
parameter groups, and it is straightforward to verify it for R2π , therefore, we have the
desired covariance. ��
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5.4. One-dimensional Wightman fields arising from trivial total braiding. Let us first
assume that there are two conformal nets A1,A2 on S1 and charged primary fields
ψ1, ψ2 of these nets (here we omit the dependence on h ∈ G and ξ ∈ �).

Lemma 5.5. Let ψ1(z) ⊗1,1⊗ ψ2(z) be charged primary fields satisfying polynomial
energy bounds with respect to an operator L̂0⊗1+1⊗ L̂0. Thenψ1(z)⊗ψ2(z) satisfies
polynomial energy bounds.

Proof. Let us assume polynomial energy bounds: there are r j , p j ,C > 0, for j = 1, 2
such that

‖ψ j (s)‖ ≤ C(1 + |s|)r j ‖(L̂0 + 1)p j ‖
for  ∈ C∞(L̂0). Note that

(L̂0 + 1)ψ2(t − s) = [L̂0, ψ2(t − s)] + ψ2(t − s)L̂0 + ψ2(t − s)

= (s − t + 1)ψ2(t − s) + ψ2(t − s)L̂0

= ψ2(t − s)(L̂0 + (s − t + 1)),

hence (L̂0 + 1)qψ2(t − s) = ψ2(t − s)(L̂0 + (s − t + 1)1)q . Then, for a fixed s and 

such that H = � where H = L̂0 ⊗ 1 + 1 ⊗ L̂0,

‖
∑

t

ψ1(s − t) ⊗ ψ2(t)‖ ≤
∑

t

C(1 + |s − t |)r1‖(H + 1)p1(1 ⊗ ψ2(t))‖

≤
∑

t

C(1 + |s − t |)r1‖(H + 1)�p1�(1 ⊗ ψ2(t))‖

≤
∑

t

C(1 + |s − t |)r1‖(1 ⊗ ψ2(t))(H + (t + 1)1)�p1�‖

=
∑

t

C(1 + |s − t |)r1(� + (t + 1))�p1�‖(1 ⊗ ψ2(t))‖

≤
∑

t

C2(1 + |s − t |)r1(1 + |t |)r2(�+(t + 1))�p1�‖(H+1)p2‖

≤ C2(1 + |s|)2r1+r2+�p1�‖(H + 1)r1+r2+2�p1�+p2‖,
where �p� is the smallest integer larger or equal to p, in the last line we estimated
1+ |s− t | ≤ 1+ |s|+� ≤ (1+ |s|)(1+�) because (ψ1(s− t)⊗1) = 0 when t < −s−�

or (1 ⊗ ψ2(t)) = 0 when t > �.
For a general  = ∑

� �, the
∑

t ψ1(s − t) ⊗ ψ2(t)� are orthogonal for different
�. Therefore, a polynomial energy bound follows for ψ1(z) ⊗ ψ2(z). ��
Clearly, this estimate is not optimal. It can happen, aswewill seewith concrete examples,
that a product of two charged primary fields whose Fourier components are bounded
‖ψ(s)‖ ≤ C has again bounded Fourier components.

Lemma 5.6. Let ψ1(z), ψ2(z) be charged primary fields for nets (A1,U1,�1),

(A2,U2,�2) with polynomial energy bounds. Then ψ1(z) ⊗ ψ2(z) is diffeomorphism
covariant with respect to Ũ1 ⊗ Ũ2.

Proof. By Lemma 5.5, ψ1(z) ⊗ ψ2(z) satisfies polynomial energy bounds with respect
to H = L̂1,0 ⊗1+1⊗ L̂2,0. Then the diffeomorphism covariance follows from Lemma
5.4. ��
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As in Sect. 3, let {(Aκ ,Uκ ,�κ)}κ∈K be a finite family of conformal nets on S1

generated by fields {φκ, j }κ∈K , with a collection
κ of localized automorphisms in some
interval, with a common (finitely generated) abelian group structure G and a family of
bijections κ : G → 
κ for every index κ ∈ K . Let {ψh

κ (ξ, z)}κ∈K ,h∈G,ξ∈�κ be a family
of charged primary fields satisfying the conditions of Sect. 5.3.

We assume that
∏

κ ε+κ(h1),κ(h2)
= 1 for all pairs h1, h2 ∈ G, as in Sect. 3. Let us pick

ξκ for each κ . Then we consider the formal series ψh
K (ξK , z) := ⊗

κ ψh
κ (ξκ , z) acting

on the auxiliary space
⊗

κ Ĥκ , where ξK = (ξ1, · · · , ξK ) is an index to label the formal
series for the tensor product of K factors. This is a (normal) product of two commuting
formal series, hence this makes sense as a formal series, see Sect. 5.2. It follows from
Lemma 5.5 that it makes sense as an operator-valued distribution if each of the fields
satisfies polynomial energy bounds.

Theorem 5.7. The fields ψh
K , h ∈ G, together with chiral fields φκ, j , is a conformal

Wightman field theory acting on the Hilbert spaceHK = ⊕
g∈G

⊗
κ Hκ(g)

κ . If, in addi-

tion,ψh
K satisfies linear energy bounds with respect to

∑
κ 1⊗· · ·⊗1⊗ L̂0

κ-th
⊗1⊗· · ·⊗1

for all h ∈ G, then {ψh
K : h ∈ G} generates a conformal net on S1.

Proof. The formal seriesψh
K is defined on the Hilbert space

⊗
κ Ĥκ . It generates vectors

in HK = ⊕
g∈G

⊗
κ Hκ(g)

κ from the vacuum. Then the φκ, j ( f ) generate a dense set of
vectors in each of these summands. On the other hand, no other vector is generated from
ψh
K and φκ, j acting on the vacuum.
Let us prove locality. For two test functions f1, f2 with arg supp f1 < arg supp f2,

we have by Lemma 5.3 that

ψ
h1
K ( f1)ψ

h2
K ( f2) =

∏

κ

ε+κ(h1),κ(h2)ψ
h2
K ( f2)ψ

h1
K ( f1)

= ψ
h2
K ( f2)ψ

h1
K ( f1),

giving locality as operator-valued distributions. The fields ψh
K and φκ, j are relatively

local. The representation UK is a tensor product of positive-energy representations,
therefore it has itself positive energy.

If we assume linear energy bounds, then the fields strongly commute and generate a
conformal net on S1 by Theorem A.2. ��
Remark 5.8. We expect that the conformal net on S1 in Theorem 5.7 generated by the
conformal Wightman field is unitarily equivalent to the net extensionAK constructed in
Theorem 3.1. This, at least for |K | = 2, should follow by a similar argument as in the
proof of Theorem 5.9. More generally, assuming properties that assures that the VOA
intertwiners intertwine DHR sectors (strong integrability, strong intertwining property
and strong braiding [CWX,Gui20]), it should be possible to show that the two nets
coincide. We will address this question in a future publication.

5.5. Two-dimensionalWightman fields through braiding-cancellingmap. Froma pair of
charged primary fields with the braiding satisfying certain conditions, we can construct a
two-dimensional conformal Wightman field. This is in particular the case if we take two
copies of the same conformal net AL = AR, with a pointed braided fusion subcategory
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of automorphisms whose fusion ring is isomorphic to a finite abelian group G, and we
take the tensor product of the left charged fields ψh

L and ψh−1

L , where h ∈ G, similarly

to (4.1), namely ψ̃h := ψh
L ⊗ ψh−1

L acting on HL ⊗ HL.

If we assume that the braidings cancel in the sense7 that ε+L(g),L(h) = ε−
R(g),R(h), we

can prove locality of the combined Wightman field. We show that this corresponds to a
(finite index) Longo–Rehren extension with respect to a pointed braided fusion category,
[LR95], see Sect. 4.2. The basic idea behind these constructions is also present in the
two-dimensional quantumfield theory context, e.g., in [Reh97], see in particular [Reh97,
Section 2.3].

Let {(AL/R,UL/R,�L/R)} be a pair of conformal nets on S1 generated by fields
{φL/R, j }, with a collection 
L/R of (mutually commuting inequivalent) localized auto-
morphisms in some interval (and closed under composition and inverses up to unitary
equivalence), as in Sect. 4, with a common finite abelian group structureG and bijections
L/R : G → 
L/R. Let {ψh

L/R(ξ, z)}h∈G,ξ∈�L/R be a family of primary fields satisfying

the conditions of Sect. 5.3. Denote ε+ := ε+L(g),L(h) and ε− := ε−
R(g),R(h), for short. Then

our braiding cancellation assumption reads ε+ = ε−. For w1, w2 ∈ S1\{−1}, argw1 <

argw2, we have by Lemma 5.3 that

ψ
g
L(ξL, w1)ψ

h
L(ξL, w2) = ε+ψh

L(ξL, w2)ψ
g
L(ξL, w1),

ψ
g
R(ξR, w2)ψ

h
R(ξR, w1) = ε−ψh

R(ξR, w1)ψ
g
R(ξR, w2)

= ε+ψh
R(ξR, w1)ψ

g
R(ξR, w2).

For fixed ξL and ξR, let us introduce a two-dimensional formal power series by

ψ̃h(w, z) := ψh
L(ξL, w) ⊗ ψh

R(ξR, z).

Theorem 5.9. The field ψ̃h is a two-dimensional conformal Wightman field on the
Hilbert space H̃ = ⊕

h∈G HL(h)
L ⊗ HR(h)

R . If the field satisfies a linear energy bound

with respect to L̂0 ⊗ 1 + 1 ⊗ L̂0, then it generates a two-dimensional conformal net. If
G is finite, the net coincides (up to unitary equivalence) with Ã constructed in Theorem
4.2 in the case AL = AR.

Proof. The field ψ̃h satisfies two-dimensional locality: the point (w1, z1) is spacelike
to (w2, z2) if argw1 < argw2 and arg z1 > arg z2 (or the reversed relations, and in this
case, with ε+ := ε+L(h),L(g)),

ψ̃h(w1, z1)ψ̃
g(w2, z2) = ψh

L(ξL, w1) ⊗ ψh
R(ξR, z1) · ψ

g
L(ξL, w2) ⊗ ψ

g
R(ξR, z2)

= ε+ε+ψ
g
L(ξL, w2) ⊗ ψ

g
R(ξR, z2) · ψh

L(ξL, w1) ⊗ ψh
R(ξR, z1)

= ψ
g
L(ξL, w2) ⊗ ψ

g
R(ξR, z2) · ψh

L(ξL, w1) ⊗ ψh
R(ξR, z1)

= ψ̃h2(w2, z2)ψ̃
h1(w1, z1).

7 Here, instead of assuming additionally that ε+
L(g)−1,L(h)

= ε−
R(g)−1,R(h)

as we did in Sect. 4, we assume

that the set of charged primary fields is closed under conjugate and each of them satisfies the braiding relation.
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It is a two-dimensional operator-valued distribution because it is a tensor product of two
one-dimensional operator-valued distributions. Other axioms, positivity of energy, dif-
feomorphism covariance, the cyclicity of vacuum in H̃, can be proven as in Theorem 5.7.
If we assume linear energy bounds, strong commutativity of smeared fields follows.

LetG befinite.As thedecompositionof the vacuumrepresentation H̃ = ⊕
h∈G HL(h)

L

⊗ HR(h)
R with respect to the action of AL ⊗ AR is the same as the decomposition of

the vacuum representation of the Longo–Rehren extension ÃLR (4.3), and the former
determines the dual canonical endomorphismof the extensionwe constructed, by [LR95,
Proposition 3.4], the latter endomorphism must be unitarily equivalent to the Longo–
Rehren endomorphism �LR. As we are in the braided pointed fusion case with finite
abelian group G, the uniqueness of the associated Longo–Rehren extension (among
finite index local extensions) provided by [KL04b, Section 4, Example 4.5] proves the
last claim. ��

6. Examples: The U(1)-Current

We construct examples of a conformal net on S1, collections of sectors and charged
primary fields associated with the U(1)-current. To the best of our knowledge, most of
thematerial of this section is scattered in several places, see, e.g., [BMT88,TL97,TZ12],
or it is known as folklore. We collect some useful facts for the sake of the reader to
appreciate the construction of Wightman fields through charged primary fields in the
special case of extensions of the U(1)-current, cf. [Reh97] for the two-dimensional case.

Herewe use the symbolsH,A,U,�, Ln, Jn,Yα,n for a chiral component, differently
from the previous sections where we used the index κ .

6.1. The field and the net. In literature, several constructions of the U(1)-current ap-
peared. One can use the lowest weight representation with the lowest weight 1 of
PSL(2, R), and the associated net standard subspaces, then by second quantization the
local algebras of the U(1)-current net are generated by theWeyl operators, cf. [BGL93].

The construction of the U(1)-current that we illustrate here relies on the so-called
current algebra, namely the complex Lie algebra generated as C-linear space by the
family of symbols {Jn : Jn : n ∈ Z} and a central element c that verify [Jm, Jn] =
mδn+mc, see [BMT88]. The vacuum representation of the current algebra is given as a
Verma module (with the lowest weight 0, hence J0� = 0), which is the linear span of
the symbols

J−i1 . . . J−im�, 0 < i1 ≤ i2 ≤ . . . ≤ im ∈ N,m ∈ N

where, by abuse of notation, Jn are interpreted as operators with the Lie brackets given
for an associative algebra, Jk� = 0 for k ≥ 0 and one defines the actions of Jn for
n ∈ Z by using the commutation relations. There is a unique inner product satisfying
J ∗
n = J−n and

〈J−i1 . . . J−im�, J−l1 . . . J−ls�〉 := 〈�, Jim . . . Ji1 J−l1 . . . J−ls�〉, (6.1)

and we extend it by linearity. Its completion is isomorphic to the Bosonic Fock space
with the one-particle space spanned by {J−n� : n ∈ N}, see, e.g., [KR87, Proposition
2.1].
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Using Sugawara’s formula to define new generators Ln as

Ln := 1

2

∑

k∈Z
: Jk+n Jk :, n ∈ Z

where : · : is the Wick product, one defines a projective unitary representation of the
Virasoro algebrawith the central charge c = 1. In particular, the conformalHamiltonian
L0 acts as

L0 J−i1 . . . J−im� = (i1 + . . . + im)J−i1 . . . J−im�,

for 0 ≤ i1 ≤ . . . ≤ im ∈ N. Therefore, L0 extends to a positive self-adjoint operator.
Moreover, as Jn can be regarded as an annihilation operator for n > 0, we have the
following bound: for every n ∈ Z and every  in the Verma module

‖Jn‖ ≤ (n + 1)‖(L0 + 1)
1
2 ‖,

‖Ln‖ ≤
√
13

12
(1 + |n| 32 )‖(L0 + 1)‖.

From this, the representation {Ln} of the Virasoro algebra integrates to a projective
unitary representation U of Diff+(S1).

Moreover, the current

J ( f ) :=
∑

n∈Z
fn Jn,

for a test function f ∈ C∞(S1) is an essentially self-adjoint operator on D(L0).
Therefore, J ( f ) for f ∈ C∞(S1) is well-defined on the dense Verma module and
J ( f ) ∈ D(L0). We have

‖[L0, J ( f )]‖ = ‖J ( f ′)‖ ≤ α f ′ ‖(L0 + 1)
1
2 ‖,

so by Theorem A.2 is essentially self-adjoint and it can defined on D(L0). In this way,
if f, g ∈ C∞(S1), then the commutator [J ( f ), J (g)] is well-defined on D(L0) and

[J ( f ), J (g)] =
∫

S1
f ′(t)g(t)dt · ,  ∈ D(L0).

Moreover, by Theorem A.2, if the support of f and g is disjoint, then J ( f ) and J (g)
commute strongly, i.e., [eit J ( f ), eit J (g)] = 0. One can also show that AdU (ϕ)(ei J ( f )) =
ei J ( f ◦ϕ−1).

For any λ ∈ R, and denoting the lowest weight vector by �λ, one can construct a
Vermamodule such that the representation Jλ

n is of the form explained above, except that
Jλ
0 �λ = λ�λ. The same commutation relations and similar estimates hold for λ ∈ R.
To every non-empty non-dense open interval I ⊂ S1, one associates the following

von Neumann algebra

AU(1)(I ) := {ei J ( f ) : supp f ⊂ I }′′.
The triple (AU(1),U,�) is a conformal net on the circle S1.
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6.2. Representations of the U(1)-current. Let us fix an open non-empty non-dense in-
terval I ⊂ S1 and a function h ∈ C∞(S1) with supp h ⊂ I . Then, we define a map on
the Weyl operators W ( f ) := ei J ( f ) for f ∈ C∞(S1) supported in I in the following
way

σh,I (W ( f )) := ei
∫
S1 f (t)h(t)dtW ( f ).

The map σh,I can be extended to a representation of the local algebra AU(1)(I )
on the Fock space. Indeed, for every interval I1, σh,I1 is implemented by AdW (H),
where H ′ = h on I1 and supported on another interval Ĩ1. Therefore, σH,I1 extends to
a representation of the local algebra AU(1)(I1). If I2 ⊂ S1 is another interval such that
I1 ⊂ I2, then a function H supported in an interval Ĩ2 ⊃ I 2 such that H ′ = h on I2
and σh,I1(W ( f )) = AdW (H)(W ( f )). Therefore, one can define a representation σh of
the net AU(1) as the family {σh,I1}I1 for I1 ⊂ S1 as above, verifying the compatibility
condition σh,I2 |AU(1)(I1) = σh,I1 whenever I1 ⊂ I2 are two non-empty non-dense open
intervals of S1.

The unitary equivalence class of the representations is determined by the value∫
S1 h(t)dt . In particular, when

∫
S1 h(t)dt = 0, then σh is unitary equivalent to the

vacuum representation. Let α = ∫
S1 h(t)dt . Although the representation σh is defined

on the vacuum Hilbert space, we denote itHα in order to distinguish the representation.
Analogously, the lowest weight vector inHα is denoted by �α . See [BMT88] for these
results.

6.3. Fusion relations and braiding. Let h1, h2 ∈ C∞(S1). Then the maps σh1 , σh2 are
automorphisms of the U(1)-current netAU(1). Let I0 ∈ I and consider the local algebra
AU(1)(I0). Then, σh1,I0 , σh2,I0 are representations of the local algebra AU(1)(I0) such
that σh1,I0 ◦ σh2,I0 = σh1+h2,I0 . Since the interval I0 is arbitrary, we have

σh1 ◦ σh2 = σh1+h2 .

We now compute the braiding for the U(1)-current, which we believe is well-known, but
for which we couldn’t find any reference.

Let I ∈ I befixed.Consider two functionsh1, h2 ∈ C∞(S1)with supp(h1), supp(h2)
⊂ I and let σh1 and σh2 be two automorphisms of the net AU(1). Next, let I0 ∈ I such
that I ⊂ I0 and choose I1, I2 ⊂ I0 in I such that I2 stays in the future of I1, and I1, I2, I
are pairwise disjoint.

Let i = 1, 2 be fixed, and let gi ∈ C∞(S1) such that supp gi ⊂ Ii and
∫
S1 gi (t)dt =

∫
S1 hi (t)dt . Then there exist Hi ∈ C∞(S1) supported in I0 such that AdW (Hi )σhi =

σgi . Moreover, for the mutual position of I1 and I2, H1 and H2 have to be of the form
H ′
1 = −h1, H ′

2 = −h2 on I , H ′
i = gi on Ii and a constant elsewhere. As the conditions

on hi , gi show, Hi are piecewise constant in the union of intervals (I ∪ Ii )c ∩ I0 (see
Fig. 3). In particular, if the intervals are between I c0 and I or between I c0 and Ic, then Hi
is defined as 0, since Hi is continuous. On the rest, and for the same reason, we set Hi
to

∫
I hi (t)dt = ∫

Ii
gi (t)dt := √

2παi , where αi is the so called charge.
The braiding is given by the following formula

ε(σh1, σh2) := εσh1 ,σh2
= σh2,I0(W (H1)

∗)W (H2)
∗W (H1)σh1,I0(W (H2)).
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−1

I1

I

I0

I2

Fig. 3. An example configuration for the intervals I, I0, I1 and I0. The choice of “future” and “past” is fixed
by considering the point −1 as the point of infinity for the lightray, and choosing I0 that does not contain it

Therefore, we have

ε(σh1 , σh2 ) = σh2,I0 (W (H1)
∗)W (H2)

∗W (H1)σh1,I0 (W (H2))

= e−i
∫
S1 H1(t)h2(t)dtW (H1)

∗W (H2)
∗W (H1)e

i
∫
S1 h1(t)H2(t)dtW (H2)

= e−i
∫
I H1(t)h2(t)dtW (H1)

∗W (H2)
∗W (H1)e

i
∫
I h1(t)H2(t)dtW (H2)

= ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dtW (H1)

∗W (H2)
∗W (H1)W (H2)

= ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dt e− i

2 Im〈H1,H2〉W (−H1 − H2)e
− i

2 Im〈H1,H2〉W (H1 + H2)

= ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dt ei Im〈H1,H2〉.

If one recalls that Im〈H1, H2〉 = ∫
S1 H1(t)H ′

2(t)dt , then
∫

S1
H1(t)H

′
2(t)dt = √

2πα1

∫

I2
g2(t)dt +

∫

I
H1(t)h2(t)dt = 2πα1α2 +

∫

I∪I1
h1(t)H2(t)dt.

Therefore, the braiding is

ε(σh1, σh2) = ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dt ei Im〈H1,H2〉

= ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dt e

i2πα1α2+i
∫
I∪I1

h1(t)H2(t)dt

= ei
∫
I h1(t)H2(t)dt ei2πα1α2 .

If we take hi = √
2παi h for a single function h such that

∫
S1 h(t)dt = 1, then H2 is

proportional to a function H on I such that H ′ = −h on I . Therefore, by integration by
parts,
∫

I
h1(t)H2(t)dt = 2πα1α2

∫

I
h(t)H(t)dt = 2πα1α2

([
−H2(t)

]

I
−

∫

I
h(t)H(t)dt

)

implying
∫

I
h1(t)H2(t)dt = −πα1α2.

Hence we conclude that in this case

ε(σα1h, σα2h) = eiπα1α2 ,

with the configuration above. In particular, it holds that ε(σα1h, σα2h) = ε(σα2h, σα1h).
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6.4. The charged field. The U(1)-current net has charged primary fields in the sense of
Sect. 5.3.WeequipRwith the scalar product 〈α, β〉 = αβ. In the sequel,we check that the
formal seriesYα(z) = ∑

s∈R Yα,s z−s−D are charged primary fields,where D = 〈α, α〉/2
and each coefficient Yα,s is a map Hfin

β → Hfin
β+α (on each Hfin

β , β ∈ R, only Yα,s with
s ∈ Z − 〈α, β〉 − D are non-zero). Explicitly, let cα be the unitary charge shift operator
Hfin

β → Hfin
β+α defined by cα J−n1 · · · J−nk�β = J−n1 · · · J−nk�β+α , n j > 0. Following

[TZ12] (α(n) there is identified with α Jn in our notation, cf. [TL97, Chapter V (3.2.1)]),
we define, as formal series,

E±(α, z) = exp

(

∓
∑

n>0

α J±n

n
z∓n

)

,

Yα(z) = cαE
−(α, z)E+(α, z)zα J0 , (6.2)

where α J0 = 〈α, β〉 is a scalar on each Hβ . The formal series of the exponential in
E±(α, z) is defined without problems, because, when expanding it into a Taylor series
the coefficients of zn are finite sums of operators onHfin

0 . As for Yα(z), the coefficients
of the product E−(α, z)E+(α, z) are infinite sums, but they still make sense as operators.
Indeed, for each n, the coefficient E+

α,n of z−n in E+(α, z) is a linear combination of

Jk1 · · · Jk j such that
∑ j

m=1 km = n, km > 0, and there are only finitely many such
combinations. The series E−(α, z) has a similar structure. As any vector  in Hfin

0
has finite energy M and Jm lowers the energy by m,  is annihilated by any product
Jk1 · · · Jk j if

∑
m km > M , that is,  is annihilated by E+

α,n if n > M . The coefficient
of zn in E−(α, z)E+(α, z) is the sum

∑
j∈Z+

E−
α,n− j E

+
α, j . Therefore, on each  only

finitely many terms contribute, and this sum defines an operator on Hfin
0 . Its restriction

Yα(z)|Hβ
has the form

Yα(z)|Hβ
=

∑

n∈Z
Yα,n−αβ−D|Hβ

z−n−D.

Braiding By [TL97, Chapter VI (1.2.2)], it holds that

(
1 − z

w

)−〈α,β〉
E+(α,w)E−(β, z) = E−(β, z)E+(α,w)

where (1 − u)a = ∑
n≥0

(a
n

)
(−u)n . Note that the left-hand side makes sense, because

(1 − z
w

)−〈α,β〉 has positive powers in z and negative powers in w, while E−(β, z) has
positive powers in z and E+(α,w) has negative powers in w. Similarly,

E−(α,w)E+(β, z) =
(

1 − w

z

)−〈α,β〉
E+(β, z)E−(α,w).

Therefore, if we introduce the pre-vertex operators Yα(z) = E−(α, z)E+(α, z)zα J0 (it is
Yα(z) without cα), and using that E±(α, z) and E±(β,w) commute (when ± coincide),
we obtain

(
1 − z

w

)−〈α,β〉
Yα(w)Yβ(z) =

(

1 − w

z

)−〈α,β〉
Yβ(z)Yα(w). (6.3)
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Here again, the equality is understood as the equality between the coefficients of znζm

on each fixed vector  ∈ Hfin
0 .

Now we take
⊕

λ∈RHfin
λ (algebraic direct sum). Using cλ1 z

λ2 J0 = z−〈λ1,λ2〉+λ2 J0cλ1 ,
and the fact that cλ1 commute with E+(α, z), E−(α,w), we obtain

(
1 − z

w

)−〈α,β〉
w−〈α,β〉Yα(w)Yβ(z) =

(

1 − w

z

)−〈α,β〉
z−〈α,β〉Yβ(z)Yα(w). (6.4)

Relative locality Here again we consider Yα(z) as a formal series on
⊕

λ∈RHfin
λ . On

each of these summands, Lm and Jm act naturally as a representation. We denote their
direct sum on

⊕
λ∈RHfin

λ by L̂m, Ĵm , respectively.
The commutation relation [ Ĵm,Yα(z)] = αYα(z)zm can be checked easily from the

definition of Yα(z). This is equivalent to [ Ĵm,Yα,s] = αYα,m+s .

Primarity As we will see, the conformal dimension of Yα should be D = α2

2 . Note
that

∂Yα(z) = z−1Yα(z)α Ĵ0 +
∑

j<0

z− j−1αYα(z) Ĵ j +
∑

j>0

z− j−1α Ĵ j Yα(z).

On the other hand, Yα being primary is equivalent to [L̂m,Yα(z)] = ∂Yα(z)zm+1+D(m+
1)Yα(z). Therefore, we need to show

[L̂m,Yα(z)] = (z−1Yα(z)α Ĵ0 +
∑

j<0

z− j−1αYα(z) Ĵ j +
∑

j>0

z− j−1α Ĵ j Yα(z))zm+1

+ D(m + 1)Yα(z)zm . (6.5)

It holds that Ĵ j cα = cα( Ĵ j +αδ j ). From the Sugawara formula L̂m = 1
2

∑
k : Ĵk Ĵm−k :,

we have L̂mcα = cα(L̂m + α Ĵm) for m �= 0 and L̂0cα = cα(L̂0 + α Ĵ0 + α2

2 ).
We want to verify directly that Yα(z) is primary in the sense above (this should also

follow by using VOAmodules, see [CGP21, (36.1)] and references therein, in particular,
[FHL93, Section 5.4]). To do this, recall the commutation relations

[L̂m, Ĵ j ] = − j Ĵ j+m .

In the definition of E±, the order of product does not matter, hence

E+(α, z) =
∏

j>0

exp

(

−α Ĵ j
j z− j

)

, E−(α, z) =
∏

j<0

exp

(

−α Ĵ j
j z− j

)

.

Using the formula [A, BC] = [A, B]C + B[A,C], we calculate

[L̂m,Yα(z)] = [L̂m, cα]E−(α, z)E+(α, z)zα Ĵ0

+ cα[L̂m, E−(α, z)]E+(α, z)zα Ĵ0 + cαE
−(α, z)[L̂m, E+(α, z)]zα Ĵ0 .

(6.6)

Let us consider the three cases separately. We illustrate our strategy for the simpler
case of m = 0.
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• m = 0. In this case, (6.5) becomes the following and thus we have to show

[L̂0, Yα(z)] = (z−1Yα(z)α Ĵ0 +
∑

j>0

z− j−1α Ĵ j Yα(z) +
∑

j<0

z− j−1αYα(z) Ĵ j )z + DYα(z)

= Yα(z)α Ĵ0 +
∑

j>0

z− jα Ĵ j Yα(z) +
∑

j<0

z− jαYα(z) Ĵ j + DYα(z). (6.7)

As [L̂0, cα] = cα(D + Ĵ0), the first and the last terms in (6.7) are obtained. By noting
[L̂0, Ĵ j ] = − j Ĵ j , it is straightforward that

[

L̂0, exp

(

−α Ĵ j
j z− j

)]

= α Ĵ j z
− j exp

(

−α Ĵ j
j z− j

)

and hence [L̂0, E±(α, z)] = ∑
± j>0 z

− jα Ĵ j E±(α, z). Inserting them in (6.6), they
yield the second and the third terms of (6.7).

• m > 0, odd. In this case, there is no j such that −2 j = m. Using [L̂m, Ĵ j ] =
− j Ĵm+ j , we have

[

L̂m, exp

(

−α Ĵ j
j z− j

)]

=
∞∑

k=0

1
k!

[

L̂m,

(

−α Ĵ j
j z− j

)k
]

=
∞∑

k=1

1
k!

k jα Ĵm+ j
j z− j

(

−α Ĵ j
j z− j

)k−1

= α Ĵm+ j z
− j

∞∑

k=1

1
(k−1)!

(

−α Ĵ j
j z− j

)k−1

= α Ĵm+ j z
− j exp

(

−α Ĵ j
j z− j

)

and hence [L̂m, E±(α, z)] = ∑
± j>0 z

− jα Ĵm+ j E±(α, z). The contribution from the

case j = −m in (6.6) gives exactly the term z−1Yα(z)α Ĵ0zm+1 in (6.5).

If m + j < − j , we need to bring the factor Ĵm+ j past exp
(−α Ĵ−m− j

−m− j z
m+ j

)
. Re-

calling that [ Ĵ j , Ĵ− j ] = j , and hence [exp(c Ĵ j ), Ĵ− j ] = ∑
k≥0

1
k!c

k[ Ĵ kj , Ĵ− j ] =
cj exp(c Ĵ j ), we get a contribution α2zmYα(z) for each such j . There are m−1

2 such

cases and it is (m − 1)α2

2 zmYα(z).

Finally, [L̂m, cα]E−(α, z)E+(α, z)zα Ĵ0 = α ĴmYα(z) = z−m−1α ĴmYα(z)zm+1. As
m > 0, we need to bring the factor Ĵm through E−(α, z), fromwhich there is an addi-
tional contribution α2zmYα(z). Altogether, we obtain a contribution of
(m + 1)α2

2 zmYα(z) which is the last term of (6.5) and the term corresponding to
j = m. This completes the proof of the case m > 0 odd.

• m > 0, even. In this case, there is j such that−2 j = m.We calculate the commutator
[
L̂−2 j , exp

(−α Ĵ j
j z− j

)]
slightly modifying the argument above for m > 0 odd
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[

L̂−2 j , exp

(

− α Ĵ j
j z− j

)]

=
∞∑

k=0

1
k!

[

L̂−2 j ,

(

− α Ĵ j
j z− j

)k
]

= − αz− j

j [L̂−2 j , J j ] +
∞∑

k=2

1
k!

[

L̂−2 j ,

(

− α Ĵ j
j z− j

)k
]

= αz− j J− j +
∞∑

k=2

1
k!

(−1)kαk z− jk

j k
j2k(k−1)

2 J k−2
j

−
∞∑

k=2

1
k!

(−1)kαk z− jk

j k
k j J k−1

j J− j

= αz− j J− j + α2

2 z−2 j
∞∑

k=2

1
(k−2)!

(−1)kαk−2z− j (k−2)

j k−2 J k−2
j

−
∞∑

k=2

1
k!

(−1)kαk z− jk

j k
k j J k−1

j J− j

= α2

2 z−2 j exp

(

− α Ĵ j
j z− j

)

+
∞∑

k=1

1
(k−1)!

(−1)k−1αk−1z− j (k−1)

j k−1 J k−1
j J− j

= α2

2 z−2 j exp

(

− α Ĵ j
j z− j

)

+ exp

(

− α Ĵ j
j z− j

)

J− j

and then moving Ĵ j+m = Ĵ− j , we obtain an additional term of

α2

2 z−2 j exp

(

−α Ĵ j
j z− j

)

= α2

2 zm exp

(

−α Ĵ j
j z− j

)

and this gives the contribution α2

2 zmYα(z).
From j withm+ j < − j , we get a contribution in (6.5) α2zmYα(z) for each such j as
before, and as m is even there are m−2

2 such cases, and together with the contribution
from the previous paragraph we obtain m−1

2 α2zmYα(z) as before.
The rest is the same as in the case where m is odd.

• The case m < 0 is obtained by taking the conjugate and substituting α by −α.

Energy bounds By [TL97, Proposition VI.1.2.1], ‖Yα,n‖ ≤ 1 if 〈α, α〉 ≤ 1. In
particular, Yα satisfies the linear energy bound for such α. It is also shown that for any
α, Yα(z) satisfies a polynomial energy bound.

Wightman fields Let G be a subgroup of R. Then, for a fixed function h with
supp h ⊂ I , we can choose a family of automorphisms σα parametrized by α ∈ G
such that, by omitting the dependence on h, σα ◦ σβ = σα+β . Their braidings satisfy
ε±(σα, σβ) = ε±(σβ, σα) = ε±(σ−α, σ−β). Therefore, ifwe take κL(α) = σα, κR(α) =
σ−α , the objects satisfy the conditions of Sect. 4. We can also take κL(α) = σα, κR(α) =
σ±√

α2+2� for any � ∈ Z such that α2 + 2� > 0.
Instead, let G = Z and K = {1, 2, · · · |K |} be a finite set. For j ∈ K , we take α j

such that
∑

j∈K α2
j/2 = 1, then κ j (n) = σnα j satisfy the conditions of Sect. 3, obtaining

extensions of (AU(1))
⊗ j as conformal nets on S1.

On the other hand, we have checked that the charged primary fields Yα satisfy the
conditions of Sect. 5.3 (without the index ξ ). Moreover, if there is α ∈ G, |α| ≤ 1,
then Yα,s are bounded, and hence the two-dimensional Wightman field as constructed
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in Sect. 5.5 satisfies a linear energy bound, and generate the conformal net on E . If G
is a subgroup without such α, the extension given by G can be embedded with a larger
net, where the field satisfy a linear energy bound. From this, it follows that the fields for
α > 1 strongly commute when smeared with spacelike separated test functions by an
analogue of [CTW22, Lemma 3.6].

7. Outlook

This construction should apply also to loop group nets at level 1 [Was98,TL97]. The
bosonic construction of charged primary fields of [TL97] should give two-dimensional
Wightman fields by our construction.

There are a few works on two-dimensional extension of CFT in a language similar
to that of vertex operator algebras, e.g., [HK07,CKM22,Mor23]. We plan to investigate
the construction problems of Wightman fields with more generality, in particular, for
loop group nets with higher levels and for Virasoro nets [KL04b]. Deforming CFT by a
pair of currents [Mor23] should also have a similar realization in the Wightman setting,
and it would be interesting to see whether it has a dynamical meaning, at least in the
sense of perturbation theory, cf. [CRV22].

In principle, our fields should be Wick-rotated to an Euclidean theory, that should
correspond to the works above. It would be interesting to understand these Euclidean
models in terms of Hilbert spaces and operators, cf. [FFK89].
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A On Strong Locality

Let us prove a simple criterion for strong commutativity of operators satisfying linear
energy bounds which follows from [GJ87, Theorem 19.4.4]. The arguments here are
due to Sebastiano Carpi.
Let H be a positive self-adjoint operator, A a symmetric operator on Dom(H) and
assume that, ‖A‖ ≤ C‖Hψ‖, ‖[H, A]‖ ≤ C‖Hψ‖. We denote
R(λ) = (H + (λ + 1)1)−1, R = R(0) = (H + 1)−1, δ(A) = i[H, A], δk(A) =
δ(δ(· · · (δ(A) · · · )))
︸ ︷︷ ︸

k-times

. By the proof of [GJ87, Theorem 19.4.1], we have

R
1
2 = 1

π

∫ ∞

0
R(λ)λ− 1

2 dλ,

[A, R
1
2 ] = 1

π

∫ ∞

0
R(λ)((H + (λ + 1)1)A − A(H + (λ + 1)1))R(λ)λ− 1

2 dλ

= − i

π

∫ ∞

0
R(λ)δ(A)R(λ)λ− 1

2 dλ.

Note also that ‖(H +1)R(λ)‖ = ‖R(λ)(H +1)‖ ≤ 1, ‖R(λ)‖ ≤ 1
1+λ

and ‖R−1R(λ)‖ =
‖ H+1
H+(λ+1)1‖ ≤ 1

λ+1 ≤ 1. Therefore, we find that

‖[A, R
1
2 ]‖ ≤ 1

π

∫ ∞

0

λ− 1
2

1 + λ
‖δ(A)R(λ)‖ dλ

≤ 1

π

∫ ∞

0

λ− 1
2

1 + λ
‖δ(A)R‖ dλ

= ‖δ(A)R‖.
This implies that

‖AR − R
1
2 AR

1
2 ‖ ≤ ‖[A, R

1
2 ]‖ · ‖R 1

2 ‖ ≤ ‖δ(A)R‖.

In particular, if ‖AR‖ is bounded, it follows that ‖R 1
2 AR

1
2 ‖ ≤ ‖AR‖ + ‖δ(A)R‖. If we

apply this to δ(A) and δ2(A) = −[H, [H, A]] instead of A, we obtain ‖R 1
2 δ(A)R

1
2 ‖ ≤

‖δ(A)R‖ + ‖δ2(A)R‖ and ‖R 1
2 δ2(A)R

1
2 ‖ ≤ ‖δ2(A)R‖ + ‖δ3(A)R‖, respectively.

Let us cite [GJ87, Theorem 19.4.3] with n = 1 and [GJ87, Theorem 19.4.4]:

Theorem A.1. The following hold.

• Let H, A, R as above, and suppose that R
1
2 δ(A)R

1
2 and AR are bounded. Then A

is essentially self-adjoint on any core of H.

• Let H, A, B, R asabove, and suppose that R
1
2 δ(A)R

1
2 , R

1
2 δ(B)R

1
2 , AR, BR, R

1
2 δ2

(A)R
1
2 , R

1
2 δ2(B)R

1
2 , δ(A)R, δ(B)R arebounded. Suppose furthermore that AB, BA

are defined on Dom(H) and AB = BA. Then A, B are essentially self-adjoint on
any core of H and their closures commute strongly.

Combining these observations, we have the following result.

Theorem A.2. The following hold.
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• Let H, A as above, and suppose that the operators ‖A‖ ≤ C‖(H + 1)‖,
‖[H, A]‖ ≤ C‖(H + 1)‖, ‖[H, [H, A]]‖ ≤ C‖(H + 1)‖. Then A is es-
sentially self-adjoint on any core of H.
• Let H, A, B, R as above, and suppose that the operators
– A, δ(A) = i[H, A], δ2(A) = −[H, [H, A]], δ3(A) = −i[H, [H, [H, A]]]
– B, δ(B) = i[H, B], δ2(B) = −[H, [H, B]], δ3(B) = −i[H, [H, [H, B]]]
are defined on Dom(H) and
– ‖A‖ ≤ C‖(H + 1)‖, ‖δk(A)‖ ≤ C‖(H + 1)‖, k = 1, 2, 3
– ‖B‖ ≤ C‖(H + 1)‖, ‖δk(B)‖ ≤ C‖(H + 1)‖, k = 1, 2, 3
Suppose furthermore that AB, BA are defined on Dom(H) and AB = BA. Then
A, B are essentially self-adjoint on any core of H and their closures commute
strongly.

Proof. By the hypothesis ‖A‖ ≤ C‖(H +1)‖, ‖δ(A)‖ ≤ C‖(H +1)‖, we have
that ‖AR‖ ≤ C, ‖δ(A)R‖ ≤ C , therefore, by the observation above, ‖R 1

2 AR
1
2 ‖ ≤ 2C .

Applying the same argument to δ(A) with the hypothesis ‖δ2(A)‖ ≤ C‖(H + 1)‖,
we obtain ‖R 1

2 δ(A)R
1
2 ‖ ≤ 2C . This and the first assertion of Theorem A.1 (with C

replaced by 2C) complete the proof of the first assertion.
As for the second assertion, we use ‖δ3(A)R‖ ≤ C to infer that the boundedness of

R
1
2 δ2(A)R

1
2 , which is in the assumption of the second assertion of Theorem A.1. We

have analogously the bounds for operators involving B, therefore, the second assertion
of Theorem A.1 applies. ��

This should be compared with some other formulations of the commutator theorem,
e.g., [RS75,TheoremX.37]which assumes that‖Aψ‖ ≤ C‖Hψ‖ and |〈ψ, [H, A]ψ〉| ≤
C〈ψ, Hψ〉 (these assumptions are very similar to that of TheoremA.1, the first assertion)
and proves that A is essentially self-adjoint on any core of H . In general, for a closable
operator B, ‖Bψ‖ ≤ C‖Hψ‖ for all ψ does not imply8 |〈ψ, Bψ〉| ≤ C〈ψ, Hψ〉,
therefore, we cannot infer the essential self-adjointness of A from just from ‖A‖ ≤
C‖H‖, ‖[H, A]‖ ≤ C‖(H +1)‖, but we need a bound on the higher commutators.

It is also possibile to have weaker assumptions on the commutators, for example
assuming bounds as quadratic forms [DF77], but then one must be careful with the
domains, see [Tan16, Appendix C].
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