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It is shown that a component of the dynamical affine connection, which is independent of the metric, can
drive inflation in agreement with observations. This provides a geometrical origin for the inflaton. It is also
found that the decays of this field, which has spin 0 and odd parity, into Higgs bosons can reheat the
Universe up to a sufficiently high temperature.
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I. INTRODUCTION

Einstein’s general relativity (GR) explains gravity in
geometrical terms; the distances are measured through the
metric, and the gravitational force is determined by the
(affine) connection, which is the essential building block
of covariant derivatives. This construction accounts for
all gravitational observations performed so far, including
today’s nearly exponential accelerated expansion of the
Universe if the cosmological constant is present.
It is generically accepted that another, but much more

rapid, nearly exponential expansion occurred during the
early stages of the Universe (inflation). This can be driven
by a spin-0 field, the inflaton, with an appropriate potential,
which guarantees that such an expansion not only occurred
but also eventually came to an end. Indeed, a reheating
must take place after inflation in order to generate all
particles that we observe.
From the purely geometrical point of view, the metric

and the connection, unlike in GR, can be completely
independent objects and, moreover, can contain extra
degrees of freedom besides the spin-2 graviton. This
generalized scenario is known as metric-affine gravity
(see [1] for a recent discussion and further references).
The goal of this paper is to discover whether the role of

the inflaton can be played by an extra dynamical compo-
nent of the connection. The main motivation behind this
goal is to provide a geometrical origin for the inflaton too,
linking it to one of the essential geometrical objects, the
connection. In order to achieve this goal, an inflaton with
an appropriate potential should be identified among the
components of the connection; additionally, the current
constraints given by cosmic microwave background (CMB)

observations should be satisfied. These requirements are
provided by Planck [2] and, more recently, the BICEP and
Keck collaborations [3]. Moreover, as discussed, the
Universe must be appropriately reheated after inflation.
This requires an efficient production of known particles,
such as electrons, quarks, and Higgs bosons.
In the following sections we show that all this is possible,

and we work out the predictions in a simple, yet well-
motivated model.

II. KEY IDEA AND INFLATION

When the connection Aμ
ρ
σ and the metric gμν are

independent, there are two invariants that are linear in
the curvature,

Rμν
ρ
σ ≡ ∂μAν

ρ
σ þAμ

ρ
λAν

λ
σ − ðμ ↔ νÞ: ð1Þ

The first one is the usual Ricci-like scalar1 R≡Rμν
μν, and

the second one is the parity-odd Holst invariant R0 ≡
ϵμνρσRμνρσ=

ffiffiffiffiffiffi−gp
[4–6], where ϵμνρσ is the totally antisym-

metric Levi-Civita symbol with ϵ0123 ¼ 1 and g is the
determinant of the metric. In the GR case, where Aμ

ρ
σ

equals the Levi-Civita connection, R coincides with the
Ricci scalar R, but R0 vanishes. Thus, in metric-affine
gravity, R0 can be understood as a component of the
connection.
The key idea here is to identify the inflaton with R0. To

do so,R0 has to be a dynamical field, which is independent
of the metric, and the simplest inflationary action that
realizes this is

SI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðαRþ βR0 þ cR02Þ: ð2Þ

Indeed, for c ¼ 0 one can easily show, by solving
the connection equations, that SI is equivalent to the
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Einstein-Hilbert action for any β, having identified
α ¼ M2

P=2, where MP is the reduced Planck mass. For
c ≠ 0, standard auxiliary field methods show that an extra
spin-0 parity-odd dynamical field ζ0, which is introduced as
an auxiliary field, is present and precisely equals R0 on
shell [7–9]; we can equivalently write

SI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½αRþ ðβ þ 2cζ0ÞR0 − cζ02�; ð3Þ

which coincides with the expression in (2) after using the ζ0
equation. Because of its symmetry properties, we call ζ0 the
pseudoscalaron. The βR0 term, known as the Holst term,
is also necessary to obtain a suitable inflaton potential, as
we will see; the quantity M2

P=ð4βÞ is called the Barbero-
Immirzi parameter [10,11]. After using the Aμ

ρ
σ equation,

a noncanonical kinetic term of ζ0 appears. It is possible to
canonically normalize the pseudoscalaron by considering
the field redefinition

ζ0ðωÞ ¼ 1

2c

�
M2

P tanhXðωÞ
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tanh2 XðωÞ

p − β

�
; ð4Þ

where

XðωÞ≡
ffiffiffi
2

3

r
ω

MP
þ tanh−1

�
4βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16β2 þM4
P

p �
; ð5Þ

such that, after using the connection equations, SI becomes
a standard scalar-tensor action [9] (we use the mostly plus
convention for the metric),

SI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

ð∂ωÞ2
2

− Uðζ0ðωÞÞ
�
; ð6Þ

where Uðζ0ðωÞÞ ¼ cζ0ðωÞ2 and clearly c > 0 for stability
reasons. As is clear from (6), this model does not contain
any ghost (the Einstein-Hilbert term has the usual sign and
the kinetic term of ω contributes positively to the kinetic
energy). Furthermore, for c > 0, the mass of ω (defined as
the mass of the fluctuations of this field around a Lorentz
invariant solution) is positive; namely, ω is not a tachyon.
The potential Uðζ0ðωÞÞ is symmetric in the exchange
fω; βg → f−ω;−βg. Therefore, an arbitrary value of β
and its opposite are physically equivalent.
The cR02 term, besides being the simplest one leading to

an extra spin-0 field, is also motivated by scale invariance
and Weyl invariance at high energies: By replacing
gμν → Ω2gμν, that term is invariant, not only when Ω is
spacetime independent (scale invariance) but also when it is
spacetime dependent (Weyl invariance). This is because in
metric-affine gravity, the metric and the connection are
independent, and a rescaling of the metric does not imply
any change in the connection. The extension of the present

model to a fully scale invariant one is beyond the scope of
the present work because it is not mandatory to assess the
viability of this scenario; mass scales can also be added by
hand. We thus leave such an extension as an interesting
outlook for future work. This may be realized perhaps
along the lines of [12] (where the vacuum expectation value
of a scalar field generates the mass scales, in our case α
and β) or [13] (where the mass scales are induced through a
gravitational version of the Coleman-Weinberg mechanism
[14]). It is also interesting to note that the same inflationary
predictions generically emerge if one substitutes cR02 with
a general quadratic function of bothR andR0, which is still
compatible with scale invariance. This is because more
general functions lead to the same potential, as recently
shown in [9]. The inflationary predictions that we find are,
therefore, quite robust.
The slow-roll approximation can be used when

ϵ≡M2
P

2

�
1

U
dU
dω

�
2

≪ 1; η≡M2
P

U
d2U
dω2

≪ 1; ð7Þ

and in this case, the number of e-folds Ne as a function of
the field ω is given by

NeðωÞ ¼ NðωÞ − NðωendÞ; ð8Þ

where

NðωÞ ¼ 1

M2
P

Z
ω
dω0 U

�
dU
dω0

�
−1

ð9Þ

and ωend satisfies ϵðωendÞ ¼ 1 (see details below). The
scalar spectral index ns, the tensor-to-scalar ratio r, and the
curvature power spectrum PR (at the horizon exit) are then
given by

ns ¼ 1 − 6ϵþ 2η; r ¼ 16ϵ; PR ¼ U=ϵ
24π2M4

P
: ð10Þ

One finds analytic expressions not only for ϵ, η, ns, r, and
PR, but also for the e-fold functions N and Ne (see the
Appendix). Indeed, the equation ϵðωendÞ ¼ 1 can be solved
for real ωend whenever 192β2 ≥ 4M2

P, and one finds two
solutions, which we call ω� and whose analytic expression
is given in the Appendix. Note that, as is always the case in
slow-roll inflation, ϵ, η, ns, and r are independent of the
overall constant in the potential (1=c in this case), while PR
is proportional to it. So the observed value of PR [namely,
ð2.10� 0.03Þ × 10−9 [2]] can always be obtained by
choosing c appropriately.
We want ωend to be the value of ω at the end of inflation,

so given the shape of Uðζ0ðωÞÞ, we take ωend such that
jωendj ¼ minðjωþj; jω−jÞ. In Fig. 1 we show the potential of
ω (lower plot) and its mass mω ¼ mζ0 (upper plot) by
setting c in a way such that PR ¼ 2.1 × 10−9 at Ne e-folds
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before the end of inflation. In the ω potential there is a
plateau, which increases for larger jβj and disappears when
β ¼ 0. This is the reason why the βR0 term in SI is
necessary. In the bottom plot of Fig. 1, jβj ¼ 80M2

P is
chosen, and it is enough to even have 60 e-folds.
In Figs. 2 and 3, we show that slow-roll inflation not only

occurs but is also remarkably compatible with the most
recent CMB observations provided by Planck and BICEP/
Keck (BK18 henceforth) for large jβj (i.e., small values of
the Barbero-Immirzi parameter) and for an appropriate
number of e-folds Ne [2]. Figure 2 shows that viable

slow-roll inflation with an appropriate Ne occurs for ω
slightly above the Planck scale2; in that figure, β ¼
−300M2

P. In Fig. 3 we compare the observations and the
theoretical predictions as functions of β and show that
viable slow-roll inflation with Ne ≃ 49 occurs already for
jβj≳ 20M2

P and with Ne ≃ 60 for jβj≳ 60M2
P. These

values of the mass parameter
ffiffiffiffiffiffijβjp

are above MP, but
not much larger than MP: for Ne ≃ 49 and Ne ≃ 60, we
have, respectively,

ffiffiffiffiffiffijβjp ≳ 4MP and
ffiffiffiffiffiffijβjp ≳ 8MP. In that

figure r0.002 is the value of r at the reference momentum
scale 0.002 Mpc−1, used by Planck and BK18. In Fig. 3 we
also report the predictions of Starobinsky inflation3 [15] for
ns and r; the predictions of pseudoscalaron inflation
approach (but do not quite reach) those of Starobinsky
inflation for jβj → ∞, while for a finite value of β they
differ significantly.
It is interesting to note that the predictions for ns and r of

pseudoscalaron inflation are within the reach of the future
space mission LiteBIRD [16], which will, therefore, be able
to test this scenario.

FIG. 1. Upper plot: pseudoscalaron mass and the corresponding
value of c (in the inset) that gives PR ¼ 2.1 × 10−9 [2] Ne e-folds
before the end of inflation as a function of β. Lower plot:
corresponding pseudoscalaron potential for β ¼ −80M2

P. For all
curves, PR ¼ 2.1 × 10−9 by construction. Also, the black points
correspond to the values of the inflaton for which Ne ¼ 49 (upper
curve) and Ne ¼ 60 (lower curve) are realized; the corresponding
predictions for ns and r (in good agreement with the Planck,
BICEP, and Keck observations) are provided.

FIG. 2. Scalar spectral index and the tensor-to-scalar ratio as
functions of the canonically normalized pseudoscalaron. The
pseudoscalaron values corresponding to Ne ¼ 49, 60 e-folds
before the end of inflation are explicitly indicated: They corre-
spond to the green points below the numbers 49 and 60,
respectively. In the inset, the slow-roll parameters are shown.
We have set β ¼ −300M2

P.

2However, the corresponding value of the energy density, ∼U,
is well below the cutoff, which is around the Planck scale (see the
lower plot of Fig. 1).

3In Starobinsky inflation the inflationary action SI also features
a quadratic-in-curvature term, SI ¼

R
d4x

ffiffiffiffiffiffi−gp ðM2
PR=2þ cR2Þ,

but with connection equal to the Levi-Civita one. So it is interesting
to compare the predictions of pseudoscalaron inflation with those
of Starobinsky inflation.
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III. REHEATING

Reheating the Universe after inflation is mandatory for
the viability of any model, and to achieve this, couplings
between the inflaton and the StandardModel (SM) particles
are needed. If ω decays into some SM particles with width
Γω, the reheating temperature TRH is at least

TRH ≳min

��
45Γ2

ωM2
P

4π3g�

�
1=4

;

�
30ρvac
π2g�

�
1=4
�
; ð11Þ

where g� is the effective number of relativistic species in
thermal equilibrium at temperature TRH and ρvac is the
vacuum energy density due to ω (note that ρvac represents
the full energy budget of the system). This is the standard
perturbative contribution to reheating; it is important to
keep in mind that there may also be nonperturbative
contributions to the particle production after inflation
[17–20]. However, we leave their detailed calculation for
future work because they are not crucial to assess the
viability of the present scenario. This is because, as we will
see, the value of TRH estimated through the standard
perturbative approach can be large enough.
Let us first consider a fermion f represented by a Dirac

spinor Ψ minimally coupled to gravity and with mass mf,
i.e., with action

Sf ¼
Z ffiffiffiffiffiffi

−g
p 1

2
Ψ̄ði=D −mfÞΨþ H:c:; ð12Þ

where =DΨ≡ γaeμaDμΨ (the eμa satisfy [21] eμaeνbgμν ¼ ηab),
Ψ̄≡Ψ†γ0, and the Dirac gamma matrices γa satisfy
fγa;γbg¼−2ηab, DμΨ¼∂μΨþAab

μ ½γa;γb�Ψ=8, and Aμ
a
b¼

eaνAμ
ν
λe

λ
b−eλb∂μeaλ . By using the connection equations with

the formalism of [9], one finds the following effective
pseudoscalaron-fermion-fermion interaction:

L ωff ¼ cωff
MP

∂μωΨ̄γ5γμΨ; ð13Þ

where

cωff ¼
�

3MP

1þ 16B2

dB
dω

�
ω¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3M4
P

8ðM4
P þ 16β2Þ

s
; ð14Þ

γ5 ¼ iγ0γ1γ2γ3 and B ¼ ðβ þ 2cζ0ðωÞÞ=M2
P. This effective

interaction leads to the decay ω → ff with width

Γω→ff ¼ jcωffj2
mωm2

f

2πM2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

m2
ω

s
: ð15Þ

This channel can efficiently reheat the Universe up to a
temperature above the electroweak scale if mf is very large

FIG. 3. Slow-roll parameters, the scalar spectral index, and the
tensor-to-scalar ratio as functions of β. The green dots in the
bottom plot are the predictions of Starobinsky inflation.
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compared to that scale. Such a fermion is not present in the
SM. It is possible to engineer a model where there is a very
heavy fermion with sizable couplings to SM particles such
that this channel is sufficient. For example, this is the case
in the well-motivated model [22,23], which was proposed
to solve the strong CP problem.
However, in order to keep our analysis as model inde-

pendent as possible, we consider another channel: the decay
of ω into two identical real scalar particles, e.g., two Higgs
bosons. This channel can be active when there is a non-
minimal coupling between the real (canonically normalized)
scalar field ϕ in question and R in the action:

Snm ¼
Z ffiffiffiffiffiffi

−g
p ξϕ2

2
R: ð16Þ

This term is known to be generated by quantum corrections,
and therefore, it is more natural to include it. If one solves
the connection equation in the presence of (16) (using
the results in [9]), one finds the following effective
pseudoscalaron-scalar-scalar interaction:

L ωϕϕ ¼ cωϕϕ
MP

∂μωϕ∂
μϕ; ð17Þ

where

cωϕϕ ¼
�
48ξMPB
1þ 16B2

dB
dω

�
ω¼0

¼ 4
ffiffiffi
6

p
βξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4
P þ 16β2

p : ð18Þ

This effective parity-violating operator only arises in the
presence of the Holst term because cωϕϕ → 0 as β → 0. The
effective interaction L ωϕϕ leads to the decay ω → ϕϕ with
width

Γω→ϕϕ ¼ jcωϕϕj2
m3

ω

16πM2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
ϕ

m2
ω

s
; ð19Þ

where mϕ is the mass of ϕ. The produced Higgs particles
subsequently decay into other SM particles, such as leptons
and quarks. The channel ω → ϕϕ can efficiently and natu-
rally reheat the Universe up to a temperature much above the
electroweak scale, even if one identifiesϕwith the SMHiggs,
so per se it does not require any beyond-the-SM physics. For
example, takingmϕ ≪ mω, g� ∼ 102, and β ≳M2

P, one finds
TRH ≳ 109jξj GeV. This reheating temperature is compatible
with all numbers of e-folds considered in Sec. II for natural
values of jξj of order 1 or smaller. Since cωϕϕ → 0 as β → 0,
this reheating channel occurs thanks to the presence of an
independent connection: The Holst term would be absent if
the full connection were exactly the Levi-Civita one.

IV. CONCLUSIONS

It has been found that a pseudoscalar component of
a dynamical connection, which is independent of the

metric, can drive inflation in agreement with current
data. This pseudoscalaron is identified with the parity-
odd Holst invariant, and inflationary predictions in excel-
lent agreement with data have been found for small values
of the Barbero-Immirzi parameter, where the inflaton
potential develops a plateau. The predictions approach,
but do not quite reach, those of Starobinsky inflation as
the Barbero-Immirzi parameter goes to zero; for finite
values, on the other hand, the predictions significantly
differ. Pseudoscalaron inflation can be tested by future
CMB observations, such as those of LiteBIRD.
Moreover, the decays of the pseudoscalaron into Higgs

particles (which occur thanks to the presence of an
independent connection) can efficiently reheat the
Universe after inflation up to a high enough temperature.
This temperature could be further increased by other
channels, such as decays into very massive fermions,
which we have computed too.
In the future, it would be interesting to calculate the

nonperturbative particle production after inflation (preheat-
ing). Moreover, it would also be interesting to engineer a
fully scale invariant version of this model. Indeed, a crucial
ingredient of the present construction is a quadratic-in-
curvature term cR02, which is compatible with scale (and
even Weyl) invariance.
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APPENDIX: ANALYTIC EXPRESSIONS FOR
INFLATIONARY QUANTITIES

The analytic expressions for ϵ, η, ns, r, PR, and N are

ϵðωÞ¼ 4M4
P cosh

2XðωÞ
3ðM2

P sinhXðωÞ−4βÞ2 ;

ηðωÞ¼ 4M2
PðM2

P coshð2XðωÞÞ−4β sinhXðωÞÞ
3ðM2

P sinhXðωÞ−4βÞ2 ;

NðωÞ¼ 3

4
logðcoshXðωÞÞ−3βarctanðsinhXðωÞÞ

M2
P

;

nsðωÞ¼ 1−
8M4

P cosh
2XðωÞ

ðM2
P sinhXðωÞ−4βÞ2

þ8M2
PðM2

P coshð2XðωÞÞ−4β sinhXðωÞÞ
3ðM2

P sinhXðωÞ−4βÞ2 ;

rðωÞ¼ 64M4
P cosh

2XðωÞ
3ðM2

P sinhXðωÞ−4βÞ2 ;

PRðωÞ¼
ðβ−M2

P sinhXðωÞ
4

Þ2ðM2
P sinhXðωÞ−4βÞ2sech2XðωÞ
128π2cM8

P
:
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Moreover, the analytic expressions of ω� [the two solutions of ϵðωendÞ ¼ 1] are

ω� ¼
ffiffiffi
3

2

r
MP

 
sinh−1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
192β2

M4
P

− 4

s
−
12β

M2
P

!
− tanh−1

 
4βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16β2 þM4
P

p
!!
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