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Abstract: Biophotons are an ultra-weak emission of photons in the visible energy range from living
matter. In this work, we study the emission from germinating seeds using an experimental technique
designed to detect light of extremely small intensity. The emission from lentil seeds and single bean
was analyzed during the whole germination process in terms of the different spectral components
through low pass filters and the different count distributions in the various stages of the germination
process. Although the shape of the emission spectrum appears to be very similar in the two samples
used in our experiment, our analysis can highlight the differences present in the two cases. In this
way, it was possible to correlate the various types of emissions to the degree of development of the
seed during germination.

Keywords: biophotons; complexity; data analysis

1. Introduction

Nearly a hundred years ago, the Russian biologist A. Gurwitsch [1,2], doing experi-
ments with onion plants by measuring their growth rate, observed that this was strongly
influenced by the fact that the various seedlings were close or not and that this behavior
remained even if the possibility of any bio-chemical exchange had been eliminated. On this
basis, he hypothesized that plants emit a weak electromagnetic field capable of influenc-
ing cell growth. The scientific community completely forgot this interesting observation
for many years, and only in the 1950s, Colli and Facchini [3,4], with the development
of technology relating to radiation detectors, were able to make the first measurements
of electromagnetic emissions coming from living organisms. This work was taken up
again 30 years later by F.A. Popp [5] and co-workers who started extensive work to un-
derstand more in detail the origin and the meaning of such ultra-weak emission, hereby
and after called bio-photons. Biophotons are an endogenous production of a very small
flux of photons, of the order of 100 ph/sec, in the visible energy range characteristic of
living organisms. This emission is completely different from the normal bioluminescence
observed in some organisms because it is present in all living organisms, from plants to
human beings, and it is several orders of magnitude weaker. Biophotons cannot come
from the contribution of thermal radiation in the visible energy range because a simple
calculation using the Plack distribution tells us that the intensity of this latter radiation
is several orders of magnitude smaller than the biophotons contribution. Moreover, this
emission ends when the organism dies; this excludes the possibility that it is the product of
either some radiative decay produced by traces of radioactive substances present in the
organism or by the passage of cosmic rays. The main characteristics of biophotons [5–7]
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are, besides the very small intensity, a practically flat emission within the energy range
between 200 and 800 nm and the fact that any type of stress due, for example, to some
chemical agents or excitation by light, induces a very fast increase in the emission up to
several factors of magnitude followed by a relatively slow decrease to the normal values
following a non-exponential law. For example, in delayed luminescence (DL) experiments,
the return to normal emission occurs in a time that varies from a few tens of seconds to a few
minutes [5–11]. This time scale is much faster than one of the typical germination processes,
which normally takes place over tens of hours. This indicates that there are essentially
two types of emission, one associated with the relaxation of molecular species excited due
to the normal metabolic processes of the living organism and the other originating from
the relaxation of excited states induced by the external stimulus [10,11]. Clearly, the two
processes are closely connected, probably involving the same types of molecules, but, in
our opinion, the decay channels responsible for spontaneous emission are different.

Despite the wealth of experimental results, the questions of what biophotons are, how
they are generated, and how they are involved with life are still open. There are two hy-
potheses [5,6]. The first sees the emission as the random radiative decay of some molecules
excited by metabolic events, while the second hypothesis assigns the emission to a coherent
electromagnetic field generated within and between the cells by some biochemical reactions
in which, perhaps, oxygen atoms are involved. At the same time, there is experimental
evidence that such radiation carries important biological information [12,13]; for example,
the radiation emitted by growing plants or organisms can increase by as much as 30% the
cell division rate in similar organisms, the so-called mitogenetic effect [14–16].

Our group deals with bio-photon emission coming during the germination process of
seeds of various kinds. The experimental setup we use to measure the biophoton emission
is based on photomultiplier techniques, and it is constituted by a dark chamber and a
photomultiplier sensitive to the visible energy range. The detector works as a photon
counter, and the experimental data are the number of photons detected within a well-
defined time window. In this way, our experimental data are essentially a time series
where the counts detected in the chosen time window are reported as a function of the time
calculated from the moment of closure of the experimental setup [17]. The duration of the
experiment can vary from a few hours to many days, depending on the germination time
of the considered seeds.

We have recently published a paper in which the time series generated by the biopho-
tons emitted during the germination of lentil seeds has been analyzed using the diffusion
entropy analysis (DEA) method. This method introduced in the literature in 2001 (see
Ref. [18] for details) is based on the concept of complexity developed by Kolmogorov in the
past. The Kolmogorov complexity is evaluated through a scaling index η, which is expected
to depart from the ordinary value η = 0.5 if the signal shows some degree of anomalous
complexity. The experimental time series is converted into a diffusional trajectory, and
the complexity of the signal is derived through the evaluation of the Shannon entropy
associated with the diffusional trajectory [17–19]. The main result of Ref. [17] is that the
biophoton emission shows conditions of anomalous diffusion with a substantial deviation
of the scaling coefficient from the ordinary value η = 0.5 throughout the duration of the
experiment, which was 72 h. At the beginning of germination, the condition of anomalous
diffusion is due to the presence of so-called crucial events, i.e., situations in which the
system’s memory is reset to zero. As the seeds germinate and roots and leaves begin to
develop, the type of complexity associated with the experimental data completely changes
its nature, and the departure from the condition of random diffusion is due to the so-called
fractional Brownian motion (FBM) [20] regime. This result is very similar to that found
by the authors of Ref. [21], who analyzed the heartbeats of patients under the influence of
autonomic neuropathy. In this case, the increasing severity of this disease has the effect of
moving from a complexity condition generated by crucial events to a complexity condition
characterized by the FBM infinite memory. Based on this analogy, the passage from a
complexity characterized by crucial events to a condition dominated by FBM could indicate
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the passage from a normal physiological condition to a pathological one due to the lack
of light in the experimental chamber, light necessary for the beginning of the chlorophyll
photosynthesis process, with which plants generate the nutrients necessary for their growth.
On the other hand, plants could have a completely different behavior during the growth
process from that of humans since they do not have well-defined organs. Only at the
beginning of germination is there a process of cellular differentiation, which leads to the
development of leaves and roots, and this phase could require the presence of crucial events
detected in the biophotonic emission. In other words, it cannot be excluded that the type
of criticality inherent in the germination process requires a form of phase transition not
yet known. It is interesting to note that Mancuso and collaborators [22,23] use the concept
of swarm intelligence with reference to the network of roots generated by plants living in
natural conditions. The presence of crucial events in the initial stage of germination could
have something to do with the birth of this amazing radical intelligence.

In this paper, we present new experimental data related to the emission of a single
bean and, at the same time, a new analysis of the various spectral components of the
emission as a function of time. Furthermore, the distribution functions of the photocounts
were analyzed in greater detail both for the lentil seeds and the single bean. All this was
then related to the DEA analysis presented in the previous work.

2. Methods and Experimental Data

Our experimental setup was formed by a germination chamber and a photon counting
system. Seeds were kept in a humid cotton bed and put on a Petri plate. The photon
counting system consisted of a Hamamatsu (H12386 110) counting head placed on top
of the germination chamber and an ARDUINO board driven by a PC with a Lab-View
11 program. The acquisition time window was fixed at 1 s. The germination chamber was
built with black PVC to avoid any contamination of the light from outside. The whole
system had a dark current of about 2 photons/sec at room temperature. Without any seeds
or germination, there was a monotonic decrease in photon emission, which arrived in a
few hours at the value of the electronic noise. This emission tail came from the residual
luminescence of the materials, a consequence of the light exposure of the experimental
chamber. Details can be found in Ref. [17].

All the analyses presented in this work were carried out with the help of the Kaleida-
Graph program version 5.02 [24].

The experiment was performed using 76 lentil seeds and a single bean seed. The
results are shown in Figure 1. To clarify the comparison, the two curves have the same
photon-counts scale, while the vertical black line in the panel of the single bean represents
the time of 72 h, which is the duration of the entire acquisition time of the biophotons
emitted by the lentils.

In both cases, the emission was activated by the watering process and analyzed in a
wide time interval ranging from the end of the residual luminescence until the time when
germination generated roots and leaves. Note that the time scales of the 76 lentils are
completely different from the time scale of the single bean.

In Figure 2, we present the comparison between the two emissions. In order to
highlight the common characteristics of the two emissions, we rescaled the time scale of the
single bean by a factor of 0.164. In this way, it was possible to align the emission maxima
of the two cases, the C peaks in the figure. The two curves have been moved further to
have the zero of the time scale positioned in the first minimum. This means that the values
10 and 100, respectively, for the lentils and the single bean have been subtracted from the
original time scale. To have the same number of counts in peak C, the values of the counts
relating to the single bean were multiplied by a factor of 2.28.
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Figure 2. Comparison between the biophoton emission of the single bean with the emission of the
76 seeds of lentil. For clarity, the curve relating to the emission of lentils has been moved upwards,
and it has been used in the time scale of the lentil’s emission. To obtain the time scale of the single bean,
multiply the numbers by the factor 6.1 and add 100 h. The capital letters in the figure indicate the main
emission peaks observed in the experimental data and are used in the discussion in the manuscript.
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This procedure was based on the use of the logistic equation [25] for the interpretation
of the experimental data reported in Figures 1 and 2. We hypothesized that the saturation
time of the ordinary logistic equation in different systems corresponds to the maximum
emission peak to a certain extent, and we rescaled the time scale of the bean so that its
maximum photon emission rate coincided with that of the lentils. In particular, between
0 and 20 h, the lentil emission presented two peaks (B and C) separated by about 5 h; the
same two peaks (B’ and C) were present in the emission of the single bean, but here they
were separated by about 14 h. The biophoton emission of the bean showed a further peak
(peak A) at about 43 h (these values in the bean time scale) after the minimum position at
zero time in the scale. This peak was absent in the lentil emission. It should also be noted
that in the germination phase, between zero and peak C, the growth phase of the emission
presented at least two slopes.

The shape of the temporal evolution of the biophotons emission detected in our
experiment seemed to be quite a general feature in the germinating phase of seeds,
for example, the emissions of common wheat [26] (Triticum aestivum) and of seeds of
Arabidopsis thaliana [27] are very similar to those presented here. This is quite interesting.
The fact that the emissions of different seeds had a very similar temporal behavior led us to
hypothesize the existence of a sort of generalized logistic equation as a universal property
of the connection between system growth and photon emission.

The DEA analysis [17] and the behavior of the various spectral components (see
Section 2.2 of this manuscript) indicate that the germination process had dynamics with
time scales of the order of tens of hours, much longer than those typical of most experiments
where living systems are subjected to external stimuli. Nevertheless, the emission as a
function of time in this type of experiment (for example, the fact that the DL is practically
independent of the frequency of the exciting light [5]) could indicate that the biophoton
emission came from a unique process with different decay channels depending upon the
type of the experiment.

By renormalizing the emissions by the number of seeds, we can also find the ratio
between the number of photons emitted for each single seed of a different type. In this
experiment, the ratio between the number of photons emitted by the lentils and the number
of photons emitted by the single bean is about 1

33 , a number very close to the ratio between
the average weight of a single seed [28].

2.1. Data Analysis I—Probability Distribution Functions

In this section, we report the analysis of the emitted light in terms of the probability
distribution function Pm(T) of finding m counts in each acquisition time window T. In the
semiclassical picture of the optical detection process, the phototube converts the continuous

cycle-averaged classical intensity
−
I (t) in a series of discrete photocounts. Thus, the number

m of photocount obtained in an integration time T is proportional to the intensity of the
light that arrives on the detector [29].

A photocount experiment consists of a sufficiently large number of measurements of
the number of photocounts in the same integration period T. The result of the measurement
is expressed by the function Pm(T) which represents the probability of obtaining m counts
in the acquisition time T. The purpose of this measurement is to determine, if possible, the
statistical properties of light through the properties of the distribution function, considering
that, at least in some cases, there is a direct correspondence between the functional form of
the Pm(T) and the statistical properties we are looking for.

In a real experiment, it is practically impossible to repeat the same experiment many
times, in our case where we have a system that is germinating and which, therefore,
changes over time although with much longer times than acquisition time window T, 1 sec
in our experiment. The distribution function is thus determined by means of a series
of observations of a given duration, i.e., we detect the number of photons arriving in
the phototube in one second and repeat this for the whole duration of the experiment,
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typically from one hour to the total time interval of the data set. The required photocounts
distribution function is obtained as an average over successive starting time t of the function:

Pm(t, T) =
[
ξ I(t, T)T

]m

m!
exp

[
−ξ I(t, T)T

]
(1)

where ξ is the detector efficiency and I (t, T) is the mean intensity of the light field on the
phototube in the period from t to t + T [29]. So, Pm(T) = 〈Pm(t, T)〉 and the average is
performed as previously described. On this basis, the mean number of counting is easily
obtained as 〈m〉 = ∑m m Pm(T), as well as the different moments and the variance of the
distribution. It has been assumed that the emission is stationary. In our case, this is not
strictly true, but this assumption becomes a good approximation for time intervals of the
order of an hour or in the growth phase after the germination.

There are only some special cases where the average can be obtained in an analyt-
ical form. The simplest is that of a stable classic light wave where I(t, T) = I, i.e., the
cycle-averaged intensity has a fixed value independent of the time [26]. In this case, the
distribution Pm(T) has a Poissonian form like

Pm(T) =
〈m〉m

m!
exp(−〈m〉) (2)

where 〈m〉 = ξ IT. A Poisson distribution is a sign of a system in a coherent state that
corresponds to a classical electromagnetic wave [26,27], but, at the same time, this dis-
tribution also occurs for experiments where the integration time T is much longer than
the characteristic time of the intensity fluctuations of the light beam. For the Poisson
distribution, the variance is equal to the average σ2 = 〈m〉; any departure from the Poisson
distribution is an indication of a non-classical nature of the light and can be measured by
the Fano factor [23] F defined as σ2 = F 〈m〉.

The photocounts distribution can also be derived for a complete chaotic light [29], and
it is equal to the photon distribution of a single-mode thermal source:

Pm(T) =
〈m〉m

(1 + 〈m〉)1+m (3)

This expression can be used for chaotic light of almost any type [29]. This formula can be
generalized for thermal sources with M modes [30]:

Pm(T, M) =
(m + M− 1)!
m!(M− 1)!

(
1 +

M
〈m〉

)−m(
1 +
〈m〉
M

)−M
, (4)

Thermal states are classical, and there is a relation:

σ2 = 〈m〉+ 〈m〉
2

M
(5)

between the average number of counts and the variance. In general, the coefficient M can
be very large; this means that the variance becomes almost equal to the average value, and
we find the same relationship valid for the Poisson distribution. As a consequence, for very
large M (greater than 20) [30], the thermal photocount distribution approaches the Poisson
distribution. This implies that it is very difficult to discriminate between coherent and
thermal states when many modes are present, which is in agreement with the discussion
of Ref. [30].

The analysis of the dark counts, i.e., the counts measured with the black cap, has
already been presented in Ref. [17] in detail. We remembered here that the experimental 〈m〉
value is consistent with the dark count data of this phototube [31]. We then proceeded with
the emission analysis in the presence of seeds. In the reference [17], the count probability
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distribution functions Pm(T) for the case of lentils have been derived using 1 h of emission
at different germination times. The result of that analysis was to tend to super Poisson
distributions in all cases, this being typical of chaotic or partially coherent sources.

In this paper, we present a similar analysis but using different sizes of the emission
period, up to the entire measured data, and for the two types of seeds. In Figure 3, we show
the comparison between the experimental Pm(T) for the 76 lentils (panel a) and the single
bean (panel b) with different types of fits. The measurement period used to obtain the
count probability distribution function is from time 10 (hours) and time 83 (hours) to the
end for the lentils and the single bean, respectively. See Figure 1 for clarity. In other words,
we did not consider in both cases the first period where we could have contaminations
due to the residual luminescence, and we waited for the first hints of rising in the counts
that indicated (especially in the single bean) the beginning of the germination process. The
experimental average value of the counts is 〈m〉 = 23.5 in the case of lentils, while the
single bean gives a value 〈m〉 = 7.9, the variance is equal to 39.9 and 20.2 for lentils and the
single bean, respectively. In both cases, this value is much bigger than the average count.
The distribution relative to the single bean is clearly asymmetric, and it is impossible to
obtain a good fit of it using either a Poisson (Equation (2)) or a many-mode functional form
(Equation (4)). On the contrary, the distribution relative to lentils is optimally fitted with
either one of the other two functional forms.
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line refers to a Poisson distribution function, the points blue line to the many-mode distribution
function, and the points-dashed black line in panel (a) to a Gaussian distribution function.



Entropy 2023, 25, 1431 8 of 14

In both cases, the fit with a Poisson function is inaccurate, but this is not surprising
considering the experimental difference between the mean values and variances and that
the stationarity hypothesis is only weakly satisfied, having considered the entire time
interval of measurement. The fact that the distribution of the 76 lentil seeds is strongly
symmetrical and can be optimally fitted with a Gaussian is a clear indication that the
various seeds have different germination times, which, therefore, give rise to emissions
that are not in phase with each other. The use of a shorter time period for the calculation
of the probability distribution function makes the hypothesis of stationarity more easily
satisfied. In the case of single bean data, using a shorter emission period for the calculation
of the function Pm(T), we observe a transition to more symmetrical distributions. As an
example, in Figure 4, we report the comparison between the experimental count probability
distribution function (red squares) relative to the period from 200 (hours) to the end, with
two fits using a Poissonian fit (solid green line) and a many-mode thermal function (points
blue line).
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Figure 4. Comparison between the experimental count probability distribution function (red squares)
relative to the single bean emission with two fits using a Poisson function (solid green line) and a
many-mode thermal function (points blue line). Here, the emission period is between 200 (hours)
and the end of the experiment.

In this case, the experimental average count is 〈m〉 = 11.33, and the variance is
σ2 = 12.93, a value much closer to the average number of counts than that found in the
previous case. The quality of the two fits is equivalent to producing a practically identical
χ2 value [24]. In the Poissonian case, we obtain a value of the average counts equal to
〈m〉 = 11.24± 0.05, while the multi-mode thermal function gives 〈m〉 = 11.3± 0.03 and
M = 48.0± 0.03. It is interesting to note that in this last case, Equation (5) is almost satisfied.
We performed this type of analysis for both the single bean and lentil seeds using emission
periods ranging from one hour to several hours, up to the total, as shown previously.
Some of this work is summarized in Table 1, where the distribution asymmetry S index is
reported only for some of the time intervals chosen for the analysis. The asymmetry index
S is defined as S = µ3/σ3 where µ3 is the central moment of order 3, and σ is the standard
deviation. A perfect symmetrical distribution has the value S = 0. This analysis confirms
that the count probability distribution functions related to the lentil seeds are much more
symmetrical than those relative to the single bean in all the time intervals considered. This
may be due either to a different characteristic of the seeds or also to the fact that in the case
of lentils, we used many seeds to have a good signal/noise ratio.
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Table 1. S values for different time intervals for lentil seeds and the single bean. The time intervals
are measured in hours. Refer to Figure 1 for details.

Single Bean Lentil Seeds

Time Interval S Index Time Interval S Index

82–265 0.50 10–70 0.23

82–150 0.81 20–70 0.24

150–200 0.30 50–70 0.28

200–265 0.43 35–36 0.11

When possible, typically for a short time window, the distributions can be fitted
with either a Poissonian or a multi-mode thermal function. In any case, the experimental
variance is always bigger than the mean value 〈m〉; this indicates a super-Poissonian type of
behavior that is typical of either thermal emission or emission with a very short coherence
time compared to the time window of the measurement. This makes it very difficult to
discriminate between coherent and thermal states using the photo counting distribution
analysis, which is in agreement with the discussion of Ref. [30].

2.2. Data Analysis II—The Different Spectral Components

The use of a turntable wheel holding a few long-pass glass color filters [32] makes
possible an analysis in terms of the different spectral components of the emission. The wheel
with the filters is placed between the germinating seeds and the detector and has eight
positions. Six are used for the color filters, one is empty, and the last one is closed with a
black cap [17]. The transmission coefficients of our filters and the efficiency of the phototube
as a function of the wavelength of light are shown in Figure 5. The transmission coefficients
are essentially theta functions positioned at the wavelengths written in the figure; thus,
only light with wavelengths greater than the cutoff value shown in the figure can pass.
The sensitivity of our phototube allows us to see the emission from near ultra-violet to
yellow-orange with good sensitivity.
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is the efficiency of the phototube as a function of wavelength.

The total number of counts at time t without filters can be written as

Mtot(t, T) =
∫ λmax

λmin

m(λ, t, T) α(λ) dλ, (6)
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where m(λ, t, T) is the number of photons emitted from the sample at time t within the
integration window of size T at a given wavelength, and α(λ) is the efficiency of the
phototube. Inserting a filter with a transmission coefficient fn(λ) the number of counts
Mn(t, T) becomes

Mn(t, T) =
∫ λmax

λmin

m(λ, t, T) f n(λ) α(λ) dλ, (7)

In Figure 6, we report the quantities Mn(t, T) related to the different filters for both the
lentils and the single bean. The count without any filters is also shown for comparison.
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The different spectral components have a very similar shape to the emission without
any filters. To see the possible different behavior of the various spectral components, we
can do a monochromatizating calculation of the difference between the counts obtained
using two filters with adjacent cutoffs. In this way, we have almost a monochromatic signal
with an energy resolution of the order of 0.1%. The number of counts detected in the
wavelength range defined by two filters with adjacent cutoffs is written as

Mn,s(t, T) =
∫ λmax

λmin

m(λ, t, T)α(λ)[ fn(λ)− fs(λ)]dλ, (8)
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supposing now that the number of photons emitted from the sample in this wavelength
window has a slight dependence on the wavelength, the average number of photons
mn,s(t, T) in each wavelength interval can easily derived as

Mn,s(t, T) ∼= mn,s(t, T)·
∫ λmax

λmin

α(λ)[ fn(λ)− fs(λ)]dλ = mn,s(t, T)·In,s, (9)

mn,s(t, T) =
Mn,s(t, T)

In,s
(10)

The value of the In,s integral can be calculated numerically, and the average counts
can be found using Equation (10). In Figure 7, we show the ratio between the different
average counts mn,s(t, T) and the total signal without filters for both lentils and the single
bean. As usual, panel (a) refers to the lentil seeds, while panel (b) shows the result for the
single bean. Because of the small counts in the case of a single bean, the ratio has been
smoothed to clarify the behavior as a function of time. In the figure, the different letters
indicate the position in time of the main emission peaks between 0 and the maximum, as
used in Figure 2. In both cases, the different ratios are shown to change as a function of
time. In other words, according to the moment of germination, the total signal is formed by
different spectral components that change in relative intensity.
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In the case of lentil seeds, the best signal/noise ratio allows us to say that the dominant
components are those of orange (600–645 nm) and yellow-green (550–600 nm), in agreement
with the results of Colli and Facchini [4]. It is interesting to observe how, while the
high-energy components remain constant for the entire time of the measurement, the
lower-energy parts clearly change in relative intensity throughout the duration of the
measurement. In particular, the orange component is constant at first and then slightly
decreases in the temporal region between 0 and peak B; this behavior is associated with
a simultaneous increase in the yellow-green component of the spectrum. Here, it is the
temporal region where germination begins and where the complexity is dominated by the
presence of crucial events.

The behavior in the case of the single bean is not so clear because the signal-to-noise
ratio is lower than in the lentil case. We can certainly say that in this case, the main compo-
nents are orange and blue-green, while the yellow-green component becomes important in
the last phase of germination, where the intensity of emission is at its maximum. It should
also be noted that this component grows throughout the duration of the experiment, while
the high-energy component (455–500 nm) grows considerably in the region between 0 and
peak A and then remains constant in the region between this peak and peak B’. This may
possibly be associated with the slope change in the growth of biophoton emission.

3. Conclusions and Suggestions for Future Works

In this work, we have analyzed in detail the emission of biophotons from lentil seeds
and from a single bean throughout the germination period. We have highlighted the
remarkable similarities in the form of emission, although the emission associated with the
bean is characterized by the presence of an extra peak in the time period delimited by the
0 and the maximum of the emission (peak C); see Figure 2. Data were analyzed both in
terms of the probability distribution functions of counts, using time windows of different
sizes, and in terms of the different spectral components of the biophoton emission.

Although the analysis obtained using the probability distribution functions has several
intrinsic difficulties in obtaining reliable information on the statistical properties of the
emitted light, it is clear how this method should be used mainly for the emission coming
from a single seed to avoid the problems related to the different times of germination of
seeds and which significantly conditions the shape of this distribution, as shown in Figure 4
(lower panel).

The analysis of the various spectral components clearly shows how these change
throughout the measurement period. There is a change in the relative weight of the
different spectral compounds, which are related to the details of the emission, particularly
the different slopes observed in the spectra. It is interesting to note how, in lentil emission,
the orange component of the spectrum is clearly the dominant part of the spectrum up to
about 30 h of emission. These first hours are also the temporal region where the orange and
yellow-green components of the spectrum have an opposite trend. The first, which in any
case remains the main part of the biophotonic emission, begins to decrease after an initial
phase of practically constant value, while the second begins to grow to reach a value almost
equal to that of the orange component. The region between 0 and 30 h (see Figure 7 in this
paper) corresponds to the first three bands analyzed with the DEA method used in Ref. [17],
and it is the region with the presence of crucial events. This behavior is a clear signal
that during the germination period, the parts of the organism involved in the emission
process change according to the degree of plant development. We can also hypothesize
that the germination process, in this case, presents a kind of phase transition, highlighted
by changes in the complexity patterns (crucial and non-crucial events) and by a different
behavior of the spectral components because plants start to grow in an environment devoid
of light and therefore chlorophyll synthesis cannot begin.

It is essential to increase the signal-to-noise ratio. Such improvement using this
experimental setup can only be achieved by increasing the solid angle of acceptance of
the detector. One possible way is to interpose Fresnel lenses between the sample and the
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phototube. Preliminary calculation obtained with a ray tracing type of analysis indicates a
gain of about an order of magnitude. We are also verifying the possibility of using other
types of methods to have a better signal/noise ratio. All this is, in our opinion, extremely
important in order to be able to carry out measurements using single seeds and carry out a
more precise spectral analysis.
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