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Abstract: Particle aspects of two-dimensional conformal field theories are investigated,
using methods from algebraic quantum field theory. The results include asymptotic com-
pleteness in terms of (counterparts of) Wigner particles in any vacuum representation
and the existence of (counterparts of) infraparticles in any charged irreducible product
representation of a given chiral conformal field theory. Moreover, an interesting inter-
play between the infraparticle’s direction of motion and the superselection structure is
demonstrated in a large class of examples. This phenomenon resembles the electron’s
momentum superselection expected in quantum electrodynamics.

1. Introduction

Particle aspects and superselection structure of quantum electrodynamics are plagued
by the infrared problem, which has been a subject of study in mathematical physics for
more than four decades [6–8,10,16,18,19,21–24,28–30,33,34,39–42,44,46,48]. The
origin of this difficulty, inherited from classical electrodynamics, is the emission of
photons which accompanies any change of the electron’s momentum. It has two impor-
tant consequences which are closely related: Firstly, the electron is not a particle in the
sense of Wigner [50], but rather an infraparticle [46], i.e. it does not have a precise
mass. Secondly, the electron’s plane wave configurations of different momenta cannot
be superposed into normalizable wavepackets. In fact, such configurations have different
spacelike asymptotic flux of the electric field, which imposes a superselection rule [7].
The evidence for this phenomenon of the electron’s momentum superselection comes
from two sources: On the one hand, it appears in models of non-relativistic QED in
the representation structure of the asymptotic electromagnetic field algebra [18]. On the
other hand, it is suggested by structural results in the general framework of algebraic
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quantum field theory [7,8,16,41,42]. However, no examples of local, relativistic theo-
ries, describing infraparticles with superselected momentum, have been given to date.
Thus the logical consistency of this property with the basic postulates of quantum field
theory remains to be settled. As a step in this direction, we demonstrate in the present
paper that a simple variant of this phenomenon - superselection of direction of motion
- occurs in a large class of two-dimensional conformal field theories.

Conformal field theory has been a subject of intensive research over the last two
decades, both from physical and mathematical viewpoints, motivated, in particular, by
the search for non-trivial quantum field theories. (See e.g. [3] and references therein). It
exhibits particularly interesting properties in two dimensions, where the symmetry group
is infinite dimensional. Since the seminal work of Buchholz, Mack and Todorov [15]
the superselection structure of these theories has been investigated [31] and deep clas-
sification results have been obtained [36,37]. It has remained unnoticed, however, that
two-dimensional conformal field theories have also a rich and interesting particle struc-
ture: The concepts of Wigner particles and infraparticles have their natural counterparts
in this setting and both types of excitations appear in abundance: Any chiral conformal
field theory in a vacuum representation has a complete particle interpretation in terms
of Wigner particles. Although such theories are non-interacting, their (Grosse-Lechner)
deformations [14] exhibit non-trivial scattering and inherit the property of asymptotic
completeness as we show in a companion paper [25]. It is verified in the present work
that any charged irreducible product representation of a chiral conformal field theory
admits infraparticles. In a large class of examples these infraparticles have superselect-
ed direction of motion, i.e. their plane wave configurations with opposite directions of
momentum cannot be superposed. Thus subtle particle phenomena, which are not under
control in physical spacetime, can be investigated in these two-dimensional models.

To keep our analysis general, we rely on the setting of algebraic QFT [32]. We base
our discussion on the concept of a local net of C∗-algebras on R

2, defined precisely
in Subsect. 2.1: To any open, bounded region O ⊂ R

2 we attach a C∗-algebra A(O),
acting on a Hilbert space H of physical states. This algebra is generated by observables
which can be measured with an experimental device localized in O. It is contained in
the quasilocal algebra A, which is the inductive limit of the net O → A(O). Moreover,
there acts a unitary representation of translations R

2 � x → U (x) on H, whose adjoint
action αx ( · ) = U (x) · U (x)∗ shifts the observables in spacetime. The infinitesimal
generators of U are interpreted as the Hamiltonian H and the momentum operator P .
Their joint spectrum is contained in the closed forward lightcone V+, to ensure the pos-
itivity of energy. If there exists a cyclic, unit vector � ∈ H which is the unique (up to a
phase) joint eigenvector of H and P with eigenvalue zero, then we say that the theory
is in a vacuum representation. If each of the subspaces H± = ker(H ∓ P) includes
some vectors orthogonal to �, then we say that the theory contains Wigner particles.
Since we do not assume that these particles are described by vectors in some irreducible
representation space of the Poincaré group, the present definition is less restrictive than
the conventional one. However, it is better suited for a description of the dispersionless
kinematics of two-dimensional massless excitations. In particular, it allows us to apply
the natural scattering theory, developed by Buchholz in [5], which we outline in Sub-
sect. 2.2 below. We recall that in [5] these excitations are called ‘waves’, to stress their
composite character.

Due to this compound structure of Wigner particles (or ‘waves’), asymptotic com-
pleteness in a vacuum representation is not in conflict with the existence of charged rep-
resentations with a non-trivial particle content. However, in charged representations of
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massless two-dimensional theories Wigner particles may be absent, as noticed in [12]. In
this case scattering theory from [5] does not apply and an appropriate framework for the
analysis of particle aspects is the theory of particle weights [10,16,23,24,35,41,42,47],
developed by Buchholz, Porrmann and Stein, which we revisit in Subsects. 2.3 and 2.4.
This theory is based on the concept of the asymptotic functional, given by

σ out
� (C) = lim

t→∞

∫
dx (�|α(t,x)(C)�), (1.1)

for any vector � ∈ H of bounded energy, and suitable observables C ∈ A. (In general,
some time averaging and restriction to a subnet may be needed before taking the limit).
We remark for future reference that this functional induces a sesquilinear formψout

� on a
certain left ideal of A. We show in Theorem 2.11 below, that asymptotic functionals are
non-zero in theories of Wigner particles. If non-trivial asymptotic functionals arise in the
absence of Wigner particles, then we say that the theory describes infraparticles.1 Using
standard decomposition theory, the GNS representation π induced by the sesquilinear
form ψout

� can be decomposed into a direct integral of irreducible representations

π 	
∫

X
dμ(ξ) πξ , (1.2)

where (X, dμ) is a Borel space and 	 denotes unitary equivalence [42,49]. Results from
[2,47] suggest that the measurable field of irreducible representations {πξ }ξ∈X carries
information about all the (infra-)particle types appearing in the theory. In particular, there
exists a field of vectors { qξ }ξ∈X which can be interpreted as the energy and momentum
of plane wave configurations {ψξ }ξ∈X of the respective (infra-)particles [42]. The sesqui-
linear forms {ψξ }ξ∈X , called pure particle weights, induce the representations {πξ }ξ∈X
and satisfy

ψout
� =

∫
X

dμ(ξ)ψξ . (1.3)

The existence of such a decomposition was shown, under certain technical restrictions,
in [41,42].

The theory of particle weights is sufficiently general to accommodate the phenome-
non of the infraparticle’s momentum superselection, discussed above: In this case qξ 
=
qξ ′ should imply that πξ is not unitarily equivalent to πξ ′ for almost all labels ξ, ξ ′
corresponding to the infraparticle in question. Superselection of direction of motion is a
milder property: It only requires that plane waves ψξ ,ψξ ′ , travelling in opposite direc-
tions, give rise to representations πξ , πξ ′ which are not unitarily equivalent. This latter
interplay between the infraparticle’s kinematics and the superselection structure occurs
in some two-dimensional conformal field theories, as we explain below. We state this
property precisely in Definitions 2.7 and 2.12, where we restrict attention to represen-
tations π of (Murray-von Neumann) type I with atomic center. This is sufficient for our
purposes and allows us to separate our central concept from ambiguities involved in the
general decompositions (1.2), (1.3).

1 The conventional definition of infraparticles requires that both H+ and H− contain at most multiples of
the vacuum vector. Our (less restrictive) definition imposes this requirement on one of these subspaces only.
Thus theories containing ‘waves’ running to the right but no ‘waves’ running to the left (or vice versa) describe
infraparticles according to our terminology. Such nomenclature turns out to be more convenient in the context
of two-dimensional, massless theories.
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Our discussion of conformal field theory relies on the notion of a local net of von
Neumann algebras on R which we introduce in Subsect. 3.1. (Such nets arise e.g. by
restricting the familiar Möbius covariant nets on the circle to the real line.) With any
open bounded region I ⊂ R we associate a von Neumann algebra A(I), acting on
a Hilbert space K, and denote the quasilocal algebra of this net by A. Moreover, the
Hilbert space K carries a unitary representation of translations R � s → V (s), whose
spectrum coincides with R+. If there exists a cyclic, unit vector �0 ∈ K, which is the
unique (up to a phase) non-zero vector invariant under the action of V , then we say that
the theory is in a vacuum representation. Given such a net, covariant under the action of
some internal symmetry group, one can proceed to the fixed-point subnet which has a
non-trivial superselection structure. In the simple case, considered in Subsect. 3.4, the
action of Z2 is implemented by a unitary W 
= I on K s.t. W 2 = I . The fixed-point
subnet Aev consists of all the elements of A, which commute with W . The subspace
Kev = ker(W − I ) (resp. Kodd = ker(W + I )) is invariant under the action of Aev and
gives rise to a vacuum representation (resp. a charged representation) of the fixed-point
theory.

Given two nets of von Neumann algebras on the real line, A1 and A2, acting on
Hilbert spaces K1 and K2, one obtains the two-dimensional chiral net A, acting on
H = K1 ⊗ K2, by the standard construction, recalled in Subsect. 3.1: The two real lines
are identified with the lightlines in R

2 and for any double cone O = I × J one sets2

A(I ×J) = A1(I)⊗A2(J). If the nets A1,A2 are in vacuum representations, with the
vacuum vectors�1 ∈ K1,�2 ∈ K2, then A is also in a vacuum representation, with the
vacuum vector � = �1 ⊗ �2. In spite of their simple tensor product structure, chiral
nets play a prominent role in conformal field theory. In fact, with any local conformal
net on R

2 one can associate a chiral subnet by restricting the theory to the lightlines.
In the important case of central charge c < 1 these subnets were instrumental for the
classification results, mentioned above, which clarified the superselection structure of a
large class of models [36,43]. As we show in the present work, chiral nets also offer a
promising starting point for the analysis of particle aspects of conformal field theories:
Any chiral net in a vacuum representation is an asymptotically complete theory of Wig-
ner particles. Moreover, any charged irreducible product representation of such a net
contains infraparticles. With this information at hand, we exhibit examples of infrapar-
ticles with superselected direction of motion. This construction is summarized briefly
in the remaining part of this Introduction.

Let us consider two fixed-point nets A1,ev,A2,ev, obtained from A1 and A2 with
the help of the unitaries W1 and W2, implementing the respective actions of Z2. The
resulting chiral net Aev acts on the Hilbert space H = K1 ⊗K2, which decomposes into
four invariant subspaces with different particle structure:

H=(K1,ev ⊗ K2,ev)⊕ (K1,odd ⊗ K2,ev)⊕ (K1,ev ⊗ K2,odd)⊕ (K1,odd ⊗ K2,odd).

(1.4)

Aev restricted to H0 := K1,ev ⊗ K2,ev is a chiral theory in a vacuum representation.
Thus it is an asymptotically complete theory of Wigner particles, by the result mentioned
above. HR := K1,odd ⊗ K2,ev contains ‘waves’ travelling to the right, but no ‘waves’
travelling to the left. In HL := K1,ev ⊗ K2,odd the opposite situation occurs. Thus Aev
restricted to HR or HL describes infraparticles, according to our terminology. Finally,

2 In the main part of the paper A(I × J) denotes a suitable weakly dense ‘regular subalgebra’ of A1(I)⊗
A2(J). This distinction is not essential for the present introductory discussion.
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Aev restricted to Ĥ := K1,odd⊗K2,odd is a theory of infraparticles which does not contain
‘waves’. In Theorem 3.10 below, which is our main result, we establish superselection
of direction of motion for infraparticles described by the net Â = Aev|Ĥ. The argument
proceeds as follows: Aev is contained in A, which is an asymptotically complete theory
of Wigner particles. Thus we can use the scattering theory from [5] to compute the
asymptotic functionals (1.1) and obtain the decompositions (1.2) of their GNS represen-
tations. Interpreted as a state on A, any vector �1 ⊗�2 ∈ Ĥ consists of two ‘waves’ at
asymptotic times:�1 ⊗�2 travelling to the right and�1 ⊗�2 travelling to the left. (cf.
Theorem 3.3 below). However, these two vectors belong to different invariant subspaces
of Aev, namely to HR and HL. The corresponding representations of Â are not unitarily
equivalent, since they have different structure of the energy-momentum spectrum.

Our paper is organized as follows: Sect. 2, which does not rely on conformal sym-
metry, concerns two-dimensional, massless quantum field theories and their particle
aspects: Preliminary Subsect. 2.1 introduces the main concepts. In Subsect. 2.2 we
recall the scattering theory of two-dimensional, massless Wigner particles developed in
[5]. Subsection 2.3 gives a brief exposition of the theory of particle weights and intro-
duces our main concept: superselection of direction of motion. Subsect. 2.4 presents our
main technical result, stated in Theorem 2.11, which clarifies the structure of asymptotic
functionals in theories of Wigner particles. Its proof is given in Appendix A. In Sect. 3
we apply the concepts and tools presented in Sect. 2 to chiral conformal field theories.
Our setting, which is slightly more general than the usual framework of conformal field
theory, is presented in Subsect. 3.1. In Subsect. 3.2 we show that any chiral theory
in a vacuum representation has a complete particle interpretation in terms of Wigner
particles. In Subsect. 3.3 we demonstrate that charged irreducible product representa-
tions of any chiral theory describe infraparticles. Subsect. 3.4 presents our main result,
that is superselection of the infraparticle’s direction of motion in chiral theories arising
from fixed-point nets of Z2 actions. Proofs of some auxiliary lemmas are postponed to
Appendix B. In Sect. 4 we summarize our work and discuss future directions.

2. Particle Aspects of Two-Dimensional Massless Theories

2.1. Preliminaries. In this section, which does not rely on conformal symmetry, we
present some general results on particle aspects of massless quantum field theories in
two-dimensional spacetime. We rely on the following variant of the Haag-Kastler axioms
[32]:

Definition 2.1. A local net of C∗-algebras on R
2 is a pair (A,U ) consisting of a map

O → A(O) from the family of open, bounded regions of R
2 to the family of C∗-algebras

on a Hilbert space H, and a strongly continuous unitary representation of translations
R

2 � x → U (x) acting on H, which are subject to the following conditions:
1. (isotony) If O1 ⊂ O2, then A(O1) ⊂ A(O2).
2. (locality) If O1 ⊥ O2, then [A(O1),A(O2)] = 0, where ⊥ denotes spacelike sepa-

ration.
3. (covariance) U (x)A(O)U (x)∗ = A(O + x) for any x ∈ R

2.
4. (positivity of energy) The spectrum of U is contained in the closed forward light-

cone V+ := { (ω, p) ∈ R
2 |ω ≥ | p| }.

5. (regularity) The group of translation automorphisms αx ( · ) = U (x) · U (x)∗ satis-
fies limx→0 ‖αx (A)− A‖ = 0 for any A ∈ A.

We also introduce the quasilocal C∗-algebra of this net A = ⋃
O⊂R2 A(O).
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For any given net (A,U ) there exists exactly one unitary representation of trans-
lations U can s.t. U can implements α, all the operators U can(x), x ∈ R

2 are contained
in A′′, the spectrum of U can is contained in V+ and has Lorentz invariant lower bound-
ary upon restriction to any subspace of H invariant under the action of A′′ [4]. We
assume that this canonical representation of translations has been selected above, i.e.
U = U can. We denote by (H, P) the corresponding energy-momentum operators, i.e.
U (x) = ei Ht−i P x, x = (t, x). As we are interested in scattering of massless particles,
we introduce the single-particle subspaces H± := ker(H ∓ P) and denote the corres-
ponding projections by P±. The intersection H+ ∩ H− contains only translationally
invariant vectors. If H+ 
= H+ ∩ H− and H− 
= H+ ∩ H− then we say that the theory
describes Wigner particles. If U has a unique (up to a phase) invariant unit vector� ∈ H
and � is cyclic under the action of A then we say that the net (A,U ) is in a vacuum
representation. In this case A acts irreducibly on H (cf. Theorem 4.6. of [1]). Scattering
theory for Wigner particles in a vacuum representation, developed in [5], will be recalled
in Subsect. 2.2.

In the absence of Wigner particles we will apply the theory of particle weights
[10,16,41,42], outlined in Subsect. 2.3, to extract the (infra-)particle content of a given
theory. In this context it is necessary to consider various representations of the net (A,U ).
A representation of the net (A,U ) is, by definition, a family of representations {πO}
of local algebras which are consistent in the sense that if O1 ⊂ O2 then it holds that
πO2 |A(O1) = πO1 . Since the family of open bounded regions in R

2 is directed, this
representation uniquely extends to a representation π of the quasilocal C∗-algebra A.
Conversely, a representation of A induces a consistent family of representations of local
algebras. In the following π may refer to a representation of A or a family of repre-
sentations. We say that a representation π : A → B(Hπ ) is covariant, if there exists a
strongly continuous group of unitaries Uπ on Hπ , s.t.

π(αx (A)) = Uπ (x)π(A)Uπ (x)
∗, A ∈ A, x ∈ R

2. (2.1)

Moreover, we say that this representation has positive energy, if the joint spectrum of the
generators of Uπ is contained in V+ + q for some q ∈ R

2. We denote the corresponding
canonical representation of translations by U can

π and note that (π(A),U can
π ) is again a

local net of C∗-algebras in the sense of Definition 2.1. We say that the net (π(A),U can
π )

is in a charged irreducible representation, ifπ(A) acts irreducibly on a non-trivial Hilbert
space Hπ which does not contain non-zero invariant vectors of U can

π .
We call two representations (π1,Hπ1) and (π2,Hπ2) of (A,U ) unitarily equivalent,

(in short (π1,Hπ1) 	 (π2,Hπ2)), if there exists a unitary W : Hπ1 → Hπ2 s.t.

Wπ1(A) = π2(A)W, A ∈ A. (2.2)

If π1 is a covariant, positive energy representation then so is π2 and it is easy to see that

WU can
π1
(x) = U can

π2
(x)W, x ∈ R

2. (2.3)

Remark 2.2. We note that our (non-standard) Definition 2.1 of the local net neither
imposes the Poincaré covariance nor the existence of the vacuum vector. Thus it applies
both to vacuum representations and charged representations, which facilitates our dis-
cussion. Apart from the physically motivated assumptions, we adopt the regularity prop-
erty 5, which can always be assured at the cost of proceeding to a weakly dense subnet.
This property seems indispensable in the general theory of particle weights [41], e.g.
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in the proof of Proposition 2.10 stated below. For consistency of the presentation, we
proceed to regular subnets also in our discussion of conformal field theories in Sect. 3.
We stress, however, that this property is not needed there at the technical level.

2.2. Scattering states. Scattering theory for Wigner particles in a vacuum representa-
tion of a two-dimensional massless theory (A,U )was developed in [5]. For the reader’s
convenience we recall here the main steps of this construction. Following [5], for any
F ∈ A and T ≥ 1 we introduce the approximants:

F±(hT ) =
∫

hT (t)F(t,±t)dt, (2.4)

where F(x) := αx (F), hT (t) = |T |−εh(|T |−ε(t − T )), 0 < ε < 1 and h ∈ C∞
0 (R) is

a non-negative function s.t.
∫

dt h(t) = 1. By applying the mean ergodic theorem, one
obtains

lim
T →∞ F±(hT )� = P±F�. (2.5)

Moreover, for F ∈ A(O) and sufficiently large T the operator F+(hT ) (resp. F−(hT ))
commutes with any observable localized in the left (resp. right) component of the space-
like complement of O. Exploiting these two facts, the following result was established
in [5]:

Proposition 2.3 ([5]). Let F,G ∈ A. Then the limits

�out± (F) := s- lim
T →∞ F±(hT ) (2.6)

exist and are called the (outgoing) asymptotic fields. They depend only on the respective
vectors �out± (F)� = P±F� and satisfy:

(a) �out
+ (F)H+ ⊂ H+, �out− (G)H− ⊂ H−.

(b) αx (�
out
+ (F)) = �out

+ (αx (F)), αx (�
out− (G)) = �out− (αx (G)) for x ∈ R

2.
(c) [�out

+ (F),�out− (G)] = 0.

The incoming asymptotic fields�in±(F) are constructed analogously, by taking the limit
T → −∞.

With the help of the asymptotic fields one defines the scattering states as follows:
Since A acts irreducibly on H, for any �± ∈ H± we can find F± ∈ A s.t. �± = F±�
[45]. The vectors

�+
out× �− = �out

+ (F+)�
out− (F−)� (2.7)

are called the (outgoing) scattering states. By Proposition 2.3 they do not depend on the

choice of F± within the above restrictions. The incoming scattering states�+
in×�− are

defined analogously. The physical interpretation of these vectors, as two independent
excitations travelling in opposite directions at asymptotic times, relies on the following
proposition from [5]:
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Proposition 2.4 ([5]). Let �±, � ′± ∈ H±. Then:

(a) (�+
out× �−|� ′

+

out× � ′−) = (�+|� ′
+)(�−|� ′−),

(b) U (x)(�+
out× �−) = (U (x)�+)

out× (U (x)�−), for x ∈ R
2.

Analogous relations hold for the incoming scattering states.

Following [5], we define the subspaces spanned by the respective scattering states:

Hin = H+
in× H− and Hout = H+

out× H−. (2.8)

Next, we introduce the wave operators�out : H+ ⊗H− → Hout and�in : H+ ⊗H− →
Hin, extending by linearity the relations

�out(�+ ⊗�−) = �+
out× �− and �in(�+ ⊗�−) = �+

in×�−. (2.9)

These operators are isometric in view of Proposition 2.4 (a). The scattering operator
S : Hout → Hin, given by

S = �in(�out)∗, (2.10)

is also an isometry. Now we are ready to introduce two important concepts:

Definition 2.5. (a) If S = I on Hout, then we say that the theory is non-interacting.
(b) If Hin = Hout = H then we say that the theory is asymptotically complete (in

terms of ‘waves’).

We show in Theorem 3.3 below that any chiral conformal field theory in a vacuum
representation is both non-interacting and asymptotically complete. (We demonstrated
these facts already in [25] in a different context.)

To conclude this subsection, we introduce some other useful concepts which are
needed in Theorem 2.11 below: Let us choose some closed subspaces K± ⊂ H±,

invariant under the action of U , and denote by K+
out× K− the linear span of the respective

scattering states. For any � ∈ K+
out× K− ⊂ Hout we introduce the positive functionals

ρ±,� , given by the relations

ρ+,�(A) = ((�out)−1�|(A ⊗ I )(�out)−1�), (2.11)

ρ−,�(A) = ((�out)−1�|(I ⊗ A)(�out)−1�), (2.12)

where A ∈ B(H) and the embedding K+⊗K− ⊂ H⊗H is understood. These functionals
can be expressed as follows

ρ±,�( · ) =
∑
n∈N

(�±,n| · �±,n), (2.13)

where�±,n ∈ K± and
∑

n∈N
‖�±,n‖2 = ‖�‖2. It follows easily from Lemma A.2, that

for � ∈ PE (K+
out× K−), where PE is the spectral projection on vectors of energy not

larger than E , one can choose�±,n ∈ PEK±. We note that for ‖�‖ = 1 the functionals
ρ±,� are just the familiar reduced density matrices.
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2.3. Particle weights. Similarly as in the previous subsection we consider a local net
of C∗-algebras (A,U ) acting on a Hilbert space H. However, we do not assume that H
contains the vacuum vector or non-trivial single-particle subspaces H±. To study parti-
cle aspects in this general situation we use the theory of particle weights [10,16,41,42]
which we recall in this and the next subsection. With the help of this theory we formu-
late in Definitions 2.7 and 2.12 below the central notion of this paper: superselection of
direction of motion.

First, we recall two useful concepts: almost locality and the energy decreasing prop-
erty. An observable B ∈ A is called almost local, if there exists a net of operators
{ Br ∈ A(Or ) | r > 0 }, s.t. for any k ∈ N0,

lim
r→∞ rk‖B − Br‖ = 0, (2.14)

where Or = {(t, x) ∈ R
2 | |t | + |x| < r }. We say that an operator B ∈ A is energy

decreasing, if its energy-momentum transfer is a compact set which does not intersect
with the closed forward lightcone V+. We recall that the energy-momentum transfer (or
the Arveson spectrum w.r.t. α) of an observable B ∈ A is the closure of the union of
supports of the distributions

(�1|B̃(p)�2) = (2π)−1
∫

d2x e−i px (�1|B(x)�2) (2.15)

over all �1, �2 ∈ H, where p = (ω, p), x = (t, x) and px = ωt − px.
Following [16,41], we introduce the subspace L0 ⊂ A, spanned by operators which

are both almost local and energy decreasing, and the corresponding left ideal in A:

L := { AB | A ∈ A, B ∈ L0 }. (2.16)

Particle weights form a specific class of sesquilinear forms on L:

Definition 2.6. A particle weight is a non-zero, positive sesquilinear form ψ on the left
ideal L, satisfying the following conditions:

1. For any L1, L2 ∈ L and A ∈ A the relation ψ(AL1, L2) = ψ(L1, A∗L2) holds.
2. For any L1, L2 ∈ L and x ∈ R

2 the relation ψ(αx (L1), αx (L2)) = ψ(L1, L2)

holds.
3. For any L1, L2 ∈ L the map R

2 � x → ψ(L1, αx (L2)) is continuous. Its Fourier
transform is supported in a shifted lightcone V+ − q, where q ∈ V+ does not depend
on L1, L2.

Let us now summarize the pertinent properties of particle weights established in [41]
(in a slightly different framework). As a consequence of Theorem 2.9, stated below,
particle weights satisfy the following clustering property [41]:∫

dx |ψ(L1, αx(L2))| < ∞, (2.17)

valid for L1 = B∗
1 A1 B ′

1, L2 = B∗
2 A2 B ′

2, where B1, B ′
1, B2, B ′

2 ∈ L0 and A1, A2 ∈ A
are almost local. In view of this bound, the GNS representation (πψ,Hπψ ) induced by a
particle weightψ is well suited for a description of physical systems which are localized
in space (e.g. configurations of particles). The Hilbert space Hπψ is given by

Hπψ = (L/{ L ∈ L |ψ(L , L) = 0})cpl (2.18)
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and the respective equivalence class of an element L ∈ L is denoted by |L〉 ∈ Hπψ . The
completion is taken w.r.t. the scalar product 〈L1|L2〉 := ψ(L1, L2). The representation
πψ acts on Hπψ as follows:

πψ(A)|L〉 = |AL〉, A ∈ A. (2.19)

This representation is covariant and the translation automorphisms are implemented by
the strongly continuous group of unitaries Uπψ , given by

Uπψ (x)|L〉 = |αx (L)〉, x ∈ R
2, L ∈ L (2.20)

which is called the standard representation of translations in the representation πψ . By
Property 3 in Definition 2.6 above, its spectrum is contained in a shifted closed forward
lightcone. The corresponding canonical representation will be denoted by U can

πψ
(cf. the

discussion below Definition 2.1). We also introduce operators (Q0, Q) of characteris-
tic energy-momentum of ψ which are the generators of the following group of unitaries
on Hπψ

U char
πψ

(x) = U can
πψ
(x)Uπψ (x)

−1 ∈ πψ(A)′, (2.21)

i.e. U char
πψ

(x) = ei Q0t−i Qx . We call a particle weight pure, if its GNS representation is
irreducible. It follows from definition (2.21) that the operator of characteristic energy-
momentum of such a weight is a vector q = (q0, q) ∈ R

2. It can be interpreted as the
energy and momentum of the plane wave configuration of the particle described by this
weight [2,41].

To extract properties of elementary subsystems (particles) of a physical system
described by a given (possibly non-pure) particle weight, it is natural to study irreduc-
ible subrepresentations of its GNS representation. To ensure that there are sufficiently
many such subrepresentations, we restrict attention to particle weights ψ whose GNS
representations πψ are of type I with atomic center.3 (In particular, πψ appearing in
our examples in Subsect. 3.4 below belong to this family). Then, by Theorem 1.31 from
Chap. V of [49], there exists a unique family of Hilbert spaces (Hα,Kα)α∈I and a unitary
W : Hπψ → ⊕

α∈I
{Hα ⊗ Kα} s.t.

Wπψ(A)
′′W −1 =

⊕
α∈I

{B(Hα)⊗ CI }, (2.22)

Wπψ(A)
′W −1 =

⊕
α∈I

{CI ⊗ B(Kα)}. (2.23)

We note that a subspace Kα,e ⊂ Hπψ carries an irreducible subrepresentation πα,e of
πψ , if and only if WKα,e = Hα ⊗ Ce for some α ∈ I and e ∈ Kα . Clearly, πα,e and
πα,e′ are unitarily equivalent for any fixed α and arbitrary vectors e, e′ ∈ Kα . Choosing
in any Kα an orthonormal basis Bα , we obtain

πψ =
⊕
α∈I

e∈Bα

πα,e. (2.24)

3 I.e. whose center is a direct sum of one-dimensional von Neumann algebras.
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It is clear from the above discussion that any irreducible subrepresentation of πψ is
unitarily equivalent to some πα,e in the decomposition above.

If all the representations in the decomposition (2.24) are unitarily equivalent to some
fixed vacuum representation, then we call the particle weight ψ neutral. Otherwise we
call ψ charged. In the case of charged particle weights there may occur an interplay
between the translational and internal degrees of freedom of the system which we call
superselection of direction of motion. To introduce this concept, we need some terminol-
ogy: Let Hπψ,R (resp. Hπψ ,L) be the spectral subspace of the characteristic momentum
operator Q ofψ , corresponding to the interval [0,∞) (resp. (−∞, 0)). Let π be an irre-
ducible subrepresentation of πψ , acting on a subspace K ⊂ Hπψ . Then we say that π is
right-moving (resp. left-moving), if K 
= {0} and K ⊂ Hπψ,R (resp. K ⊂ Hπψ,L). By a
suitable choice of the bases Bα one can ensure that each representation πα,e, appearing
in decomposition (2.24), has one of these properties. (In fact, exploiting relations (2.21),
(2.23), one can choose such basis vectors e ∈ Kα that W −1(Hα ⊗ Ce) belong to Hπψ,R
or Hπψ,L). After this preparation we define the central concept of the present paper:

Definition 2.7. Let W be a family of particle weights and assume that their GNS rep-
resentations { (πψ,Hπψ ) |ψ ∈ W } are of type I with atomic centers. Suppose that for
any ψ,ψ ′ ∈ W the following properties hold:

1. πψ has both left-moving and right-moving irreducible subrepresentations.
2. No right-moving, irreducible subrepresentation of πψ is unitarily equivalent to a

left-moving irreducible subrepresentation of πψ ′ .

Then we say that this family of particle weights has superselected direction of motion.

Let us now relate superselection of direction of motion in the above sense to our
discussion of this concept in the Introduction. For this purpose we consider a particle
weight ψ , whose GNS representation is of type I with atomic center and acts on a sep-
arable Hilbert space Hπψ . Making use of formula (2.24) and identifying unitarily each
πα,e, acting on W −1(Hα ⊗ Ce), with πα := πα,e0 acting on Kα := W −1(Hα ⊗ Ce0) for
some chosen e0 ∈ Bα , we obtain

πψ(A) 	
⊕
α∈I

{πα(A)⊗ CI }, (2.25)

where the r.h.s. acts on
⊕

α∈I
{Kα ⊗ Kα}. In the sense of the same identification

πψ(A)
′ 	

⊕
α∈I

{CI ⊗ B(Kα)}. (2.26)

Now, following [42], we choose a maximal abelian von Neumann algebra M in πψ(A)′,
containing { U char

πψ
(x) | x ∈ R

2 }. As a consequence of formula (2.26),

M 	
⊕
α∈I

{CI ⊗ Mα}, (2.27)

where Mα ⊂ B(Kα) are maximal abelian von Neumann subalgebras. For any such Mα

there exists a Borel space (Zα, dμα) s.t. (Mα,Kα) 	 (L∞(Zα, dμα), L2(Zα, dμα)).
(This fact uses separability of the Hilbert space. See Theorem II.2.2 of [20].) Adopting
this identification in (2.25) and (2.26), we obtain

U char
πψ

	
⊕
α∈I

{I ⊗ U char
α }, (2.28)
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where U char
α (x) ∈ L∞(Zα, dμα) is the operator of multiplication by (the equivalence

class of) the function Zα � z → eiqα,z x , where qα,z = (q0
α,z, qα,z) ∈ R

2. Introducing the
field of representations (πα,z,Hα,z)z∈Zα s.t.πα,z = πα and Hα,z = Kα for all z ∈ Zα , we
obtain from relation (2.25) the existence of a unitary W̃ : Hπψ → ⊕

α∈I

∫ ⊕ dμα(z)Hα,z
s.t.

W̃πψ( · )W̃ −1 =
⊕
α∈I

∫ ⊕

Zα
dμα(z) πα,z( · ). (2.29)

This is an example of decomposition (1.2), stated in the Introduction. Moreover, as a
consequence of (2.28),

W̃U char
πψ

(x)W̃ −1 =
⊕
α∈I

∫ ⊕

Zα
dμα(z) eiqα,z x , (2.30)

where {qα,z}z∈Zα is the field of characteristic energy-momentum vectors4 of the repre-
sentations (πα,z,Hα,z)z∈Zα . As we required in the Introduction, for any particle weight
with superselected direction of motion, the relation qα,z · qα′,z′ ≤ 0 should imply that
πα,z is not unitarily equivalent to πα′,z′ for almost all z, z′. This is in fact the case in
view of the following proposition.

Proposition 2.8. Suppose that ψ belongs to a family of particle weights which has su-
perselected direction of motion in the sense of Definition 2.7 and s.t. its GNS representa-
tion acts on a separable Hilbert space. Then {πα,z}z∈Zα , appearing in the decomposition
(2.29) of πψ , is a field of right-moving (resp. left-moving) representations, if and only if
qα,z ≥ 0 (resp. qα,z < 0) for almost all z ∈ Zα .

Proof. Suppose that πα is a right-moving subrepresentation of πψ , i.e. Kα ⊂ Hπψ,R.
We recall that πα coincides with πα,e0 acting on Kα,e0 = Kα . Since every πα,e, e ∈ K, is
unitarily equivalent toπα,e0 , the property of superselection of direction of motion implies
that Kα,e ⊂ Hπψ ,R for all e ∈ K. Consequently, Hα = W −1(Hα ⊗Kα) ⊂ Hπψ,R. Since
the projection Pα on Hα is central, this subspace is invariant under the action of U char

πψ
.

Formula (2.28) gives

U char
πψ

(x)Pα 	 I ⊗ U char
α (x), (2.31)

thus the spectra of the generators of R
2 � x → U char

α (x) and R
2 � x → U char

πψ
(x)Pα

coincide. In particular the spectrum of the generator of space translations of U char
α is con-

tained in [0,∞). The opposite implication follows immediately from relation (2.31). ��

2.4. Asymptotic functionals. In this subsection we consider a concrete class of particle
weights, introduced in [9,10,41], which have applications in scattering theory. Their
construction relies on the following result due to Buchholz (which remains valid in
higher dimensions).

4 This terminology is consistent with the discussion after formula (2.21). In fact, under some technical
restrictions each πα,z is induced by some pure particle weight ψα,z , whose characteristic energy-momentum
vector is qα,z [41,42], cf. also formula (1.3).
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Theorem 2.9 ([10]). Let (A,U ) be a local net of C∗-algebras on R
2. Then, for any

E ≥ 0, L ∈ L,
∥∥∥∥PE

∫
K

dx (L∗L)(x)PE

∥∥∥∥ ≤ c, (2.32)

where PE is the spectral projection on vectors of energy not larger than E, K ⊂ R is a
compact interval, and c is a constant independent of K .

Following [41], we introduce the algebra of detectors C = span{L∗
1 L2 : L1, L2 ∈ L}

and equip it with a locally convex topology, given by the family of seminorms

pE (C) = sup

{∫
dx |(�|C(x)�)| | � ∈ PEH, ‖�‖ ≤ 1

}
, C ∈ C, (2.33)

labelled by E ≥ 0, which are finite by Theorem 2.9. Next, for any � ∈ H of bounded
energy, (i.e. belonging to PEH for some E ≥ 0), we define a sequence of functionals
{σ (T )� }T ∈R from the topological dual of C:

σ
(T )
� (C) :=

∫
dt hT (t)

∫
dx (�|C(t, x)�), C ∈ C. (2.34)

As this sequence is uniformly bounded in T w.r.t. any seminorm pE , the Alaoglu-Bourbaki
theorem gives limit points σ out

� ∈ C∗ as T → ∞, which are called the asymptotic func-
tionals. The following fact was shown in [41]:

Proposition 2.10 ([41]). If σ out
� 
= 0, then the sesquilinear forms on L, given by

ψout
� (L1, L2) := σ out

� (L∗
1 L2), (2.35)

are particle weights, in the sense of Definition 2.6.

Fundamental results from [2] suggest a physical interpretation of the particle weights
ψout
� as mixtures of plane wave configurations of all the particle types described by the

theory (cf. formulas (1.2), (1.3)). Accordingly, we say that a given theory has a non-
trivial particle content, if it admits some non-zero asymptotic functionals σ out

� . This
is the case in any massless two-dimensional theory of Wigner particles (in a vacuum
representation) as a consequence of the following theorem. A proof of this statement,
which is our main technical result, is given in Appendix A.

Theorem 2.11. Let (A,U ) be a local net of C∗-algebras on R
2 in a vacuum represen-

tation, acting on a Hilbert space H. Then, for any � ∈ PEHout, E ≥ 0,

ψout
� (L1, L2) = lim

T →∞

∫
dt hT (t)

∫
dx (�|(L∗

1 L2)(t, x)�)

=
∫

dx (ρ+,� + ρ−,�)
(
(L∗

1 L2)(x)
)
, (2.36)

where the functionals ρ±,� are defined by (2.11), (2.12). In particular, ψout
� = 0, if and

only if � ∈ C�.
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In a theory of Wigner particles C� 
= H± ⊂ Hout, thus the particle content is non-trivial
by the above result. However, non-zero asymptotic functionals may also appear in the
absence of Wigner particles, i.e. when one or both of the subspaces H± equal H+ ∩H−.
If this is the case, then we say that the net (A,U ) describes infraparticles. Theorem 3.6
below provides a large class of such theories. In Theorem 3.10 we show that some
of these models describe excitations whose direction of motion is superselected in the
following sense:

Definition 2.12. Let (A,U ) be a net describing infraparticles. We say that the infrapar-
ticles of the net (A,U ) have superselected direction of motion, if {ψout

� |� 
= 0, � ∈
PEH, E ≥ 0 } is a family of particle weights with superselected direction of motion in
the sense of Definition 2.7.

3. Particle Aspects of Conformal Field Theories

3.1. Preliminaries. In this section we are interested in particle aspects of chiral confor-
mal field theories. To emphasize the relevant properties of these models, we base our
investigation on the concept of a local net of von Neumann algebras on R, defined below.
There are many examples of such nets. In particular, they arise from Möbius covariant
nets on S1 by means of the Cayley transform and the subsequent restriction to the real
line. The simplest example is the so-called U (1)-current net [15], whose subnets and
extensions are well-studied. For certain classes of nets on S1 even classification results
have been obtained [36,37].

Definition 3.1. A local net of von Neumann algebras on R is a pair (A, V ) consisting
of a map I → A(I) from the family of open, bounded subsets of R to the family of von
Neumann algebras on a Hilbert space K and a strongly continuous unitary represen-
tation of translations R � s → V (s), acting on K, which are subject to the following
conditions:

1. (isotony) If I ⊂ J, then A(I) ⊂ A(J).
2. (locality) If I ∩ J = ∅, then [A(I),A(J)] = 0.
3. (covariance) V (s)A(I)V (s)∗ = A(I + s) for any s ∈ R.
4. (positivity of energy) The spectrum of V coincides with R+.

We also denote by A the quasilocal C∗-algebra of this net, i.e. A = ⋃
I⊂R

A(I).
Since we assumed that A(I) are von Neumann algebras, we cannot demand norm

continuity of the functions s → βs(A), A ∈ A, where βs( · ) = V (s) · V (s)∗. This reg-
ularity property holds, however, on the following weakly dense subnet of C∗-algebras:

I → Ā(I) := { A ∈ A(I) | lim
s→0

‖βs(A)− A‖ = 0 }. (3.1)

The corresponding quasilocal algebra is denoted by Ā.
If V has a unique (up to a phase) invariant, unit vector �0 ∈ K and �0 is cyclic

under the action of any A(I) (the Reeh-Schlieder property) then we say that the net
(A, V ) is in a vacuum representation. In this case A acts irreducibly on K. In the course
of our analysis we will also consider other representations of (A, V ). We say that a
representation π : A → B(Kπ ) is covariant, if there exists a strongly continuous group
of unitaries Vπ on Kπ , s.t.

π(αs(A)) = Vπ (s)π(A)Vπ (s)
∗, A ∈ A, s ∈ R. (3.2)
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Moreover, we say that this representation has positive energy, if the spectrum of Vπ
coincides with R+. If π is locally normal (i.e. its restriction to any local algebra A(I)
is normal) then (π(A), Vπ ) is again a net of von Neumann algebras in the sense of
Definition 3.1.

Let (A1, V1) and (A2, V2) be two nets of von Neumann algebras on R, acting on
Hilbert spaces K1 and K2. To construct a local net (A,U ) on R

2, acting on the ten-
sor product space H = K1 ⊗ K2, we identify the two real lines with the lightlines
I± = { (t, x) ∈ R

2 | x ∓ t = 0 } in R
2. We first specify the unitary representation of

translations

U (t, x) := V1

(
1√
2
(t − x)

)
⊗ V2

(
1√
2
(t + x)

)
, (3.3)

whose spectrum is easily seen to coincide with V+ as a consequence of Property 4 from
Definition 3.1. We mention for future reference that if α(t,x)( · ) := U (t, x) · U (t, x)∗

is the corresponding group of translation automorphisms and β(1/2)s ( · ) := V1/2(s) ·
V1/2(s)∗, then

α(t,x)(A1 ⊗ A2) = β
(1)

1√
2
(t−x)

(A1)⊗ β
(2)

1√
2
(t+x)

(A2), A1 ∈ A1, A2 ∈ A2. (3.4)

Any double cone D ⊂ R
2 can be expressed as a product of intervals on lightlines

D = I1 × I2. We define the corresponding local von Neumann algebra by AvN(D) :=
A1(I1)⊗ A2(I2), and for a general open region O we put AvN(O) = ∨

D⊂O AvN(D).
The net of von Neumann algebras (AvN,U ), which we call the chiral net, satisfies all
the properties from Definition 2.1 except for the regularity Property 5. Therefore, we
introduce the following weakly dense subnet of C∗-algebras

O → A(O) := { A ∈ AvN(O) | lim
x→0

‖αx (A)− A‖ = 0 }, (3.5)

and denote the corresponding quasilocal algebra by A. Then (A,U ) is a local net of
C∗-algebras in the sense of Definition 2.1. We will call it the regular chiral net and refer
to (A1, V1), (A2, V2) as its chiral components. We note for future reference that if A acts
irreducibly on H, then U is automatically the canonical representation of translations of
this net (cf. Subsect. 2.1). Another useful fact is the obvious inclusion

Ā1 ⊗alg Ā2 ⊂ A, (3.6)

where ⊗alg is the algebraic tensor product.
Let (AvN,U ) be a chiral net, whose chiral components are (A1, V1) and (A2, V2). Let

π1, π2 be locally normal, covariant, positive energy representations of the respective nets
on R. Then the chiral net of (π1(A1), Vπ1), (π2(A2), Vπ2) is a covariant, positive energy
representation of (AvN,U ), which will be denoted by (π(AvN),Uπ ), π = π1 ⊗ π2 and
π is called the product representation ofπ1 andπ2. We note that (π(A),Uπ ) is contained
in the regular subnet of (π(AvN),Uπ ). For faithful π these two nets coincide, due to
Proposition 2.3.3 (2) of [17]. It is easily seen that π is faithful (resp. irreducible), if π1
and π2 are faithful (resp. irreducible) (cf. Theorems 5.2 and 5.9 from Chap. IV of [49]).
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3.2. Vacuum representations and asymptotic completeness. A regular chiral net (A,U )
is in a vacuum representation, with the vacuum vector � ∈ H, if and only if its chiral
components (A1, V1), (A2, V2) are in vacuum representations with the respective vac-
uum vectors �1 ∈ K1,�2 ∈ K2 s.t. � = �1 ⊗ �2 (cf. Proposition 3.5 below). In this
subsection we show that any such regular chiral net has a complete particle interpretation
in terms of non-interacting Wigner particles. These facts follow from our results in [25],
but the argument below is more direct.

We start from the observation that the asymptotic fields have a particularly simple
form in chiral theories:

Proposition 3.2. Let (A1, V1), (A2, V2) be two local nets of von Neumann algebras
in vacuum representations, with the respective vacuum vectors �1,�2. Then, for any
A1 ∈ Ā1, A2 ∈ Ā2,

�
out/in
+ (A1 ⊗ A2) = A1 ⊗ (�2|A2�2)I, (3.7)

�
out/in
− (A1 ⊗ A2) = (�1|A1�1)I ⊗ A2. (3.8)

Proof. We consider only�out
+ , as the remaining cases are analogous. From the defining

relation (2.6) and formula (3.4), we obtain

�out
+ (A1 ⊗ A2) = s- lim

T →∞ A1 ⊗
∫

dt hT (t)β
(2)√

2t
(A2). (3.9)

We set A2(hT ) := ∫
dt hT (t)β

(2)√
2t
(A2). This sequence has the following properties:

lim
T →∞ A2(hT )�2 = (�2|A2�2)�2, (3.10)

lim
T →∞ ‖[A2(hT ), A]‖ = 0, for anyA ∈ Ā2. (3.11)

The first identity above follows from the mean ergodic theorem and the fact that �2 is
the only vector invariant under the action of V2. The second equality is a consequence
of the locality assumption from Definition 3.1. Since Ā2 acts irreducibly, any � ∈ K2
has the form � = A�2 for some A ∈ Ā2 [45]. Thus we obtain from (3.10), (3.11),

s- lim
T →∞ A2(hT ) = (�2|A2�2)I, (3.12)

which completes the proof. ��
Now we can easily prove the main result of this subsection:

Theorem 3.3. Any regular chiral net (A,U ) in a vacuum representation is asymptoti-
cally complete. More precisely:

H+ = K1 ⊗ C�2, (3.13)

H− = C�1 ⊗ K2, (3.14)

H+
out× H− = H+

in× H− = H. (3.15)

Moreover, any such theory is non-interacting.

Remark 3.4. This result and Theorem 2.11 imply the convergence of the asymptotic
functional approximants {σ (T )� }T ∈R+ for all � ∈ H of bounded energy in any regular
chiral net in a vacuum representation.
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Proof. Using formula (2.5) and the cyclicity of the vacuum� under the action of A, we
obtain

H± = [�out± (F)� | F ∈ A ], (3.16)

where [ · ] denotes the norm closure. Applying Proposition 3.2 and exploiting the cyclic-
ity of �1/2 under the action of Ā1/2, we obtain (3.13) and (3.14). The asymptotic com-
pleteness relation (3.15) also follows from Proposition 3.2: For any A1 ∈ Ā1, A2 ∈ Ā2,

�out
+ (A1 ⊗ I )�out− (I ⊗ A2)� = �in

+ (A1 ⊗ I )�in−(I ⊗ A2)� = A1�1 ⊗ A2�2.

(3.17)

Exploiting once again cyclicity of�1/2, we obtain that scattering states are dense in the
Hilbert space.

Now let us show the lack of interaction: Let �± ∈ H±. Then, by (3.13), (3.14) and
the irreducibility of the action of Ā1/2 on K1/2, there exist A1 ∈ Ā1, A2 ∈ Ā2 s.t.
�+ = A1�1 ⊗�2 and �− = �1 ⊗ A2�2. Then

�+
out× �− = �out

+ (A1 ⊗ I )�out− (I ⊗ A2)� = A1�1 ⊗ A2�2

= �in
+ (A1 ⊗ I )�in−(I ⊗ A2)� = �+

in×�−. (3.18)

Hence the scattering operator, defined in (2.10), equals the identity on H. ��

3.3. Charged representations and infraparticles. It is the goal of this subsection to clar-
ify the particle content of chiral conformal field theories in charged representations.
More detailed particle properties of such theories, e.g. superselection of direction of
motion, will be studied in the next subsection.

Let us first note the following simple relation between the single-particle subspaces
of a regular chiral net and the invariant vectors of its chiral components.

Proposition 3.5. Let (A1, V1), (A2, V2) be local nets of von Neumann algebras on R.
Then V1 (resp. V2) has a non-trivial invariant vector, if and only if the single-particle
subspace H− (resp. H+) of the corresponding regular chiral net (A,U ) is non-trivial.

Proof. Suppose there exists a non-zero�1 ∈ K1, invariant under the action of V1. Then,
for any �2 ∈ K2,

U (t,−t)(�1 ⊗�2) = �1 ⊗�2, (3.19)

for t ∈ R. Hence the subspace H− is non-trivial. Similarly, the existence of a non-zero
�2 ∈ K2, invariant under the action of V2, implies the non-triviality of H+.

Now suppose � ∈ H− and V1 has no non-trivial, invariant vectors. Then, by the
mean ergodic theorem,

� = lim
T →∞

1

T

∫ T

0
dt U (t,−t)� = lim

T →∞
1

T

∫ T

0
dt

(
V1(

√
2t)⊗ I

)
� = 0. (3.20)

Thus we established that H− = {0}. Similarly, the absence of non-trivial, invariant
vectors of V2 implies that H+ = {0}. ��
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Let (A,U ) be a regular chiral net in a charged irreducible (product) representation.
That is A acts irreducibly on a non-trivial Hilbert space, which has the tensor product
structure, by our definition of chiral nets, and does not contain non-zero invariant vectors
of U . The particle structure of such theories is described by the following theorem.

Theorem 3.6. Let (A,U ) be a regular chiral net in a charged irreducible (product)
representation acting on a Hilbert space H. Then:

(a) H+ = {0} or H− = {0}, i.e. the theory does not describe Wigner particles.
(b) For any non-zero vector � ∈ PEH, E ≥ 0, all the limit points of the net

{σ (T )� }T ∈R+ , given by (2.34), are different from zero.

Hence (A,U ) describes infraparticles.

Proof. Part (a) follows immediately from Proposition 3.5 and the absence of non-zero
invariant vectors of U in H. As for part (b), since A acts irreducibly on H, its chiral
components (A1/2, V1/2) act irreducibly on their respective Hilbert spaces K1/2. We
note that for any non-zero vector � ∈ PEH we can find a sequence of vectors {�n}n∈N

from K1 s.t. �1 
= 0 and

(�|(C ⊗ I )�) =
∑
n∈N

(�n|C�n) (3.21)

for all C ∈ B(K1). Moreover, we can assume without loss of generality that K1 does
not contain non-trivial invariant vectors of V1. Then we obtain from Lemma A.1 (b)
the existence of a local operator A ∈ A1 and f ∈ S(R) s.t. supp f̃ ∩ R+ = ∅, which
satisfy A( f )�1 
= 0. We note that any B := A( f ) ⊗ I is a non-zero element of A
which is almost local and energy decreasing. Consequently, B∗ B belongs to the algebra
of detectors C of the net (A,U ). We consider the corresponding asymptotic functional
approximants

σ
(T )
� (B∗ B) =

∫
dt hT (t)

∫
dx (�|α(t,x)(B∗B)�)

=
∫

dt hT (t)
∫

dx (�|β(1)
(
√

2)−1(t−x)
(A( f )∗ A( f ))⊗ I )�)

≥
∫

dx (�1|(β(1)
(
√

2)−1x
(A( f )∗ A( f )))�1) 
= 0, (3.22)

where in the last step we made use of (3.21). As the last expression is independent of T ,
all the limit points of {σ (T )� }T ∈R+ are different from zero. ��

3.4. Infraparticles with superselected direction of motion. In Theorem 3.6 above we
have shown that any charged irreducible (product) representation of a chiral conformal
field theory contains infraparticles. In this subsection we demonstrate that in a large class
of examples these infraparticles have superselected direction of motion in the sense of
Definition 2.12.

Let (A, V ) be a local net of von Neumann algebras on R, acting on a Hilbert space K.
We assume that this net is in a vacuum representation, with the vacuum vector �0 ∈ K.
Let W be a unitary operator on K which implements a symmetry of this net, i.e.

WA(I)W ∗ ⊂ A(I), (3.23)

W V (t)W ∗ = V (t), (3.24)

W�0 = �0, (3.25)
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for any open, bounded interval I ⊂ R and any t ∈ R. We assume that W gives rise to
a non-trivial representation of the group Z2, i.e. AdW 
= id and W 2 = I . We define the
subspaces

Aev(I) = { A ∈ A(I) | W AW ∗ = A }, (3.26)

Aodd(I) = { A ∈ A(I) | W AW ∗ = −A }. (3.27)

Let Aev (resp. Aodd) be the norm-closed linear span of all operators from some Aev(I)
(resp. Aodd(I)), I ⊂ R. Clearly, (Aev, V ) is again a local net of von Neumann alge-
bras on the real line acting on K. We introduce the subspaces Kev = [Aev�0],Kodd =
[Aodd�0], where [ · ] denotes the closure, which are invariant under the action of Aev
and V , and satisfy K = Kev ⊕ Kodd. Kodd gives rise to the representation

πodd(A) = A|Kodd , A ∈ Aev, (3.28)

Vodd(t) = V (t)|Kodd , t ∈ R. (3.29)

Its relevant properties are summarized in the following lemma, which we prove in Appen-
dix B.

Lemma 3.7. (πodd,Kodd) is a covariant, positive energy representation of (Aev, V ), in
which the translation automorphisms are implemented by Vodd. Moreover:

(a) πodd is a locally normal, faithful and irreducible representation of Aev.
(b) Vodd does not admit non-trivial invariant vectors.

We set Â := πodd(Aev), V̂ (t) := Vodd(t). By the above lemma (Â, V̂ ) is again a local
net of von Neumann algebras on the real line. We define its representation on Kev,

πev( Â) = π−1
odd( Â)|Kev , Â ∈ Â, (3.30)

Vev(t) = V (t)|Kev , t ∈ R, (3.31)

and state the following fact, whose proof is given in Appendix B.

Lemma 3.8. (πev,Kev) is a covariant, positive energy representation of (Â, V̂ ), in which
the translation automorphisms are implemented by Vev. Moreover

(a) πev is a locally normal, faithful and irreducible representation of Â.
(b) Vev admits a unique (up to a phase) invariant vector, which is cyclic for any

πev(Â(I)).

We conclude that (πev(Â), Vev) is a local net of von Neumann algebras in a vacuum
representation with the vacuum vector �0 ∈ Kev.

We remark that the above abstract construction can be performed in a number of
concrete cases. If a Möbius covariant net I → A(I) on S1, in a vacuum representation,
admits an automorphism5 γ of order 2 which preserves the vacuum state, then one can
define W by

W A�0 = γ (A)�0, A ∈ A(I). (3.32)

5 An automorphism γ of a net A is an automorphism of the quasilocal algebra A which preserves each
local algebra A(I).
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This does not depend on the choice of the interval I and defines a unitary operator thanks
to the invariance of the vacuum state. This W automatically commutes with the action
of the Möbius group (in particular with the action of translations) as a consequence
of the Bisognano-Wichmann property [31]. Thus, upon restriction to the real line, we
obtain a local net equipped with a unitary W which satisfies (3.23)–(3.25). Non-trivial
automorphisms γ appear, in particular, in the U (1)-current net (γ : J (z) → −J (z))
[15], in loop group nets of a compact group G with a Z2-subgroup in G [51] and in the
tensor product net A ⊗ A for an arbitrary Möbius covariant net A, where γ is the flip
symmetry.

Coming back to the abstract setting, we introduce the class of two-dimensional the-
ories, we are interested in: Let (A1, V1), (A2, V2) be two local nets of von Neumann
algebras on R, in vacuum representations, acting on Hilbert spaces K1,K2. We denote
the respective vacuum vectors by�1,�2 and introduce the corresponding regular chiral
net (A,U ). We assume the existence of unitaries W1,W2, which give rise to non-trivial
representations of Z2 and implement symmetries of the respective nets on R as defined in
(3.23)-(3.25). By the construction described above we obtain the nets (Â1, V̂1), (Â2, V̂2),
acting on K1,odd,K2,odd. We denote by (ÂvN, Û ) the corresponding chiral net acting on
Ĥ = K1,odd ⊗ K2,odd and by (Â, Û ) its regular subnet. Let us summarize its properties.

Proposition 3.9. The regular chiral net (Â, Û ), whose chiral components are (Â1, V̂1),

(Â2, V̂2), has the following properties:

(a) Â acts irreducibly on Ĥ.
(b) (Â, Û ) does not admit Wigner particles (Ĥ± = {0}), but all the asymptotic func-

tionals of the form {ψout
� |� 
= 0, � ∈ PEĤ, E ≥ 0 } are non-zero.

(c) πR = ι1 ⊗ π2,ev and πL = π1,ev ⊗ ι2 are irreducible, faithful, covariant represen-
tations of (Â, Û ), acting on HπR := K1,odd ⊗ K2,ev and HπL := K1,ev ⊗ K2,odd,
respectively. The respective (canonical) unitary representations of translations are
given by UπR (x) := U (x)|HπR

and UπL(x) := U (x)|HπL
.

(d) HπR,− = {0} and HπR,+ 
= {0} while HπL,− 
= {0} and HπL,+ = {0}. Conse-
quently, πR is not unitarily equivalent to πL.

In part (c) ι1/2 are the defining representations of Â1/2. Representations π1/2,ev are
defined as in (3.30), (3.31).

Proof. Part (a) follows from the irreducibility of π1/2,odd, shown in Lemma 3.7. As
for part (b), we obtain from Lemma 3.7 (b) and Proposition 3.5 that Ĥ± = {0}. On
the other hand, Theorem 3.6 ensures that the relevant asymptotic functionals are non-
zero. Irreducibility and faithfulness of πR/L in part (c) follow from Lemma 3.8 (a) and
Lemma 3.7 (a). Proceeding to part (d), we note that, by faithfulness of πR, the net
(πR(Â),UπR ) coincides with the regular chiral subnet of (πR(Â

vN),UπR ), whose chiral
components are (Â1, V̂1) and (π2,ev(Â2), V2,ev). From Lemma 3.7 (b), Lemma 3.8 (b)
and Proposition 3.5 we obtain that HπR,− = {0} and HπR,+ 
= {0}. An analogous
reasoning, applied to πL, shows that HπL,− 
= {0} and HπL,+ = {0}. Hence, due to
relation (2.3), the two nets are not unitarily equivalent. ��
In view of part (b) of the above proposition, the theory (Â, Û ) describes infraparticles.
In the following theorem, which is our main result, we show that these infraparticles
have superselected direction of motion, in the sense of Definition 2.12.
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Theorem 3.10. Consider the regular chiral net (Â, Û ), constructed above. Let ψ ∈
{ψout

� |� 
= 0, � ∈ PEĤ, E ≥ 0 } and let πψ be its GNS representation. Then πψ is a
type I representation with atomic center. It contains both right-moving and left-moving
irreducible subrepresentations which are unitarily equivalent toπR andπL, respectively.
Hence the theory describes infraparticles with superselected direction of motion.

Remark 3.11. Let us consider the regular chiral net (A,U ) in the vacuum representation.
Then, similarly as in the theorem above, the GNS representation πψ induced by any par-
ticle weight ψ ∈ {ψout

� |� /∈ C�,� ∈ PEH, E ≥ 0 } is of type I with atomic center.
However, any non-trivial irreducible subrepresentation of πψ is unitarily equivalent to
the defining vacuum representation, i.e. ψ is neutral. These facts are easily verified by
modifying the proof below.

Proof. Let us first consider the regular chiral net (A,U ) acting on H. By Theorem 3.3,
K+ := K1,odd ⊗ C�2 ⊂ H+ and K− := C�1 ⊗ K2,odd ⊂ H−. Any vector � ∈
PE (K+

out× K−), E ≥ 0, gives rise to functionals ρ�,±, defined by (2.11), (2.12). They
have the form

ρ±,�( · ) =
∑
n∈N

(�±,n| · �±,n), (3.33)

where �±,n ∈ PEK± (cf. formula (2.13) and the subsequent discussion). Since � 
= 0,
we can assume that �+,1 
= 0 and �−,1 
= 0. We also note for future reference that
K+ ⊂ HπR and K− ⊂ HπL .

Let us now proceed to the net (Â, Û ), acting on Ĥ = K+
out× K− ⊂ H, and let L̂ be

the left ideal of Â, given by definition (2.16). For any L̂ ∈ L̂ we define

L = (π−1
1,odd ⊗ π−1

2,odd)(L̂) ∈ L, (3.34)

where L is the corresponding left ideal of A. We note that such L leaves the subspaces
HπR and HπL invariant. Exploiting Theorem 2.11 and formula (2.13), we obtain

ψout
� (L̂1, L̂2)=

∑
n∈N

∫
dx {(�+,n|(L∗

1 L2)(x)�+,n) + (�−,n|(L∗
1 L2)(x)�−,n)}. (3.35)

It follows from Theorem 2.9 that for any L given by (3.34) the Fourier transforms

L�̃+,n( p) := (2π)−1/2
∫

dx e−i px LUπR (x)
∗�+,n, (3.36)

L�̃−,n( p) := (2π)−1/2
∫

dx ei px LUπL(x)
∗�−,n (3.37)

belong to HπR ⊗ L2(R+, d p) and HπL ⊗ L2(R+, d p) respectively. Since πR(Â) acts
irreducibly on HπR and UπR does not have non-zero invariant vectors, we obtain from
Lemma A.1 (a) the existence of L̂+ ∈ L̂ s.t. L+�+,1 
= 0. Since L+UπR (x)

∗�+,1
is a continuous function of x, it is nonzero as a square-integrable function, hence
{L+�̃+,1( p)} p∈R+ 
= 0. Analogously, we can find L̂− ∈ L̂ s.t. {L−�̃−,1( p)} p∈R+ 
= 0.
For future reference, we note the equalities

αx (L)�̃+,n( p) = e−i( p, p)xUπR (x)L�̃+,n( p), (3.38)

αx (L)�̃−,n( p) = e−i( p,− p)xUπL(x)L�̃−,n( p), (3.39)
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which hold in the sense of HπR ⊗L2(R+, d p) and HπL ⊗L2(R+, d p) respectively. These
relations are easily verified for such �±,n ∈ PEK± that R � x → LUπR/L(x)

∗�±,n
decay rapidly in norm as |x| → ∞, since in this case the Fourier transform is pointwise
defined. The general case follows from the fact that such vectors form a dense subspace
in PEK± (cf. formula (3.53) below) and that the maps PEK± � � → {L�̃( p)} p∈R+ ∈
HπR/L ⊗ L2(R+, d p) are norm-continuous. This latter fact is a consequence of Theo-
rem 2.9 and the (Hilbert space valued) Plancherel theorem.

After this preparation we study the structure of the GNS representation induced by
ψ . Let us first consider the following auxiliary representation of (Â, Û ):

π1( · ) :=
⊕
n∈N

({πR( · )⊗ I } ⊕ {πL( · )⊗ I }), (3.40)

acting on Hπ1 := ⊕
n∈N

({HπR ⊗ L2(R+, d p)} ⊕ {HπL ⊗ L2(R+, d p)}). From defi-
nition (3.40) and relation (2.22) we conclude that π1 and its subrepresentations are of
type I with atomic center. Moreover,π1 is covariant and it is easily seen that the canonical
representation of translations is given by

U can
π1
(x) =

⊕
n∈N

({
UπR (x)⊗ I

} ⊕ {
UπL(x)⊗ I

}
). (3.41)

We note that πψ is unitarily equivalent to a subrepresentation of π1. In fact, the map
W1 : Hπψ → Hπ1 , given by

W1 : |L̂ 〉 →
⊕
n∈N

({ L�̃+,n( p) } p∈R+ ⊕ { L�̃−,n( p) } p∈R+

)
, (3.42)

intertwines the two representations and is an isometry by formula (3.35) and the (Hilbert
space valued) Plancherel theorem. It is easily checked that the canonical representation
of translations U can

πψ
in the representation πψ is given by the relation

W1U can
πψ
(x) = U can

π1
(x)W1. (3.43)

Recalling that U char
πψ

(x) = U can
πψ
(x)U−1

πψ
(x), where Uπψ is given by (2.20), we obtain

W1U char
πψ

(x)|L̂ 〉
= W1U can

πψ
(x)|α−x (L̂) 〉 = U can

π1
(x)W1|α−x (L̂) 〉

=
⊕
n∈N

({ UπR (x)α−x (L)�̃+,n( p) } p∈R+ ⊕ { UπL(x)α−x (L)�̃−,n( p) } p∈R+

)

=
⊕
n∈N

({ I ⊗ ei( p, p)x } p∈R+ ⊕ {I ⊗ ei( p,− p)x } p∈R+

)
W1|L̂ 〉, (3.44)

where in the last step we made use of relations (3.38), (3.39). Now let Q be the gener-
ator of space translations of U char

πψ
and let Hπψ,R (resp. Hπψ,L) be its spectral subspace

corresponding to the interval [0,∞) (resp. (−∞, 0)). Then, by formula (3.44),

W1Hπψ ,R = PRW1Hπψ , (3.45)

W1Hπψ ,L = PLW1Hπψ , (3.46)
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where PR/L are the projections on the subspaces
⊕

n∈N
{HπR/L ⊗ L2(R+, d p)} in

Hπ1 . From definition (3.42) and the remarks after formula (3.37) we conclude that
PRW1Hπψ 
= {0} and PLW1Hπψ 
= {0}. Consequently πψ has both right-moving and
left-moving irreducible subrepresentations.

Let π be an irreducible subrepresentation of πψ , acting on a non-trivial subspace
K ⊂ Hπψ ,R (i.e. a right-moving subrepresentation). Then W1π( · )W ∗

1 is an irreducible
subrepresentation of πR( · )⊗ I acting on HπR ⊗ ( ⊕

n∈N
L2(R+, d p)

)
. By irreducibil-

ity, we conclude that π is unitarily equivalent to (πR( · ) ⊗ I )|HπR ⊗Ce for some non-

zero e ∈ ⊕
n∈N

L2(R+, d p). This latter representation can be identified with πR. An
analogous argument shows that any left-moving irreducible subrepresentation of πψ is
unitarily equivalent to πL. Hence, by Proposition 3.9 (d), (Â, Û ) describes infraparticles
with superselected direction of motion. ��

Let us assume for a moment that Ĥ is separable. Then we obtain from the above
theorem and formula (2.29) that the GNS representation of any particle weight ψout

� of

the net (Â, Û ), where � 
= 0 is a vector of bounded energy, has the form

πψout
�

	
∫ ⊕

ZR

dμR(z) πR,z ⊕
∫ ⊕

ZL

dμL(z) πL,z . (3.47)

Here (ZR/L, dμR/L) are some Borel spaces and πR/L,z = πR/L for all z ∈ ZR/L. A
decomposition of ψout

� into pure particle weights, which induce the irreducible repre-
sentations appearing in the decomposition ofπψout

�
, was obtained by Porrmann in [41,42]

(cf. formula (1.3) above). However, to apply Porrmann’s abstract argument, one has to
restrict attention to countable (resp. separable) subsets of all the relevant objects and it is
not guaranteed that the resulting (restricted) pure particle weights extend to the original
domains. It is therefore worth pointing out that the theory (Â, Û ) admits a large class
of particle weights, whose decomposition can be performed in the original framework.
To our knowledge this is the first such decomposition in the presence of infraparticles.
(See however [35] for some partial results on the Schroer model). These particle weights
belong to the set {ψout

� |� ∈ D }, where D ⊂ Ĥ is a dense domain spanned by vectors
of the form

� = F1�1 ⊗ F2�2, (3.48)

where F1 ∈ A1,odd, F2 ∈ A2,odd are s.t. F1 ⊗ I, I ⊗ F2 ∈ A are almost local and have
compact energy-momentum transfer (see formula (2.15)). The proof of the following
proposition exploits some ideas from [26].

Proposition 3.12. Consider the regular chiral net (Â, Û ) constructed above. Denote
by L̂ its left ideal, given by definition (2.16). Then, for any non-zero vector � ∈ D,
there exist continuous fields of pure particle weights �R,n � p → ψR,n, p( · , · ) and

�L,m � p → ψL,m, p( · , · ) s.t. for any L̂1, L̂2 ∈ L̂,

ψout
� (L̂1, L̂2) =

∑
n∈CR

∫
�R,n

d pψR,n, p(L̂1, L̂2) +
∑

m∈CL

∫
�L,m

d pψL,m, p(L̂1, L̂2),

(3.49)

where CR,CL ⊂ N are non-empty finite subsets and �R,n,�L,m ⊂ R+ are non-empty,
open subsets for any n ∈ CR,m ∈ CL. Moreover:
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(a) The characteristic energy-momentum vectors of the weights ψR,n, p (resp. ψL,m, p)
are equal to qR,n, p = ( p, p) (resp. qL,m, p = ( p,− p)).

(b) The GNS representation induced by any ψR,n, p (resp. ψL,m, p) is unitarily equiva-
lent to πR (resp. πL).

The representations πR/L appeared in Proposition 3.9.

Remark 3.13. Parts (b) and (d) of Proposition 3.9 show that spectral properties of the
energy-momentum operators in the representations induced by the pure particle weights
ψR/L,n, p are different from those in the original representation: In the case of UπR

the right branch of the lightcone contains the singularities characteristic for Wigner
particles, while in the left branch such singularities are absent. (For UπL the opposite
situation occurs.) For infraparticles in physical spacetime a more radical version of this
phenomenon may occur: There one expects isolated singularities at the characteristic
energy-momentum values of the respective pure particle weights (cf. Sect. 2 (iii) of [16]).

Proof. Any vector � ∈ D has the form

� =
∑
k,l

ck,l FR,k�1 ⊗ FL,l�2, (3.50)

where the sum is finite and FR,k, FL,l have properties specified below formula (3.48).
Applying the Gram-Schmidt procedure, we can ensure that the systems of vectors
{FR,k�1}M

k=0, {FL,l�2}N
l=0 are orthonormal. Since Ĥ = K1,odd ⊗ K2,odd ⊂ K1 ⊗ K2 =

H, we can write

� =
∑
k,l

ck,l�
out
+ (FR,k ⊗ I )�out− (I ⊗ FL,l)�, (3.51)

where we made use of Proposition 3.2 applied to the net (A,U ). For any L̂ ∈ L̂ we define
L = (π−1

1,odd ⊗π−1
2,odd)(L̂) ∈ L, where L is the left ideal of A, given by definition (2.16).

In view of Theorem 2.11, we get

ψout
� (L̂1, L̂2) =

∑
n∈CR

∫
dx ((GR,n ⊗ I )�|(L∗

1 L2)(x)(GR,n ⊗ I )�)

+
∑

m∈CL

∫
dx ((I ⊗ GL,m)�|(L∗

1 L2)(x)(I ⊗ GL,m)�), (3.52)

where GR,n = ∑
k ck,n FR,k,GL,m = ∑

l cm,l FL,l and the sets CR and CL are chosen
so that �R,n := (GR,n ⊗ I )� 
= 0 and �L,m := (I ⊗ GL,m)� 
= 0 for n ∈ CR and
m ∈ CL. We note that both sets are non-empty, if � 
= 0 (cf. formula (2.13) and the
subsequent remarks).

Let us consider the first sum in (3.52) above: Any L ∈ L is a finite linear combina-
tion of operators of the form AB, where A, B ∈ A and B is almost local and energy
decreasing. Since we assumed that FR,k ⊗ I are almost local, the functions

R � x → ABUπR (x)
∗(GR,n ⊗ I )� = A[B, (GR,n ⊗ I )(−x)]� (3.53)

decrease in norm faster than any inverse power of |x|. Consequently, the Fourier trans-
form

L�̃R,n( p) := (2π)−1/2
∫

dx e−i px LUπR (x)
∗(GR,n ⊗ I )� (3.54)
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is a norm-continuous function. It is compactly supported in R+ due to the spectrum
condition and the fact that the energy-momentum transfer of each GR,n ⊗ I is bounded.
By the (Hilbert space valued) Plancherel theorem, we can write∫

dx ((GR,n ⊗ I )�|(L∗
1 L2)(x)(GR,n ⊗ I )�) =

∫
d p (L1�̃R,n( p)|L2�̃R,n( p)).

(3.55)

We define

ψR,n, p(L̂1, L̂2) := (L1�̃R,n( p)|L2�̃R,n( p)). (3.56)

It is easy to see that non-zero ψR,n, p are particle weights in the sense of Definition 2.6:
Positivity and Property 1 are obvious. The continuity requirement in Property 3 follows
from the equality

ψR,n, p(L̂1, L̂2(y)− L̂2)

= (2π)−1/2
∫

dx e−i px(L1�̃R,n( p)|[(L2(y)− L2), (GR,n ⊗ I )(−x)]�),
(3.57)

and from the dominated convergence theorem. Invariance under translations (Property 2)
is a straightforward consequence of the formula

αx (L)�̃R,n( p) = e−i( p, p)xUπR (x)L�̃R,n( p), x ∈ R
2. (3.58)

Making use of the above relation and the spectrum condition, it is easy to see that the
distribution

R
2 � q → (2π)−1

∫
d2x e−iqxψR,n, p(L̂1, αx (L̂2)) (3.59)

is supported in V+ − ( p, p).
Now let us show that any function p → ψR,n, p( · , · ), n ∈ CR, is non-zero on a

non-empty open set �R,n : Since (GR,n ⊗ I )� ∈ HπR is different from zero, UπR does
not have non-zero invariant vectors and πR(Â) acts irreducibly on HπR , Lemma A.1
ensures the existence of L̂ ∈ L̂ s.t. L(GR,n ⊗ I )� 
= 0. Consequently, R � x →
LUπR (x)

∗(GR,n ⊗ I )� is a non-zero function and so is the norm of its Fourier trans-
form R+ � p → ψR,n, p(L̂, L̂). Since the functions R+ � p → ψR,n, p(L̂1, L̂2) are
continuous for all L̂1, L̂2 ∈ L̂, as we have shown above, the sets

�R,n :=
⋃

L̂1,L̂2∈L̂
{ p ∈ R+ |ψR,n, p(L̂1, L̂2) 
= 0 } (3.60)

are open and non-empty.
Let us now fix some n ∈ CR, p ∈ �R,n and consider the GNS representation π in-

duced byψR,n, p, acting on the Hilbert space Hπ := (L̂/{ L̂ ∈ L̂ |ψR,n, p(L̂, L̂)=0 })cpl.
The equivalence class of L̂ ∈ L̂ is denoted by |L̂〉 and the scalar product is given by
〈L̂1|L̂2〉 = ψR,n, p(L̂1, L̂2). This GNS representation has the form

π( Â)|L̂〉 = | ÂL̂〉, L̂ ∈ L̂, Â ∈ Â, (3.61)

Uπ (x)|L̂〉 = |αx (L̂)〉, L̂ ∈ L̂, x ∈ R
2, (3.62)
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where Uπ is the standard representation of translations. We will show that (π(Â),Uπ )
is unitarily equivalent to (πR(Â),UπR ). To this end, we introduce the map WR : Hπ →
HπR = K1,odd ⊗ K2,ev given by

WR|L̂〉 = L�̃R,n( p), L̂ ∈ L̂. (3.63)

This map is clearly an isometry. Since πR acts irreducibly on HπR , we obtain that WR
has a dense range and hence it is a unitary operator. From the relation

WRπ( Â)|L̂〉 = πR( Â)L�̃R,n( p) = πR( Â)WR|L̂〉, L̂ ∈ L̂, Â ∈ Â (3.64)

we conclude that π and πR are unitarily equivalent. Next, we obtain for any L̂ ∈ L̂ and
x ∈ R

2,

UπR (x)WR|L̂〉 = ei( p, p)xαx (L)�̃R,n( p) = ei( p, p)x WRUπ (x)|L̂〉, (3.65)

where in the first step we made use of relation (3.58). We recall that the spectrum of
UπR coincides with V+ and note that π(Â) acts irreducibly on Hπ , by relation (3.64) and
Proposition 3.9 (c). Thus, in view of equality (3.65),

U can
π (x) = ei( p, p)xUπ (x), x ∈ R

2 (3.66)

is the canonical representation of translations in the GNS representation of ψR,n, p.
Relation (3.66) shows that qR,n, p = ( p, p).

The analysis of the second term on the r.h.s. of (3.52) proceeds similarly: For any
m ∈ CL and L̂ ∈ L̂ one introduces vectors

L�̃L,m( p) := (2π)−1/2
∫

dx ei px LU (x)∗(I ⊗ GL,m)� (3.67)

and functionals ψL,m, p(L̂1, L̂2) = (L1�̃L,m( p)|L2�̃L,m( p)). By an analogous rea-
soning as above one shows that for p in some non-empty, open set �L,m ⊂ R+
these functionals are particle weights with characteristic energy-momentum vectors
qL,m, p = ( p,− p). Their GNS representations are unitarily equivalent to πL. ��

4. Conclusions and Outlook

In this work we carried out a systematic study of particle aspects of two-dimensional
conformal field theories both in vacuum representations and in charged representations.
In the former case we established a complete particle interpretation in terms of Wigner
particles (or ‘waves’ in the terminology of [5]). In the latter case we proved the existence
of infraparticles and verified superselection of their direction of motion in a large class of
examples. We conclude that conformal field theories provide a valuable testing ground
for fundamental concepts of scattering theory.

An important question which remained outside of the scope of the present work is
the problem of asymptotic completeness in the case of infraparticles. We remark that
the theory of particle weights offers natural formulations of this property [9,11] which
can be adapted to the case of massless, two-dimensional theories. We conjecture that
any charged representation of a chiral conformal field theory has a complete particle
interpretation in terms of infraparticles.
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A more technical circle of problems concerns the decomposition of particle weights
and their representations stated in formulas (1.2), (1.3). We recall that the general pro-
cedure of [41,42] is not canonical: Firstly, it involves a choice of a maximal abelian
subalgebra, acting on the representation space of the original weight. Secondly, it relies
on a selection of countable subsets of all the objects involved. In view of these ambi-
guities it is not yet possible to associate a unique family of (infra-)particle types with
any given quantum field theory. We feel that a satisfactory solution of these problems
requires a systematic study of examples. A useful criterion for their classification is the
type of representations induced by particle weights. Thus in the present paper we focused
on representations of type I (with atomic center) which have a simple decomposition
theory. Already in this elementary case we found a physically interesting phenomenon:
superselection of direction of motion. It is a natural direction of further research to look
for theories, whose asymptotic functionals induce representations which are not of type
I with atomic center. We conjecture that such models exist and some of them describe
infraparticles with superselected momentum, similar to the electron in QED.

Acknowledgements. The authors would like to thank Prof. D. Buchholz and Prof. R. Longo for interesting
discussions.
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A. Proof of Theorem 2.11

Lemma A.1. (a) Let (A,U ) be a local net of C∗-algebras on R
2 in the sense of Defi-

nition 2.1, acting irreducibly on a Hilbert space H and let U = U can. Let � ∈ H
be s.t.

A( f )� :=
∫

d2x αx (A) f (x)� = 0 (A.1)

for all local operators A ∈ A and all f ∈ S(R2) s.t. supp f̃ is compact and
supp f̃ ∩ V+ = ∅. Then � is invariant under the action of U. (Here f̃ (p) :=
(2π)−1

∫
d2x eipx f (x).)

(b) Let (A, V ) be a local net of von Neumann algebras on R in the sense of Defini-
tion 3.1, acting irreducibly on a Hilbert space K. Let � ∈ K be s.t.

A( f )� :=
∫

ds βs(A) f (s)� = 0 (A.2)

for all local operators A ∈ A and all f ∈ S(R) s.t. supp f̃ is compact and
supp f̃ ∩ R+ = ∅. Then � is invariant under the action of V . (Here f̃ (ω) :=
(2π)− 1

2
∫

ds eiωs f (s).)

Proof. The argument exploits some ideas from the proof of Proposition 2.1 of [13].
As for part (a), suppose that � is not invariant under the action of U . Since the map
B(H) � A → A( f ) is σ -weakly continuous (cf. Lemma 5.3 of [41]) and A acts irre-
ducibly on H, condition (A.1) implies that

P(�1)A( f )P(�2)� = 0, (A.3)
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where P( · ) is the spectral measure of U and�1,�2 ⊂ R
2 are open bounded sets. Since

the spectrum of U has Lorentz invariant lower boundary and � is not invariant under
translations, we can choose �1,�2 s.t. P(�1) 
= 0, P(�2)� 
= 0 and the closure of
(�1 −�2) does not intersect with V+. Choosing f ∈ S(R2) s.t. supp f̃ ∩ V+ = ∅ and
f̃ (p) = 1 for p in the closure of (�1 −�2), we obtain that

P(�1)AP(�2)� = 0 (A.4)

for any A ∈ A. Exploiting irreducibility again, we obtain P(�1) = 0, which is a
contradiction. The proof of part (b) is analogous. ��
Lemma A.2. Let K± ⊂ H± be closed subspaces, invariant under the action of U. Let
{e+,m}m∈I be a complete orthonormal basis in (PEK+) and let {e−,n}n∈J be a complete

orthonormal basis in (PEK−) for some E ≥ 0. Then any � ∈ PE (K+
out× K−) can be

expressed as

� =
∑
m,n

cm,ne+,m
out× e−,n, (A.5)

where
∑

m,n |cm,n|2 < ∞.

Proof. First, we define a strongly continuous unitary representation of translations

U0(x)(�+ ⊗�−) = (U (x)�+)⊗ (U (x)�−), �± ∈ K± (A.6)

on K+ ⊗ K−. Then we obtain from Proposition 2.4,

�outU0(x) = U (x)�out. (A.7)

For � ′ = (�out)−1� the above relation gives P0,E�
′ = � ′, where P0,E is the spectral

projection of U0 corresponding to the set { (ω, p) ∈ R
2 |ω ≤ E }. By the functional

calculus, we get P0,E = P0,E (PE ⊗ PE ). Hence

� ′ = (PE ⊗ PE )�
′ =

∑
m,n

cm,ne+,m ⊗ e−,n . (A.8)

By applying �out, we obtain relation (A.5). ��
Lemma A.3. Let� ′ ∈ H be a vector of bounded energy, let F1, F2 ∈ A be almost local
and of compact energy-momentum transfer, and let L = ∑n

k=1 Ak Bk, where Ak, Bk ∈ A
are almost local and Bk are, in addition, energy decreasing. Then

lim
T →∞(�

′|[[QT ,�
out
+ (F1)],�out− (F2)]�) = 0, (A.9)

where QT = ∫
dt hT (t)

∫
dx (L∗L)(t, x). (The above sequence is well defined by The-

orem 2.9.)
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Proof. First, we note that by Proposition 2.3 and Theorem 2.9,

lim
T →∞(�

′|[[QT ,�
out
+ (F1)],�out− (F2)]�) = lim

T →∞(�
′|[[QT , F1,+(hT )], F2,−(hT )]�),

(A.10)

if the limit on the r.h.s. exists. We introduce the auxiliary operators:

Q±,T :=
∫

dt hT (t)
∫

R±
dx (L∗L)(t, x). (A.11)

As we show below, they satisfy

lim
T →∞ ‖PE [Q±,T , F∓(hT )]PE‖ = 0 (A.12)

for any E ≥ 0 and any F ∈ A which is almost local and of compact energy-momentum
transfer. Making use of this relation and the fact that QT = Q+,T + Q−,T , the proof is
completed with the help of the Jacobi identity and Proposition 2.3 (c).

Let us now verify (A.12). As the two cases are analogous, we focus on one of them
and estimate the corresponding expression as follows:

‖PE [Q−,T , F+(hT )]PE‖ ≤
∫

dtdt1 hT (t)hT (t1)
∫

R−
dx‖[L∗L(t, x), F(t1, t1)]‖.

(A.13)

Since L∗L and F are almost local, we can find sequences Cr , Fr ∈ A(Or ), s.t. for any
n ∈ N there exist Cn,C ′

n s.t.

‖L∗L − Cr‖ ≤ Cn

rn
, ‖F − Fr‖ ≤ C ′

n

rn
. (A.14)

We choose r = (1 + 1
4 |x|)ε + T ε, where 0 < ε < 1 appeared in the definition of hT . We

write

[(L∗L)(t, x), F(t1, t1)] = [(L∗L − Cr )(t, x), F(t1, t1)]
+[Cr (t, x), (F − Fr )(t1, t1)]
+[Cr (t, x), Fr (t1, t1)]. (A.15)

By estimates (A.14), the first two terms on the r.h.s. above give contributions to (A.13)
which tend to zero in the limit T → ∞. The contribution of the last term can be estimated
as follows, exploiting locality,

∫
dtdt1 hT (t)hT (t1)

∫
R−

dx‖[Cr (t, x), Fr (t1, t1)]‖

≤ c
∫

dtdt1 hT (t)hT (t1)
∫

R−
dxχ(|x − t1| ≤ |t − t1| + 2r), (A.16)

where χ is the characteristic function of the respective set and c is a constant inde-
pendent of T . Let us now derive some inequalities which hold on the support of the
integrand on the r.h.s. of (A.16). First, we note that t, t1 ∈ supp hT , if and only if
t, t1 ∈ T εsupp h + T , in particular |t − t1| ≤ c1T ε for some c1 ≥ 0. Exploiting this fact,
the inequality |x − t1| ≤ |t − t1| + 2r and the relation r = (1 + 1

4 |x|)ε + T ε, we find
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such c2 ≥ 0 that |x| ≤ c2T and r ≤ c2T ε, in particular the r.h.s. of (A.16) is finite for
any T ≥ 1. Making use of the inequalities r ≤ c2T ε and |x − t1| ≤ |t − t1| + 2r , and
of the fact that t, t1 ∈ supp hT , we obtain that |x − T | ≤ c3T ε for some c3 ≥ 0 which
implies that x > 0 for sufficiently large T . As the region of integration in the x variable
is restricted to R−, we conclude that the r.h.s. of (A.16) is zero for such T . ��
Proof of Theorem 2.11. Let QT = ∫

dt hT (t)
∫

dx (L∗L)(t, x), where L = ∑n
k=1 Ak Bk

is an element of the left ideal L, Ak are almost local and Bk ∈ L0. Moreover, we choose
� = �out

+ (F1)�
out− (F2)� and � ′ = �out

+ (F ′
1)�

out− (F ′
2)�, where F1/2, F ′

1/2 ∈ A are
almost local and have compact energy-momentum transfer. Since � and � ′ are vectors
of bounded energy, we can write

(� ′|QT�
out
+ (F1)�

out− (F2)�) = (� ′|[[QT ,�
out
+ (F1)],�out− (F2)]�)

+(� ′|�out− (F2)QT�
out
+ (F1)�)

+(� ′|�out
+ (F1)QT�

out− (F2)�). (A.17)

The term with the double commutator above vanishes as T → ∞ due to Lemma A.3.
The second term on the r.h.s. of relation (A.17) is treated as follows:

lim
T →∞(�

′|�out− (F2)QT�
out
+ (F1)�)

= lim
T →∞(�

′|�out− (F2)

∫
hT (t)e

i Ht
∫

dx (L∗L)(x)e−i P t�out
+ (F1)�)

= lim
T →∞(�

′|�out− (F2)

∫
hT (t)e

i(H−P)t
∫

dx (L∗L)(x)�out
+ (F1)�)

= (� ′|�out− (F2)P+

∫
dx (L∗L)(x)�out

+ (F1)�), (A.18)

where in the first step we made use of the fact that �out
+ (F1)� = P+�

out
+ (F1)�, in the

second step we exploited the invariance of
∫

dx (L∗L)(x) under translations in space
and in the last step we made use of the mean ergodic theorem as in the proof of Lemma 1
of [5]. Next, we obtain

(�out
+ (F ′

1)�
out− (F ′

2)�|�out− (F2)P+

∫
dx (L∗L)(x)�out

+ (F1)�)

= (�out− (F2)
∗�out− (F ′

2)�|�out
+ (F ′

1)
∗ P+

∫
dx (L∗L)(x)�out

+ (F1)�)

= (�|�out− (F ′
2)

∗�out− (F2)�) (�|�out
+ (F ′

1)
∗
∫

dx (L∗L)(x)�out
+ (F1)�),

(A.19)

where we made use of the facts that [�out
+ (F1),�

out− (F2)] = 0 and that H+/C� is
orthogonal to H−/C� (as in the proof of Lemma 4 (a) of [5]). The last term on the r.h.s.
of (A.17) is treated analogously.

We note that any �± ∈ PEH± can be approximated by a sequence of vectors of
the form P±Fn�, where Fn ∈ A are quasilocal and have energy-momentum trans-

fers in some fixed compact set. Hence, any � = �+
out× �− has bounded energy. By



Infraparticles with Superselected Direction of Motion in 2D CFT 487

the above considerations and Theorem 2.9, we obtain for any � = �+
out× �−, � ′ =

� ′
+

out× � ′−, �±, � ′± ∈ PEH±,

lim
T →∞(�

′|QT�) = (� ′
+|�+)

∫
dx (� ′−|(L∗L)(x)�−)

+(� ′−|�−)
∫

dx (� ′
+|(L∗L)(x)�+). (A.20)

Now in view of Lemma A.2, any � ∈ PEHout has the form

� =
∑
m,n

cm,ne+,m
out× e−,n, (A.21)

where {e±,m}∞m=0 are orthonormal systems in {PEH±}, which we choose so that e±,0 =
�. Defining

�+,n =
∑

m

cm,ne+,m, �−,n =
∑

m

cn,me−,m, (A.22)

we obtain ρ±,�( · ) = ∑
n (�±,n| · �±,n). Relation (A.20) gives

lim
T →∞(�|QT�) =

∫
dx (ρ+,� + ρ−,�)

(
(L∗L)(x)

)
. (A.23)

Exploiting the Cauchy-Schwarz inequality and the following bounds, valid for L =
AB, A ∈ A, B ∈ L0,

|(�|QT�)| ≤ ‖PE

∫
dx (B∗ B)(x)PE‖ ‖A∗ A‖, (A.24)

∫
dx (ρ+,� + ρ−,�)

(
(L∗L)(x)

) ≤ 2‖PE

∫
dx (B∗ B)(x)PE‖ ‖A∗ A‖, (A.25)

one extends (A.23) to any L ∈ L. Now formula (2.36) follows by a polarization argu-
ment.

Let us now show that ψout
� = 0 only if � ∈ C�. By the above considerations we

obtain, for any B ∈ L0,

ψout
� (B, B) =

∑
n

∫
dx

{
(�−,n|(B∗B)(x)�−,n) + (�+,n|(B∗B)(x)�+,n)

}
.

(A.26)

Ifψout
� = 0, then B�±,n = 0 for each n and any such B. Thus, by Lemma A.1 (a),�±,n

are proportional to�. Using definitions (A.21), (A.22) and the convention e±,0 = �, it
is easily seen that � is proportional to �. ��
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B. Proofs of Lemmas 3.7 and 3.8

Proof of Lemma 3.7. As for the main part of the lemma, it suffices to show that the
spectrum of Vodd coincides with R+. It follows from the assumption AdW 
= id and the
Reeh-Schlieder property of the net (A, V ) that Aodd(I) 
= {0} and Kodd = [Aodd(I)�0]
for any open, bounded subset I ⊂ R. Let P( · ) be the spectral measure of V and suppose
that P(�)Kodd = {0} for some open subset � ⊂ R+. We fix a non-zero A ∈ Aodd(I).
Then, for any B ∈ A(I) the distribution

(�0|[B, Ã(ω)]�0) = 1√
2π

∫
dt e−iωt (�0|[B, βt (A)]�0) (B.1)

is supported outside of � ∪ −�. Since, by locality, this distribution is a holomorphic
function, it must be zero for all ω ∈ R. Thus for any f ∈ S(R) s.t. f̃ is supported in the
interior of R+ we obtain (�0|B A( f )�0) = (�0|B f̃ (T )A�0) = 0. Here T ≥ 0 is the
generator of V, A( f ) = ∫

dt βt (A) f (t) and we made use of the fact that A( f )∗�0 = 0,
due to the support property of f̃ and the spectrum condition. Approximating the char-
acteristic function of the interior of R+ with such f̃ and making use of the fact that
(�0|A�0) = 0, we conclude that A�0 = 0 and hence, by the Reeh-Schlieder property
A = 0, which contradicts our assumption. Consequently, P(�)Kodd 
= {0} for any open
subset � of R+, which means that the spectrum of Vodd coincides with R+.

This fact can also be proven as follows: The representation of translations V can
be extended to a representation of the ax + b group thanks to the Borchers theorem
[27]. There is only one non-trivial, irreducible representation of this group which has
positive energy [38] and its spectrum of translations is R+. Since Kodd does not contain
non-trivial invariant vectors of V , the spectrum of V |Kodd coincides with R+.

Let us now proceed to part (a) of the lemma. To show the irreducibility of πodd, it
suffices to check that any vector � ∈ Kodd is cyclic under the action of πodd(Aev). By
contradiction, we suppose that there is � ′ ∈ Kodd s.t. (� ′|A�) = 0 for any A ∈ Aev.
But this implies that (� ′|B�) = 0 for any B ∈ A, which contradicts the irreducibility
of the action of A on K. Next we verify the faithfulness of πodd restricted to a local
algebra. Let A ∈ Aev(I) be a positive local element which is zero upon restriction to
Kodd. For any local odd element B ∈ Aodd(J) and for sufficiently large s we obtain

0 = (�|βs(B
∗)Aβs(B)�) = (�|βs(B

∗ B)A�) → (�|B∗B�) · (�|A�), (B.2)

where in the last step we took the limit s → ∞. By the Reeh-Schlieder property it
follows that A = 0. This implies that πodd is faithful on Aev(I) by Proposition 2.3.3 (3)
of [17]. Now the faithfulness of πodd on the quasilocal algebra Aev follows from Propo-
sition 2.3.3 (2) of [17], which says that πodd is faithful, if and only if ‖πodd(A)‖ = ‖A‖
for any A ∈ Aev. Local normality of πodd is obvious, since πodd acts by the restriction
to a subspace. Indeed, making use of Lemma 2.4.19 from [17] and of the fact that πodd
preserves the norm, it is easy to check that l.u.b.πodd(Aα) = πodd(l.u.b. Aα), where
l.u.b denotes the least upper bound and {Aα}α∈I is a uniformly bounded increasing net
of positive operators from some Aev(I).

Part (b) of the lemma follows from the uniqueness of the invariant vector of V . ��
Proof of Lemma 3.8. We know from Lemma 3.7 that Aev 
= CI , since it can be irreduc-
ibly represented on the infinite dimensional Hilbert space Kodd. Consequently, we can
find a non-zero A ∈ Aev(I), for some open, bounded I, s.t. (�0|A�0) = 0. Proceeding
identically as in the proof of the main part of Lemma 3.7, we conclude that the spectrum
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of Vev coincides with R+. Part (b) follows trivially from the fact that the net (A, V ) is in
a vacuum representation. Irreducibility in part (a) follows from part (b). The remaining
part of the statement is proven analogously as the corresponding part of Lemma 3.7. ��
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