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Spatiotemporal Learning of Dynamic Positron
Emission Tomography Data Improves
Diagnostic Accuracy in Breast Cancer

Marianna Inglese , Matteo Ferrante, Andrea Duggento, Tommaso Boccato , and Nicola Toschi

Abstract—Positron emission tomography (PET) is a
noninvasive imaging technology able to assess the metabolic
or functional state of healthy and/or pathological tissues. In
clinical practice, PET data are usually acquired statically
and normalized for the evaluation of the standardized uptake
value (SUV). In contrast, dynamic PET acquisitions provide
information about radiotracer delivery to tissue, its interaction
with the target, and its physiological washout. The shape of the
time activity curves (TACs) embeds tissue-specific biochemical
properties. Conventionally, TACs are employed along with
information about blood plasma activity concentration, i.e.,
the arterial input function, and tracer-specific compartmental
models to obtain a full quantitative analysis of PET data. This
method’s primary disadvantage is the requirement for invasive
arterial blood sample collection throughout the whole PET scan.
In this study, we employ a variety of deep learning models to
illustrate the diagnostic potential of dynamic PET acquisitions
of varying lengths for discriminating breast cancer lesions in
the absence of arterial blood sampling compared to static PET
only. Our findings demonstrate that the use of TACs, even in the
absence of arterial blood sampling and even when using only a
share of all timeframes available, outperforms the discriminative
ability of conventional SUV analysis.
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I. INTRODUCTION

POSITRON emission tomography (PET) allows the
quantification of the biochemical properties of tis-

sue through the injection and detection of a targeted
radiotracer [1].

Over the past 40 years, there have been many studies
on dynamic PET-based parametric imaging [2]. In fact, by
examining the time-dependent evolution of the observed PET
signal (i.e., dynamic PET), it is possible to retrieve a num-
ber of biological characteristics of interest and to generate
multiparametric images that quantify the underlying biologi-
cal mechanisms [2]. A PET image is, in fact, an in vivo map
of the spatiotemporal tracer concentration that includes details
on the delivery of the tracer to tissue, how it interacts with the
target, and how it is influenced by tissue- and tracer-specific
washout effects. These tissue-specific biochemical character-
istics can be inferred from the shape of the tissue time activity
curves (TACs) [3], [4], which, to date, are mainly employed
in conjunction with information about blood plasma activity
concentration and specific compartmental models for the full
quantification of dynamic PET data [5], [6], [7], [8]. In rare
cases, the shape of the TACs is evaluated visually to qual-
itatively discern tissue types [9]. Along with the voxelwise
extraction of TACs, this quantitative analysis often requires
(especially for the kinetic assessment of a novel tracer), a
painful and intrusive process, including arterial cannulation
and blood sample collection throughout the whole PET acqui-
sition (which can last up to 90 min). Therefore, in clinical
practice, PET data are acquired following a static acquisition
protocol. In particular, the standardized uptake value (SUV), or
its normalized version (SUVR), is the most widely employed
PET-derived measure in both clinical and research applica-
tions [10]. These static maps are equivalent to the late phase
of dynamic PET acquisition and therefore discard the major-
ity of information possibly present in the time evolution of
tissue-specific TACs. A crucial assumption when calculating
SUV estimates is that the amount of nonmetabolized tracer
in the region of interest (ROI) is negligible compared to the
amount of metabolized tracer there and that the time integral
of plasma tracer concentration is proportional to the amount of
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tracer injected, normalized by body weight [11]. This assump-
tion frequently fails in clinical PET, leading to non-negligible
errors in the calculation of the rate of tracer uptake [12].
The distribution of PET tracers is a dynamic process that
is affected by several factors (such as tissue type, patient,
scan time) which cannot be adequately predicted by static
PET imaging (e.g., SUV analysis). It follows that dynamic
PET may be able to lessen the large time dependence seen in
SUV quantification of normal tissue and tumor uptake values,
hence allowing greater flexibility as well as reliability in clin-
ical practice [13]. Of note, dynamic PET data used for tumor
detection [14], [15] have already demonstrated the superiority
of an automated dynamic observer over a static observer, sup-
porting the conclusion that lesion detection can be enhanced
by using time-resolved information [16].

The main objective of this article is to compare
the information content, and therefore the discrimination
performance, embedded in the time domain of dynamic PET
acquisitions compared to a traditional, static dataset. To
this end, we combined several machine- and deep-learning
architectures on clinical data obtained from a cohort of
breast cancer patients who received dynamic 3′-deoxy-3′-
18F-fluorothymidine (18F-FLT) PET scans for a relatively
straightforward task (classification between lesion and refer-
ence tissue) in order to highlight any potential static versus
dynamic effect.

II. MATERIALS AND METHODS

A. Dataset

We employed a publicly available clinical 18F-FLT PET
dataset consisting of 44 breast cancer patients, part of the
“ACRIN-FLT-Breast (ACRIN 6688)” collection in the cancer
imaging archive (TCIA) [17], [18], [19]. Eligibility criteria
included histologically confirmed breast cancer diagnosis, pri-
mary breast cancer measuring greater than or equal to 2.0 cm,
being a candidate for systemic neoadjuvant chemotherapy
(NAC) and surgical resection of the residual primary tumor
after NAC, and no evidence of stage IV disease [18]. Dynamic
PET images were acquired after a bolus injection of 167 MBq
(mean; range, 110–204 MBq). The dynamic scan comprises 45
timeframes (16 × 5, 7 × 10, 5 × 30, 5 × 60, 5 × 180, and
6 × 300 s) for a 60-min acquisition duration (mean, 70 min;
range, 50–101 min). All patients were scanned on calibrated
and ACRIN-accredited PET/CT scanners, which included a
review of image quality and testing of SUVs using a uniform
phantom [18]. For the purpose of this study, only baseline
scans were employed.

B. Data Processing

For each patient, volumes of interest were manually drawn
by an experienced radiologist using the combined summed
PET (obtained as the average of the last five timeframes of the
dynamic PET data) and CT volume. The 18F-FLT radioactivity
concentrations within the volumes of interest were normalized
to injected radioactivity and patient body weight to obtain
SUV values [11]. For each patient, an additional ROI was
obtained from the centroid of the healthy contralateral breast
where the same mask obtained from lesion segmentation was

Fig. 1. TACs extraction. 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) PET
data was dynamically acquired on a cohort of 44 breast cancer patients belong-
ing to the “ACRIN-FLT-Breast (ACRIN 6688)” collection in TCIA. Volumes
of interest were drawn in the lesion (red) and reference healthy tissue (green)
for the extraction of TACs They represent the concentration of the tracer in
the tissue over time (average shown in the figure). For each patient, a median
of 574 (range, 63–6954) TACs were extracted from each mask.

flipped and used for the delineation of a reference healthy
region. PET data were preprocessed into various shapes to
test our deep learning architectures.

1) Time-Series (1-D Data): For each patient, a median of
574 (range, 63–6954, according to lesion size) TACs
were extracted in a voxelwise manner using the refer-
ence and lesion masks. TACs were linearly resampled
onto a uniform time axis (one sample every 10 s for a
total of 331 samples) (Fig. 1).

2) Static Images (3-D Data): For each patient, a
30 × 30 × 10 box was positioned around the tumor and,
as before, flipped onto the contralateral healthy breast on
the static PET image to obtain a control image.

3) Dynamic Images (4-D Data): The box outlined in 2) was
extended to the 45 timeframes of the dynamic PET
acquisition.

C. Spatiotemporal Models for Dynamic PET Data

Dynamic PET data were employed to perform a binary clas-
sification task: tumor versus healthy tissue. For 1-D data, we
performed a binary classification between tumor and healthy
reference tissue at the voxel level (i.e., a massively univari-
ate segmentation task). Given the temporal structure of these
data, we compared convolutional monodimensional filters
(CONV1D), long short-term memory (LSTM) models, and a
combination of the two (CONV1D + LSTM). In addition, we
performed a binary classification between boxes that contained
cancerous lesions and contralateral control regions using (sep-
arately) static and dynamic images. We compared models that
employed 3-D convolutional layers (CONV3D) for the clas-
sification of static (3-D) PET images to more sophisticated
architectures where we extracted spatiotemporal features from
dynamic (4-D) PET data using a combination of 3-D con-
volutional filters and LSTM in the CONV3D+LSTM model
and a set of depthwise separable convolutional layers where
dynamic PET time evolution was encoded in the channel
dimension of the filters (SECONV3D model). We also tested a
transformer model adapted for time-series classification [20],
which, unlike the previously mentioned architectures, relies on
an attention mechanism. For comparison to standard clinical
procedures, the performances of our models were compared
to the commonly employed SUV measure. For 1-D data clas-
sification, voxelwise SUV values were extracted from both
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Fig. 2. Representative model architectures. (a) CONV1D comprises two mono-dimensional convolutional layers, four fully connected layers followed by
the first softmax layer for classification. (b) LSTM comprises two long-short term memory (LSTM) and four fully connected layers followed by the last
softmax layer for classification. (c) CONV1D+LSTM combines (a) and (b) for spatiotemporal feature extraction. (d) TRANSFORMERS comprises stacked
self-attention and pointwise, fully connected layers for both the encoder and decoder (adapted for time series classification by Vaswani et al. [20]). (e) CONV3D
comprises three 3-D convolutional layers, two fully connected layers, and the last softmax classification layer. (f) CONV3D+LSTM combines a cascade of
convolutional and recurrent neural networks for the extraction of spatial and temporal features. The architecture comprises four 3-D convolutional layers
followed by two fully connected layers, two LSTM layers followed by two fully connected layers, and the last softmax classification layer. (g) SECONV3D
comprises three depthwise separable convolutional layers, two fully connected layers followed by the last softmax layer for classification. The wording “dense”
(Keras nomenclature) refers to a module used in convolutional neural networks that connects all layers (with matching feature-map sizes) directly with each
other.

lesion and reference tissue and used as input for XGBoost
and support vector machine (SVM) classifiers and for a lin-
ear discriminant analysis (singular value decomposition (SVD)
model) [13]. For image classification, static SUV images (3-D
data) were compared to both static and dynamic PET data
using the CONV3D model. For each model, hyperparame-
ter optimization was performed with Optuna (with random
search sampler and 200 trials) and involved the number of
units (for fully connected and LSTM layers), the number of
filters, and the dimension of the stride (for convolutional lay-
ers), the activation function, the learning rate, the loss function,
the metric, gamma, C, gamma, and kernel for the SVM clas-
sifier and, for the XGBoost model, the maximum depth of a
tree, the minimum sum of instance weight needed in a child,
and the subsample ratio of columns for each tree (Table I).
For the SECONV3D model, hyperparameter optimization was
performed with a random search sampler and 100 trials. In the
following sections, optimized values are listed [14]. Details of
the models we employed are as follows.

CONV1D: Two mono-dimensional convolutional layers
using a rectified linear unit (ReLU) and linear activation func-
tion. The filter size was set to 16 and 32, the kernel size to 2
for the first convolutional layer and to 4 for the second con-
volutional layer, and the stride to 2 and 3. The output of the
last convolutional layer was flattened into four fully connected
layers with 64 neurons using sigmoid, ReLU, linear, and sig-
moid activation functions, followed by the last softmax layer
for classification [Fig. 2(a)].

LSTM: Two LSTM and four fully connected layers. The
units of the LSTM layers, using a ReLU activation function,
were set to 16 and 4 for the first and second layers, respec-
tively. The output of the last LSTM layer was flattened into
four fully connected layers with 64 neurons using a ReLU
activation function, followed by the last softmax layer for
classification [Fig. 2(b)].

CONV1D+LSTM: For spatiotemporal feature extraction,
the model included both convolutional and recurrent neural
networks (RNNs). This architecture combines the previous two
[Fig. 2(c)].

TRANSFORMERS: The transformer model was adapted
for time-series classification by Vaswani et al. [20]. This
architecture consists of stacked self-attention and pointwise,
fully connected layers for both the encoder and decoder. The
encoder is composed of a stack of six identical layers. Each
layer has two sublayers. The first is a multihead self-attention
mechanism, and the second is a simple, positionwise fully con-
nected feed-forward network. A residual connection was used
around each of the two sublayers, followed by layer normaliza-
tion. The decoder is also composed of a stack of six identical
layers. In addition to the two sublayers in each encoder layer,
the decoder contains a third sublayer, which performs mul-
tihead attention over the output of the encoder stack. As in
the encoder, residual connections are used around each of the
sublayers, followed by layer normalization [Fig. 2(d)].

CONV3D: Three 3-D convolutional layers using linear, sig-
moid, and linear activation functions. The filter size was
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TABLE I
HYPERPARAMETER VALUES EMPLOYED IN OPTIMIZATION

set to 16, and the kernel size and stride were set to 2.
The output of the last convolutional layer was flattened into
two fully connected layers with 64 neuron (using the ReLU
activation function) and the last softmax classification layer
[Fig. 2(e)].

CONV3D+LSTM: A cascade of convolutional
and RNN architectures that was originally built for
electroencephalographic signals [21]. Spatial features
are extracted from boxed dynamic PET images and then fed
into the RNN for the extraction of temporal features. One
fully connected layer receives the output of the last time
step of the RNN layers and feeds the softmax layer for final
classification. In detail, there are four time-distributed 3-D
convolutional layers with filter sizes set to 64 (except for
the first one with a filter size set to 32 and followed by a
maxpooling layer with the pool size set to 2) with the same
kernel size set to 3 and stride to 2 (except for the first one
where it was set to 1) for spatial feature extraction. In each
convolutional operation, zero-padding techniques were used
to create feature maps with the same size as the raw input
PET data. The output of the time-distributed 3-D convolution
block was flattened to feed two fully connected layers with
64 neurons (and a sigmoid and ReLU activation function).
They are followed by the RNN block made of two LSTM
layers (with 64 units each) and two final fully connected
layers, a ReLU activation function and the last softmax for
classification [Fig. 2(f)].

SECONV3D: Three 3-D depthwise separable convolutional
layers with a gelu activation function. The kernel size of the
first two blocks and the stride were set to 2. An average pool-
ing layer (size = 2) was applied before passing the output
to a multilayer perceptron with two hidden layers of 128 and

64 neurons using the ReLU activation function. Data were
encoded with the time dimension as the channel dimension,
allowing the evaluation of the time interaction through the
convolutions [Fig. 2(g)].

D. Implementation

All experiments were conducted using Python version 3.8,
the Keras deep learning library, using TensorFlow as the
backend. We employed a Linux machine and two Nvidia
Pascal TITAN V graphics cards with 12-GB RAM each.
SECONV3D was implemented in PyTorch and trained on the
same machine.

E. Performance Evaluation

In all cases, the sample was split into training (80%), val-
idation (10%), and testing sets (10%) and normalized by the
mean and standard deviation value evaluated on the training
set. An early stopping method was used to select the opti-
mum number of training epochs and the batch size (Keras
callback function monitoring the loss function with patience
set to 10). In the case of CONV3D, CONV3D+LSTM, and
SECONV3D, given the dataset size, a fivefold cross validation
was performed to quantify performance, reported in terms of
area under the receiver operating characteristic (ROC) curve
(AUC), accuracy, precision and recall [22].

F. Predictive Value of Partial Dynamic PET Data

Our main assumption is that dynamic PET can provide addi-
tional information compared to static imaging. In a clinical
context, this is often counterbalanced by the limited in-scanner
time available to each patient. In this context, we extended
our analysis to multiple training and optimization of our mod-
els with increasingly shorter segments (starting from the first
timepoint) of dynamic PET data, hence testing the additional
hypothesis that even an incomplete dynamic PET acquisition
can be of value, especially given that most of the dynamic
range is contained in the first part of the acquisition. We,
therefore, explored the added value of dynamic PET as a func-
tion of the number of time points and hence of acquisition
time.

III. RESULTS

Table II summarizes the results obtained when classifying
1-D time series. For each model, the ROC curves and AUC
values are also shown in Fig. 3(a). The best performance
was obtained by the CONV1D model with a 92% accu-
racy (AUC = 0.97) in comparison to 78% accuracy obtained
with the LSTM (AUC = 0.86) and 80% accuracy obtained
with a combination of the two (CONV1D+LSTM, AUC =
0.90). The transformer-based architecture discriminated lesion-
derived TACs with 65% accuracy (AUC = 0.70). CONV1D
models, based on temporal features only, showed better
performance than traditional models (SVM and XGBoost)
across all metrics, whereas LSTM and CONV1D+LSTM
showed mixed or worse performance compared to baselines
(SVM and XGBoost delivered 76% and 68% accuracy (AUCs
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TABLE II
CLASSIFICATION OF 1-D DATA. NUMBER OF TRAINABLE PARAMETERS AND MODEL PERFORMANCE

TABLE III
CLASSIFICATION OF 3-D AND 4-D DATA. NUMBER OF TRAINABLE PARAMETERS AND MODEL PERFORMANCE

= 0.76, 0.67), respectively, when applied to dynamic SUV
data [(voxelwise)—Table II)]. For comparison with the clin-
ical gold standard, a linear discriminant analysis (SVD) as
well as SVM and XGBoost models were trained on static
SUV values (Static SUV values (voxelwise), see table) and
discriminated tumor tissue with 75%, 85%, and 82% accu-
racy, respectively (Table II). Similarly, Table III summarizes
the results obtained when classifying lesions using 3-D and
4-D data. For each model, the ROC curves and AUC are shown
in Fig. 3(b). The CONV3D model reached a 63% (± 0.99)
accuracy (0.59 ± 0.09 AUC). This performance was notably
improved when combining both temporal and spatial feature
extraction in the CONV3D+LSTM model (75% (±0.09) accu-
racy, 0.81 (±0.08) AUC) and when encoding the dynamic
PET data time information on the channel dimension of the
SECONV3D model (73% (±0.07) accuracy, 0.84 (± 0.08)
AUC). Overall, our dynamic approaches outperformed both
the SUV_CONV3D model (CONV3D model applied to static
SUV images), which classified lesion and reference tissue
with 60% (±0.08) accuracy (AUC = 0.60 (±0.15)), and
SVM and XGBoost models trained on maximum SUV values

Fig. 3. ROC curves corresponding to model performances in discriminating
(a) 1-D and (b) 3/4-D data of lesion and reference tissue. In (b), average ROC
curves with 1 standard deviation (shaded area) across folds are shown.

(SUVmax), which delivered 62% (±0.06) and 74% (±0.05)
accuracies, respectively.

Finally, the performances of our best models for both
voxel (CONV1D) and image classification (SECONV3D)
were tested on an increasingly shorter dynamic PET dataset
(Fig. 4). In these experiments, the dynamic scan time was
progressively reduced from 45 time frames to 1 time frame.
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Fig. 4. Accuracy and AUC values obtained when testing the (a) CONV1D
and (b) SECONV3D models for voxel and image classification, respectively,
on a dynamic PET dataset with a variable duration. In (b), mean values with
1 standard deviation (shaded area) across folds are shown.

The accuracy of the SECONV3D model trained on the full
dataset (45 time frames/55 min scan, 73% ± 0.07) decreased
by only 11% when trained on 31 time frames/6 min scan
[62% (±0.05)]. Similarly, the accuracy of the CONV1D model
trained on the full dataset (92%) decreased by only 5% when
trained on 31 time frames (87%).

IV. DISCUSSION AND CONCLUSION

The ability to define diverse biological processes at multiple
levels is a unique advantage offered by PET technology [23].
The first level of analysis only requires static PET imaging, the
gold standard in clinical practice. The radiotracer is adminis-
tered intravenously and, after a predetermined delay from the
injection (e.g., 60 min for the FDG tracer), a few minutes of
PET acquisition (2–5 min per bed position) are initiated [24].
The acquired static image, which is an average snapshot of the
entire acquisition time for each PET bed position, is usually
normalized to generate SUV maps [10]. The use of SUV is
now commonplace in clinical PET/CT oncology imaging and
plays a crucial part in assessing patient response to cancer
therapy [10], [25]. In fact, the SUV removes the variability of
the raw static PET image introduced by differences in patient
size and the amount of the injected radiotracer. However, using
SUV only has a number of drawbacks, e.g., it cannot be used in
multicenter studies due to intercenter variability, it is heavily
influenced by physical and technical acquisition parameters,
and it provides inaccurate semiautomated lesion segmentations
based on intensity thresholds [26]. The limited information
provided by a static PET acquisition can be augmented with a
dynamic acquisition that starts when the radiotracer is injected
and consists of a continuous acquisition of a PET bed posi-
tion for a few minutes to 1 h (or more) depending on the

mathematical model to be used for image postprocessing [27].
Currently, dynamic PET is mainly employed in research appli-
cations and allows the quantification of radiotracer kinetics,
hence capturing information not available with conventional
static acquisition protocols [5], [6], [7], [8]. Dynamic PET
returns an in vivo map of the spatiotemporal tracer concentra-
tion, which incorporates information about its interaction with
the target and washout effects. This information is embedded
in the shape of the tissue TACs, which reflect tissue-specific
biochemical properties that are lost when a static PET pro-
tocol is acquired [28]. The quantification of tracer uptake
based on compartmental modeling approaches, as applied to
dynamic PET images, improves both tumor characterization
and treatment response monitoring.

In this study, we demonstrated the superior diagnostic poten-
tial of dynamic over static PET imaging using deep learning
models for a binary classification task. We employed monodi-
mensional filters (e.g., CONV1D and LSTM) to learn temporal
patterns from time sequence (1-D) data for the voxelwise clas-
sification of tumor versus reference tissue. This was done
without pharmacokinetic modeling and without invasively
measuring the AIF. In addition, we employed more sophis-
ticated architectures, able to process both spatial and temporal
information from static and dynamic PET images (3-D and
4-D data) for a lesion-level (as opposed to voxel-level)
classification task (i.e., tumor versus reference tissue).

The performances of our models were compared to the
gold-standard SUV analysis. For TAC classification, the high-
est accuracy was obtained by the CONV1D model (92%
accuracy and AUC = 0.97), which, with two convolutional
layers followed by four fully connected layers, outperformed
the voxelwise classification of SUV values, which reached
85% accuracy with the XGBoost model, 82% accuracy with
the SVM model, and 75% accuracy with a linear discrimi-
nant analysis (SVD). Interestingly, the performance of SVM
and XGBoost with dynamic SUV data is a few percent points
worse than that with static SUV data. Provided that no sta-
tistically significant tests were run, this may be due to the
fact that the number of features included in dynamical data
may be too large for a simple machine learning model to
represent/separate. For the image classification task, compa-
rable results were obtained by the CONV3D+LSTM and
SECONV3D models, which processed the information pro-
vided by the time evolution of the PET signal (4-D data).
In particular, combining both temporal and spatial feature
extraction, the CONV3D+LSTM model reached 75% accu-
racy. Despite the complexity of the CONV3D model, when
we applied it to both raw static PET data and SUV maps (3-D
images), we obtained lower performances than those shown in
clinical studies [18]. In this regard, it is important to note that
the literature reports clinical FLT studies where statistical tests
are performed on SUV mean (or max, peak) values averaged
over the whole lesion (while the input of our CONV3D model
is the whole 3-D image). Perhaps more importantly, it is cus-
tomary in clinical studies to use the whole dataset for training
and evaluation, as opposed to evaluating models on unseen
test data potentially inflating reported results due to overfit-
ting. Finally, it should be noted that higher model complexity
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does not necessarily guarantee better performance unless very
large amounts of data are available.

Our results show that by encoding the time information
provided by dynamic PET data in the channel dimension of
the 3-D convolutional filters in the SECONV3D architecture,
the model reached 73% accuracy. Overall, the performance
obtained when using gold standard SUV measures in classify-
ing tumor versus reference tissue, as well as the performance
of the raw static PET data in the same classification task,
was lower than the one obtained using dynamic PET data
in the shape of both tissue TACs (1-D) and 4-D images. Of
note, the SECONV3D model, which used depthwise separable
convolutions, performed reasonably well despite challenges
related to both the use of a small dataset and the number
of trainable parameters of a conventional 4-D convolution
layer. Furthermore, we were not able to perform any pharma-
cokinetic analysis or to provide any comparison with kinetic
parameters, as the database we employed did not include
information about the percentage of the metabolite FLT-
glucuronide present in the blood after the injection of [18F]FLT
tracer [29], [30]. Therefore, the parent plasma (metabolite-
corrected) input function necessary for pharmacokinetic fitting
was not available.

Finally, we investigated the robustness of our best mod-
els when applied to a shorter dynamic PET dataset. This was
done to investigate the suitability of dynamic PET in a clinical
context, where scanner time is heavily constrained and arte-
rial blood sampling is often hampered by additional logistic
challenges. Our results show that by reducing dynamic scan
times from 45 timeframes (55-min scan) as low as 30 time-
frames (6-min scan), the accuracy and AUC values of both
models (CONV1D and SECONV3D for 1-D and 4-D data
classification, respectively) did not suffer notable decreases
compared to when using the full dynamic dataset. Further
work could address a more fine-grained classification of
time-dependent information with nonstandard techniques, such
as, e.g., parasitic modeling [31], deployed in a cloud-based
environment [32].

This proof-of-concept study demonstrated that the diag-
nostic accuracy of static PET can be easily improved with
an automatic and noninvasive deep learning approach that
exploits the biochemical and metabolic information embedded
in the tissue TACs obtained with dynamic PET acquisition.
Importantly, this goal appears feasible especially in light
of the fact that some classifiers are able to deliver good
performance while employing only a small portion (3 min) of
the dynamic data. Our results pave the way for more specific
and sophisticated applications where deep-learned time signal
intensity pattern analysis can be used for tumor segmentation
or, more interestingly, for tracer kinetic assessment without
any pharmacokinetic model or measurement of the AIF.
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