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Abstract

A persistence module M , with coefficients in a field F, is a finite-
dimensional linear representation of an equioriented quiver of type An
or, equivalently, a graded module over the ring of polynomials F[x].
It is well-known that M can be written as the direct sum of inde-
composable representations or as the direct sum of cyclic submodules
generated by homogeneous elements. An interval basis forM is a set of
homogeneous elements of M such that the sum of the cyclic submod-
ules of M generated by them is direct and equal to M . We introduce
a novel algorithm to compute an interval basis for M . Based on a flag
of kernels of the structure maps, our algorithm is suitable for parallel
or distributed computation and does not rely on a presentation of M .
This algorithm outperforms the approach via the presentation ma-
trix and Smith Normal Form. We specialize our parallel approach to
persistent homology modules, and we close by applying the proposed
algorithm to tracking harmonics via Hodge decomposition.
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1 Introduction

Persistence Module is a modern name for finite-dimensional representations of an
equioriented quiver of type An that has become popular within the setting of
Topological Data Analysis (TDA) and, more specifically, in connection to Persis-
tent Homology, one of the most successful tools in TDA (see [10]).

First, a quiver Q, of type An, is the Hasse diagram of the linearly ordered
set [n] := ({1, . . . , n},≤). This is an oriented simple graph whose vertices are
indexed by [n] and whose set of arrows is {(i, i + 1) : i = 1, . . . , n − 1}. A linear
representation M = {(Mi, φi)}i∈N of Q with coefficients in a field F is given by
the following datum:

• a finite-dimensional F-vector space Mi, called the ith−step, for each vertex
i in [n];

• a linear map φi : Mi −→ Mi+1, called ith−structure map, for each arrow
(i, i+ 1) in [n].

It is a well-known result that persistence modules can be decomposed, uniquely
up to isomorphism, into the direct sum of indecomposable modules (see [27])

M∼=
N⊕

m=1

I[bm,dm] (1)

where, for all 1 ≤ bm ≤ dm ≤ n, I[bm,dm] is the persistence module with steps
(I[bm,dm])i = F for all integers i ∈ [bm, dm] and zero elsewhere; and structure maps
the identity for i ∈ [bm, dm − 1] and zero elsewhere. The modules are I[bm,dm] and
are often called interval modules and are the indecomposable representations of
An. The decomposition of Equation (1) into interval modules has been well known
in the quiver representations community since the 70s and somehow neglected and
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rediscovered in persistence several years later [43]. The multiset made of the
intervals [bm, dm] is a complete discrete invariant for the isomorphism classes of
finite-dimensional linear representations of type An, see the works of Abeasis, Del
Fra, and Kraft [2–4]. In particular, they presented in the early 80s the first example
of barcode that we know, calling it diagram of boxes (see, e.g., sec.2 in [4]).

A persistence module M can be associated with a graded F[x]-module α(M)
under a well-known equivalence of categories [13, 16], in the following way: given
M as above, α(M) is defined as

⊕
i∈N α(Mi) :=M1⊕M2 · · ·⊕Mn⊕Mn⊕Mn · · · .

The grading structure is obtained by setting xv = φi(v), for each i ∈ [n] and
v ∈ α(Mi) = Mi and xv = v for v ∈ α(Mj) = Mn for j > n. Also, in this
setting, there is a well-known decomposition where the place of the indecomposable
for quiver is taken by cyclic submodules generated by homogeneous elements.
Consider indeed the cyclic submodule I(v) of α(M), generated by a homogeneous
element v ∈Mb, for some b. Then there are two possibilities for v: it has torsion,
that is, there is e ∈ N such that xev = 0M, so that I(v) ∼= F[x]/(xe) or v is
torsion-free, so that I(v) ∼= F[x]. We denote by I(b, e) the submodule I(v) in the
torsion case and by I(b,∞) in the torsion-free (also named by “free”) case. We call
Interval Modules the modules of the type I(∗, ∗) as their germane in the quiver
representations setting.

The theorem of decomposition of a graded module over a graded principal ideal
(see Theorem 1 in [54]) domain can now be restated as

α(M) ∼=
N⊕

m=1

I(bm, em). (2)

Now, em can be an integer or the ∞ symbol. Exactly as for the quiver represen-
tation case, the multisets of intervals (bm, em) occurring in the decomposition is
a complete discrete invariant for the isomorphism classes of persistence modules,
usually called the barcode in TDA.

Strictly related to the above decompositions into interval submodules is the
concept of interval basis: a finite set {v1, . . . , vN : vm ∈Mbm ,∀m} of homogenous
elements ofM such that

⊕N
m=1 I(vm) =M.

By applying the construction in the proof Lemma 6 in [16], here reported in
Definition 5 in Appendix B.2, one can always turn a persistence module into a
graded module presentation. Once a persistence module is assigned a presentation
matrix, the graded Smith Normal Form reduction proposed in [49] (reported in
Algorithm 8 in Appendix B.3) returns an interval basis. Details will be treated
in Appendix B.

As a guiding example, consider the persistence moduleM = {(Mi, φi)}3i=1 with
coefficients in a field F and structure maps
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M : 0
φ0−→(
0
) F φ1−→(

1
0

) F2 φ2−→(
1 1

) F φ3−→(
0
) 0.

so M1
∼= M3

∼= F and M2
∼= F2. The decomposition α(M) ∼=

⊕N
m=1 I(bm, em) is

then (up to isomorphism) given by:

(0→
0
F→

1
F→

1
F→

0
0)⊕ (0→

0
0→

0
F→

0
0→

0
0)

.
Consider now, v1 = (1) ∈M1 and v2 = (0, 1)⊤ ∈M2, one has:

v1 =
(
1
) φ1−→

(
1
0

)
φ2−→

(
1
) φ3−→

(
0
)
;

v2 =

(
0
1

)
φ2−→

(
1
) φ3−→

(
0
)
.

A minimal presentation of the associated graded F[x]-module α(M) is thus
obtained as the cokernel of the presentation matrix:

S =

(
x2 x3

−x 0

)
, (3)

whose columns corresponds to the (homogenous) independent relations satisfied
by the homogeneous generators v1, v2 of α(M): that is x2v1 = xv2 (deg = 3)
and x3v1 = 0 (deg = 4). The elements v1 and v2 form a minimal system of
generators for α(M), nevertheless they do not form an interval basis for α(M)
because I(v2) = 0→

0
0→

0
F→

1
F→

0
0.

On the contrary, we obtain an interval basis by using v′1 = v1 = (1) ∈ M1

and v′2 = (−1, 1)⊤ ∈ M2. Considering that xkv′1 = 0 iff k ≥ 3 and xv′2 = 0, the
corresponding presentation matrix is the following

(
0 x3

x 0

)
. (4)

and v′1 and v′2 form an interval basis. This basic example shows that not all the
minimal systems of homogeneous generator of a graded module over F[x] are inter-
val bases, while, a fortiori, the opposite is true. Indeed, the presentation associated
with an interval basis has special relations, namely, each relation involves a single
generator up to multiplication by a homogeneous element in F[x] as exemplified
just above. We can say that interval bases are minimal systems of generators with
a flavour.
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The main result of this paper is to present Algorithm 4 to find an interval basis
of M without computing a presentation of α(M). Our algorithm is distributed
over persistence module steps (Algorithm 3) and avoids explicitly constructing a
matrix presentation. A specialization to the case of real coefficient is included in
Algorithm 7 in Appendix A.

Persistence Module

{(Mi , φi)}ni=1

Presentation Matrix
Φ

Interval Basis

{vm}Nm=1

Algorithm 4

Definition 5

Algorithm 8

Persistent Homology Modules

A finite sequence of chain complexes (Ci•, ∂
i
•), for i ∈ [n] connected by chain maps

f i : Ci• → Ci+1
• determines a persistence module Ck = {(Cik, f ik)}ni=1 for each

k. Here, we call kth-persistent homology module the persistence module Hk =
{(H i

k, f̃
i
k)}i=1n obtained by applying to Ck the homology functor in degree k.

Hence, by the term persistent homology module, we do not assume the maps
f i to be necessarily simplicial or injective, which is the typical assumption in
persistent simplicial homology.

Persistent homology often focuses on the special but relevant case of persistence
modules Ck directly determined by filtered data coming in the form of filtered sim-
plicial complexes. In particular, the chain maps f i are assumed to be injective.
This is usually called persistent homology but we call it persistent simplicial ho-
mology to avoid confusion. The interested reader is referred to [10, 28], for classical
surveys on TDA, and to [14, 44, 51], for more recent ones.

Our parallel decomposition algorithm applies to the special case of persistent
simplicial homology.

In Fig. 1, we see an example of a simplicial complex obtained as a triangulation
of a portion of a torus filtered by the height function into three steps.

We also specialize this perspective to tracking harmonic homology representa-
tives. This furthers the recent trend of exploring the interplay between topological
data analysis and the properties of the Hodge Laplacian ([20, 52, 53]). Harmonic

5



1.0
0.5

0.0
0.5

1.0

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) Step 0

1.0
0.5

0.0
0.5

1.0

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) Step 1

1.0
0.5

0.0
0.5

1.0

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) Step 2

Figure 1: A 3-step filtration by sublevel sets, for the z coordinate, of a tilted
and triangulated half torus.

1.0
0.5

0.0
0.5

1.0

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0

(a) Representative 1

1.0
0.5

0.0
0.5

1.0

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0
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Figure 2: Harmonic representatives via the interval basis algorithms

homology representatives corresponding to interval bases and computed by our
methods for the filtered complex in Fig. 1 are depicted in Fig. 2.

In the same example of filtered complex, one can check that the persistence
module isomorphism class in the examples of (3) and (4) is the class of the per-
sistent homology module obtained by applying the 1st-homology functor to the
filtered complex in Fig. 1. Further, generators v1 and v2 are those associated with
the homology classes of the representatives shown in red in Fig. 3, while v′1 and v′2
are associated with the homology classes of the representatives in Figure 4.

The tracking of homology representatives along a monotone (equioriented) se-
quence of simplicial maps that are not necessarily injective is treated in [18]. Each
simplicial map is interpreted as a sequence of inclusions and vertex collapses, and
a consistent homology basis can be maintained efficiently. Later in [36], a varia-
tion of the coning approach of [18] is proposed, which takes a so-called simplicial
tower and converts it into a filtration while preserving its barcode, with asymp-
totically small overhead. Here, we can tackle the same problem from the unifying
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(b) Representative 2

Figure 3: In red, two representative 1-cycles. Their homology classes form
a minimal system of generators of the persistent homology module of the
filtration in Fig. 1. These representatives do not in general induce an interval
basis.
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Figure 4: In red, a different choice of representative 1-cycles. Their homology
classes are a different choice of generators for the same persistence module
as in Fig. 3. However, these generators do induce an interval basis.
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perspective of persistence modules.
With respect to the simplicial filtered complex case, our aim is not that of

outperforming computations in persistent homology but to look at the tracking
of homology representatives under the lens of the algebraic notion of an interval
basis.

The problem of tracking homology representatives along filtered complexes has
mainly been studied from a minimality perspective ([17, 31, 35]) in order to geomet-
rically locate the persistent homology features. Through the standard algorithm
[13] for computing persistent homology, homology representatives can be tracked
by storing the operations performed during a matrix reduction. Computing in-
tervals and tracking homology representatives have been optimized in many ways
([8, 15, 19, 26, 42, 48]), including parallel and distributed approaches ([6, 7, 39,
40]). We remark this list is far from being exhaustive. However, not all the men-
tioned approaches provide an interval basis, and for this purpose, we include the
discussion on two relevant cases in Remark 5 and Remark 6.

Contents. In Section 2 and Appendix B, we formalize interval basis as a partic-
ular minimal system of generators translated into persistence module terms. We
also express the classical interval decomposition result into interval basis terms. In
Section 3, we review the literature in the decompositions of graded modules and
persistence modules as quiver representations of type An. In Section 4, we propose
an algorithm computing an interval basis out of a persistence module, by acting in
a distributed way over each step in the input persistence module and by avoiding
a presentation of the associated graded module. The same algorithm is specialized
to the real coefficient case in Appendix A. The latter case is particularly relevant
for the harmonic case, later discussed in Section 6.1. In Section 5, we compare
the computational cost of our parallel method to the classical Smith Normal Form
reduction (pseudocode in Appendix B.3) when specialized to persistence module
matrix presentations. In particular, we find that our parallel approach admit an
output-dependent estimate and it is more efficient. In Section 6, we describe how
to construct in parallel a persistence module from the homology of an monotone
sequence of chain maps with homology representatives. Complementary pseu-
docodes are included in Appendix C. In particular in Section 6.1, we construct
in parallel a persistence module from the homology of an monotone sequence of
chain maps with harmonic homology representatives. The case of filtered simplicial
complexes is treated in Section 6.2.

8



2 Persistence Modules

In this section, we fix the notation for persistence modules and define interval
bases. In Proposition 1, we include the well-known decomposition theorem for equi-
oriented quiver representations of type An conveniently concerning the interval
basis definition.

For the sake of completeness, in Appendix B, we provide further material con-
necting the interval basis definition to the Smith Normal Form of a module pre-
sentation in the isomorphic category of finitely generated graded F[x]-modules,
where F[x] is the graded ring of polynomials with coefficients in F and a single
indeterminate x.

Following the definition of discrete algebraic persistence module in [16], define a
persistence module M as a pair {(Mi, φi)}ni=1 consisting of:

• a finite-dimensional F-vector space Mi, called the ith−step, for each vertex
i in [n];.

• a linear map φi : Mi −→ Mi+1, called ith−structure map, for each arrow
(i, i+ 1) in [n].

We define φi,j :Mi →Mj with i < j, as the composition φj−1 ◦ . . . φi.

A persistence moduleM can be associated with a finitely generated graded F[x]-
module α(M) under a well-known equivalence of categories [13, 16]. We will
explicitly define α(M) in Appendix B.1 where graded modules are treated. Under
the equivalence α, we transpose to persistence modules several notions applying
to graded modules, such as isomorphisms, homogeneous elements, direct sums,
generators, and submodules.

Let I(v), with v ∈Mb, be the the persistence module {(Ii(v), ψi(v))}ni=1 defined
by

Ii(v) =

{
⟨φb,i(v)⟩ if i ≥ b,
0 otherwise,

ψi(v) =

{
φi|⟨φb,i(v)⟩ if i ≥ b,
0 otherwise,

where the brackets ⟨·⟩ denotes the F-linear space spanned by their argument.
Now, define an (integer) interval [b, d] with b ≤ d to be the finite set of integers

i with b ≤ i ≤ d. The interval module I[b,d] relative to the interval [b, d] is the
persistence module {(Ii, ψi)}ni=1 such that

Ii =

{
F if b ≤ i ≤ d,
0 otherwise,

ψi =

{
idF if b ≤ i < d,

0 otherwise.
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Remark 1. Fix a degree b. For each v ∈Mb, there exists d ≤ n such that

I(v) ∼= I[b,d].

Indeed by construction each step in I(v) is either isomorphic to the vector space
F or to 0. The structure maps in I(v) are either isomorphisms or the null map. If
an integer r ≤ d − 1 exists, such that Ir+1(v) = 0, we take d to be the minimum
of such r’s. Otherwise, d = n.

Definition 1. (Interval basis) Given a persistence moduleM = {(Mi, φi)}ni=1, a
finite family {v1, . . . , vN} ⊆

⋃
iMi of homogeneous non-zero elements is an interval

basis forM if and only if

N⊕

m=1

I(vm) =M.

Proposition 1. Every persistence moduleM admits an interval basis.

Proof. The existence of an interval basis for each M follows from the interval
decomposition corresponding to the Structure Theorem [13] for finitely generated
graded F[x]-modules. Indeed, the interval decomposition implies thatM decom-
poses into a direct sum of interval modules of the form

M∼=
N⊕

m=1

I[bm,dm], (5)

where the intervals [bm, dm] with bm ≤ dm ≤ n are uniquely determined up to
reorderings. Let Ψ = {Ψi}ni=1 : ⊕Nm=1I[bm,dm] −→ M be the persistence module
isomorphism of the interval decomposition in Eq. (5). Then, for each summand
I[bm,dm], the map Ψbm detects a vector vm ∈ Mbm . By Remark 1, we have that
I(vm) ∼= I[bm,rm] for some bm ≤ rm ≤ n. Observe now that, for all indexes i
such that (i, i + 1) is an arrow in [n], the decomposition isomorphisms satisfies
φi ◦ Ψi = Ψi+1 ◦ ψi, where ψi is the structure map of I[bm,dm]. This implies that
rm = dm for all indexes i ∈ N.

Decomposing a persistence module via an interval basis consists of retrieving,
given a persistence module M, an interval basis v1, . . . , vN , where N equals the
number of interval modules in the interval decomposition of Definition 1.
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3 Related Works

The related works comprise methods for the decomposition of persistence and
graded modules.

Persistence Module Decompositions

Persistence module decomposition methods can be seen as special instances of
methods decomposing quivers of type An, hence holding for the so-called zig-
zag persistence modules. The incremental algorithm introduced in [12] retrieves
the interval decomposition by focusing over each step and constructing a flag
with respect to images of interval vanishing at that step. The procedure is a
dual counterpart with respect to the kernel flag decomposition we propose in this
work in Section 4. Differently from our approach, the zig-zag decomposition does
not aim at recovering the generators since for general zig-zag persistence modules
generators and intervals are not in one-to-one correspondence. More recently [11],
a basis suitable for the zig-zag case called canonical form has been introduced in a
different sense from that of an interval basis. A canonical form consists of a vector
space basis for each step in the persistence module. Those bases are selected so
that the structure maps connecting the spaces are expressed through matrices in
echelon form. When comparable, that is for the case of equi-oriented quivers,
an interval basis is equivalent to the canonical form. Specifically, an interval basis
encodes data of a canonical form in a compressed way. Indeed, in an interval basis,
we represent a single generator per interval belonging to the interval decomposition
and the structure maps are the original ones, implicitly encoded by the action of
x.

Canonical forms can be computed like proposed in [11] where the decomposi-
tion of a zigzag module is tackled from the matrix factorization viewpoint. The
approach admits a divide-and-conquer implementation where the module is sub-
divided into equally-oriented parts. After the matrix factorization, the interval
lengths can be retrieved by connecting the pivots in the factorization. Our parallel
algorithm instead, leverages graded module presentations to focus on generators
rather than changes of basis. Interval basis elements are found already equipped
with their associated interval lengths. Furthermore, our distributed method is not
a divide-and-conquer approach and instead performs computations independently
across all steps in the persistence module.

More recently in [34], a notion similar to the canonical form is called barcode
basis and it is introduced in order to study the space of transformations from one
barcode basis to another as a tool to express in barcode basis terms the decom-
position of commutative ladders from [23] and the possibility of defining partial
barcode matchings out of a quiver morphism. In [29] authors introduce persistence
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bases as an isomorphism realizing the interval decomposition (Eq. (5)) with the
purpose of defining barcode matchings induced by persistence module morphisms.
Finally, our subdivision into homogeneous spaces generated by an interval basis
specializes the notion of quotient through the radical functor introduced in [47]
where authors characterize tameness conditions in multiparameter persistence.

Graded Module Decompositions

Given a presentation matrix, many methods exist in the literature to retrieve a
minimal system of generators for a graded F[x]-module.

As noticed in [37], extracting a minimal system of generators can be seen as a
specialization to F[x] coefficients of classical Gröbner basis extraction algorithms
[24, 25, 46] for multigraded F[x1, . . . , xn]-modules, widely implemented in software
packages [1, 9, 22, 30]. See [45] for Gröbner bases of modules and primary decom-
positions. As already pointed out in Section 1, a minimal system of generators is
not in general an interval basis (see (3)).

An interval basis is computable by reducing the presentation matrix into the
Smith Normal Form (see Appendix B). To the best of our knowledge the authors
of [49] first introduced, for the graded case, an algorithm for SNF reduction. The
procedure complexity in terms of time and space depends on the size of the pre-
sentation matrix. This motivates us in specializing in Appendix B.1 the same
procedure to the case of matrix presentations obtained through the construction
in [16] when starting from a persistence module. We provide a complexity eval-
uation for that specific case which takes advantage of the sparsity in the block
subdivision of a matrix presentation of a persistence module. On the contrary, in
our parallel decomposition algorithm in Section 4, we take advantage of the inde-
pendence properties under the action of x of the interval basis in order to propose
a parallel approach with output-dependent complexity.

4 Parallel computation of an interval basis

In this section, we present a parallel algorithm for the computation of an interval
basis of a persistence moduleM (see Algorithm 7 Appendix A for a specialization
to the real coefficient case). The whole, length-n persistence module (spaces and
structure maps) is assumed to be input to a pool of n processors. Then each step
Mi can be processed independently by processor i. The idea is that a single step
decomposition routine (Algorithm 3) takes care of the bars being born at step
i; to discriminate these from bars that are merely travelling through step i, we
make use of the flag of vector spaces given by the kernels of iterated composites
of the structure maps. Simple linear algebra then shows that we can recover basis
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vectors that form an interval basis ofM. Using such a flag of kernels takes implicit
advantage of the death of bars along the barcode, gradually reducing the size of
the maps involved, and achieving better efficiency than a method which does not
take this into account, such as the graded SNF. This statement is justified in the
complexity analysis in Section 5.

ConsiderM = {(Mi, φi)}ni=1 a persistence module. Without loss of generality
we assume an additional structure map φn :Mn →Mn+1 to be the null one. This
way the treatment of the final step Mn have no qualitative difference from the
others. Denote with mi the dimension of the space Mi and with ri the dimension
of Im(φi−1). For each i there is a flag of vector sub-spaces of Mi given by the
kernel of the maps φi,j :

0 ⊆ ker(φi,i+1) ⊆ ker(φi,i+2) ⊆ · · · ⊆ ker(φi,n+1) =Mi, (6)

where the last equality holds by the assumption above. Denote for simplicity each
space ker(φi,j) as V

i
j .

An adapted basis for the flag in Mi is given by a set of linearly independent
vectors V i = {v1, . . . , vmi}, and an index function J : V i → {1, . . . , n− i+1}, such
that

V i
i+s = ⟨{v ∈ V i | J(v) ≤ i+ s}⟩ ∀s, 1 ≤ s ≤ n− i+ 1. (7)

In words, an adapted basis is an ordered list of vectors in Mi such that for
every j, the first dimV i

j vectors are a basis of V i
j (an empty list is a basis of the

trivial space). The index function J gives precisely this ordering. Notice that

Lemma 1. Without loss of generality, it is possible to choose an adapted basis for
Mi in such a way that it contains as a subset a basis of Im(φi−1).

Proof. Let us consider an adapted basis V i = (t1, . . . , tmi) for the flag of kernels
in Mi, with the vectors t1, . . . , tmi ordered by index function J . We construct the
desired basis explicitly: set V i = {t1}. For every s = 2, . . . ,mi, if ts /∈ ⟨V i⟩ +
Im(φi−1) add the vector ts to V i. Otherwise, it must hold that ts =

∑
a<s λata+x

with x ∈ Im(φi−1). Then we add to V i the vector x = ts−
∑

a<s λata. In this way
V i is another adapted basis, and the elements added by the second route form a
basis of Im(φi−1).

From now on, therefore, we shall assume that each basis V i is in the form of
Lemma 1.

Let us introduce two subspaces of ⟨V i⟩: it holds that ⟨V i⟩ = ⟨V iBirth⟩ ⊕ ⟨V iIm⟩,
where V iIm is the subset of V i made of a basis of Imφi−1, and V iBirth is its comple-
ment. Our objective is to construct a basis of the whole persistence module using
the adapted bases at each step i.
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Definition 2. Let us define V :=
⋃
i V iBirth.

V is the set of elements of the adapted basis in each degree i that are not elements
of Im(φi−1). In the following, we prove that V is in fact an interval basis for
{Mi, φi}ni=1.

Lemma 2. For any i < j, define the set T = ⟨{v ∈ V i | J(v) > j}⟩. The
restriction φi,j |T of the map φi,j is an injection.

Proof. By definition of T , it holds Mi = ker(φi,j) ⊕ T . If the restriction of φi,j
onto T were not injective, then T and ker(φi,j) would have nontrivial intersection.
This is a contradiction.

Lemma 3. For any i < j ∈ N, it holds

φi,j
(
⟨V iBirth⟩

)
∩ φi,j

(
⟨V iIm⟩

)
= {0}. (8)

Proof. Suppose that the intersection contains a nonzero vector u:

0 ̸= u = φi,j


 ∑

vk∈Vi
Birth

λkvk


 = φi,j


 ∑

wl∈Vi
Im

µlwl


 .

Denote by uB and uI the vectors

uB =
∑

J(vk)>j
vk∈Vi

Birth

λkvk, uI =
∑

J(wl)>j
wl∈Vi

Im

µlwl.

It holds u = φi,j (uB) = φi,j (uI), since all the elements v such that J(v) ≤ j
belong to ker(φi,j). Then, u is the image through φi,j of an element of T = ⟨{v ∈
V i | J(v) > j}⟩. On the other hand also the difference uB−uI belongs to the same
space and is mapped to zero by φi,j . The restriction of φi,j to T is injective because
of Lemma 2, therefore it must be uB − uI = 0. Since ⟨V i⟩ = ⟨V iBirth⟩ ⊕ ⟨V iIm⟩, it
must be uB = uI = 0, hence u = 0.

Theorem 1. The set V is an interval basis for the persistence module M .

Proof. Say that V = {v1, . . . , vN}. Each vector vj in the set V induces an interval

module I(vj). We want to show that M =
⊕N

j=1 I(vj). To do so, let us see that

for each 0 ≤ i ≤ n, the space Mi is exactly
⊕N

j=1 Ii(vj). By construction we know
that

14



Mi = Im(φi−1)⊕ ⟨{v ∈ V i | v /∈ Im(φi−1)}⟩ = Im(φi−1)⊕
⊕

v∈V
deg v=i

Ii(v). (9)

All we have to show is that Im(φi−1) can be written as
⊕

v∈V
deg v<i

Ii(v). At first

we will see that a sum decomposition holds. By definition, an element in the sum
belongs to the image of φi−1. We can show the converse by induction over the step
index i ∈ N. For i = 0, considerM0 = ⟨V0⟩. None of the elements of V0 belongs to
Im(φ−1). It clearly holds that the image of φ0 is contained in the sum as desired.
Suppose by induction that for any k−1 the image of φk−2 is contained in the sum.
Then, since Mk−1 = ⟨{v ∈ Vk−1 | v /∈ Im(φk−2)}⟩ ⊕ Im(φk−2), it holds that

Im(φk−1) =
∑

v∈Vk−1

v/∈Im(φk−2)

Ik(v) + φk−1(Im(φk−2)). (10)

Therefore, by the induction hypothesis, we have that

Im(φk−1) ⊆
∑

v∈V
degv<k

Ik(v).

Now that we have shown the sum decomposition, it remains to see that this
sum is direct. Suppose to have a non trivial combination w1+ · · ·+wk = 0, where
each wq belongs to Ii(vtq). Suppose that the w1, . . . , wk are ordered according to
the degree of the element vtq that generates the interval module they belong to.
Let us say that these elements have a maximum degree l < i. Then, it holds

w1 + · · ·+ wk = φl,i(x) +
∑

vtr
deg vtr=l

λrφl,i(vtr),

where x ∈ Im(φl−1). Because of Lemma 3, it must be

φl,i(x) =
∑

vtr
deg vtr=l

λrφl,i(vtr) = 0.

On the other hand we also assumed that the wq are different from zero, therefore
the index J(vtq) of the vectors in the adapted basis has to be greater than i − l.
Hence, because of Lemma 2, it holds that

∑
{vtr | deg vtr=l} λrφl,i(vtr) = 0 implies∑

{vtr | deg vtr=l} λrvtr = 0. Since the {vtr |deg vtr = l} are linearly independent it
must be λr = 0 for any r, and therefore wr = 0. The same idea can be repeated for
all the previous elements w1, . . . , ws, coming from interval modules generated by
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vectors with degree less than l. Since there are finitely many vectors this process
has an end and it shows that all the vectors w1, . . . , wk are 0 and the sum is
direct.

We now provide an explicit construction for the set V . To do so, we must first
obtain sets V i.
Remark 2. Notice that the construction of each V i is independent from the others.
Therefore they can be computed simultaneously.

Construction of V iBirth

We first recall that a simple basis extension algorithm is given by the the procedure
described in the following Algorithm 1. The set W is ordered, and its elements

Algorithm 1: Basis completion algorithm

Input: linearly independent vectors U = {u1, . . . , ur}, linearly
independent vectors W = {w1, . . . , wn} ;
Result: minimal set of vectors wi1 , . . . , wip /∈ ⟨U⟩ such that

⟨U ∪ {wi1 , . . . , wip}⟩ = ⟨U ∪W⟩
R = {};
for i=1,. . . , n do

if rank(U) < rank(U ∪ {wi}) then
U = U ∪ {wi};
R = R∪ {wi};

end

end
return R

are added to U in their ascending order in W, so that U is extended to a basis of
⟨U⟩+ ⟨W⟩. In the following, we refer to the extension of basis U by the vectors in
set W through Algorithm 1 as bca(U ,W).

Secondly, we report Algorithm 2 performing the standard left-to-right column
reduction on matrix R. The pseudo-code is explicitly reported in order to highlight
the input-ouput representation needed, matrix C and the index of the zeroed-out
columns, so that to reduce the size of the matrices treated in Algorithm 3 by
discarding already computed zero-columns.

We now give a general algorithm to construct the set V iBirth for a given Mi of
persistence module M. To find an adapted basis V i we need only to iteratively
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complete a basis of ker(φi,j) to a basis of ker(φi,j+1), using for example Algo-
rithm 1. In general, the basis obtained through Algorithm 1 will not contain a
basis of the space Im(φi−1), i.e. it will not be in the form described in Lemma 1.
However, this is not necessary, as our goal is only to compute the basis vectors
that are not on the image of previous maps.

The full procedure to construct V iBirth from Mi and the structure maps is de-
scribed in Algorithm 3.

Algorithm 2: Column Reduction

Input: a× b matrix R, b× b matrix C, I ⊆ {1, . . . , b} set of indices
of the zero columns
Result: column-reduced R, change of basis matrix C , updated
indices of the new zero columns I ′

for i ∈ {1, . . . , b} do
ri ← the ith-column in R ;
if i /∈ I then

J ← {1, . . . , i− 1} \ I ;
Perform left-to-right reduction of ri using columns rj, for
j ∈ J ;

Perform the same column operations on C ;
if ri = 0 then

I ′ ← I ′ ∪ i
end

end

end
return R, C, I’
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Algorithm 3: ssd - Single step decomposition of step Mi

Input: map φi−1 : Mi−1 →Mi ;
maps {φj : Mj →Mj+1)}, i ≤ j ≤ N ;
Result: V iBirth and its index function J

Reduce φi−1 and find a basis U = {u1, . . . , uk} of Im(φi−1);
k := dim Im(φi−1);
R← Id : Mi →Mi; // Initialize identity matrix

C ← Id : Mi →Mi; // Initialize identity matrix

r ← dim(Mi);
V iBirth ← {}; // Initialize empty interval basis

inds, newInds← {}; // Sets of indices of zero columns

for s = 0, . . . , N − i do // From i to end

R← φi+s ·R; // Matrix of the map from i to i + s
R,C, newInds← ColumnReduction(R,C, inds);
r′ ← rank(R) = r − |newInds|;
if r′ < r then // If some bar has died

B ← basis of ker(R) = {Cei, i ∈ newInds};
B ⊇ Bnew ← bca(U , B); // Complete U to B by Bnew

U ← U ∪Bnew; // Update U
V iBirth ← V iBirth ∪Bnew; // Update interval basis

for v ∈ Bnew do
J(v)← s + 1; // Set appropriate index

end
r ← r′; // Update "remaining" rank

inds← inds ∪ newInds; // Update zero columns

end
// If all bars dead or enough generators

if r = 0 or |V iBirth|+ k = dimMi then
break;

end

end
return V iBirth, J
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In the following, we refer to the construction of V iBirth through Algorithm 3 as
ssd(Mi).

Construction of V

Once the decomposition of each space is performed, it is immediate to assemble
the interval basis V . Further, we can read the persistence diagram of module
{(Mi, φi)}i off of the interval basis by storing the indices of appearance and death
of its elements, without increasing the computational cost. This is the content of
Algorithm 4, which summarizes the procedures introduced so far into a single rou-
tine that takes a persistence module and returns its interval basis and persistence
diagram.

Algorithm 4: Persistence module decomposition

Input: persistence module {Mi, φi}ni=1;
Result: interval basis {vsi } and persistence diagram
φ0 := empty matrix with dimM0 rows and 0 columns;
φn+1 := empty matrix with 0 rows and dimMn columns;
V = {};
PD = {};
parfor i = 1, . . . , n + 1
V iBirth, J = ssd(φi−1, {φj}j≥i);
for v ∈ V iBirth do

V ← V ∪ v ;
PD ← PD ∪ (i, i + J(v));

end

end
return V , PD

We refer to the decomposition of Algorithm 4 as pmd(M).

Lemma 4. (Correctness) The output of Algorithm 4 is an interval basis.

Proof. V is the union of sets V iBirth from Algorithm 3, and each V iBirth is by defi-
nition as in Definition 2. Then correctness follows from Theorem 1.

Example 1. Consider the same R-persistence module as in Example 4.

0
φ0−→(
0
) R φ1−→(

1
0

) R2 φ2−→(
1 1

) R φ3−→(
0
) 0.
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We showcase the procedure of Algorithm 4 and compute its interval basis.
Notice that this example matches the persistence module generated by persistent
homology in Fig. 3. For i = 0, 1, 2, 3 we need to compute V iBirth. Clearly φ0 is the
null map, so the flag for the first step is trivial and V0Birth is empty.

For i = 1, we have Im(φi−1) = 0 and ker(φ1,2) = ker(φ1,3) = 0, so R =
ker(φ1,4). By ssd we extend a basis of Im(φ0) (which is empty) to a basis of R,
which yields vector 1. Then V1Birth = {1} with persistence pair (1, 4).

For i = 2, we have Im(φi−1) = ⟨
(
1
0

)
⟩. Furthermore ker(φ2,3) = ⟨

(
1
−1

)
⟩, so we

extend the basis of Im(φ1) against the basis of ker(φ2,3) obtaining set {
(

1
−1

)
,

(
1
0

)
},

which spans R2, so ssd terminates setting V2Birth = {
(

1
−1

)
} with persistence pair

(2, 3).
For i = 3, we have Im(φi−1) = R, so V3Birth is empty.

Finally, the interval basis is V = {1,
(

1
−1

)
}, with persistence diagram PD =

{(1, 4), (2, 3)}. It is (up to the irrelevant sign) the same result as in Example 4, as
vector 1 in degree 1 corresponds to the first generator g1, and vector

(
1
−1

)
in degree

2 corresponds to the difference of the second and third g2 − g3 = xg1 − g3.

5 Computational complexity

In this section, we give an estimate of the computational complexity of the parallel
algorithm for the decomposition of a persistence module just presented in Section 4.
The evaluation of our parallel Algorithm 4 depends on the output barcode, not
just in terms of the number of intervals but also in terms of their length. In the
final part, we argue that our parallel algorithm has a worst-case complexity lower
than that of the known procedure of decomposing a persistence module by reduc-
ing in Smith Normal Form a matrix presenting the persistence module. In order
to make the comparison precise, we provide an evaluation of the SNF reduction on
the graded SNF algorithm presented in [49] and specialized to persistence module
matrix presentations as described in [16].

Let us assume that our persistence module has stepsMi, each having dimension
mi for i varying in {0, . . . , n + 1}, where m0 = mn+1 = 0, m =

∑
imi, and

m̄ = maximi. We assume a parallel implementation of Algorithm 4. Hence,
we focus on the single step decomposition performed by Algorithm 3 on step
i = 1, . . . , n. First, a column reduction is called only once, before entering the outer
for-loop, to extract the image of φi−1 and it reduces a matrix of sizemi×mi−1. We
observe that inside the inner for-loop the total number of operations depends on
the parameter ki = mi− ri, where ri = rank(φi−1), and on the variable parameter
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rs that counts the number of columns that have not yet been reduced to zero. We
claim that we can estimate its time complexity as

O(m̄Vi), (11)

where we defined the output-dependent parameter Vi =
∑

s rs.

Indeed within the inner for-loop, for each s = 0, . . . , n− i:

• a matrix multiplication is called for matrices of size mi+1+s × mi+s and
mi+s × rs;

• a column reduction is called for a matrix of size mi+1+s × rs;

• a basis completion (bca), Algorithm 1, is called for a list of ri vectors and a
list of |newInds| vectors.

First, we observe that the contribution of the calls of the bca subroutine can
be expressed independently from s. Indeed, the bca subroutine is performed in
chunks as s increases, but the sum of the |newInds| eventually amounts to ki.
As the interval generators remain linearly independent (Lemma 2), the total cost
of bca for the whole for-loop amounts to that of reducing a list of ki vectors
against a list of ri vectors, each vector being of size mi. The total cost is therefore
O(miriki), where parameters are related via ki = mi − ri. By substitution one
obtains m2

i ri −mir
2
i , hence the bca subroutine requires O(m2

i ri) operations.
On the contrary, the above mentioned matrix multiplications and column re-

ductions do depend on the iteration parameter s within the inner for-loop. The
cost of matrix multiplication between a mi+1+s ×mi+s and a mi+s × rs matrix is
O(mi+1+s mi+s rs). Let us consider the worst case m̄ for all mi’s. We get O(m̄2rs)
for each step s. The cost of column reduction of a matrix of size mi+1+s × rs can
be also bounded by O(m̄2rs). Now, the parameter Vi =

∑
s rs is, intuitively, the

“volume” of all bars born at step Mi until their death, and we can express the
total cost of matrix multiplication and column reduction by O(m̄2Vi). This makes
the contribution of bca negligible and hence provide the global cost of Algorithm 3.

In order to compare the time complexity of Algorithm 4 to that of the graded
SNF algorithm[49] (here included as Algorithm 8 in Appendix B.3) when applied
to persistence module presentations, we first express it in terms of the input param-
eters m and m̄. In the case of our parallel Algorithm 4, we have Vi ≤ (n− i+1)m̄.
The equality corresponds to a “rectangular” barcode where all interval modules
started at step i are non-trivial till step i = n. The single step decomposition
reaches the worst case when applied to step i = 1. In that case, we can change
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the output-dependent estimate O(m̄2V1) into O(m̄3n). Observe that the param-
eter m expressing the sum of all mi’s is now equal to m̄n. Hence, we obtain the
input-dependent estimate

O(m̄2m). (12)

Now, we focus on the graded SNF algorithm specialized to persistence module
presentations, that is, we assume the input matrix S to be an m × m matrix
S subdivided into n blocks of size mi × (mi + mi+1). First of all, this implies
a significantly higher space complexity in the input representation O(m2) with
respect to our parallel approach O(m̄2). As for the time complexity, the classical
estimate of the SNF reduction of an m × k matrix is O(m2k) and the estimate
is known to be at most lowered down via optimized algorithms to O(kmω−1) [50]
where 2 ≤ ω < 3 is the lower bound complexity for matrix multiplications. Here,
we specialize the general column parameter k. Our assumption on the subdivision
into blocks of the matrix S implies a lower complexity estimate. Indeed, for each
of the m processed columns (see Algorithm 8 in Appendix B.3) the procedure
performs at most m row reductions. However, each row involved has at most
mi+mi+1 non-trivial entries. Hence the only non-trivial column reductions which
follows are O(m̄). This gives O(m̄m2) as the global worst case, or O(m̄mω−1) for
optimized implementations.

By comparison to the input-dependent evaluation of (12), we have that the
worst case of the parallel procedure has still lower time complexity than the graded
Smith Normal Form even when specialized to persistence module presentations.

6 Persistent homology modules

In this section, we provide a parallel method to obtain a persistence module by
applying the kth-homology functor to an equi-oriented finite sequence of chain
complex maps that are not necessarily injective. First, we fix the notation. Then,
we show a construction of the kth-persistent homology module by homology repre-
sentatives, then by harmonics representatives obtained through the combinatorial
Laplacian operator. For the general homology representative case, our approach is
a simple adaptation of known algorithms independently acting on each step in the
input sequence of chain complexes. Here, we simply state the desired properties
to be fulfilled by the chosen method.

Our aim is to underline the level of generality of our approach and to exemplify
the possibility of being adaptable to a large variety of special homology representa-
tives. We observe that the parallel approach may lead to unnecessary computation
repetitions in the case of injective chain maps, namely in the case of persistent ho-
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mology. The case of the harmonics instead admits a more efficient construction of
the module via simple matrix multiplications thanks to our proof of Theorem 4.

A chain complex with coefficients in F is a sequence C = (C•, ∂•) of F-vector
spaces connected by linear maps with k ∈ N

. . .
∂k+2−→ Ck+1

∂k+1−→ Ck
∂k−→ Ck−1

∂k−1−→ . . .
∂2−→ C1

∂1−→ C0
∂0−→ 0,

such that ∂k+1∂k = 0 for all k ∈ N. Each vector space Ck is called the space of
k-chains. The subspace Zk = ker(∂k) is called the space of k-cycles. The subspace
Bk = Im(∂k+1) is called the space of k-boundaries. The condition ∂k+1∂k = 0
ensures that Bk ⊆ Zk, for all k ∈ N. The quotient space Hk = Zk/Bk is the
k-homology space. A chain map f : (C•, ∂

C
• ) −→ (D•, ∂

D
• ) is a collection of linear

maps fk : Ck −→ Dk such that fk∂
C
k+1 = ∂Dk+1fk+1, for all k ∈ N.

A chain map induces linear maps f̃k : HC
k −→ HD

k , for all k, and it can be
shown that this implies that the Hk are indeed functors from the category of
chain complexes and chain maps to the category of vector spaces over F and linear
mapping, see [32] for a complete account of these facts.

To compute the matrix associated with the map f̃k : HC
k −→ HD

k , we assume
to have a basis {hC1 , . . . , hCβC

k
, bC1 , . . . , b

C
q } of Zk(C), where {bC1 , . . . , bCq } is a basis

of Bk(C), and basis {hC1 , . . . , hCβC
k
, bC1 , . . . , b

C
r } of Zk(D), such that {bD1 , . . . , bDr }

is a basis of Bk(D). Such basis can be found applying Algorithm 9 in Ap-
pendix C. Then, for each s = 1, . . . , βCk , the following linear system in the variables
λs1, . . . , λ

s
βD
k
, µs1, . . . , µ

s
r has to be solved:

fk(h
C
i ) =

βD
k∑

j=1

λsjh
D
j +

r∑

l=1

µsl bl, (13)

defining the matrix with columns (λs1, . . . , λ
s
βD
k
)T , with s = 1, . . . , βCk , as the ma-

trix of f̃k with respect to the basis induced by the projection of {hC1 , . . . , hCβC
k
}

and {hD1 , . . . , hDβD
k
} to their respective homology space (see Algorithm 10 in Ap-

pendix C).
The application of the functor Hk to a given sequence of complexes and chain

maps

C1
•

f1
// . . . // . . .

f i−1
// Ci•

f i
// . . .

fn−1
// Cn• (14)

provide a persistence module {(H i
k, f̃

i
k)}ni=0 for all k ≥ 0. This persistence module

is called the kth-persistent homology of the sequence of chain complexes (14), see
[21].
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6.1 Parallel construction of the kth-persistent homol-
ogy module via harmonics

In this section, we describe a parallel construction of the persistence module
{(Hik, f̂i)}i∈N where Hik is the space of k-harmonics at step i and coefficients

are taken in R. We call the persistence module {(Hik, f̂i)}i∈N the kth-harmonic
persistence module.

After some preliminaries on the Hodge Laplacian operator, by means of the
Hodge decomposition (Theorem 2, Theorem 3), for each index i ∈ N, we show
that there exists a structure map f̂i induced by fk, such that the kth-persistent
homology module {(H i

k, φi)} and the kth-harmonic persistence module {(Hik, f̂i)}
are isomorphic. We then provide Algorithm 5 to compute these maps.

The Hodge Laplacian

In this section we fix F = R. Given a chain complex (C•, ∂
C
• ), we choose an inner

product ⟨·, ·⟩k on each space of Ck so that it is well-defined the adjoint of ∂k, i.e. the
map ∂∗k : Ck−1 → Ck such that ⟨∂k(c), d⟩k−1 = ⟨c, ∂∗k(d)⟩k, for all c ∈ Ck, d ∈ Ck−1.

For k ∈ N, the Hodge Laplacian in degree k (Laplacian, for short) is the linear
map on k-chains Lk : Ck −→ Ck given by

Lk := ∂k+1∂
∗
k+1 + ∂∗k∂k. (15)

The space of k-harmonics of a chain complex is the subspace of Ck

Hk := ker(Lk). (16)

We refer to [33] for more details.

We recall the following theorems, see Section 5.1 of [38].

Theorem 2. For a chain complex C and for every natural k,

Ck = Hk ⊕ Im(∂k+1)⊕ Im(∂∗k)

Moreover, this decomposition is orthogonal and Zk = Hk ⊕ Im(∂k+1).

Theorem 3. The linear map ψk : Hk −→ Hk defined by ψk(h) = [h] is an
isomorphism, where [h] is the homology class induced by the cycle h.

An obstacle to persistence of the harmonic space is the following.

Remark 3. A chain map f : C −→ D does not restrict to a map between the
harmonic subspaces HCk and HDk .
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Indeed, given an element h ∈ HCk , the k-cycle f(h) is not necessarily in HDk .
More precisely, f(h) is necessarily a k-cycle but not necessarily a k-cocycle.

However, given a sequence of chain complexes and chain maps as in (14) we
want to construct a persistence module, isomorphic to the persistent homology
module of the sequence, given by the harmonic spaces of the chain complexes,
with maps induced by the chain maps. The following theorem is sufficient to
provide such a persistence module.

Theorem 4. For any chain map f : C −→ D and any k ∈ N, the following
diagram commutes

HCk HDk

HC
p HD

k .

f̂k

ψC
k ψD

k

f̃k

where f̂k = πDk fki
C
k , i

C
k is the natural inclusion of HCk into Ck and πDk is the

orthogonal projection of Dk onto HDk .

Proof. For any h ∈ HCk , we can see that f̃k(ψ
C
k (h)) = ψDk (f̂k(h)). In fact, by the

definition of f̃ and f̂ , it holds f̃k(ψ
C
k (h)) = f̃k([h]C) = [fk(h)]D and ψDk (f̂k(h)) =[

πDk (fk(h))
]
D
. Since fk(h) is a cycle in Dk and becuase of the decomposition in

Theorem 2, there is a boundary b of Dk such that fk(h) = πDk (fk(h)) + b, hence
[fk(h)]D =

[
πDk (fk(h))

]
D

and the diagram commutes.

The matrix of f̂k can then be easily computed with Algorithm 5.

Algorithm 5: Induced map between Laplacian kernels

Input: Chain map fk : Ck(C)→ Ck(D), {vC1 , . . . , vCn } orthonormal
basis of HC

k , {wC
1 , . . . , w

C
m} orthonormal basis of HD

k ;

Result: Matrix Φ representing f̂k : Hk(C)→ Hk(D)
VC := matrix with columns vC1 , . . . , v

C
n ;

VD := matrix with columns wD
1 , . . . , w

D
m;

Φ = V T
D · fk · VC ;

return (Φi)
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6.2 Simplicial complex chains

An (abstract) simplicial complex Σ on a finite set V is a subset of the power set of
V , with the property of being closed under restriction. An element of Σ is called a
simplex and if σ ∈ Σ, τ ⊆ σ then τ ∈ Σ. Elements of V are usually called vertices.
Simplices of cardinality k + 1 are called k-simplices. We also say a k-simplex has
dimension k. We call the k-skeleton of Σ the set of simplices of Σ of dimension
≤ k. If τ ⊆ σ we say that τ is a face of σ and σ is a coface of τ . The dimension of a
simplicial complex is defined as dimΣ := max{dimσ | σ ∈ Σ}. By numbering the
vertice in V , we define a positvely oriented k-simplex σ = [v0, . . . , vk] as the class of
tuples (vp(0), . . . , vp(k)) with p an even permutation. All remaining permutations
give the negatively oriented simplex σ.

From Σ a simplicial complex and F any field, we can specialize the chain complex
construciton of Section 6. We obtain a chain complex (C•, ∂•) by defining, for each
k, Ck = Ck(Σ), where Ck(Σ) is the space of k-simplicial chains consisting of finite
F-linear combinations of the oriented k-simplices of Σ and such that −σ coincides
with the opposite orientation on σ. We define ∂k = ∂k(Σ), where ∂k(Σ) : Ck(Σ)→
Ck−1(Σ) is the simplicial boundary map defined on an element of the canonical
basis σ = [v0, . . . , vk] ∈ Σk by ∂k(σ) =

∑k
i=0(−1)i[v0, . . . , v̂i, . . . , vk], where v̂i

means that vertex vi is omitted. It extends to the whole chain space by linearity.
A simplicial map s : Σ → Σ′ is a map satisfying, for each σ ⊆ τ , s(σ) ⊆ s(τ).
Denote by (C•, ∂

C
• ) the simplicial chain complex of Σ and by (D•, ∂

D
• ) the simplicial

chain complex of Σ′. Then the simplicial map s induces a chain map f : (C•, ∂
C
• )→

(D•, ∂
D
• ) by setting fk(σ) = s(σ) for all σ ∈ Σk.

It is clear that we can apply the persistent homology module constructions
presented in this section to any monotone sequence of simplicial maps and hence
our parallel algorithm introduced in Section 4 specializes to the simplicial complex
case. In the following, we report some examples and discuss interesting points to
remark with respect to the simplicial case.

Example 2 (Vertex collapse). Consider the chain map f induced by the vertex
collapse in Fig. 5. We apply the above construction to the retrieval of the asso-
ciated 2-step persistent homology module in degree 1. Depending on the chosen
vertex labeling and optimization procedure, our parallel construction of the homol-
ogy steps might return several choices of homology representatives. For instance,
according to the labeling of vertexes in black, the already mentioned left-to-right
reduction in [13] would return the red and green 1-chains at step 1 and the red
1-chain at step 2. Furthermore, solving the linear systems in Eq. (13) would give
a matrix

(
1 −1

)
representing the linear map f̃ , meaning that the green and red

homology representatives from step 1 are both mapped to the red homology rep-
resentative of step 2 with opposite sign. This concludes the construction of the
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Figure 5: an example of a vertex collapse inducing a chain map f =
(fk) where step 2 is obtained from step 1 by identifying vertexes 2 and
4. Coefficients of 1-chains of possible degree 1 homology representatives
are depicted with the same color. The figure shows, at step 1 in red
z1 = [1, 2] + [2, 3] − [1, 3], in green z2 = [1, 3] + [3, 4] − [1, 4], in blue
z = [1, 2] + [2, 3] + [3, 4] − [1, 4]; at step 2 in red ω1 = [1, 2] + [2, 3] − [1, 3],
in green ω2 = [1, 3]− [2, 3]− [1, 2]. The 1-component f1 of the chain map f
sends z1 to ω1, and z2 to ω2. Hence the image of z = z1 + z2 is trivial.

desired 2-step persistence module. We observe that the red and green homology
representatives do not form an interval basis since, at step 2, they are non-trivial
and equivalent one another. The parallel decomposition previously introduced
in Section 4 can be applied to the obtained persistence module to get the interval
basis formed by the red and blue homology representatives at step 1. This way
the blue representative captures the homology class (the sum of the red and green
representatives) being born at step 1 and dying at step 2 and the red one captures
the class being born at step 1 and still non-trivial at step 2.

Example 3 (Tracking harmonic homology representatives). Consider the chain
map f induced by the inclusion in Fig. 6. We apply the construction above to com-
pute harmonic homology representatives in the first degree for the two steps: red
and blue on the left (step 1) and red on the right (step 2). In step 1, we notice that
the two obtained harmonics coincide with generic homology representatives. This
is due to the absence of 2-simplices. However, harmonic representatives are not, in
general, preserved by the inclusion of simplicial complexes. Indeed, in step 2, the
same homology representatives are no longer harmonic forms. By Algorithm 5, we
retrieve that the red 1-chain ω at step 2 is a combination of the inclusions of the
red z1 and blue z2 1-chains at step 1: ω = z1 + 3z2. This concludes constructing
the desired 2-step persistent homology module via harmonic representatives. We
observe that z1 and z2 do not form an interval basis for the obtained persistence
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Figure 6: an example of tracking of harmonic homology representatives along
the inclusion of simplicial complexes obtained by inserting the 2-simplex
[123]. Coefficients of 1-chains forming harmonic homology representatives for
the associated 2-step persistence module are depicted with the same color in
each step. The figure shows, at step 1 in red z1 = [1, 2] + [2, 3] − [1, 3], in
blue z2 = [1, 3] + [3, 4]− [1, 4]; at step 2 in red ω = [1, 2] + 2[1, 3]− 3[1, 4] +
[2, 3] + 3[3, 4]. The 1-component f1 of the chain map f sends z1 + 3z2 to ω.

module. Our parallel decomposition allows us to choose z = z2−3z1 and z2 as har-
monic representatives at step 1 so that the inclusion directly maps z to ω and z2 to
0 and each harmonic representative is kept independent from other representatives
along the module steps.

Filered simplicial complexes

A simplicial complex Σ can be made into a filtered simplicial complex (or a filtration
of simplicial complexes) by taking a finite sequence of subcomplexes Σ0 ⊆ Σ1 ⊆
· · · ⊆ Σn = Σ, where a subcomplex is a subset and also a simplicial complex. The
inclusion maps in the filtration induce a monotone sequence of chain complexes
with maps {f i} as in (14) where the induced chain maps are all injective. We fix
a dimension k. We get that the filtered chain complex Ck = {(Cik, f ik)}ni=1 is a
persistence module.

Remark 4. The F[x]-graded module α(Ck) associated with the the persistence
module of the filtered chain complex Ck is free. Moreover, an interval basis for Ck
consists, for each index i, of the k-simplices σ in Σi \ Σi−1.

The freeness of α(Ck) implies that also the graded modules associated to the
persistence modules of the filtered k-cycles Zk and the persistence modules of the
filtered k-boundaries Bk are free. To this purpose, we underline the following
observations with respect to the left-to-right reduction ∂ = RV [13] of the bound-
ary matrix ∂ which is at the heart of most of persistent homology computations,
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where R is the reduced matrix and V keeps track of the operations performed on
the columns along the reduction.

Remark 5. The collection V of the homology representatives in the columns of V
corresponding to the null columns in R form an interval basis for Zk. The same
collection V is a minimal system of generators of the persistent homology module
Hk which is not in general an interval basis. A presentation of Hk requires further
column reductions to find the combinations expressing a system of generators of
Bk in terms of VZ . An example of VZ is in Fig. 3 in Section 1.

Remark 6. The collection V of the homology representatives in the non-trivial
columns of R form an interval basis for Bk. If the graded module associated to
the persistent homology module Hk has no free part, the same collection V is also
an interval basis for Hk. Otherwise, the same collection V can be extended to an
interval basis of Hk by adding the elements of the interval basis of Zk of infinite
order in the associated graded module (essential classes). An example is in Fig. 4
in Section 1. The retrieval of this kind of homology representatives is the one
implemented, for instance in [5], by the clear optimization procedure [6].

Indeed, one can easily check that with respect to Zk we get a minimal system
of generators VZ in the case of Remark 5. By simply noticing that boundaries are
cycles, the system VB in the case Remark 6 is a minimal system of generators of
Zk. Hence both VZ and VB are a minimal system of generators for Hk.

By freeness, the two systems form an interval basis of Zk. Moreover, VB con-
tains a minimal system of generators of Bk, and hence an interval basis for Bk.
Notice that, the reduction provide a presentation matrix of Hk with respect to
generators in VB whereas a presentation with respect to VZ is less direct to re-
trieve. For VB, the associated presentation matrix has one row per element VB
and one columns per element of VB belonging to the the interval basis of Bk. Rows
are graded as elements of Zk. Columns are graded as elements of BK .

The subset in VB which forms the interval basis for Bk defines the rows contain-
ing exactly a non-trivial element in correspondence of the column of the matched
boundary. Indeed, if a generator v of degree i in VB is matched to w a generator of
degree j ≥ i of Bk, this implies that xj−iv = 0. All other entries are trivial. Hence
the presentation matrix with respect to VB is in Smith Normal Form according to
Definition 4 and hence VB is an interval basis of Hk. For VZ , if a generator v of
degree i in VZ is matched to w a generator of degree j ≥ i of Bk, this does not
imply that xj−iv = 0 since there could be another element v′ of degree h ≤ i such
that xj−iv = xj−hv′ ̸= 0.
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7 Conclusions and Future Works

In this work, we have formalized interval bases of a persistence module as particular
minimal system of generators.

We have introduced the Algorithm 4 as a distributed approach for retrieving
an interval basis of a persistence module. Our approach applies to any persistence
module as defined in Section 2, hence not necessarily coming from the homology
of a filtered chain complex. A specialization for real coefficients based on the SVD
matrix decomposition is also available in Appendix A. Through our computational
evaluation in Section 5, we have compared our parallel approach to the Smith
Normal Form reduction specialized to matrices presenting a persistence module
and showed that the Smith Normal Form reduction can sensibly reduce its cost
when adapted to persistence modules. However, the advantage of our parallel
approach has been quantified through an output dependent computational cost,
where the output size is generally lower than the input size. We have discussed
the worst output case corresponding to the case with all intervals decomposing the
persistence module appearing at the same step, especially at the very first step,
and being ever lasting along the entire persistence module. In TDA applications,
often dealing with a persistence module obtained through the homology functor in
degree 0 via the Vietoris-Rips filtration, we have a single step decomposition, the
first one, which would be considerably heavier in cost with respect to other step
decompositions. Even though, even in that case, one typically has that most of
homology classes disappear soon along the filtration, it is fair to highlight that our
parallel approach would have better performances in homology degrees other than
0 due to the higher sparsity of the obtained barcode. Alternatively, we expect our
approach to be more effective on other kinds of frameworks, such as the case of
harmonics forms treated in Section 6.1.

Afterwards, we have constructively indicated how to obtain a persistent ho-
mology module out of a monotone sequence of chain complexes. Above all, we
have remarked that each step and structure map in the module can be obtained
independently, thus being suitable for parallel and distributed approaches. Such
an integration has offered interesting insights to be investigated further. For in-
stance, it has made possible to geometrically locate the interval basis vectors onto
a filtered simplicial complex. We have discussed simple examples to make compar-
isons with two possible kinds of homology representatives obtained through the
reduction algorithm [13] and discussed which kind of homology representatives do
satisfy the interval basis definition in Remark 5 and Remark 6.

We believe that, for a monotone sequence of chain maps, the descriptive power
of the interval basis deserves further study since it encodes implicitly the relations
among evolving homology classes. Future directions on the descriptive power of
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interval bases include adapting our parallel approach to the retrieval of interval
bases of submodules. This might have, in our opinion, applications to the chal-
lenge of defining interval matchings induced by persistence module morphisms
to be compared with the ones already available in the literature. Other direc-
tions may include the study of interval bases of the persistent pipeline applied
to multiparameter persistent homology and to non-injective families of simplicial
complexes.

As a last point to be addressed in the future, we have seen how working at
persistence module level might be favorable for dealing with the persistence of
harmonics. In particular, we have shown that, by acting at persistence module
level, we managed to overcome the problem expressed in Remark 3 in the harmonic
representatives tracking. That case can take advantage of the SVD factorization for
the real coefficient case to lower down the computational complexity (Appendix A).
From the geometrical point of view, we have shown how the interval basis choice for
generators applies to the harmonic case. Hence, our work contributes in combining
harmonic generators into the persistent homology framework.
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A Appendix

Complements to Section 4 when F = R
In case we use the field R in the persistence module, we can specialise the de-
composition of the space described in the previous paragraph. We will use the
following notation: given a matrix A with m rows and n columns, A[:, i] denotes
the ith column of the matrix , whereas A[:, : i] denotes the submatrix given by
the first i columns of A. The same notation is used on the first arguments in the
parenthesis to denote operations on rows. We will make use of this simple result
in linear algebra.

Lemma 5. Given three vector spaces V1, V2, and V3 over R and two linear maps
ψ1 : V1 → V2 and ψ2 : V2 → V3 it holds

ker(ψ2 ◦ ψ1) = ker(ψ1)⊕ ker
(
ψ2 ◦ ψ1|(ker(ψ1))

⊥

)
.

Proof. Let x be an element of ker(ψ2 ◦ ψ1). It can be written uniquely as x =
v + w, with v ∈ ker(ψ1) and w ∈ (ker(ψ1))

⊥. Since (ψ2 ◦ ψ1)(v + w) = 0 and
v ∈ ker(ψ1), it must be ψ2(ψ1(w)) = 0, therefore w ∈ ker(ψ2 ◦ ψ1). Then, w

belongs to ker
(
ψ2 ◦ ψ1|(kerψ1)⊥

)
and the statement follows.

Fix M0, and suppose that φn = 0. For each Mi, denote with di the num-
ber dimMi. Consider φ0 and decompose it via the SVD decomposition in φ0 =
U0S0V

T
0 . If r0 = rankφ0, then k0 = d0 − r0 is the dimension of kerφ0. Notice

that S0 is a matrix d1 × d0 with non-zero elements only on the first r0 positions
on the main diagonal. Therefore, if ei is the ith element of the canonical basis of
Rd0 , with r0 < i ≤ d0, then φ0V0ei = U0S0ei = 0. Then, a basis of kerφ0 is given
by the vectors {V0er0+1, . . . , V0ed0}. The index function J attains the value 1 on
all of them. All such vectors will be also in the kernel of the maps φ0,j for all
j > 0. In order to avoid repetitions, it will be considered only the restriction of
each φ0,j on the orthogonal complement of kerφ0. This operation will not change
the result because of Lemma 5. To do so, consider the map φ̃0 = U0S̃0, where
S̃0 = S0[:, : r0], given by the first r0 columns of S0. Repeating the same process, it
will be considered m1 = φ1φ̃0 instead of φ0,2. Call d1 = d0−k0. Decompose again
m1 = U1S1V

T
1 and call r1 = rankm1 and k1 = d1 − r1 = dimkerm1. Again, a

basis of kerm1 is given by the vectors V1er1+1, . . . , V1ed1 . Recall that this vectors
are expressed in the basis {V0[:, 1], . . . , V0[:, r0]} of kerφ⊥

0 . To return them in the
canonical basis of M0 it is sufficient to consider the matrix η0 with d0 rows and r0
columns such that η0[i, j] is equal to 1 if 1 ≤ i = j ≤ r0 and 0 otherwise. Then, the
vectors in the canonical basis of M0 are {V0η0V1er1+1, . . . , V0η0V1ed1}. In this case
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the value of the index function for these vectors will be 2. For the general step j,
consider mj = φjm̃j−1 = UjSjV

T
j . The adapted basis of M0 will be updated with

the vectors
V0η0 . . . Vj−1ηj−1Vjex, rj + 1 ≤ x ≤ dj , (17)

and it will be J(V0η0 . . . Vj−1ηj−1Vjex) = j + 1 for every rj + 1 ≤ x ≤ dj Once all
the vectors are obtained, as in the general case, it is necessary to complete a basis
of Im(φi−1) to a basis ofM0, introducing the vectors in V in ascending order given
by the function J . The resulting vectors will be part of the interval basis.
The procedure is encoded in Algorithm 7, which makes use of the matrix decom-
position routine Algorithm 6 and specializes Algorithm 3 to the case of real coef-
ficients. We denote it by ssdR(Mi). Then, the full decomposition of Algorithm 4
can be specialized to the reals by replacing ssd(Mi) with ssdR(Mi).

Algorithm 6: Matrix decomposition

Input: matrix A;
Result: Restriction of A on the space orthogonal to its kernel with

respect to a basis V of the domain, V matrix whose columns
are a basis of the domain of A, dim(kerA)⊥ ,dim kerA

U, S, V = SVD(A);
nz = rankS, d = number of columns of A, dk = d− nk ;
R = US[:, : nz];
return R, V , nz, dk
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Algorithm 7: single step decomposition on R
Input: map φi−1 : Mi−1 →Mi, maps {ϕj : Mj →Mj+1)}, i ≤ j ≤ N
;
Result: Vectors V iBirth

U, S, V = SVD(φi−1) ;
r := rank(φi−1);
U = U [:, : r] basis of the image of φi−1;
V iBirth = {}; lk = 0;
R = Id : Mi →Mi;
d := dimMi ;
Vtot = Id;
for s = 0, . . . , N − i do

R = φs+1 ·R;
if number of rows of R = 0 then

k := number of columns of R;
V = Ik;
nz = 0;
dk = k;

else
R, V, nz, dk = dec(R);

end
Vtemp = Id, l = ord(V ), Vtemp[: l, : l] = V t;
Vtot = Vtot · Vtemp;
if dk > 0 then
T = bca(U , Vtot[:, d− lk − dk : d− lk]);
U = U ∪ Vtot[:, d− lk − dk : d− lk];
V iBirth = V iBirth ∪ T ;
J(t) = s + 1 for all t ∈ T ;
lk = lk + dk;

end
if nz = 0 or |V|+ r = d then

break;
end

end
return V iBirth, J
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B Appendix

B.1 Graded modules

In this section, we introduce some notation for graded module presentations and
decomposition into cyclic modules with the purpose of linking the interval basis
notion to the Smith normal form. Since it is not obvious to find in the literature
the adaptation of classical decomposition results [41] with notation specialized to
the graded module case, we include proofs of classical results.

In the following, we consider the polynomial ring F[x] endowed with the stan-
dard grading structure defined by monomial decomposition of polynomials where
the degree deg x of the indeterminate x is set to 1. This way, F[x] is seen as a direct
sum of the F-vector spaces F[x]i containing monomials of degree i. Moreover, the
property xjF [x]i ⊆ F[x]i+j holds. A graded F[x]-module is an F[x]-module admit-
ting a direct sum decomposition into F-vector spaces, called homogeneous parts
of degree i, such that the action of xj over each homogeneous element of degree i
gives a homogeneous element of degree i + j. We denote by deg v the maximum
degree of the homogeneous components of v ∈ M . Clearly, F[x] can be seen as a
graded F[x]-module. This allows us to make explicit the equivalence of categories
α already mentioned in Section 1.

A persistence module M can be associated with a graded F[x]-module α(M)
under a well-known equivalence of categories [13, 16], in the following way: given
M as above, α(M) is defined as

⊕
i∈N α(Mi) :=M1⊕M2 · · ·⊕Mn⊕Mn⊕Mn · · · .

The structure of graded is obtained by setting xv = φi(v), for each i ∈ [n] and
v ∈ α(Mi) = Mi and xv = v for v ∈ α(Mj) = Mn for j > n. The steps Mi is
referred to as the homogeneous part of degree i of α(M).

Before proceeding, we introduce the shift notation F[x](−d) for the graded
module F[x] with standard degrees shifted so that the constant polynomial 1 has
degree d. Moreover, we restrict to consider homogeneous homomorphisms with
zero degree, i.e., preserving degrees.

Definition 3. Let M be a finitely generated graded F[x]-module. A presentation
of M is a choice of

• a finite system of homogeneous generators V = {vi}i∈I in M ;

• a finite set of homogeneous equations, called relations (or syzygies) S =
{sj}j∈J in M ,

such that the following sequence is exact.

⊕
j∈J F[x](−deg sj)

σ //
⊕

i∈I F[x](−deg vi)
ϵ //M // 0, (18)
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where the map ϵ :
⊕

i∈I F[x](−deg vi)→M sends the ith-standard generator ei to
vi, and σ :

⊕
j∈J F[x](−deg sj) →

⊕
i∈I F[x](−deg vi) expresses the equations sj

with respect to the standard basis {ei}i∈I .

In other words, the module M is obtained as the cokernel of σ or Coker(S)
where, with little abuse of notation, the matrix S is set to have as column j the
coefficients of sj . In this case, we say that S is a presentation matrix of M , and
in the following we will refer to a pair ({vi}, S) as a presentation of M .

Definition 4 (Graded Smith Normal Form). A presentation matrix S for some
graded F[x]-moduleM is in graded Smith Normal Form if and only if each non-zero
entry, called pivot, is the unique non-zero entry in its row and column, and the
pivot is equal to xp for some integer p ≥ 0. We will call Ones(S) the set of row
indices in S with pivots equal to 1.

In order to link a graded Smith Normal Form presentation to an interval de-
composition, we set the following notation for the cyclic module generated in M
by a homogeneous element v

F[x]v ⊆M, (19)

and the order of the cyclic submodule is defined as the maximum exponent p such
that xp−1v ̸= 0, possibly infinite.

Theorem 5. Let M be a graded F[x]-module and ({vi}i∈I , S) a presentation for
M with the notation of Eq. (18). The matrix S is in graded Smith Normal Form
if only if the module M decomposes into cyclic submodules as

M ∼=
N⊕

m=1

F[x]vim ,

with i1, . . . , iN the indexing obtained by restricting row indexes to I \ Ones(S).
Moreover, if the cyclic submodule F[x]vim is of order pim then it is isomorphic to
F[x](−deg vim)/(x

pim ), otherwise F[x]vim is isomorphic to F[x](−deg vim).

Proof. We reduce to the case vi = ei, that is M equal to F
/
Im(σ) where F is

freely generated by {ei}i∈I since the standard homomorphism ei 7→ vi realizes the
isomorphism to M . Clearly, the elements vi, for i ∈ I, generate M by definition of
presentation. Suppose that the presentation matrix S is in graded Smith Normal
Form. Let i1, . . . , iN be the indexing obtained by restricting row indexes to I \
Ones(S). The elements vi1 , . . . , viN still generateM since a row indexm ∈ Ones(S)
implies that vim belongs to the image of S. To prove that the sum is direct, notice
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that a null combination of vi1 , . . . , viN belongs to the image of S. Indeed, since S is
in graded Smith Normal Form, Im(σ) is freely generated by xpim for m = 1, . . . , N ,
hence all coefficients are null. The order of the cyclic module of vim is either pim
if defined, or infinite otherwise.

On the contrary, assume that M is a direct sum of cyclic modules. Consider
the indexes m such that such that vim is an element of finite period pim . For each
m, define the column which is zero for all indexes j = 1, . . . , N but in position
m where it is xpim . By construction S is in graded Smith Normal Form with
respect generators of M . The direct sum defining M implies that there are no
other relations to be added to S to be a presentation of M .

Corollary 1. A Smith Normal Form presentation matrix for α(M) provides an
interval basis forM.

Proof. The result follows by recalling that an interval basis directly decomposes
M into interval modules which, by definition are, analogues of cyclic graded sub-
modules. Then, it suffices to apply Theorem 5 to the associated module α(M).

Interval basis via Smith Normal Form

In this section, we propose a method to compute an interval basis, based on a
suitable reduction of a presentation matrix. It is based on a combination of two
technical ingredients: first, the construction of a presentation matrix S for α(M)
out of a persistence module M = {(Mi, φi)}ni=0. This is done in a way that, to
our knowledge, was first explicitly envisaged in a technical passage of [16]. Next,
we proceed by the reducing this presentation matrix into graded Smith Normal
Form, so that each relation column admits a non-zero entry in correspondence of
at most one generator. To do that, we adapt the method from [49].

B.2 From a persistence module to its presentation ma-
trix

Our first task consists in defining a matrix S such that Coker(S) is isomorphic to
the graded module α(M) associated with the persistence moduleM.

For each index i = 0, . . . , n, fix a basis Bi = {vi1, . . . , vimi
} of the step Mi and

let Φi be the mi+1 ×mi matrix expressing φi with respect to bases Bi and Bi+1.
Let m be equal to

∑n
i=0mi. Then, we want to define a presentation for α(M) of

the kind
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⊕m
j=1 F[x](−deg sj)

σ //
⊕n

i=0

⊕mi
h=1 F[x](−h)

ϵ // α(M) // 0,

where the map ϵ is defined by ei,h 7→ vih, and where we want to determine a square
matrix S with columns (s1, . . . , sm) representing the map σ.

We follow the construction in Lemma 6 of [16] and specialize it to modules with
no free cyclic submodules. Begin by defining S as a matrix of size m × m. We
define S by defining some blocks within it. We will use the following notation:
given a matrix A, by A[:, j] we indicate the jth column of the matrix, by A[i, :] we
indicate the ith row of the matrix, whereas A[:, : j] denotes the submatrix given
by the first j columns of A. The same notation is used on the first arguments in
the parenthesis to denote operations on rows. By A[i : i′, j : j′] we indicate the
submatrix given by the rows of A from i to i′ and columns of A from j to j′.

Let di :=
∑

j<imj + 1, for each index i = 0, . . . , n (i.e., di is the index of the

first generator of the ith step). For each step i = 0, . . . , n, matrix S contains a
mi ×mi diagonal block, whose diagonal elements are −x:

S[di : di+1 − 1, di : di+1 − 1] = −x Idmi×mi .

Also for each i = 0, . . . , n, consider the block Si below the main diagonal with
column indices di, . . . , di+1 − 1 and row indices di+1, . . . , di+2 − 1. Set

S[di+1 : di+2 − 1, di : di+1 − 1] = Φi.

Notice that S is not a diagonal block matrix. This will impact the computa-
tional complexity of the reduction procedure.

Definition 5. Given a persistence moduleM, the persistence module presentation
matrix is the matrix S obtained as above.

Theorem 6. A persistence module M and its persistence module presentation
matrix S satisfy

α(M) = Coker(S).

Proof. The proof follows from the proof of Lemma 6 in [16].

Example 4.
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Figure 7

Consider the R-persistence module in Fig. 7, where the matrices below each
arrow represent the map above it in the bases Bi’s. Notice that this corresponds
to the homology persistence module of Fig. 1. We ignore the zero steps as they are
immaterial to the matrix construction. We say the module has three stepsM1 = R
of degree 1, M2 = R2 of degree 2 and M3 = R of degree 3. Matrix S is 4× 4, and
it holds d1 = 1, d2 = 2, d3 = 4. Then matrix S is as in the following Fig. 8. The
ochre blocks are the diagonal blocks, and the cyan and red blocks correspond to
matrices φ1 and φ2 respectively (see colors in Fig. 7).
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Notice that the matrix S represents a homogeneous homomorphism with re-
spect to row and column grades. Hence, matrix S can be thought of with entries
in F. The only genuinely relevant information in the matrix is whether an element
is zero or not, because other than that its degree is determined by its position.

B.3 From a presentation matrix to its graded Smith
Normal Form

In general, the presentation obtained via Definition 5 is far from being minimal, in
the sense that several pairs of generator-relation are in excess and can be discarded
while maintaining a presentation of the same module. As seen in the previous
section, we know that if we can find a suitable presentation, we can obtain the
interval generators. This amounts to obtaining a graded version of the structure
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theorem via the Smith Normal Form, and to the best of our knowledge has only
been explicitly done in [49].

Theorem 7. [49] Let M be a finitely-generated, graded F[x]-module, and let
({vi}, S) be a graded presentation of M . There exists an algorithm to obtain an-
other presentation of M , ({v′i}, S′) such that S′ is in graded Smith Normal Form.

We apply the algorithm introduced in [49] in reducing the square matrix S of
size m ×m with entries in F. The procedure returns invertible m ×m matrices
R,C and SNF(S) such that the matrix

SNF(S) := RSC

is diagonal up to reordering of rows and columns and row and column degrees are
preserved.

We sketch the algorithm as follows. By low of a column we refer to the index of
its last (downward) non-zero entry. Notice no column of S is zero at the beginning.
Also, we disregard matrix C, as it is of no interest to us.

Differently from the non-graded case, among the typical elementary operations,
swapping rows and columns is not allowed. This explains the possibly non-diagonal
final form in the graded counterpart SNF(S) of the Smith Normal Form of S.
For each pivot in SNF(S) corresponding to row i and column j, we set J(i) :=
deg j − deg i. If the row i is null, we set J(i) =∞.

We close this section by linking the matrices SNF(S) and R to the interval
basis of the persistence moduleM introduced at the beginning of this section.

Theorem 8. The columns in R−1 of index m such that J(m) > 0 form an interval
basis forM.

Proof. By Theorem 6, The matrix S defines a presentation of α(M) directly en-
codingM. As shown in [49], SNF(S) = RSC still defines a presentation of α(M).
Columns in R−1 contain the new system of generators with respect to the genera-
tors in S. Columns and rows in SNF(S) contain at most one non-zero entry equal
to some power of x, hence the matrix SNF(S) is in graded Smith Normal Form
according to Definition 4. Observe that columns vm of index m = 1, . . . , N such
that J(m) > 0 correspond to non-invertible pivots since there are no null rows in
SNF(S). Hence by Corollary 1, the set {vm}Nm=1 forms an interval basis for α(M)
and each element vm has associated interval of order J(m).

Example 5. (continued from Example 4) From matrix S, let us compute an
interval basis. The Smith Normal Form reduction yields
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Algorithm 8: Graded Smith Normal Form [49]

Input: Matrix S as per Definition 5 ;
Result: Matrices SNF(S) and the change of basis matrix R
R← Idm×m ;
for i = 1, . . . ,m do

l← low of column i of S;
R[l, :] ← R[l, :]/R[l, i];
S[l, :] ← S[l, :]/S[l, i];
for j = l − 1, . . . , 1 do

R[j, :] ← R[j, :]− S[j, i]R[l, :];
S[j, :] ← S[j, :]− S[j, i]S[l, :];

end
// indexes c can be restricted as discussed in Section

6

for c = i + 1, . . . ,m do
S[:, c] ← S[l, i]S[:, c]− S[l, c]S[:, i];

end
SNF(S)← S;

end
return SNF(S), R
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SNF(S) =




0 0 0 x3

1 0 0 0
0 0 −x 0
0 1 0 0




We see that rows 2 and 4 of SNF (S) correspond to surplus generators, as they
contain a unit in F[x]. Row 1 corresponds to a bar born at degree 1, and killed by
a relation (column) of degree 4, hence yielding a pair (1, 4). Row 3 corresponds to
a bar born at degree 2, and killed by a relation of degree 3, hence yielding a pair
(2, 3). The change of basis matrix R is

R =




−1 −x −x −x2
0 1 0 0
0 0 1 0
0 0 0 1




whose inverse equals itself

R−1 =




−1 −x −x −x2
0 1 0 0
0 0 1 0
0 0 0 1




Then, column 1 and 3 in this matrix, corresponding to non-zero persistence
generators, form an interval basis. They are −v11 and −xv11 + v22. They are indeed
the first cycle to be born (up to a minus sign, which is immaterial), and the
difference between the first cycle mapped at the second step and the second cycle.
We remark that xv11 = v21. Notice that when implemented in practice, the terms
of positive degree are substituted by their coefficient, as their degree is implicit by
their position.

We have implemented this procedure as Python code, as a purely numerical
matrix construction and reduction scheme, and plan to render it publicly available
soon.

C Appendix

Complementary Results to Section 6

In this section, we include complementary algorithms to implement the construc-
tion of a persistence module obtained through the kth-homology functor applied
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to a finitely generated chain complex or a chain map between finitely generated
chain complexes. In the following, we describe two methods that can possibly ad-
mit an implementation which is parallel, and even distributed, over the persistence
module steps.

In order to compute the persistent homology {(H i
k, f̃i)}, for i = 1, . . . , n out a

sequence of chain complex maps {fi}, we act in parallel over i = 1, . . . , n.

Computing the homology steps in parallel

Here, we report a possible algorithm to retrieve the homology of a chain complex
over any coefficient field.

Algorithm 9: Computing homology

Input: Boundary matrices ∂k, ∂k+1 of the chain complex C ;
Result: Betti number βk and basis {h1, . . . , hβk , b1, . . . , br} of Zk, where

span{[h1], . . . , [hβk ]} = Hk and span{b1, . . . , br} = Bk.
Compute the reduction Rk = ∂kVk ;
Compute the reduction Rk+1 = ∂k+1Vk+1 ;
b1, . . . , br := non-zero columns of Rk+1 ;
v1, . . . , vs := columns of Vk corresponding to zero columns of Rk ;
J := matrix with columns {b1, . . . , br, v1, . . . , vs} ;
βk = 1 ;
for i = r + 1, ...r + s do

while ∃j < i s.t. low(J [i]) = low(J [i]) do
l := low(J [i]);
γ := J [l, i]/J [l, j];
J [i] = J [i]− γJ [j];

end
if J[i] is non-zero then

hβk := J [i];
βk = βk + 1;

end

end
return βk, basis {h1, . . . , hβk , b1, . . . , br}

Computing the homology structure maps in parallel

Here we report an algorithm to retrieve the map induced between homology spaces
given a chain map.

Theorem 9. The map f̃k defined in Algorithm 10 is well-defined and it is the map
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Algorithm 10: Induced map between homology spaces

Input: Chain map fk : Ck → Dk, representatives cycles hC1 , . . . , h
C
βC
k

of a basis of Hk(C), βDk and {hD1 , . . . , hDβD
k
, bD1 , . . . , b

D
r } output of

Algorithm 9 for D;

Result: map f̃k : Hk(C)→ Hk(D) induced by fk.
f̃k := zero matrix βDk × βCk ;
for i = 1, . . . , βCk do

Solve fk(h
C
i ) =

∑βD
k
j=1 λjh

D
j +

∑r
l=1 µlbl ;

f̃k[i] = (λ1, . . . , λβD
k

)T

end

return f̃k

induced by fk through the homology functor.

Proof. For all i = 1, . . . , βCk , it holds f̃k([h
C
i ]C) =

[
fk(h

C
i )

]
D
=

∑βD
k
j=1 λj [h

D
j ]D.
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