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Abstract
This paper presents a comparison among different flexibility models of elastic elements to
be implemented in multibody simulations of compliant mechanisms. In addition to finite-
element analysis and a pseudo-rigid body model, a novel matrix-based approach, called the
Displaced Compliance Matrix Method, is proposed as a further flexibility model to take into
account geometric nonlinearities. According to the proposed formulation, the representation
of the elastic elements is obtained by resorting to the ellipse of elasticity theory, which guar-
antees the definition of the compliance matrices in diagonal form. The ellipse of elasticity
is also implemented to predict the linear response of the compliant mechanism. Multibody
simulations are performed on compliant systems with open-loop and closed-loop kinematic
chains, subject to different load conditions. Beams with uniform cross-section and initially
curved axis are considered as flexible elements. For each flexibility model, accuracies of
displacements and rotations, and computational time, are evaluated and compared. The nu-
merical results have been also compared to the data obtained through a set of experimental
tests.
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1 Introduction

Compliant mechanisms generate motion through the deformations of their flexible parts,
usually called flexures [1]. Reduction of friction, wear, backlash, number of assembly steps,
and lubrication, are profitable features that determined their implementation in many engi-
neering fields, such as precision machining and manufacturing [2], MEMS [3], surgery [4],
robotics [5], and imprint lithography [6].

However, the design and modeling of compliant systems represent challenging tasks. In
fact, both continuum and applied mechanics issues need to be considered in their study,
since the kinematic and the elastomechanical aspects are intrinsically coupled. The problem
is further compounded by the variety of elastic elements that can be implemented to design
the compliant mechanisms, and by the increasing topological complexity of the compliant
chains. Referring to the first aspect, notch hinges with different geometric profiles and beams
with straight and initially curved axis have been deeply investigated. Exhibiting large deflec-
tion and relatively small strain ranges [7], curved flexures have been used in path-generating
[8], multistable [9, 10], and positioning [11, 12] systems. Considering the second aspect,
compliant mechanisms are often designed as arrangements of series and parallel substruc-
tures to satisfy the application requirements [13–15].

To meet adequately the complexity of the problem, a wide range of models and design
strategies has been developed, both at the elastic-element level and at the whole-system
level [16–18]. Generally, these methods can be classified into three categories: continuum,
kinematics, and building-block approaches.

The continuum approaches are based on the structural properties of the compliant sys-
tem, considered as a deformable body. Classic beam theory [19, 20], Castigliano’s theorems
[21, 22], and the virtual work principle [23, 24] have been used for the solution of small de-
flections problems, whereas beam and chained-beam constraint models [25, 26] have been
considered in the case of geometric nonlinearities. Also, finite-element analysis has been
widely implemented in the study of complaint mechanisms, for example to predict the com-
pliance characteristics of flexures over large ranges of geometric parameters [27, 28].

Kinematics approaches bring compliant mechanisms into the patterns of the rigid-body
mechanics, exploiting the rigid-body replacement method [29]. According to this procedure,
the elastic elements are substituted by rigid links connected by kinematic pairs with lumped
springs, delineating the so-called pseudo-rigid body model (PRBM). Several PRBMs have
been proposed, by using both revolute and prismatic pairs. In order the overcome the limi-
tations of the earlier models, systems with up to five degrees of freedom have been devel-
oped [30–35], taking into account also the higher-order kinematics of rigid displacements
[36, 37]. PRBMs are generally defined for a specific flexure, for example notch hinges or
uniform beams with a straight or initially curved axis.

Building-block approaches consist of describing the kinetostatic properties of the elas-
tic element with continuum and/or kinematic models, eventually represented by means of
primitive blocks. The compliant mechanism is then defined as a connection of blocks and an-
alyzed through network principles, according to its topology [38–40]. The compliant build-
ing elements method belongs to this category. It deals with large deformations and includes
elasticity, geometry, and the pose of the compliant system in parametric matrices [41]. The
compliance-matrix method, used for the analysis of linear deflections, belongs also to this
category. It is based on the compositions of compliance or stiffness matrices that represent
the elastic elements [42]. It is worth noting that the linear behavior of an elastic suspen-
sion can also be represented by definite geometric entities, such as the center of elasticity
and the force-compliant axes [43, 44]. This feature has been exploited to define a geomet-
ric framework for the kinetostatics at the element and at the mechanism levels [38], also
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involving the ellipse of elasticity and the projective geometry [45]. The advantage of the
building-block approaches consists in resorting to continuum models at the element level,
and to consolidated network theories and solution algorithms at the mechanism level.

Among these methods, multibody simulations can be used to analyze complex systems
composed of both rigid and flexible bodies, in quasi-static and dynamic scenarios. Elastic
bodies can be analyzed by implementing continuum, kinematics, or building-blocks ap-
proaches.

Among the continuum approaches, flexible multibody dynamics uses multibody dynam-
ics for the motion of the rigid bodies coupled to finite-element analysis for the stress and
deformation of the flexible elements [46, 47]. However, FEM implementation is generally
time consuming and does not always provide an easy identification of the significant deflec-
tion parameters. Furthermore, results depend on the number of elements [48]. Considering
the kinematics approaches, PRBMs can be readily implemented and processed in multibody
environments, and do not require particular additional computational costs. The multibody
implementation of the building-blocks methods is quite straightforward. In fact, stiffness
constraints can be easily assigned by means of a matrix formulation, whereas geometric
nonlinearities can be considered at the mechanism level.

In this investigation, a comparative study among different multibody simulation strate-
gies for compliant mechanisms is presented. Beam-based FEM, 3R PRBM (three revolute
joints), and a novel compliance matrix formulation, called the Displaced Compliance Matrix
Method (DCMM), are considered for the analysis of the flexible behavior of the elastic sys-
tem. The DCM method is built upon a significant expression of the compliance matrices of
the elastic elements, that is the diagonal form. This formulation is obtained by exploiting the
ellipse of elasticity theory. Even if the single elements are linearly modeled, the proposed
approach takes into account the relative rigid-body displacements. Therefore, the method
is able to capture the geometric nonlinearities of the compliant system at the mechanism
level. The ellipse of elasticity is also used to provide a linear prediction of the responses
of the system. Nonlinear analyses are performed on compliant mechanisms characterized
by open-loop and closed-loop kinematic chains, subject to different load conditions. Beams
with uniform cross-section and initially curved axis are considered as flexible elements. The
accuracy of displacements and rotations of the target body, and computational time, are
compared. A set of experimental tests is conducted to verify the simulation results.

The paper is organized as follows. The flexibility models considered in the investiga-
tion are introduced in Sect. 2. In Sect. 3, the geometric nonlinearity issue is discussed. In
Sect. 4, the comparative results of the numerical simulations and of the experimental tests
are presented. Conclusions are given in Sect. 5.

2 Flexibility models

To perform the comparison among the different flexible models, multibody simulations are
performed with the commercial software Recurdyn (functionbay.com). Compliant mecha-
nisms composed of uniform elements with different initial curvatures are considered. The
flexibility models of the flexures are described in the following subsections.

2.1 Finite-element method

With reference to Fig. 1, uniform, initially curved flexures (a) are modeled by means of beam
elements. In order to evaluate the accuracy and time of computations of the method, two
different meshes are considered, with 100 (b) and 20 (c) elements. Geometric nonlinearities
are included in the analyses.

https://functionbay.com
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Fig. 1 Initially curved flexure (a) and corresponding meshes: 100 elements (b) and 20 elements (c)

Fig. 2 Initially curved flexure
and corresponding RRR PRBM

2.2 Pseudo-rigid body model

In this study, uniform beams with initial curvature are modeled resorting to the 3-DoF
pseudo-rigid body model introduced in Ref. [33]. The model replaces the elastic element
connecting the links i and j with a kinematic chain composed of the links h and l connected
by three revolute pairs with torsional springs, as depicted in Fig. 2. From a geometric point
of view, the rigid-body chain is symmetric with respect to the flexure axis of symmetry.
The torsional stiffness coefficients of the revolute pairs R1 and R3 are equal (k1 = k3), but
different from the one of R2 (k2 �= k1). The relative length of the links and the stiffness co-
efficients values depend on the angle subtended by the beam axis. The 3R PRBM can be
readily implemented in the Recurdyn software by considering a serial chain of rigid links
connected by revolute pairs including elastic and damping parameters.

2.3 Matrix representation

Generally, the linear kinetostatic behavior of an elastic suspension can be represented by the
zeroth-, first-, and second-order moments of its compliance distribution. In Ref. [45], the
second-order moments have been arranged in matrix form (S0 ∈ R

2×2) for the definition of
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Fig. 3 Ellipse of elasticity
relative to a uniform arc

the ellipse of elasticity and for the implementation of the geometrical analysis. In this work,
by following the backward procedure, the ellipse of elasticity is used to define a compliance
matrix C ∈ R

3×3. The conic represents the second-order moments of the compliance distri-
bution with respect to the central and principal reference frame R = {C ê1 ê2}. As depicted
in Fig. 3, C is the center of the ellipse and ê1, ê2 are parallel to the ellipse semiaxes. As
a consequence, the corresponding matrix is diagonal and its upper-left 2 × 2 block can be
obtained by the diagonalization of S0. It is worth noting that C, as the center of elasticity of
the suspension, is the center of rotation corresponding to the application of pure moments.
Also, forces with lines of action passing through C produce pure translations. In particular,
forces acting in the directions of the ellipse axes produce displacements parallel to the lines
of action.

According to the formulation developed in Ref. [45], and with reference to Fig. 3, for a
uniform arc with center O , radius r , and angular amplitude 2γ , Young’s modulus E, and
moment of area I , the parameter

w = r
2γ

EI
, (1)

represents the rotational compliance of the arc, and is called the elastic weight. The location
of the center C of the conic, and the semiaxes a and b, can be evaluated as

OC = sin (γ )

γ
r , (2)

a2 = r2

2

(
1 − sin(2γ )

2γ

)
and (3)

b2 = r2 −
(
OC

2 + a2
)

, (4)

respectively. The squared length of each semiaxis is proportional to the perpendicular trans-
lational compliance of the arc. According to the ellipse properties and by exploiting Eqs. (1)
to (4), the compliance matrix

Ci,j =
⎡
⎣wb2 0 0

0 wa2 0
0 0 w

⎤
⎦ , (5)
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Fig. 4 Displacements representation in open-chain compliant mechanisms

defined with respect to the reference frame {C ê1 ê2}, represents the linear kinetostatics of
the arc connecting the links i and j .

The DCMM can be implemented in the Recurdyn software by introducing the compli-
ance matrix as a force constraint between the rigid links connected by the elastic element.

3 Geometric nonlinearities

In multibody systems, even considering linear-element models, kinetostatics could acquire
a strong nonlinear behavior at the mechanism level [49, 50]. In fact, element models con-
cern the relative displacements of two connected links, whereas the multibody mechanism
simulations take into account the absolute displacements of each link with respect to a fixed
reference frame.

Figure 4 shows an open-chain mechanism composed of the links 1, 2, and 3 connected by
the elastic elements e1,2 and e2,3. The reference frames R1, R2, and R3, with origins at O1,
O2, and O3, are attached to links 1, 2, and 3, respectively. In the undeformed configuration,
the frames are initially coincident. The elastic element e1,2 is modeled by the compliance
matrix C1,2, expressed in R1. Analogously, the element e2,3 is modeled by the compliance
matrix C2,3 defined in R2. The external loads, applied to link 3, are represented by the vector
l3, which includes the moments computed with respect to R1. Generally, the linear modeling
of compliance consists in relating the load l3 to the displacement �3,1 of R3 with respect to
R1 by the serial composition

�3,1 = (
C1,2 + C2,3

)
l3 . (6)

Analogously, the displacement �2,1 of R2 with respect to R1, and the displacement �3,2 of
R3 with respect to R2, can be written as

�2,1 = C1,2 l3 and (7)

�3,2 = C2,3 l3 , (8)
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Fig. 5 Closed-chain compliant mechanisms: nomenclature

respectively. By considering the displacement �2,1 and the new pose of R2, Eq. (8) can be
rewritten as

�3,2 = D1,2C2,3D2,1l3 , (9)

where the matrix D2,1 maps l3 into the new pose of R2, and D1,2 = D�
2,1. As a consequence,

the whole serial compliance relation becomes

�3,1 = (
C1,2 + D1,2C2,3D2,1

)
l3 . (10)

Since the matrices D1,2 and D2,1 depend on the applied load l3, Eq. (9) and Eq. (10) describe
the geometric nonlinearity of the system.

In a similar way, if the open chain is composed of 4 links connected by 3 elastic elements,
the compliance relation becomes

�4,1 = (
C1,2 + D1,2

(
C2,3 + D2,3C3,4D3,2

)
D2,1

)
l4 , (11)

where D3,2 and D2,3 consider the displacement of R3 with respect to R2.
The same approach can be followed for open chains composed of any number of links.
The procedure presented above can be adopted also in the case of compliant mechanisms

with a closed chain. With reference to Fig. 5, link 4 is connected to the fixed link 1 by means
of the parallel arrangement of the left-limb suspension (L), and of the right-limb suspension
(R). Each suspension is composed of a series of two elastic elements. The load l4, applied
to link 4, can be expressed as

l4 = l4 (L) + l4 (R) , (12)

where l4 (L) and l4 (R) are the loads acting on the left and on the right limb, respectively. The
nonlinear compliance relation represented by Eq. (10) can be expressed as

�4,1 = (
C1,2 + D1,2C2,4D2,1

)
l4 (L) (13)
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and

�4,1 = (
C1,3 + D1,3C3,4D3,1

) (
l4 − l4 (L)

)
, (14)

for the left and the right limb, respectively.
With respect to the open-chain case represented by Eq. (10), the kinetostatic problem of

the closed-chain mechanism is described by Eqs. (13) and (14). The increased number of
equations corresponds to the increased number of unknowns associated with l4 (L).

The proposed displacements-based implementation of matrix models is here defined as
the Displaced Compliance Matrix Method (DCMM).

It is worth noting that the model accuracy relies on the linear representation of the flexi-
ble element, that is its compliance matrix. Therefore, accuracy is not granted if the element
undergoes large deflections. However, the DCM method can be implemented also at the el-
ement level. In fact, since cross-sections are rigid, the element can be represented as a series
of elastic subelements connecting the rigid sections. This feature is exploited in Sect. 4.

4 Results

In this section, the comparative results among the implementations of FEM, PRBM, and
DCMM are presented for two compliant mechanisms, characterized by open-chain and
closed-chain topology. The simulations are performed in quasi-static conditions. More
specifically, loads are applied according to the time law:

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0, t ≤ t0

f0 + (f1 − f0)

(
t − t0

t1 − t0

)3
(

10 − 15
t − t0

t1 − t0
+ 6

(
t − t0

t1 − t0

)2
)

; t0 < t < t1

f1, t ≥ t1,

(15)
where f0 and f1 are the load values at the instants t0 and t1, respectively. The damping
coefficients are adjusted to minimize dynamic effects in all the three models. For the closed-
chain mechanism, a set of experimental tests has been conducted to validate the implemented
approaches.

4.1 Open chain

In the first case, a compliant open chain with flexible arcs has been considered. The CAD
model of the system is shown in Fig. 6, whereas the geometric parameters of the arcs are
listed in Table 1. The point ES of link 4 represents the interaction point between the mech-
anism and the environment. The Young’s modulus is assumed to be 2100 MPa (polymeric
material).

Two load conditions are analyzed, consisting of pure moments applied on link 4, ranging
from −5E-6 to 5E-6 Nm, and of forces applied to point ES , inclined at 30 deg to the x-axis,
ranging from −0.5E-3 to 3.0E-3 N.

The results are presented as follows.
FEM results obtained from the simulations performed with 100 beam elements mesh are

taken as a benchmark, and compared to the results of FEM with 20 beam elements, PRBM,
and DCMM.
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Fig. 6 Open-chain compliant mechanism: xES
= 20.0 mm; yES

= 15.8 mm; b = 1.0 mm; h = 0.1 mm

Table 1 Geometric parameters of the arcs: open chain

Suspension Center Radius Axis Width

x (mm) y (mm) (mm) (deg) (deg)

e1,2 0.00 3.00 3.00 150.0◦ 240.0◦
e2,3 9.09 8.25 3.50 −75.0◦ 150.0◦
e3,4 12.59 15.75 2.50 130.0◦ 270.0◦

The deflected configurations of the mechanism, corresponding to the case of applied
forces, are presented in Fig. 7. More specifically, Fig. 7(a) shows the distribution of the
Von Mises stress on the flexures obtained with the FEM model (100 elements), whereas
Fig. 7(b) and (c) show the moments and forces distributions in the PRBM and in the DCMM,
respectively.

The comparisons of the displacements of point ES and of the rotations of link 4, for the
two load conditions, are shown in Figs. 8 and 9. The results are presented together with the
linear predictions obtained by the model of the ellipse of elasticity (EE), and the orientation
of the applied loads. Percentage differences between the methods are listed in Table 2.

With reference to Fig. 8, the three methods show very similar results in the case of
pure moment loads. The maximum displacements percentage difference, registered between
FEM and DCMM, is about 1.2%, whereas differences in rotations are negligible.

However, DCMM exhibits a lower accuracy in the case of the force load. With reference
to Fig. 9 and to Table 2, the percentage differences registered between FEM (100 elements)
and DCMM are about 14% and 19%, for rotations and displacements, respectively. Similar
outcomes are observed for the FEM (20 elements): the percentage differences are about 9%
and 11%, for rotations and displacements, respectively.

To obtain more accurate results, a higher-order DCMM model has been implemented.
With reference to Fig. 10, the flexure connecting the links i and j has been modeled as a
series of 2 elastic elements with an intermediate rigid body k, in a symmetric arrangement.
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Fig. 7 Deflected configurations of the compliant mechanism, paths of the tracing point, and load distributions
obtained with the three models (color figure online)

Fig. 8 Displacements and rotations due to pure moments applied to link 4 (color figure online)

Therefore, two compliance matrices Ci,k and Ck,j can be defined according to the procedure
described in Sect. 2.3. The refined DCMM model, DCMM2, provides improved accuracy
with respect to the previous model, as shown in Fig. 11. In fact, the maximum percentage
differences between FEM and DCMM are reduced to about 3.5% and 6.6%, for rotations
and displacements, respectively.
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Fig. 9 Displacements and rotations due to forces applied to ES (color figure online)

Table 2 Percentage differences between FEM20, PRBM, DCMM, DCMM2, and the reference values of
FEM100

Model Load case (a) Load case (b)

m+ m− f + f −
disp rot disp rot disp rot disp rot

FEM20 0.2 0.2 0.2 0.2 0.4 0.3 10.7 8.5

PRBM 0.1 0.0 0.1 0.0 3.5 2.7 1.7 1.1

DCMM 1.2 0.0 1.2 0.0 18.7 17.3 19.3 13.5

DCMM2 - - - - 6.6 3.6 4.5 3.2

Fig. 10 Symmetric segmentation
of an arc into two diagonal
compliance matrices, and an
intermediate body

Computation times required for the simulations are compared in Table 3. Considering
the mean values of the four load cases, the PRBM and the DCMM1 computation times are
46% and 58% lower than the FEM100, respectively.
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Fig. 11 Displacements and rotations due to forces applied to ES : comparison among FEM, DCMM, and
DCMM2 results (color figure online)

Table 3 Computation times (s)
Model Load case (a) Load case (b)

m+ m− f + f −

FEM100 4.36 3.96 3.71 3.59

FEM20 2.53 1.93 2.90 2.57

PRBM 1.76 1.70 1.75 3.28

DCMM1 1.68 1.61 1.66 1.64

DCMM2 - - 1.71 1.75

Table 4 Geometric parameters of the flexures: closed chain

Suspension Center Radius Axis Width

x (mm) y (mm) (mm) (deg) (deg)

e1,2 1.99 9.80 10.00 −161.5◦ 120.0◦
e2,4 23.16 66.45 15.00 137.0◦ 150.0◦
e1,3 97.74 14.83 15.00 −21.3◦ 120.0◦
e3,4 90.42 63.69 15.00 44.4◦ 180.0◦

4.2 Closed chain

In the second case study, the flexible arcs described in Table 4 have been implemented on
the closed compliant chain shown in Fig. 12. Analogously to the open-chain case, the point
EP of link 4 represents the interaction point between the mechanism and the environment.
A Young’s modulus equal to 2200 MPa has been assigned for the material.
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Fig. 12 Closed-chain compliant mechanism: xEP
= 59.0 mm; yEP

= 114.3 mm; b = 5.0 mm; h = 1.2 mm

Table 5 Percentage differences
between FEM20, PRBM,
DCMM, DCMM2, DCMM3, and
the reference values of FEM100

Model Load case (a)

f + f −
disp rot disp rot

FEM20 0.2 0.6 0.6 0.4

PRBM 0.4 1.7 1.4 2.2

DCMM 31.1 46.0 18.7 8.6

DCMM2 6.9 24.7 3.0 12.1

DCMM3 2.0 7.2 0.3 4.6

The load conditions consist of forces applied to the end-point EP along the x-direction,
with magnitudes ranging from −4.90 to 4.90 N. The configurations of the deflected mecha-
nism obtained by implementing the three approaches are depicted in Fig. 13. More specifi-
cally, Fig. 13(a) shows the distribution of the Von Mises stress on the flexures obtained with
the FEM model (100 elements), whereas Fig. 13(b) and (c) show the moments and forces
distributions in the PRBM and in the DCMM, respectively. The comparative results of the
models are as shown in Fig. 14, and the percentage differences are listed in Table 5.

It can be noted that the DCMM model exhibits very high percentage differences with
respect to FEM (20 elements) and to PRBM. In fact, Fig. 15 shows large relative rotations
between the links and consequently nonlinear deflections. Therefore, analogously to the
open-chain case, the problem has been addressed by discretizing the flexible elements in
two (DCMM2) and in three parts (DCMM3).

The refined DCMM model provides improved accuracy as the discretization increases,
as shown in Fig. 16 and in Table 5.
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Fig. 13 Deflected configurations of the compliant mechanism, paths of the tracing point, stress and load
distributions, for the three models (color figure online)

Computation times required by the simulations for the different models are compared
in Table 6. Analogously to the open-chain case, FEM simulations appear to be more time
consuming with respect to both PRBM and DCMM. More specifically, considering the mean
values of the two load cases, the PRBM and the DCMM1 computation times are 63% and
84% lower than the FEM100, respectively.

A set of experimental tests has been carried out on the closed-chain compliant mecha-
nism described above. A polyactic acid sample has been fabricated through addictive man-
ufacturing, using filament 3D printing (Fig. 17a). The Young’s modulus is experimentally
evaluated at 2200 MPa. The experimental tests reproduced the load conditions considered
in the numerical simulations. A set of weights (from 0.49 N to 3.43 N with steps of 0.49
N) has been applied to point EP of the link 4 (Fig. 17b-A). Deflections are captured by a
digital camera (Fig. 17b-B) and processed by means of the video analysis software Tracker
6.1.5 (physlets.org/tracker/, Fig. 17b-C). Displacements and rotations have been calculated
by postprocessing the outputs of the video analysis software (Fig. 17b-D).

https://physlets.org/tracker/
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Fig. 14 Displacements and rotations due to forces applied to Ep (color figure online)

Displacements of point EP and rotations of link 4 obtained through the experimental

tests are compared to the ones obtained with FEM (100 elements), PRBM, and DCMM3.

The effect of gravity has been considered in the numerical simulations. The results are pre-

sented in Fig. 18. Experimental and numerical results show good agreement, considering

the uncertainties due to the material properties and the fabrication method.
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Fig. 15 Forces applied to Ep : relative rotations of the rigid links (color figure online)

Table 6 Computation times (s)
Model Load case

f + f −

FEM100 2.31 2.38

FEM20 1.27 1.25

PRBM 0.89 0.83

DCMM1 0.32 0.42

DCMM2 0.56 0.56

DCMM3 0.65 0.62

5 Conclusions

This work presents different implementations of flexibility models in multibody simulations
of compliant mechanisms, with the aim of assessing their accuracy and their computational
efficiency. Beam-based FEM and 3R PRBM have been compared. A novel matrix-based
method, the Displaced Compliance Matrix Method (DCMM), obtained by exploiting the
ellipse of elasticity theory at the element level, has been also included for the comparisons.
This method takes into account the geometric nonlinearities and can be implemented in
higher-order formulations by augmenting the segmentation of the flexible elements. It is
worth noting that the DCMM implies the definition of compliance matrices in diagonal
form, for any kind of elastic element. Two case studies have been considered, characterized
by different topology. A case study has been validated through a set of experimental tests.
All the flexibility models show good agreement in predicting rotations and displacements
of the target bodies undergoing large deflections. In the open-chain compliant mechanism,
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Fig. 16 Forces applied to Ep : comparison of FEM and DCMM models results (color figure online)

PRBM and the DCMM differ from FEM by 5.0% and 6.6%, respectively. In the closed-
chain compliant mechanism, PRBM and the DCMM differ from FEM by 2.2% and 7.2%,
respectively. Computational time has been also indicatively evaluated. More specifically,
in the open-chain case, the PRBM and the DCMM computation times are 46% and 58%
lower than the FEM, respectively. In the closed-chain case, the PRBM and the DCMM
computation times are 63% and 84% lower than the FEM, respectively.
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Fig. 17 Experimental setup:
sample and measurement
procedure
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Fig. 18 Forces applied to Ep : comparisons of experimental and numerical results with gravity (color figure
online)
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