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Abstract
Disruptions are abrupt collapses of the configuration that have afflicted all tokamaks ever
operated. Reliable observers are a prerequisite to the definition and the deployment of any
realistic strategy of countermeasures to avoid or mitigate disruptions. Lacking first principle
models of the dynamics leading to disruptions, in the past decades empirical predictors have
been extensively studied and some were even installed in JET real time network. Having been
conceived as engineering tools, they were often very abstract. In this work, physics and
data-driven methodologies are combined to identify the main macroscopic precursors of
disruptions: magnetic instabilities, abnormal kinetic profiles and radiation patterns. Machine
learning predictors utilising these observers can not only detect and classify these anomalies but
also determine their probability of occurrence and estimate the time remaining before their
onset. These tools have been applied to a database of about two thousand JET discharges with
various isotopic compositions including DT, in conditions simulating in all respects real time
deployment. Their performance would meet ITER requirements, and they are expected to be
easily transferrable to larger devices, because they rely only on normalised quantities, form
factors, and physical/empirical scaling laws.

a See Mailloux et al 2022 (https://doi.org/10.1088/1741-4326/ac47b4) for JET Contributors.
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1. A data-driven, physics-based approach to
prediction for proximity control

The sudden and violent collapses of the configuration called
disruptions have proved to be unavoidable in all tokamaks
ever operate in the world [1, 2]. Devices with metallic plasma
facing components, including JET with a metallic wall, seem
to be particularly vulnerable to this extreme form of global
instability [3, 4]. Indeed, as will be shown in more detail
later, the high current campaigns, leading to and including
the last DT1, have been affected by completely unacceptable
disruptivity levels, both in the baseline and hybrid scenario.
Indeed the maximum tolerable percentage of disruptions in
ITER at full current is certainly not higher than 5% [5]: in
DEMO even a single full power non mitigated disruption can
cause irreparable damage to the device [6]. Given the poten-
tial harm that these events can cause in the next generation of
machines, devising a robust strategy to handle them is a top
priority of the international community. In this perspective,
enormous amounts of resources are being devoted to develop-
ing tools for the mitigation of disruptions’ detrimental effects:
electromagnetic forces, thermal loads and runaway electrons
[7]. In addition to fast valves for massive gas injection, the
technology of the shattered pellets has made very remarkable
progress in the last decade [8–11].

One aspect not fully appreciated in the fight against dis-
ruptions is the fact that even the most effective remedial tools
require a suitable trigger to be operated at the right moment
and in the right circumstances. Moreover, an excessively cau-
tionary use of mitigation techniques is not an option in future
devices for at least two reasons. First, reliable operation should
be guaranteed to maximise the scientific exploitation (and
the continuity of the electricity production in the reactor).
Secondly even mitigation actions entail a certain level of risk
to the integrity of the machines and their use should be there-
fore minimised. Robust observers, for identifying the plasma
state from the point of view of its proximity to the stabil-
ity boundaries, are of course essential elements of any real-
istic strategy of control. Consequently, proximity detection
and control are crucial aspects for the reactor perspective of
the tokamak configuration.

Unfortunately, disruptions are a very complex phe-
nomenon, characterised by the nonlinear interactions between
multiple factors. The peaking of the electron density profile,
the hollowing of the electron temperature profile, the trans-
port of impurities, the pedestal properties, centrifugal forces,
plasma rotation, local radiation emission are just some of
the aspects, which can affect the magnetic fields and trigger
the onset of macroscopic instabilities, finally leading to the
collapse of the configuration [12–15]. The complexity of the
plasma dynamics in the phase preceding the disruptions is

such that no first principle models exist to reliably predicting
their occurrence offline, let alone in real time (even if signi-
ficant progress in modelling tokamak plasmas has been made
in the last decades).

The lack of theory-based predictors has been compensated
in the last years by the development of empirical classifiers.
Those derived manually, by inspection of a limited amount of
examples, have proved to have very poor predictive capabil-
ities on JET with a metallic wall [16]. This fact has motiv-
ated the development of various predictors based on differ-
ent machine learning techniques [17]. Disruption predictors
for real time deployment are usually conceived as engin-
eering binary classifiers in suitable multi-dimensional opera-
tional spaces, where each dimension corresponds to a different
plasma quantity. The traditional training process is meant to
divide the operational space into two regions (disruptive/non-
disruptive), so that the classifier can determine the boundary
between these two zones. This boundary is represented by
an equation that model the relationship between the relevant
quantities in the operational space. During the experiments,
classifications are performed on a periodic basis with typical
time resolution of a few ms.

In terms of artificial intelligence technologies, practically
all the main machine learning threads have been tried to
predict disruptions: artificial neural networks, support vec-
tor machines, fuzzy logic, generative topographic mapping,
deep learning and even reinforcement learning [17]. With
regard to real-time signal processing, the methods implemen-
ted have explored practically all known data analysis tech-
niques for time series in the time domain, in the frequency
domain, and in the combined time/frequency domains [18, 19].
Machine learning predictors with various technologies have
been developed for all the following Tokamaks: TCV [20],
ADITYA [21], AUG [19, 22–25], DIII-D [26–28], J-TEXT
[29], NSTX [30], EAST [28, 31], ALCATOR C-MOD [27,
28], JT-60 U [32, 33] and JET [19, 34–44]. The advanced pre-
dictor of disruptions is the first disruption predictor that on JET
obtained success rates>98%, false alarm rates<2% and aver-
age warning times of hundreds of ms [45]. It was also the first
predictor, based onmachine learning tools, implemented in the
JET real time network. In the following years also SPAD and
the predictor based on the centroid method were also installed
in JET real time network [40, 46].

Notwithstanding their positive qualities, traditional super-
vised machine learning tools for disruption prediction are not
completely satisfactory, when it comes to their deployment
in future experimental reactors. Indeed, they require a lot of
examples for the training, are very machine specific (not port-
able to other devices) and tend to age very quickly (their per-
formances tend to degrade very rapidly with the evolution
of the experimental programme). In the perspective of ITER,
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these drawbacks are particularly severe for the following main
reasons:

1. ITER will explore new operational regions (in both dimen-
sion and dimensionless parameters), and thus an algorithm
trained with data of smaller devices (JET, AUG, etc)
would have problems to maintain its performances in ITER
experiments.

2. ITER plasmas will also evolve over time, starting at low
current and energy, finally reaching the full performances
ITER scenarios at 15 MA. This continuous evolution of
the plasma operational regime implies that ITER disrup-
tion predictors would need to adapt to ITER changing
circumstances.

In this work, a new approach to disruption prediction has
been developed. It has been conceived with the specific aim of
trying to address the aforementioned challenges. In this per-
spective, the predictors described in the rest of the present
paper have the following characteristics:

1. Hybrid physics and data-driven training. A few works on
how to scale anomaly indicators between machines have
been published [47, 48]. Their scope is quite limited though.
Moreover, at the beginning of operation, there is no specific
data available and therefore data-driven predictors cannot
be trained with experimental data of the new tokamak. In
these situations, it is important to exploit to the maximum
all the available knowledge, both theoretical and experi-
mental. Consequently, in this work a hybrid physics/data-
driven approach has been implemented. At the beginning
of a new experimental campaign or device, the algorithm is
trained with either physics models, obtained from theory,
or with empirical equations, derived from previous toka-
maks or campaigns. Then, during the evolution of the exper-
imental campaigns and on a shot to shot basis, the training
set is updated, and the algorithm is retrained. Note that with
this approach, the predictor can work from the first pulse,
without the need of any ‘from scratch training’ with data of
the new device.

2. Physics based indicators and anomaly classification. In
order to take the best measures to counter plasma anom-
alies potentially leading to disruptions, the identification of
the plasma state it is clearly of crucial relevance. Contrary
to most predictors in the literature, which are based on a
black-box approaches, the observers developed in the con-
text of the present work are based on specific and physic-
ally meaningful indicators. They allow a clear understand-
ing of why an alarm has been raised, permitting the control
system to take well informed decisions. These indicators,
being based on clear physical quantities are also expected
to be better transferable from one device to another. Some
work in this direction was performed in the past but only
for mitigation purposes [18, 19, 42, 46].

3. Time-to-anomaly prediction.The identification of an anom-
aly is not sufficient to take appropriate counteractions.
Indeed, some countermeasures might require a minimum

time to have an effect on the plasma. Estimates of the inter-
val remaining, before the onset of a major anomaly, would
be extremely valuable to optimise the control strategies
[49]. Therefore, the developed tools provide also time-to-
anomaly estimates for some of the most relevant dangerous
situations, which can occur in the discharge.

The developed predictors are meant to provide informa-
tion useful for all the major classes of interventions envis-
aged to counteract disruptions: avoidance, prevention and mit-
igation. In the community avoidance indicates the actions of
the control system to keep the plasma away from the stabil-
ity boundaries, thus allowing the experiments to continue with
their original programme. Preventions are the measures to be
undertaken when there is not enough time for avoidance and
the best strategy consists of terminating the discharge rap-
idly, to prevent the fatal instabilities from growing and caus-
ing a disruption. When a disruption has become unavoidable,
the only remaining option is to activate the systems, such as
massive gas injection or shattered pellet injectors, to mitigate
its consequences.

With regard to the organisation of the paper, next section
describes the main families of anomalies leading to disrup-
tions, the indicators developed to detect them, and the solu-
tions devised to estimate the time remaining before the onset
of the various anomalies. The subject of section 3 are the tech-
niques of adaptive learning required to keep pace with the
changing experimental conditions. In section 4 the description
of the database is provided, together with the criteria to assess
the performance of the predictors. The results of the real time
like application of the proposed methodology to a very large
dataset of JET, including thousands of discharges, are provided
in section 5. The conclusions and lines of future developments
are discussed in the last section of the paper.

2. Physics-based indicators for real-time
identification of anomalies and the estimation of
the time to anomaly

As alluded to in the previous section, any successful control
strategy must rely on the proper identification of the system
to be controlled. The determination of the plasma state for
the prediction of anomalies is a very delicate matter even for
machines that have already produced a lot of data. However,
even if the details of the plasma dynamics leading to disrup-
tions are not fully understood, there is a quite general con-
sensus about the main phases of the plasma evolution leading
to a disruption. In metallic devices, the anomalies that typ-
ically occur earlier in the discharges are the ones involving
the emitted radiation (due to impurity accumulation or excess-
ively high density). As a consequence of specific radiation pat-
terns or other causes, most disruptions are preceded by distor-
tions of the kinetic profiles, mainly of the electron temperature
(hollowness, edge cooling (EC)). In the last stages before the
disruption, the previous problems cause the growth of mag-
netic modes, to a level at which the configuration cannot be
sustained anymore.

3



Nucl. Fusion 64 (2024) 046017 R. Rossi et al

Irrespective of the details and specificities of the plasma
route toward a disruption, the experience of present-day
devices indicates quite clearly that the most important meas-
urements for prediction are diagnostics of themagnetic config-
uration quality, indicators of the temperature profile and quan-
tifiers of the emitted radiation. The same quantities are also
the most suited to determining the time remaining before the
onset of the mainmacroscopic instabilities, potentially leading
to disruptions. The solutions adopted for the observers, util-
ised in the rest of the work, are summarised in the following
subsections.

2.1. Detecting anomalies in the magnetic configuration

The amplitude of the locked mode has traditionally been a
workhorse for triggering mitigation actions in many devices
and on JET in particular (see [16–18, 50] and references
therein). In this work, the detection of anomalous locked
mode signals is implemented with a new approach that com-
bines physics understanding and experimental data. Indeed,
at beginning of a new experimental campaign or of a new
tokamak, there are not specific data and therefore the pre-
dictors must be trained with physical information provided
by other tokamaks, other campaigns, theory and/or numerical
information.

Large locked mode signals are correlated with the size of
the magnetic islands due to small toroidal number (usually
n = 1) macroscopic instabilities [1, 48]. It is now clear that
when the velocity of these modes decreases in the laboratory
frame of reference (finally locking to the wall), the amplitude
of the radial perturbations increases exponentially and usu-
ally leads to a disruption. From a theoretical point of view,
the threshold for the locked mode amplitude triggering a dis-
ruption is interpreted in terms of the Chirikov parameter [51].
However, in real time the correct computation of this quantity
is quite challenging and in the last decades empirical mod-
els have been developed to understand what is the best mode
locking threshold to be used in multimachine applications. A
multimachine scaling in power law form for the mode lock-
ing, interpreting the various quantities in terms of the magnetic
islandmaximumwidth, was formulated in [48]. Unfortunately,
such a law does not perform very well for JET with the ITER
like wall [47] and therefore alternatives have been proposed.
In [47] a simple scaling law, derived with a machine learn-
ing based methodology, was proposed. It links the locked
mode amplitude with the internal inductance. In this work, we
have implemented this approach to find an empirical equation
that correlates the normalised locked mode signal (the locked
mode amplitude divided by the magnetic poloidal field at the
geometrical minor radius, calculated through the plasma cur-
rent, LMN) with the internal inductance (li):

LMN,threshold = albi . (2.1)

The equation has been particularised using the same cam-
paigns of the cited article [47] with exactly the same setup. To

this end, first the disruption probability is modelled with the
sigmoid function reported in equation (2.2):

pLM = ed1(LMN−LMN, threshold)+d2/
(
1+ ed1(LMN−LMN, threshold)+d2

)
.

(2.2)
At the beginning of a new experimental campaign, no new

data is available and therefore the locked mode predictor is
trained to reproduce equation (2.2). The predictor consists of
a simple feed forward neural network (3 hidden layers of 20
neurons each with tanh transfer functions plus one neuron out-
put layer), which returns the probability (qLM) of an anomal-
ous locked mode amplitude. The cross-entropy loss function
has been used to train the neural network:

lossphysics =−
∑

pLM,1 ln(qLM,1)−
∑

pLM,0 ln(qLM,0)

(2.3)
where the subscript 0 indicates a safe discharge, the subscript
1 a disruptive shot. Moreover, pLM,0 is the expected probability
that the mode locking is not anomalous (calculated as 1—pLM
and derived from equation (2.2); qLM and qLM,0 are the pre-
dicted probabilities (the neural network predicts qLM and qLM0
is 1—qLM).

Once the new device or campaign starts, pulse by pulse,
the training set is meant to be updated (see section 3) and the
neural network retrained adding a new data-driven term to the
loss function:

loss=
(lossphysics +α lossdata)

1+α
(2.4)

where:

lossdata =−
∑

class=1

ln(qLM,1)−
∑

class=0

ln(qLM,0) . (2.5)

And α is a weight parameter. In this work, α has been set to
a constant value equal to 1. However, it is possible to adjust its
value as a function of the amount of the training set data and
their reliability.

In terms of interpretation, this predictor returns the prob-
ability that the time slice has an anomalous disruptive mode
locked amplitude. Since the locking to the wall of themagnetic
perturbation is the last event before a disruption, pLM can also
be conceived as the probability of the plasma disrupting. This
is due to the fact that in general, once a macroscopic mode
has locked to the wall, there is not enough time to undertake
any other action except mitigation. As discussed in the next
subsections, this correspondence, between probability of an
anomaly and probability of disruption, does not apply to the
outputs of the other predictors for avoidance and prevention.

2.2. The characterisation of the kinetic profiles

The two electron temperature anomalies considered in this
work are EC and core hollowness. Both anomalies leave a clear
signature in the electron temperature profiles. In the case of
hollowness, the core electron temperature is not peaked in the
centre but off-axis, becoming bimodal. In the case of EC, a
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strong decrease of the peripheral temperature is observed [12,
41, 42, 52]. The two indicators proposed in [52] to quantify
these anomalies are the ones used in this work. They are briefly
described in the following and they are calculated using the
data of JET high resolution Thomson scattering.

Regarding the electron temperature hollowness (ETH), the
‘Gaussian fitted hollowness’ indicator has been implemen-
ted. The indicator is derived by fitting a bimodal symmetric
Gaussian function to the electron temperature profile. If the
profile is unimodal (no hollowness), the separation of the two
Gaussians is in principle zero. On the contrary, for hollow pro-
files, the separation of the two Gaussians increases with and it
is directly proportional to the degree of hollowness. The separ-
ation is quantified by the Bhattacharya indicator particularised
for symmetric Gaussians. Then, by using a sigmoid function,
the probability to have an ETH is computed (the coefficients
d1ETH and d2ETH have been calculated using numerical cases
reported in the reference paper [52]):

pETH = ed1ETH(ETH−ETHthreshold)+d2ETH

/
(
1+ ed1ETH(ETH−ETHthreshold)+d2ETH

)
. (2.6)

EC is detected using the cumulative distribution function
(CDF) of the normalised electron temperature profile and by
calculating an ‘edge radius’ ρ98 as the radius containing the
98% of the CDF. Then, the lowest is the radius, themore severe
is the EC. Again, by using a sigmoid function, the probab-
ility of the plasma being in an EC dangerous situation can be
computed (the coefficients d1EC and d2EC have been calculated
using numerical cases shown in [52]):

pEC = ed1EC(EC−ECthreshold)+d2EC/
(
1+ ed1EC(EC−ECthreshold)+d2EC

)
.

(2.7)
To interpret equations (2.6) and (2.7) two comments are in

place. First, it should be noticed that both anomalies deform
the temperature profile independently from the absolute value
of this quantity. The relevant information resides in the shape
of the profile. Indeed, for example, what really matters for
the control system is how hollow a temperature profile is
and this can be well quantified by a simple form factor.
Consequently, the detection of electron temperature anomalies
does not require any machine learning method (no training
set, etc), because the critical values can be determined on the
basis of previous experiments and do not need to be adjusted
during the campaigns. Secondly, the probabilities expressed
by equations (2.6) and (2.7) have to be interpreted differently
from the one of the mode locking, described in the previous
subsection. Indeed, pETH and pEC quantify how anomalous
the temperature profile is, not directly the plasma tendency to
disrupt. Indeed, typically the mode locked also must become
anomalous before the plasma configuration collapses. As will
be discussed in section 2.4, therefore pETH and pEC can be util-
ised to provide information about the propensity of the plasma
to developing macroscopic magnetic instabilities, not directly
about the plasma propensity to disrupt.

2.3. Quantifying anomalies in the emitted radiation

Contrary to mode locking and electron temperature anom-
alies, radiation anomalies do not lend themselves easily to a
straightforward interpretation for various reasons. First, the
phenomena influencing the radiation emission in a tokamak
are extremely complex. Consequently neither physical nor
empirical equations of radiative disruptive thresholds have
been found, which can be applied in real time and easily
transferred from one device to another. Moreover, contrary
to temperature hollowness or EC, radiation cannot simply
be eliminated. Therefore, an alternative physics-guided semi-
supervised methodology has been developed to detect anom-
alous radiation patterns.

Another difficulty resides in the fact that the plasma radi-
ation emission in tokamaks is usually estimated with the inver-
sion of bolometric signals, utilising quite sophisticated tomo-
graphic algorithms. This approach allows obtaining high spa-
tial resolution information and the advanced method based on
the maximum likelihood can also associate confidence inter-
vals to the results [53–56]. Unfortunately, the available tomo-
graphic algorithms are too time consuming and their deploy-
ment in real-time is, at themoment, unrealistic [57]. The work-
around solution of calculating radiation peaking factors, as
developed in [42], can be useful but, their interpretation can be
delicate in some situations and they lack sufficient spatial res-
olution to identify all the potentially disruptive emission pat-
terns detected on JET. A systematic analysis of the peaking
factor limitations can be found in [58]. A possible alternative
to estimating the local emissivity is the use of deep learning
[59, 60]. However, being these methodologies based on super-
vised techniques, they may not return reliable results in anom-
alous situations. Moreover, transfer learning to new tokamaks
should be developed to render this technology applicable from
day 0 of a new device.

The alternative adopted in the present work consists of trad-
ing space resolution for time resolution. The emission is cal-
culated for macro-pixels derived by macro-views, obtained by
summing the corresponding lines of sight of the bolometers
[58, 61]. Given the topology of JET bolometric cameras, it
is possible to divide the projections into three vertical and
three horizontal macro views, whose intersections identify the
eight regions reported in figure 1. Obtaining the emission from
these macro/pixels requires solving a system of six equations
with eight degrees of freedom. By imposing that the emissiv-
ity must be positive, this system of equations can be solved
by making recourse to non-negative least square minimisa-
tion methods [62]. Given the types of emissivities encountered
on JET, the iterative routine implemented always converges in
less than 50 µs, more than adequate since the cycle time of JET
real time network is 2 ms. The absolute values of the radiation
emission from the macro-pixels have been checked with the
most accurate tomographic method available, the one based on
the maximum likelihood [55]. Since it has been found that the
average error is around 15%–20% in most cases, the proposed
simplified inversion method has the spatial resolution, the time

5



Nucl. Fusion 64 (2024) 046017 R. Rossi et al

Figure 1. The macro-pixels resulting from intersecting the macro-views described in section 2.3 (left) and the four macro-regions to detect
radiation anomalies (right).

resolution and the accuracy to detect all the most important
radiation anomalies potentially leading to disruptions on JET.

Then, the eight macro-pixels are used to calculate the radi-
ation in four macro-regions of interest:

• Core: this region is exactly the one shown in figure 1 left.
This region allows detecting anomalous core radiation due to
heavy impurity accumulation and is usually correlated with
the onset of ETH.

• Divertor (Div): also this region is exactly the one shown in
figure 1 left. This region allows evaluating excessive radi-
ation in the region of the divertor.

• High-field: calculated as the sum of high-field left, high-
field top and top. This region is used to detect MARFE and
MARFE-like radiation patterns, phenomena that sometimes
precede electron temperature edge reductions at the edge.

• Low-field: calculated as the sum of low-field bottom, low-
field right and low-field top, this region is useful to mon-
itor the radiation emitted by the frequently formed radiative
blobs on the low-field side, which sometimes precede core
radiation and hollowness or EC.

To predict the onset of radiation anomalies, the simple emis-
sion of each macro-pixel is not enough though. The really rel-
evant quantity is the ratio of the radiated power divided by the
local internal energy:

Λi =
Prad (ρ,θ, t)
Ep (ρ,θ, t)

(2.8)

where ρ and θ are the coordinates of the corresponding macro-
pixel barycentre. The Λi quantities have the units of s−1

and can therefore be interpreted as the inverse of cooling
factors. How to calculate the denominator of equation (2.8),
the average plasma energy of a macro-pixel, is explained in
appendix A.

On a shot-to-shot basis, the training sets of ‘safe’ and
‘anomalous’ plasmas are updated and the cooling factors
recalculated (see training set update logic section). However, a
typical classification algorithm of classification cannot be used
because:

1. The anomalous training set would be very unbalanced, con-
taining a lot (most) of time slices when the plasma is not
anomalous.

2. The safe training set may contain some time slices where
the plasma is anomalous but the plasma does not disrupt
for various reasons (for example because the ramp down
has already started and the plasma dynamics is slow enough
to allow the safe termination of the discharge).

This implies that the classification training set could be
inaccurate and classification algorithms may fail. Therefore,
the following simple but more robust approach has been
developed. The probability density function of the various
cooling factors is calculated in the two cases of safe and dis-
ruptive discharges. So, for each region, the pdfs of ‘safe’ and
‘(potentially) anomalous’ Λi are derived from the available
examples. What it is expected is that the pdfs would diverge at
higher Λi values as shown pictorially in figure 2(a) (the pdf
of anomalous data should contain more cases at larger Λi).
An example for the core radiation anomaly is shown in figure
(b, left). From the pdfs the corresponding CDFs are calcu-
lated and the potential true positive and false alarm (in per-
centage) trends are obtained (figures (a) and (b), right). The
true positive percentage (or sensitivity) trend is calculated as
one minus the anomalous CDF, while false alarm percentage
(or 1—specificity) is one minus the safe CDF.

Once the false alarms and sensitivity trends are derived
(figure 2(b) right), the Λthreshold,i is evaluated by using the fol-
lowing rules:
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Figure 2. The method to calculate the Λthreshold. Top: a cartoon describing the main principle for an unspecified region: the anomaly is
calculated in terms of a threshold in the cumulative distribution function (see text for more details). Bottom: experimental pdf and CFD for
the core radiation anomaly. The figure on the left clearly shows that there is a strong divergence between save and anomalous for Λcore larger
than 5, while the right figure illustrates the false alarm and true positive rates as a function of the threshold.

1. Search for the threshold that ensures a false alarm rate lower
than 0.05% and a true positive larger than the false alarm
rate.

2. If no threshold satisfies the previous rule, the false alarm
limit is increased to 0.1%.

3. If no threshold satisfies the previous rules, the false alarm
limit is increased to 1%.

Once the threshold has been determined on the basis of the
CDFs, the probability to have a local radiative anomaly is cal-
culated with a sigmoid function:

pΛ = ed1Λ(Λi−Λthreshold,i)+d2Λ/
(
1+ ed1Λ(Λi−Λthreshold,i)+d2Λ

)
.

(2.9)
Note that a Λthreshold,i is found for each macro region (Core,

HF, LF and Divertor) and an alarm is raised if one of the pΛ
exceeds 0.5.

As in the case of pETH and pEC, also equation (2.8) is to
be interpreted as the probability of the radiation being anom-
alous in a certain region, compared to the value assumed in

safe discharges. Therefore, as discussed in the next subsec-
tion, pΛ provides information about the probability of anom-
alies developing in the temperature profile not directly about
the propensity of the plasma to disrupt.

2.4. Prediction of the time to anomaly

By using the anomaly indicators described in the previous sub-
sections, the algorithm is able to detect an anomaly and to clas-
sify it in one of the classes: mode locking, EC, hollowness,
core radiation, HF radiation, LF radiation, divertor radiation.
As mentioned, in the case of mode locking, the associated
probability can be interpreted as the propensity of the plasma
to disrupt. For the other classes, the probabilities quantify the
how severe the corresponding anomaly is with respect to safe
discharges. This is the basic information that the control sys-
tem requires to take the proper countermeasures (mitigation,
prevention, and avoidance). However, in order to accurately
control the plasma and optimise feedback schemes, it would
be very useful to have an idea of how much time is available
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to undertake a certain action. For this reason, three specific
predictors have been developed that predict the time to hol-
lowness, time to EC and time to mode locking (tr,LM, tr,ETH
and tr,EC).

The task is a typical supervised regression problem and
for each predictor a feed-forward neural network is used. The
architecture used is a three hidden layers neural network with
20, 10 and 5 neurons respectively. The output, i.e. the time
to the anomaly, are predicted in logarithm scale in the range
from 1 ms to 2 s (2 s is considered the time horizon). The
loss function is a weighted MSE aiming at weighting more
shorter times, to compensate for the fact that in shorter inter-
vals there are less data (for example, from 1 ms to 10 ms there
are 10 points per pulse, while from 100 ms to 1 s there are 900
points):

lossW,MSE,j =

∑
Wi(log10tj,i− log10yj,i)

2∑
Wi

(2.10)

where:

Wi =
1
yj,i

. (2.11)

While tj, i and yj,i are the predicted and the effective time
to anomaly j of the ith observation. These times are calculated
continuously for the entire discharge providing each network
with the following signals as inputs: the inputs are the plasma
current (Ip), the magnetic toroidal field (Bt), the dimensionless
locked mode (LMN), the internal inductance (li), the electron
temperature and density in the core, middle and edge regions,
the electron temperature profile anomaly indicators (ETH and
EC), the Λi in the four regions (Core, HF, LF and Div) and the
Λheating.

The electron temperature and density in the core, middle
and edge regions are the average values calculated considering
the radii proposed in [12] (core for R0 < R < 3.4, middle for
3.4 < R < 3.6, and edge for 3.6 < R < 3.8), while Λheating is
the total input power normalised to the plasma energy (note
that analogously to radiative Λ, this value is the inverse of a
time that represents, in a certain sense, a characteristic heating
time).

3. Adaptive implementation of proximity control

All the previous predictors are meant to be run in parallel
during the execution of the experiments. Except the electron
temperature anomaly indicators that are simple form factors,
they are based on data driven or hybrid physics-data driven
approaches. These predictors need to adapt to the changing
circumstances, ensuing from the evolution of the experimental
campaigns. To this end, the implemented approach consists
of updating the training set on a shot-to-shot basis, not only
to maintain but also to improve the performances of the pre-
dictors. Specifically, an automatic simple training set update
logic, requiring no human intervention, has been developed.
Of course, this implies that the results obtained in this work
are conservative. Indeed, some post pulse analysis, performed
by experts to better classify data before retraining, would lead

to various improvements of the complete algorithm perform-
ances. Such corrective manual interventions could be easily
implemented in ITER between subsequent discharges. Such
human revisions could also remedy problems with the dia-
gnostic signals, even if the data quality and reliability will have
to be much better on ITER and DEMO than on JET. In any
case, the automated adaptive approach is the one implemen-
ted to obtain the results reported in the rest of the work. The
logic of this automatic updating of the training set is described
in detail in the following.

3.1. Mode locking training set update

The mode locking predictor is based on the locked mode sig-
nal and it typically needs to intervene at the end of the pre-
disruptive phase, to trigger the measures of last resort, the mit-
igation actions. Consequently, the training set must be update
only in clear cases:

1. If the previous pulse is disruptive and no remedial actions
have been undertaken (no mitigation, prevention or avoid-
ance), the last 100 ms are inserted in the training set and
classified as anomalous (class = 1).

2. If the previous pulse is safe and no alarms have been raised,
the pulse is stable and 100 random points are sampled
sequentially, added to the training set sequentially (respect-
ing the time ordering) and classified as safe (class = 0).

3.2. Radiation anomaly training set update

In the case of radiation anomaly, the training set update is less
restrictive, and it follows the rules:

1. If a mode locking or an electron temperature anomaly
is detected in the last pulse, the previous 2000 points
are added to the training set and labelled as anomalous
(class = 1). It has indeed proved more effective to train the
predictor with the information about the anomalies caused
by abnormal radiation than with the disruptive time slices.

2. If the last pulse triggered no alarms and it did not
disrupt (safe pulse), all the points of the pulse are
added in the training set and labelled as not anomalous
(class = 0).

3.3. Time to anomaly training set update

The training set, to estimate the time remaining before an
anomaly, is updated following the criteria:

For time to mode locking:

1. If the mode locking detection algorithm predicts a locked
mode anomaly, the 2000 points before the alarm are taken
and the targets are given as a function of the actual differ-
ence between the alarm time and the actual beginning of the
current quench.

2. If no mode locking alarms are triggered and the pulse is not
disruptive, 200 points are added to the training set with the
target equal to the time horizon (2 s).
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For Time to EC

1. If the EC detection algorithm predicts an EC anomaly, the
2000 points before the alarm are taken and the targets are
given as a function of the actual difference between the
alarm time and the actual beginning of the current quench.

2. If no EC alarms are triggered and the pulse is not disruptive,
200 points are added to the training set with the target equal
to the time horizon (2 s).

For time to hollowness:

1. If the hollowness detection algorithm predicts a hollowness
anomaly, the 2000 points before the alarm are taken and
the targets are given as a function of the actual difference
between the alarm time and the actual beginning of the cur-
rent quench.

2. If no hollowness alarms are triggered and the pulse is not
disruptive, 200 points are added to the training set with the
target equal to the time horizon (2 s).

The dataset is randomly divided into training set (70%) and
test set (30%).

As mentioned all these updates are implemented after
each discharge. The computational times, being of the order
of minutes, are fully compatible with the time between
discharges.

Note that disruptive pulses are fewer than safe pulses and
this may lead to unbalanced dataset. To alleviate this problem,
different methodologies have been used. For mode locking
classification, the cross-entropy loss function has been used.
For time to anomaly prediction, on a safe pulse we sample
fewer points than disruptive points and we also weighted the
one closer to the disruption (equation (2.10)).

4. The database and the criteria to evaluate
predictors’ performances

This section is devoted first to the description of the large data-
base built to test the proposed approach (section 4.1). Then the
criteria to evaluate the performances of the developed tools are
overviewed (section 4.2).

4.1. Description of the database

The database consists of 1683 JET pulses, spanning from the
high-power DD campaign to the full tritium and DT campaign
(C38, C39, C40, C41). The DB includes 1141 not disruptive
pulses and 542 disruptive. The flat-top plasma current ranges
from 1 MA to 3.5 MA, while the toroidal magnetic field goes
from 1.7 T to 3.9 T. The maximum input power is 37.8 MW,
where 31.6MWwere provided by the NBI and 5.1 MW by the
ICRH. See table 1 for more details.

All disruptive shots have been included, except intentional
disruptions and a few cases, in which essential data are miss-
ing. Note that, even if some of these pulses are in an opera-
tional regime where disruption would not involve danger for
the tokamak, they have been included to test the capability of
the predictor to perform well in a large range of plasma para-
meters. A graphical overview of the entire database is provided
in figure 3. The bins cover 0.5 MA centred on the values indic-
ated on the x axis (for example the bin centred at 2.5 MA
includes discharges in the interval 2.25–2.75 MA). The abso-
lute frequencies (figure 3(a)) are calculated dividing the num-
ber of safe (disruptive) cases in the bin e by the total number
of safe (disruptive) pulses in the entire database. The relative
frequencies (figure 3(b)) are calculated as the number of safe
(disruptive) discharges in each bin divided by the total number
of discharges in the same bin.

4.2. The criteria to evaluate the performances of the
predictors in simulated real-time conditions

In order to evaluate the performances of the proposed predict-
ors, they have been run in conditions exactly the same as the
ones they would have faced in real life. To simulate an online
situation, it is important to define the performance metrics and
the alarm priorities.

The alarm priorities are in order of decreasing priority: mit-
igation, followed by prevention and then avoidance. It means
that, for example, if both mitigation and prevention alarms
are raised at the same time, it is assumed that the pulse must
be mitigated because there is no time left for anything else.
Therefore, the performance of the predictors will be evalu-
ated according to the following classification, in which mitig-
ation time threshold indicates the minimum time needed for
implementing mitigation actions, prevention time threshold
indicates the minimum time needed for implementing preven-
tion actions and avoidance time threshold the minimum time
needed for undertaking avoidance strategies.

In the case of not disruptive pulses:

1. If no alarms are triggered the pulse is classified as safe no
false alarms.

2. If the predictor launches only avoidance alarms, the pulse
is classified as safe avoidance.

3. If the predictor triggers only a prevention alarm, the pulse
is classified as safe false prevention.

4. If the predictor triggers only a mitigation alarm, the pulse
is classified as safe false mitigation.

5. If the predictor triggers both prevention and mitigation
alarms, there are two possibilities. If the prevention alarm
time is larger than the prevention time threshold, the pulse is
classified as safe false prevention, otherwise it is classified
as safe false mitigation.

6. If the predictor triggers avoidance alarms and prevention
and/or mitigation alarms, there are three possibilities. If
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Table 1. Database disruption/Safe pulse statistics. C38, C39, C40, C41 are the names of JET campaigns spanning from the high-power DD
campaign (C38) to the full tritium and DT campaign (C41).

C38 C39 C40 C41 Total

Total 907 168 310 298 1683
Safe 653 133 184 171 1141
Disruptive 254 35 126 127 542
Ramp up disruptions 0 0 0 0 0
Flat top disruptions 62 23 33 33 151
Ramp down disruptions 192 12 93 94 391

Figure 3. Absolute (a) and relative (b) frequencies of safe and disruptive discharges as a function of the main plasma parameters (see text
for the details about the calculation of the percentages).

the avoidance alarm time is larger than avoidance time
threshold, the pulse is classified as safe avoidance, other-
wise it is classified as safe false mitigation or safe false pre-
vention according to the previous rules.

In the case of disruptive pulses:
1. If no alarms are triggered the pulse is classified as missed.

2. If only a mitigation alarm has been triggered and the
mitigation warning time is smaller than the minimum
time for mitigation, the pulse is classified as tardy
mitigation.

3. If only a mitigation alarm is triggered and the mitigation
warning time is larger than the mitigation time threshold,
the pulse is classified as good mitigation.
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Figure 4. The logic of the typical sequence and priority of the alarms.

4. If only a prevention alarm is triggered and the prevention
warning time is smaller than the prevention time threshold,
the pulse is classified as Tardy prevention.

5. If only a prevention alarm is triggered and the prevention
warning time is larger than the prevention time threshold,
the pulse is classified as good prevention.

6. If both mitigation and prevention alarms are triggered,
if the prevention warning time is larger than the pre-
vention time threshold, the pulse is classified as good
prevention. Otherwise, if the mitigation warning time
is larger than the mitigation time threshold, the pulse
is classified as good mitigation, else it is a tardy
mitigation.

7. If an avoidance alarm is raised and the avoidance warning
time is larger than the avoidance time threshold, the pulse is
classified as good avoidance, otherwise the previous rules
apply.

Figure 4 summarises the metrics and the main paramet-
ers implemented to define the metrics. Note that two avoid-
ance levels have been considered in the scheme. They are just
triggered as a function of the alarm. If a radiation anomaly
is detected without an ETH alarm, the plasma should be in
an operational region more stable than the operational region
where hollowness is detected. Therefore, different avoidance
schemes may be used. Consequently, with avoidance lv2 it
is intended a radiation anomaly with no electron temperature
anomalies, while anomaly lv1 is triggered when hollowness
is detected (irrespective of the presence of radiation anom-
alies). All the details and a table about the evaluation criteria
are provided in appendix B.

5. Results

This section provides a detailed overview of the results
achieved with the developed techniques. section 5.1 describes
how the predictors operate in practice and their overall per-
formances. Some representative shots are specifically dis-
cussed in section 5.2. The relation between the estimates of
the presented tools and JET control systems is the subject of
section 5.3. The sensitivity of the predictors’ results on the
required warning times is investigated in section 5.4.

5.1. Predictor operation and performances

In this section, an example of how the predictor evolves dur-
ing the campaign, for a fixed value of the hyper-parameters, is
provided. In section 5.4, how performances change as a func-
tion of the required warning times for prevention and avoid-
ance is analysed. The results in this section have been obtained
assuming that the minimum warning time to undertake avoid-
ance and prevention actions are 100 ms. The minimum time
required to undertake successful mitigation actions is assumed
to be 10 ms, to reflect the capabilities of JET tools.

At the beginning of the campaign, it is assumed that no
experimental data is available. Thus, the mode locking pre-
dictor is trained with the physics loss function (the operational
space after the first training is shown in figure 5—top left). The
hollowness and EC indicators are determined by the thresholds
that are self-determined (no training is needed). The radiation
anomalies cannot be detected because it is considered too dif-
ficult to extrapolate the impurity and radiation behaviour to
new, possibly much larger devices (however, if future studies
will find some reliable scaling laws for radiation anomalies,
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Figure 5. Mode locking—internal inductance predictor operational space as a function of retraining. The colour code indicates the
probability of disruption. Black dots: safe time slices. Red crosses: disruptive time slices.

they may be implemented following a logic similar to the one
used in this work for mode locking). It is assumed that also for
the time-to-anomaly predictors there is not enough prior know-
ledge to train them without specific data of the new device.

In the analysed database, the evolution of the experiments
is such that only after 30 discharges it is meaningful to perform
the first training with the new data. Up to that point (before the
first training), 14 disruptive pulses have been observed and 6
were mitigated, 3 prevented, 5 avoided (ETH) without neither
tardy alarms nor missed disruptions. Regarding the 16 safe
pulses, 3 were mitigated and 3were avoided. However, by ana-
lysing the 6 pulses where ‘false alarms’ have been triggered, it
can be observed that the anomalies are actually present, even
if they do not lead to a major disruption. A typical example is
pulse 94 162, the 6th pulse in the database. In this case, a ‘false
avoidance’ due to ETH and a following false mitigation alarms
are raised. However, both anomalies actually occur during the
discharge. Figure 6 shows the main signals and anomaly indic-
ators for this pulse. Both core radiation anomaly and hollow-
ness indicators increase from t= 13 s, with a quite deep hollow
profile from 13.22 s to 14.042 s, when the n= 1 mode locking
amplitude increases (triggering a mitigation alarm). However,
in this case unusually the mode locking does not lead to a dis-
ruption. Moreover in this shot mitigation actions would not

have had any major detrimental effect because the plasma cur-
rent was already very low at the moment of the alarm.

After 30 pulses, all the predictors (mode locking, temper-
ature profile anomalies, radiation anomaly and the time-to-
anomaly) have been retrained by combining the physics loss
function and the data driven loss function, derived from the
training set automatically extracted from the first 30 pulses
of the campaign. From this discharge and on the shot to shot
basis, the entire algorithm detects and classifies the various
anomalies and is automatically updated, by taking decisions
according to the rules described in the previous section. The
evolution of the operational space of the LM predictor and the
radiation thresholds for the core region are shown in figures 5
and 7 respectively. The trends of this macropixel are repres-
entative of those of the other 3 regions. Figure 7 must be inter-
preted as described in figure 2 and the relative text.

The overall performances as a function of the progressive
pulse number are shown in figure 8. At first, it can be observed
that the sensitivity of the predictor is very high. At the end of
the campaign, only three disruptive pulses were not correctly
avoided, prevented, or mitigated (they were all tardy mitig-
ations). Of the disruptive pulses, 190 have been mitigated,
81 prevented and 268 avoided. Of the three pulses for which
the mitigation alarm was launched less than 10 ms before the
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Figure 6. Pulse 94 162: main plasma parameters and implemented anomaly indicators. In the 4th row 2nd column it is possible to observe
the core radiation peak detected as anomalous together with the electron temperature hollowness (3rd row, 2nd column). The mode lock
signal (1st row, 2nd column) increases at the end of the hollowness/core radiation detection, suggesting that the mode has been triggered by
the anomalous kinetic profile.

Figure 7. Probability distributions of anomalous and safe Λcore after the first, the 5th and the last retraining.

beginning of the current quench, in two cases the warning
time was 9 ms and in one case 2 ms. Given the length of the
current quench (at JET, most of current quenches last for at
least 30 ms, and usually they are between 50 and 150 ms),
mitigation would have been potentially effective also in these
three discharges [63, 64]. Moreover, current quenches should

be longer for large size future tokamaks (in ITER it is expec-
ted that they will be at least one order of magnitude longer)
[63, 64].

For what concerns the specificity, it is important to dis-
cern between ‘false anomaly detection’ and ‘wrong action’.
‘False anomaly detection’ occurs when an indicator detects an
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Figure 8. Top-left: percentage of disruptive and safe pulses in the database. Top-right: total sensitivity (avoided + prevented + mitigated
disruptions) and percentage of correct actions triggered on disruptive pulses. Bottom-left: percentages of triggered ‘hard actions’
(mitigation + prevention) on safe pulses with high-plasma current. Bottom-right: sensitivity and total number of alarms triggered on safe
pulses. The x axis reports the progressive discharge number, because the predictors are adaptive and run to simulate deployment in real time
during the evolution of the experimental programme.

anomaly that is not actually present in the discharge. On the
contrary, ‘wrong action’ is when a control/mitigation action is
triggered but the plasma does not actually need it. For example,
if the LM indicator detects an alarm and a locked mode is
actually present, the outcome is a ‘true anomaly detection’.
However, if a mitigation action is triggered but the plasma
would have survived without this action, this is considered a
‘wrong action’.

With regard to the anomaly detection specificity, this value
is extremely high. For example, every time the hollowness
indicator detects a hollow profile the hollowness is actually
present (this can be easily confirmed by visual inspection, and
a detailed analysis is performed in [52]). Therefore, the spe-
cificity of the indicators is of the order of 100% for mode
locking, EC and hollowness. Note that these statistics can-
not be provided for radiation anomalies, since today there is
not a physics-based definition of radiation anomaly. However,
it is possible to estimate the reliability of radiation indicators
through a comparison with the other anomaly indicators. For
example, in 86% of safe pulses where core radiation anomaly
has been detected also electron temperature anomaly and/or
mode locking is observed. In the case of high-field and low-
field radiation anomaly, this percentage drop to 62% and 71%
respectively. However, this estimation is conservative since it
is expected that radiation is only one of the drivers (other are
input power and transport) of electron temperature anomalies.

Different is the case of ‘wrong actions’. In this work, it is
assumed that all actions by the control systemwould have been
undertaken at a probability threshold of 50% for each anom-
aly. For example, if the mode locking amplitude probability
exceeds 0.5, mitigation actions would have been triggered.
However, it is clear that in a real-case, when different control
strategies can be taken, performances can be improved. For
example, there are several studies regarding the possibility of
de-locking magnetic islands, recovering from this instability,
without the need to mitigate the plasma [20, 65, 66]. In such
a case, the pulse could have been recovered by the appropri-
ate control action, without the need of mitigating. This would
reduce significantly the amount of false mitigation and pre-
vention actions. Moreover, it has to be considered that triggers
of avoidance do not lead to ‘hard’ actions in the plasma but
only ‘soft’ ones, i.e. control actions that should allow to run
the pulse in a safer situation. Most of them would improve
the plasma performances even in discharges not disrupting. In
other words, a ‘false avoidance’ trigger is much less harm-
ful than a ‘false mitigation’ trigger and must be interpreted
differently.

Another important consideration is about the feedback
actions actually implemented by JET real time control system.
After years of work, on JET several controllers are operational
to mitigate or early terminate the discharge [67–70]. This
implies that the predictors developed in the present work may
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Figure 9. Left: cumulative fraction of true positive alarms (normalised with respect to the total number of disruptive pulses) for the various
anomaly indicators as a function of the warning time. Right: cumulative fraction of true positive alarms for the predictor using only mode
locking indicator (blue line), combining mode locking and electron temperature anomaly (green line), and using all indicators (LM, Te and
radiation) shown with the red line.

detect anomalies that did not lead to a disruption because of
JET control system intervening with the appropriate remedial
actions. In this part of the work, the statistics have been cal-
culated assuming that safe pulses are stable pulses and that
disruptive ones are not. Therefore, the statistical results previ-
ously reported are to be considered conservative, since many
safe pulses, in which anomalies are detected, are classified as
‘wrong actions’ even if the detected anomaly is absolutely real
(but the plasma does not disrupt for various reasons including
JET real time system interventions). To investigate this aspect
in more details, section 5.3 reports the statistics for a subset of
pulses, which have been analysed manually, to assess in detail
the performances of the developed predictors and how they
fare comparedwith JET control/prevention/mitigation actions.

Figure 9 (left) shows the cumulative fraction of warn-
ing times for each indicator, while figure 9 (right) show the
cumulative fraction of three different predictors: the first one
uses only the mode locking indicators, the second implements
also the electron temperature anomalies, while the third com-
bines all the indicators (magnetic, kinetic profiles, radiation
patterns). The mode locking-based predictor LM returns the
typical warning time curve observed in other works, with a
median warning time around 200 ms. The use of hollowness
and EC indicators allow to increase the median warning time
from ∼200 ms to ∼500 ms, where the strongest contribution
in the large warning time is given by the hollowness (EC are
quite fast phenomena, as also discussed by [12], with a warn-
ing time between EC and mode locking of the order of 50–
100 ms). The implementation of radiative indicators allows to
increase the median warning time to 900 ms, with at least 90%
of pulse predicted at least 200 ms before the beginning of the
current quench.

Concerning the time to anomaly predictions, figure 10 (left)
shows the median error committed by the predictors as a

function to the actual time to anomaly. The errors decrease
linearly in logarithmic scale (as expected, being the predictor
trained in log-scale), showing the capability of the neural net-
works to estimate correctly the order of magnitude of the time
remaining before any of the three anomalies is observed. It is
worth noting that the time-to-mode-locking is the most accur-
ate prediction since mode locking is normally preceded by
the other anomalies (radiation and temperature) with a quite
large margin, allowing a reliable evaluation of the plasma sta-
bility. On the contrary, prediction of time-to-hollowness is
the most difficult because this modification of the temperat-
ure profile can appear very close to core radiation anomaly
and it is not preceded by other (real-time) clear features on
the signals. For this reason, the ‘time horizon’ of the time-to-
hollowness prediction is very small and therefore the error of
the prediction quite high. The EC error is in between, since
it is usually preceded by a clear anomaly radiation on the
high-field side (MARFE-like radiation) and/or low field side
radiation.

Figure 10 (right) shows the coefficient of determination
R2 calculated for each predicted pulse as a function of the
pulse numbers [71]. Here, it can be seen that, on average,
the prediction performances increase with the pulse num-
ber, and this is to be expected since more pulses are used
to train the predictors and therefore they gain in accuracy.
However, it can be observed that performances are quite
good even just after the few pulses used for the training.
It has to be highlighted that the time to anomaly predic-
tion is based on a fully data-driven methodology, since the-
oretical/empirical equations deployable in real-time have not
been developed yet. However, future works on this subject
may achieve a better prediction of the time to anomaly from
day-0, by exploiting physical or empirical models of these
quantities.
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Figure 10. Median time to anomaly prediction error as a function of the actual time to anomaly (left) and the actual vs predicted time to
anomaly R2 as a function of the pulse # of the campaign (right). R2 is the traditional coefficient of determination. In the plot on the right, the
x axis reports the progressive discharge number, because the predictors are adaptive and run to simulate deployment in real time during the
evolution of the experimental programme.

5.2. Pulse examples

In this section, some examples are reported to illustrate the
functioning of the predictors, the various cases leading to
recovering actions, and the amount of information that they
are able to provide for the control of the plasma.

The first example is the pulse 96 486, a baseline scen-
ario with a 3.5 MA flat top plasma current and ∼35 MW
input power (30 MW from NBI, 4.2 MW from ICRH). The
main signals are shown in figure 11. From t = 13 s, a second
before the ramp-down phase, core radiation starts to slightly
increase. At the beginning of the ramp down, due to the input
power decrease, the ELMy mode terminates (figure 11, top-
left) with an increase of impurity accumulation in the core.
At t = 14.179 s, anomalous core radiation is detected, and
at t = 14.246 s also the ETH alarm is triggered. The core
radiation anomaly grows exponentially and at t = 15.47 the
mode locking alarm is triggered. In this pulse, the only disrup-
tion prevention/mitigation action undertaken by JET control
system was the activation of the disruption mitigation valve
at t = 15.492. In figure 11 (bottom-left), the various alarms
raised (following the logic described in the previous sections)
are shown. In brief, the predictor raised an avoidance alarm
1.292 s in advance with respect to the mode locking. Then, the
mitigation alarm is triggered 31 ms before the beginning of the
current quench. It has to bementioned that this is a pulsemitig-
ated by JET control system; consequently, the actual warning
time provide by the developed predictor may be larger than the
one just quoted.

The core-electron temperature anomaly behaviour can be
observed also in figure 12 (right). It can be observed that at
first the core radiation anomaly slightly increases. This leads
to an increase of the ETH that amplifies the core radiation
for two reasons. First the impurities have a radiation function
which increases when the temperature goes down. Secondly
to maintain pressure equilibrium, during the onset of the ETH

the core density peaking is observed to increase, favouring the
accumulation of impurities in the core. Both effects contribute
to establishing a clear positive feedback loop that makes the
thermal-radiative instability grow exponentially.

Figure 13 shows the time to anomaly predictions. When
the plasma in a stable operational regime, far away from the
anomaly onset, the time to anomaly prediction return a very
high value, comparable with the time horizon (between 1 s and
2 s). When core radiation starts increasing (t> 13 s), a drop of
the time to hollowness ETH signals is observed and when an
anomalous core radiation is detected (t = 14.179), the time to
ETH is around 35 ms. After 67 ms, the ETH anomaly is detec-
ted. The good agreement between predicted and actual time to
mode locking is shown in figure 13 (right). As anticipated in
the previous section, the prediction of the time to mode lock-
ing anomaly is much more reliable than the time to electron
temperature anomaly since the mode locking is preceded by
clear and measurable effects (radiation, temperature).

The second example is pulse 94 650. This is another
baseline scenario at 3 MA plasma current and 25 MW input
power (22.3 MW from NBI and 2.4 MW from ICRH).

Figure 14 shows the most relevant signals for pulse 94 650.
At first, two spikes are observed in the edge regions (HF and
LF) at t = 6.8 s and t = 13.45 s, probably caused by some
impurity influxes. From t = 15.5, an increase of edge radi-
ation is observed and at t = 15.8 s an intense radiation activ-
ity is observed on the high field side (MARFE-like radiation,
also confirmed by a visible camera). After 175 ms, the edge
radiation leads to an EC of the electron temperature profile
(detected a t = 16.142 s) and a consequent mode locking
at t = 16.515 s. The pulse disrupts at t = 16.611 s, with a
plasma current equal to 1.73 MA. Therefore, in this case, the
avoidance warning time (with respect to the prevention alarm)
lasts for 175 ms, followed by a prevention warning time (with
respect to the mitigation alarm) of 373 ms, and a mitigation
warning time of 96 ms.
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Figure 11. Pulse 96 486—main signals.

Figure 12. Pulse 96 486—Top-left: beryllium spectroscopic line; bottom left: alarms triggered by the predictor. Right: pulse time traces in
the phase-space Λcore—Hollowness indicator.

Figure 15 reports the signal in the space HF radiation
indicator—EC indicator. Also in this case, it is possible to
observe that the radiation and temperature anomalies increase
together, with an exponential growth of the EC signals, since

the local decrease of the electron temperature causes a local
increase of the electron density (pressure balance), with a con-
sequent amplification of the local radiation (confirming the
positive feedback loop).
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Figure 13. Pulse 96 486—Time to anomaly predictions and targets (left: entire pulse: right: zoom near disruption).

Figure 14. Pulse 94 650—main signals.

In figure 16, the time to anomaly predictions for pulse
94 650 are shown. In this case, both the time to mode lock-
ing and time to EC predictions follow quite well the actual
evolution of the respective anomalies, when the pulse is in the
unstable phase.

5.3. Comparison with JET control system

In this subsection, a subset of the entire database is con-
sidered, to compare the results of the predictors with
the already implemented real-time JET controllers and
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Figure 15. Pulse 94 650—Pulse time traces in the phase-space
Λhigh-field—Edge cooling indicator.

prevention/mitigation systems. The pulses included in this
analysis belong to the DD campaign for DT preparation (the
so-called C38) and theywere performed in the framework of to
the twomain JET tasks of developing the ‘ITER baseline scen-
ario’ and the ‘hybrid scenario’. In total, this data set comprises
75 disruptive and 211 safe discharges. These are discharges in
which the interventions of JET control system was very clear
and properly documented.

On JET, different indicators are already implemented to
detect plasma anomalies during a discharge and trigger some
actions to mitigate or prevent disruptions.

Regarding the mitigation actions, on JET there are disrup-
tionmitigation valves (DMV) that inject gas inside the plasma.
This gas causes the plasma to irradiate, loosing energy, and
so reducing the loads on the plasma facing components, since
most of the plasma energy is lost isotropically by the radiation
channel [72, 73].

A second relevant action, that can be considered a preven-
tion action, is the so called ‘jump to termination’ or JTT; it is
used to terminate the plasma discharge early in a controlled
way when some anomalous radiation events occur (e.g. tung-
sten impurity accumulation).

Detailed descriptions of the JET real-time implemented
algorithms and control actions can be found in the literature
[67–70].

Table 2 shows the comparison between the present pre-
dictor and the JET termination actions in the dataset con-
sidered and the main findings are reported below.

All the pulses where the JET control fired the disruption
mitigation valve are detected significantly earlier by the pre-
dictors. In 28 pulses, the avoidance alarms are triggered with
sufficient warning time to make avoidance strategies feasible,
while 5 of them would require prevention and 3 mitigation.
The median anticipation between the avoidance alarm and the
DMV is 689ms, the average is 1.115 s, and theminimum value
is 135 ms. For prevention, the median is 118 ms, the average

135 ms, and the minimum warning time is 80 ms. Finally, for
mitigation there is a median value of 165 ms, an average of
481 ms and a minimum value of 25 ms.

In 19 disruptive pulses a JTT procedure was undertaken and
in 18 of them successful avoidance alarms would have been
triggered by our predictors, whereas in one only the mitiga-
tion alarm would have been triggered. The median avoidance
warning time (with respect to JTT) is 120 ms, with an average
of 350 ms. The minimum value is negative (−0.45 ms), since
two pulses triggered an avoidance alarm slightly delayed with
respect to JTT.

In 20 disruptive discharges, the JET system did not trigger
neither a JTT nor DMV action. However, all of these disrup-
tions occur below the JET plasma current threshold (2 MA)
and therefore actions might not have been triggered for this
reason. In any case, of these 5 pulses would have satisfied the
criterion for mitigated, 4 for prevention, and 11 for avoidance.

Out of all 33 safe pulses where JET triggered a JTT action,
the mitigation predictor triggers seven times: it has been
checked that mode locking was actually present in the ramp
down, below the plasma current threshold for DMV triggering.
In ten discharges the avoidance predictor properly launches
and alarm. In all safe pulses where JET did not take any
actions, also the predictors trigger no alarms. This confirms
that the algorithm is very specific, and that the false alarms
are mostly triggered in situations where the plasma is actually
unstable even if it does not disrupt.

5.4. On the influence of required warning times on the
performances

The results reported in the previous subsection have been
obtained assuming that the warning times required for suc-
cessful avoidance and prevention are both 100 ms (and 10 ms
for mitigation). However, since there is still some research on
control schemes for avoidance and prevention, it is clear that
the minimum warning times may be different in future exper-
iments. It has also to be considered that different warnings
time may be required as a function of the anomaly typology
and intensity. For these reasons, a parametric study of how the
performances vary as a function of the required warning times
has been performed.

Figure 17 shows how the performances in disruptive pulses
change as a function of the required avoidance warning times
(left) and prevention warning times (right). As expected,
avoided disruptive pulse percentages decrease with increas-
ing warning times. However, this decrease is limited and does
not affect the missed/tardy pulses, but simply implies that
the numbers of mitigated/prevented pulses increase. Similar
results are observed for the increase of required prevention
warning times. If the required warning increases, less pulses
will be prevented, but mitigation actions will suffice to avoid
unmitigated disruptions. It has to be note that in this case, since
prevention priority is higher than avoidance (section 4.2—
figure 4), the pulses, in which avoidance alarms are triggered,
remain the same.
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Figure 16. Pulse 94 650—Time to anomaly predictions and targets (left: entire pulse: right: zoom near disruption).

Table 2. Comparison between JET termination actions and the predictor response. DMV is the disruption mitigation valve. JTT is the
acronym indicating the jump to termination procedure.

Total Mitigation Prevention Avoidance

Disruptive JET DMV 36 3 5 28
Disruptive JET JTT 19 1 0 18
Disruptive JET no actions 20 5 4 11
Safe JET JTT 33 7 0 10
Safe JET no actions 178 0 0 0

Disruptive Time vs DMV Mitigation Prevention Avoidance

Mean (ms) 481 135 1115
Median (ms) 165 118 689
Min (ms) 25 80 135

Figure 17. Performances on disruptive pulses as a function of required avoidance warning time (left) and required prevention warning time
(right). The y axes report the number of the successful actions indicated in the legend as percentage of the total number of disruptive
discharges.

The results shown in figure 17 clearly demonstrate that the
adaptive training logic has a good reliability and that all the
predictors work in such a way as to ensure that disruptive
pulses are at least mitigated, favouring actions that aim at trig-
gering prevention/mitigation actions.

6. Conclusions and next steps

A set of predictors have been developed, which combine phys-
ics and data driven methodologies and utilise only signals
and technologies compatible with real time deployment. In
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addition to providing alarms to trigger specific types of
actions, they also estimate the probability of occurrence and
the time to the various anomalies. The ones devoted to mitig-
ation and prevention can be operated from the first discharge
of a campaign or the operation of new devices.

The tests performed in real time like situations provide very
good results in terms of all the most relevant metrics: sens-
itivity, specificity and warning times. Their performances do
not show any significant dependence on the isotopic compos-
ition, proving the generality of the technical solutions adop-
ted. Comparison with the actions taken by JET control sys-
tem indicates two important facts. First the predictors return
very reliable and detailed information, in line with previously
developed and implemented methodologies, but are typically
more informative. Moreover, the vast majority of the alarms
triggered by the developed predictors precede JET remedial
control actions by a very significant margin.

The combination of physics and data-driven techniques
makes it possible to develop predictors that maximise the
transfer of information from studies in different machines, also
allowing the integration of knowledge from theoretical stud-
ies and numerical simulations. In addition, the use of scaling
laws (experimental or empirical) in the models is expected to
facilitate transfer learning and adaptive learning. Being better
grounded in the physics, these models should be less prone to
errors, particularly at the start of operations of a new machine
or when there is a large variation in the machine’s operational
regime.

The results obtained in this work are conservative, because
the physics equation has been kept constant and not updated
with new data. However, on a shot-to-shot basis, the phys-
ical/empirical scaling laws could be updated by the scient-
ists and therefore the extrapolation error could be significantly
reduced. In terms of future developments, it is indeed planned
to test the improvements that can be achieved by manual inter-
vention, by correcting some errors of the predictors. This is
an activity that could take place between discharges in real
life, and it is expected to have a quite significant impact on the
already quite good performances.

The most natural next step in terms of application is cer-
tainly the transfer of the proposed predictors to other devices,
a task that should not be prohibitively difficult, given the nature
of the indicators implemented. Another route to explore is the
potential of state aware predictors, particularised for the main
phases of the discharge, ramp up, flat top and ramp down. This
would require implementing trajectory learning, a series of
techniques which have proven to be quite effective in the past
[22, 34].
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Appendix A. The estimate of the macro-pixels
internal energy

In the simple indicator expressed by equation (2.1), the most
delicate aspect is the determination of the internal energy of
each macro-pixel with sufficient accuracy. The basic alternat-
ives, to estimate this quantity in real-time, are described in this
appendix.

The equation to calculate the plasma internal energy per
unit volume can be written as:

u=
pi+ pe
γ− 1

=
niTi+ neTe

γ− 1
(A.1)

where the subscript e indicates the electrons and i the ions. In
the traditional assumptions of a deuterium fully ionised plas-
mas (ne = ni = n e γ = 5/3) with Te = Ti = T, one obtains:

u=
3
2
nT. (A.2)

The energy inside a given volume V can then be
calculated as:

EV =
ˆ

V

3
2
nTdV (A.3)

An alternative, to determine the plasma energy in a given
region, consists therefore of using the magnetic topology
provided by a real time equilibrium code and the temperature
and density profiles from kinetic measurements (typically the
Thomson scattering). Under the usual assumption of the mag-
netic surfaces being isobars, the temperature, density and pres-
sure fields can be calculated as shown in the example reported
in figure A1. These bidimensional maps allow determining the
energy in any region of the poloidal cross section with discrete
integrals of the form:

Ek =
ˆ

Vk

3
2
nTdV=

3
2
2π

∑∑
2ne,i,jTe,i,jRi,jdRdZ (A.4)

where ne,i,j and Te,i,j are the density and temperature of the
pixel, whose barycentre has the coordinates (i, j). dR e dZ are
the dimensions along R and Z and Ri,j is the major radius of
the corresponding pixel.

Unfortunately, on JET no real-time equilibrium reconstruc-
tion code is routinely available. A simplified but quite effect-
ive alternative solution has proved to be fitting the High-
Resolution Thomson Scattering (HRTS) profiles in the region
from R = 3 to R = 3.9 with a second order polynomial. Such
a fit allows determining the typical percentage of the plasma
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Figure A1. Reconstruction of the temperature, density and pressure fields for discharge number 95 998 at t = 18 s.

Table AI. Relative error of the internal energy fraction estimate with the fit of the HRTS profiles compared to the more sophisticated
calculations using the equilibrium reconstruction.

LFB LFR LFT Core Div Top HFL HFT

Relative error using HRTS 17.03% 8.47% 23.00% 4.08% 13.85% 17.41% 11.80% 23.38%

internal energy contained in each macro-pixel. For a new dis-
charges, the energy in each macro-pixel can be determined as
a fraction of the total plasma energy, which is available in real
time (for example from the measurements of the diamagnetic
effect). Table AI reports the relative error on the energy frac-
tion estimated using the HRTS fitting against the equilibrium-
basedmethod for eachmacro-pixel. It is worthmentioning that
this alternative determination of themacro-pixels energy keeps
the number of diagnostics required by the entire methodology
to a minimum, since the HRTS is also the system used to cal-
culate the indicators of hollowness and EC (see section 2).

Appendix B: predictor performances evaluation
details

The following table provides all the decision rules for eval-
uating the performances of the developed predictors. The
times indicate the instants of the corresponding detections.
∆tmin,mitigation is the minimum time interval required by the
mitigation tools to intervene, ∆tmin,prev is the minimum time
interval required to implement prevention actions, ∆tmin,avoid

is the minimum time interval required to implement avoidance
strategies.
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Table B1. Table describing the rules for the evaluation of the predictor performances.

Pulse type Alarm(s) Condition Classification Rule #

Safe No alarms Safe no false alarms S1
Safe Avoidance Safe avoidance S2
Safe Prevention Safe false prevention S3
Safe Mitigation Safe false mitigation S4
Safe Prevention,

mitigation
If tmitigation−tprevention ⩾∆tmin,prev Safe false prevention S5

Safe Prevention,
Mitigation

If tmitigation−tprevention <∆tmin,prev Safe false mitigation S6

Safe Avoidance,
prevention,
mitigation

If tprevention−tavoidance ⩾∆tmin,avoid

& tmitigation−tavoidance ⩾∆tmin,avoid

Safe avoidance S7

Safe Avoidance,
prevention,
mitigation

If tavoidance−tprevention <∆tmin,avoid

or tavoidance−tmitigation <∆tmin,avoid

Safe false prevention or safe false
Mitigation (see rules S5, S6)

S8

Disruptive No alarms Missed D1
Disruptive Avoidance If tdisr−tavoidance ⩾∆tmin,avoid Good avoidance D2
Disruptive Avoidance If tdisr−tavoidance <∆tmin,avoid Tardy avoidance D3
Disruptive Prevention If tdisr−tprevention ⩾∆tmin,prevention Good prevention D4
Disruptive Prevention If tdisr−tprevention <∆tmin,prevention Tardy prevention D5
Disruptive Mitigation If tdisr−tmitigation ⩾∆tmin,mitigation Good mitigation D6
Disruptive Mitigation If tdisr−tmitigation < ∆tmin,mitigation Tardy mitigation D7
Disruptive Prevention,

mitigation
If tmitigation−tprevention ⩾∆tmin,prev Good prevention D8

Disruptive Prevention,
mitigation

If tmitigation−tprevention <∆tmin,prev

& tdisr−tmitigation ⩾∆tmin,mitigation

Good mitigation D9

Disruptive Prevention,
mitigation

If tmitigation−tprevention <∆tmin,prev

& tdisr−tmitigation < ∆tmin,mitigation

Tardy mitigation D10

Disruptive Avoidance,
prevention,
mitigation

If tprevention−tavoidance ⩾∆tmin,avoid

& tmitigation−tavoidance ⩾∆tmin,avoid

Good avoidance D11

Disruptive Avoidance,
prevention,
mitigation

If tavoidance−tprevention < ∆tmin,avoid

or tavoidance−tmitigation < ∆tmin,avoid

Good prevention, good mitigation,
tardy prevention or tardy mitigation
according with previous D rules.
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