
ar
X

iv
:2

10
4.

12
83

4v
2 

 [
m

at
h.

A
P]

  2
8 

A
pr

 2
02

1

Existence of normalized solutions to mass supercritical

Schrödinger equations with negative potential

Riccardo Molle

Dipartimento di Matematica, Università di Roma “Tor Vergata”
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Abstract

We study the existence of positive solutions with prescribed L2-norm for the Schrödinger
equation

−∆u− V (x)u+ λu = |u|p−2
u λ ∈ R, u ∈ H

1(RN),

where V ≥ 0, N ≥ 1 and p ∈
(

2 + 4

N
, 2∗

)

, 2∗ := 2N

N−2
if N ≥ 3 and 2∗ := +∞ if N = 1, 2. We

treat two cases. Firstly, under an explicit smallness assumption on V and no condition on the
mass, we prove the existence of a mountain pass solution at positive energy level, and we exclude
the existence of solutions with negative energy. Secondly, requiring that the mass is smaller than
some explicit bound, depending on V , and that V is not too small in a suitable sense, we find
two solutions: a local minimizer with negative energy, and a mountain pass solution with positive
energy. Moreover, a nonexistence result is proved.
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1 Introduction

We consider the problem {
−∆u− V (x)u + λu = up−1

λ ∈ R, u ∈ Sρ, u ≥ 0,
(Pρ)

where N ≥ 1 and

Sρ =

{
u ∈ H1(RN ) :

∫

RN

u2dx = ρ2
}
, ρ > 0 .

Throughout the paper we assume

2 +
4

N
< p < 2∗ and V ≥ 0, V 6≡ 0, (1.1)
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up to further restrictions on some Lebesgue norm of the measurable potential V (as usual 2∗ := 2N
N−2

if N ≥ 3 and 2∗ := +∞ if N = 1, 2).
Problems of the form (Pρ) come from the study of standing waves for the nonlinear Schrödinger
equation

iwt +∆w + V (x)w = f(w), in R
N × (0,∞), (1.2)

that is solutions of the form

w(x, t) = eiλtu(x), (x, t) ∈ R
N × (0,∞) (1.3)

where u is a real function. Here we consider the model case of a power nonlinearity f(w) = |w|p−2w.
A lot of efforts have been done studying problem (1.2), (1.3) for a fixed frequency λ ∈ R; the literature
in this direction is huge and we do not even make an attempt to summarize it here (see e.g. the recent
papers [14, 23] and references therein).
On the other hand, after the seminal paper by Jeanjean [18], only recently more work has been devoted
to the natural question of considering problem (1.2) when the mass of the particle is known, i.e. the
real function u in (1.3) is in Sρ, ρ > 0 fixed, and λ is an unknown of the problem. A natural approach
to such questions is by variational methods. Indeed, when V ∈ Lr(RN ), for some r ∈ [N/2,+∞],
r ≥ 1 (r > 1 if N = 2), solutions of (Pρ) can be found as critical points of the energy functional

F (u) =
1

2

∫

RN

(|∇u|2 − V (x)u2)dx −
1

p

∫

RN

|u|pdx u ∈ H1(RN ),

constrained on Sρ. Here λ comes out as a Lagrange multiplier. The functional F is unbounded from

below, as it is readily seen testing the functional on uh(x) := h
N
2 ū(hx), h > 0, for a fixed ū ∈ Sρ.

Hence the problem cannot be solved by (global) minimization arguments.
The unboundedness from below is due to the nonlinearity growth p > 2 + 4

N : indeed, if the so called
mass-subcritical case p ∈ (2, 2 + 4

N ) is involved, then the problem can be faced by minimization. In
this respect, we refer the reader to the classical paper [19], and to the recent paper [16], where the
existence of global minimizers is obtained for more general nonlinearities and for negative potentials,
that is V ≥ 0 in our framework. Several related results about the minimization of the nonlinear
Schrödinger energy have been obtained on metric graphs, also in the mass-critical case [1, 2, 28].
Turning to the mass super-critical case, as we already mentioned the reference paper is [18], which
deals with the autonomous case: the key idea in [18] is to obtain a mountain pass solution on Sρ, by
exploiting a natural constraint related to the Pohozaev identity; since then, more general autonomous
equations and systems have been considered, also refining and developing this initial strategy, see
[3–5, 7, 8, 15, 17, 30, 31] and references therein. On the other hand, equations on bounded domains
and/or with (step well) trapping potentials, i.e. potentials as in (Pρ) satisfying

lim
|x|→+∞

−V (x) = +∞

(or even −V ≡ +∞ outside some bounded Ω), have been considered in [10, 24–26, 29]. In this case,
the trapping nature of the potential provides enough compactness to cause the existence of solutions
which are local minimizers of F on Sρ also in the mass-supercritical case, at least when ρ is sufficiently
small. On the other hand, for non-trapping potentials very few results are available: in particular,
weakly repulsive potentials, i.e.

−V (x) ≥ lim inf
|x|→+∞

−V (x) > −∞,

were considered in the very recent paper [6]. In this case, the mountain pass structure by Jeanjean
is destroyed, but a new variational principle exploiting the Pohozaev identity can be used to obtain
existence of solutions with high Morse index. To conclude this discussion about the previous literature,
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since the results we have discussed so far are all of variational nature, let us mention that also
topological methods have been applied, for instance in [9, 13, 27], also in connection with ergodic
Mean Field Games systems.
In this paper we consider a class of mass-supercritical, and Sobolev sub-critical, problems with weakly
attractive potential, that is

−V (x) ≤ lim sup
|x|→+∞

−V (x) < +∞

(notice that, up to subtracting the constant ρ2 lim sup|x|→+∞−V (x) in F , this corresponds to assum-
ing (1.1)). Under suitable assumptions, we obtain two families of solution. On the one hand we show
that the mountain pass solution of Jeanjean still exists also in this situation; on the other hand, we
show that such mountain pass structure also provides a local minimizer, as in [26, 29], even though
the potential is not trapping at all. More precisely, we first show that, under an explicit smallness
assumption on V and no condition on the mass, a mountain pass solution at positive energy level
exists; under the same smallness assumption we also show that no solution at negative energy values
can exist. Secondly, requiring that the mass is smaller than some explicit bound, depending on V ,
and that V is not too small in a suitable sense, we find two solutions: a local minimizer with negative
energy, and a mountain pass solution with positive energy. Notably, this second result holds true also
in dimensions N = 1, 2.
In order to state our results we define the auxiliary function

W (x) = V (x)|x| (1.4)

Theorem 1.1. Let N ≥ 3 and (1.1) hold true. There exists a positive explicit constant L = L(N, p)
such that if

max{‖V ‖N/2, ‖W‖N} < L (1.5)

then (Pρ) has a mountain pass solution for every ρ > 0, at a positive energy level, while no solution
with negative energy exists.

Theorem 1.2. Let N ≥ 1 and (1.1) hold true, and let r ∈
(
max(1, N

2 ),+∞
]
, s ∈ (max(2, N),+∞].

1. There exist positive explicit constants σ = σ(N, p, r) and K = K(N, p, r) such that, if

either r < +∞, or r = +∞ and lim
|x|→+∞

V (x) = 0, (1.6)

‖V ‖r · ρ
σ < K and (1.7)

there exists ϕ ∈ Sρ :

∫

RN

(|∇ϕ|2 − V (x)ϕ2) dx ≤ 0, (1.8)

then (Pρ) has a solution, which corresponds to a local minimizer of F on Sρ with negative energy.

2. There exist positive explicit constants σi = σi(N, p, r), σ̄i = σ̄i(N, p, s), i = 1, 2, and L̃ =
L̃(N, p, r, s) such that, if

max{‖V ‖r · ρ
σi , ‖W‖s · ρ

σ̄i} < L̃, i = 1, 2, (1.9)

then (Pρ) has a mountain pass solution at a positive energy level.

Remark 1.3. We point out that our results are not perturbative, indeed all the constants in the
above theorems can be made explicit with respect to the structural parameters N , p, r, s, see e.g.
(3.28)–(3.32), or (4.70)–(4.72).

Remark 1.4. Under the assumption of Theorem 1.2, it is standard to prove that the non-empty set of
local minimizers is (conditionally) orbitally stable for the associated evolution equation.
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Remark 1.5. It is well known that a sufficient condition for (1.8) to hold true is that

inf
BR

V ≥ η, with

{
η > 0, R > 0 N = 1, 2

R2η ≥ N(N − 2) N ≥ 3.
(1.10)

In particular, no condition is required in dimension N = 1, 2 as long as V ≥ 0, V 6≡ 0. See Lemma
4.5 for further details.

Remark 1.6. Notice that, for every V (either satisfying (1.8) or not), it is always possible to choose ρ
sufficiently small so that both (1.7) and (1.9) hold true. Moreover, if N ≥ 3, assumption (1.10) just
requires

‖V ‖rr ≥ ηr|BR| ≥ ηr−
N
2
ωN

N
[N(N − 2)]

N
2 .

In particular, since r > N
2 , one can exhibit potentials with arbitrarily small Lr norm fulfilling the

assumptions of Theorem 1.2 (with sufficiently small ρ and large R).

Remark 1.7. The mountain pass geometry in Theorems 1.1 and 1.2 is essentially the same, therefore
most probably the mountain pass solutions coincide. As a matter of fact, the explicit dependence on
r, s show that σ1 = σ2 = 0 if r = N/2 and s = N , so that in this case (1.9) and (1.5) coincide. On
the other hand, if r = N/2 then also σ = 0, and also (1.7) reduces to (1.5). Nonetheless, in this case
(1.5) and (1.8) are not compatible, so that the minimizer with negative energy does not exist.

Remark 1.8. In principle, for our results we only need V , W to belong to suitable Lebesgue spaces.
On the other hand, if we also have V ∈ C0,α

loc (R
N ) then all the solutions we find are classical and, by

the strong maximum principle, they are strictly positive in R
N .

Remark 1.9. The main difficulty to prove the existence of the mountain pass solution is the analysis
of the behavior of a bounded Palais-Smale sequence related to the mountain pass level. To overcome
this difficulty, we prove that the Lagrange multiplier associated our PS-sequence is positive and then
we use an almost classical splitting result in the unconstrained sub-critical case (see [11]).

Observe that in [6] an existence result is proved when the potential V in (Pρ) is negative, while in
the present paper we find solutions for nonnegative V . In the following proposition we give another
contribution in the study of the problem with a nonexistence result, analogous to [12, Theorem 1.1].

Proposition 1.10. Let p ∈ (2, 2∗), V ∈ L∞(RN ) and assume that there exists ∂V
∂ν ∈ Ls(RN ) for

some ν ∈ R
N \ {0} and s ∈ [N/2,∞]. If ∂V

∂ν ≥ 0 and ∂V
∂ν 6≡ 0, then problem

−∆u− V (x)u = |u|p−2u u ∈ Sρ

has no smooth solutions.

Remark 1.11. It is worthwhile noticing that our results are compatible with Proposition 1.10: indeed,
this is clearly the case for Point 1 in Theorem 1.2 when r = +∞, as V is explicitly required to vanish
at infinity; on the other hand, observe that the assumption on W in Point 2 imply some decay on V
even in the case r = s = +∞.

Another result that could have some interest, for example in stating constraints to work with, is the
following necessary condition for critical points of F on Sρ.

Proposition 1.12. Let p ∈ (2, 2∗) and V ∈ Lr(RN ) for some r ∈ [N/2,∞]. If u ∈ Sρ is a critical
point for F constrained on Sρ, then

∫

RN

V (x)u
∂u

∂ν
dx = 0

for every direction ν ∈ R
N \ {0}.
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Before concluding this introduction, we want to observe that in exterior domains or in some domains
with unbounded boundary the splitting Lemma 2.3 holds true again. Moreover, one can analyze the
displacement of the potential and the mass ρ in order to recover the mountain pass geometry. Hence,
it would be interesting to investigate whether the mountain pass solution exists, taking into account
that in our approach the Pohozaev identity plays a crucial role. We refer the reader to [20–22] for
existence results in this framework, in the the unconstrained case.
The paper is organized as follows: in Section 2 we introduce the main notations and some preliminary
results, and prove Proposition 1.10, in Section 3 we prove Theorem 1.1 while Section 4 is devoted to
the proof of Theorem 1.2.

2 Notation and preliminary results

For p ∈ [1,+∞], we denote by Lp(RN ) the Lebesgue’s space with norm ‖·‖p and byH1(RN ), D1,2(RN )
the usual Sobolev spaces with the norm ‖ · ‖H and ‖∇u‖2, respectively; S will denote the Sobolev
constant, namely:

S = inf
u∈H1(RN )\{0}

‖u‖2H
‖u‖22∗

= inf
u∈D1,2(RN )\{0}

‖∇u‖22
‖u‖22∗

; (2.11)

c, C are constants which may vary from line to line (structural constants will depend on N , p, r, s,
while the dependence on V , W and ρ will be made explicit whenever useful). We fix the constant

γ =
N

2
(p− 2) > 2. (2.12)

We recall that for every ρ > 0 there exists a unique solution Zρ, up to translations, for the limit
problem {

−∆Zρ + λρZρ = Zp−1
ρ

Zρ ∈ Sρ, Zρ > 0,
(2.13)

with λρ > 0. The function Zρ is radial and it is a mountain pass critical point for

F∞(u) =
1

2

∫

RN

|∇u|2dx−
1

p

∫

RN

|u|pdx u ∈ H1(RN )

constrained on Sρ.
By scaling, Zρ can be expressed in terms of the unique positive solution U ∈ H1(RN ) of

{
−∆U + U = Up−1

U > 0, U(0) = ‖U‖∞.

More precisely, setting ρ0 = ‖U‖2, for ρ > 0 we define:

µρ =

(
ρ

ρ0

) 2(p−2)
N(p−2)−4

,

then in (2.13) we have

Zρ(x) := µ
− 2

p−2
ρ U(x/µρ) , λρ = µ−2

ρ =

(
ρ0
ρ

) 4(p−2)
N(p−2)−4

> 0 . (2.14)

Setting mρ = F∞(Zρ), so that mρ0 = F∞(U), observe that

mρ = mρ0

(
ρ0
ρ

)2
2N−p(N−2)
N(p−2)−4

=
N(p− 2)− 4

4N − 2p(N − 2)

(
ρ0
ρ

) 4(p−2)
N(p−2)−4

ρ2 =
N(p− 2)− 4

4N − 2p(N − 2)
λρ ρ

2. (2.15)

In the following lemma we recall the well-known Gagliardo-Nirenberg inequality.
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Lemma 2.1. For every N ≥ 3, 2 ≤ q ≤ 2∗ there exists Gq > 0, depending on N and q, such that

‖u‖q ≤ Gq‖u‖
1−N(q−2)

2q

2 ‖∇u‖
N(q−2)

2q

2 (2.16)

for every u ∈ H1(RN ). The inequality holds true also in N = 1, 2, for every 2 ≤ q < +∞.
In particular, if q = p:

‖u‖p ≤ G‖u‖
1−γ

p

2 ‖∇u‖
γ
p

2 (2.17)

where γ is defined in (2.12) and G = Gp.

Of course, if N ≥ 3, the above inequality holds true also for q = 2∗, reducing to the first Sobolev
inequality in (2.11) (with S = G−2

2∗ ). It is well known, see [32], that G is achieved by Zρ, for any ρ.
Recalling (2.15), standard calculations (see e.g. the appendix in [6]) yield

G =
‖U‖p

‖U‖
1−γ

p

2 ‖∇U‖
γ
p

2

=
(2p)

1
p

(2N − p(N − 2))
p−γ
2p (N(p− 2))

γ
2p

(
N(p− 2)− 4

2

) p−2
2p

m
− p−2

2p
ρ0 . (2.18)

Next, we recall some basic estimates involving V and W (defined in (1.4)), that immediately follow
from Hölder, Gagliardo-Nirenberg and Sobolev inequalities.

Lemma 2.2. For every 2 ≤ q < 2∗ we have

∣∣∣∣
∫

RN

V (x)u2 dx

∣∣∣∣ ≤ ‖V ‖ q
q−2

‖u‖2q ≤ G2
q‖V ‖ q

q−2
‖u‖

2−N(q−2)
q

2 ‖∇u‖
N(q−2)

q

2 ,

∣∣∣∣
∫

RN

V (x)u(x)∇u(x) · x dx

∣∣∣∣ ≤ ‖W‖ 2q
q−2

‖u‖q‖∇u‖2 ≤ Gq‖W‖ 2q
q−2

‖u‖
1−N(q−2)

2q

2 ‖∇u‖
1+N(q−2)

2q

2 .

Furthermore, if N ≥ 3, then the above inequalities hold also for q = 2∗:

∣∣∣∣
∫

RN

V (x)u2 dx

∣∣∣∣ ≤ ‖V ‖N
2
‖u‖22∗ ≤ S−1‖V ‖N

2
‖∇u‖22 , (2.19)

∣∣∣∣
∫

RN

V (x)u(x)∇u(x) · x dx

∣∣∣∣ ≤ ‖W‖N‖u‖2∗‖∇u‖2 ≤ S−1/2‖W‖N‖∇u‖22 . (2.20)

Let λ ∈ R, we denote by Iλ, I∞,λ : H1(RN ) → R the functionals

Iλ(u) =
1

2

∫

RN

|∇u|2dx+
λ

2

∫

RN

u2dx−
1

2

∫

RN

V (x)u2dx−
1

p

∫

RN

|u|pdx,

I∞,λ(u) =
1

2

∫

RN

|∇u|2dx+
λ

2

∫

RN

u2dx−
1

p

∫

RN

|u|pdx.

Proof of Proposition 1.10. By Lemma 2.2 the functional F is well defined and of class C1. If u is a
critical point of F on Sρ then there exists a Lagrange multiplier λ ∈ R such that u is a critical point
for Iλ on H1(RN ). Hence

d

dt
Iλ(u(x+ tν))|t=0

= −
1

2

∫

RN

∂V

∂ν
u2 dx = 0. (2.21)

Since ∂V
∂ν has constant sign and meas{x ∈ R

N : u(x) = 0} = 0, a contradiction arises by (2.21).
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Proof of Proposition 1.12. Arguing as in the previous proof, for every direction ν ∈ R
N \ {0} we have

∫

RN

V (x)u
∂u

∂ν
dx =

d

dt
Iλ(u(x+ tν))|t=0

= 0.

In order to get the compactness result for Palais-Smale sequences, we state a Splitting Lemma for Iλ,
in our framework. Its proof is very close to that given in [11, Lemma 3.1] for exterior domains, so we
only sketch it.

Lemma 2.3. Let us assume that

1. N ≥ 3: V ∈ LN/2(B1(0)), V ∈ Lr̃(RN \B1(0)) for r̃ ∈ [N/2,+∞],

2. N = 1, 2: V ∈ Lr(B1(0)), V ∈ Lr̃(RN \B1(0)) for r, r̃ ∈ (1,+∞],

3. in case r̃ = +∞, V further satisfies lim|x|→+∞ V (x) = 0,

4. λ > 0.

If (vn)n is a bounded Palais-Smale sequence for Iλ in H1(RN ), then, up to a subsequence, vn weakly
converge to a function v ∈ H1(RN ) and if the convergence is not strong then there exist an integer
k ≥ 1, k nontrivial solutions w1, . . . , wk ∈ H1(RN ) to the limit equation

−∆w + λw = |w|p−2w (2.22)

and k sequences {yjn}n ⊂ R
N , 1 ≤ j ≤ k, such that |yjn| → ∞ as n → ∞, |yj1n −yj2n | → ∞, for j1 6= j2,

as n → ∞, and

vn = v +

k∑

j=1

wj(· −yjn) + o(1) strongly in H1(RN ). (2.23)

Moreover, we have

‖vn‖
2
2 = ‖v‖22 +

k∑

j=1

‖wj‖22 + o(1) (2.24)

and

Iλ(vn) → Iλ(v) +

k∑

j=1

I∞,λ(w
j) as n → ∞. (2.25)

Remark 2.4. We notice that the assumptions on V in this lemma easily follow from those in our
main results. In particular, for Point 2 in Theorem 1.2, they are implied by those on W , by Hölder
inequality.

Proof of Lemma 2.3. In this proof we argue up to suitable subsequences. Let v be the weak limit of
vn and set v1,n := vn − v. Then, v1,n → 0 weakly in H1(RN ), strongly in L2

loc(R
N ), Lp

loc(R
N ), and

a.e. in R
N . Moreover

∫

RN

V (x)v21,ndx =

∫

B1(0)

V (x)v21,ndx +

∫

RN\B1(0)

V (x)v21,ndx = I + II. (2.26)

Assume first N ≥ 3 and r̃ ∈ [N/2,+∞). We deduce by Egorov’s Theorem that v21,n → 0 weakly in

LN/(N−2)(B1(0)) and in Lr̃′(RN \B1(0)), because v
2
n is bounded in LN/(N−2)(B1(0)) and in Lr̃′(RN \

B1(0)) and goes to 0 a.e.. Hence both I and II converge to zero as n → ∞. Also in the case
r̃ = +∞ the addendum II goes to zero, because v21,n → 0 in L2

loc(R
N ), ‖v1,n‖2 is bounded and

7



lim|x|→+∞ V (x) = 0. If N = 1, 2 the arguments above again prove that I and II converge to zero as
n → ∞. Summing up, in any case we have that

∫

RN

V (x)v21,ndx −→ 0, as n → ∞, (2.27)

and the sequence ṽ1,n turns out to be a PS sequence for I∞,λ.
If v1,n → 0 in H1(RN ) we are done, otherwise we can assume that ‖v1,n‖H ≥ d1 for a suitable constant

d1 > 0. As a consequence, we deduce the existence of a constant d̃1 > 0 such that

‖v1,n‖p ≥ d̃1 ∀n ∈ N.

Indeed, suppose by contradiction that ‖v1,n‖p → 0. Then, since v1,n is a bounded PS sequence for Iλ
and taking into account (2.27), we get

‖∇v1,n‖
2
2 + λ‖v1,n‖

2
2 = ‖v1,n‖

p
p + o(1) = o(1),

contrary to ‖v1,n‖H ≥ d1.
Now, let {Qi}i∈N be a decomposition of RN by unitary dyadic cubes, and set

ln = max
i∈N

‖v1,n‖Lp(Qi).

Then there exists a constant l > 0 such that ln ≥ l, for all n ∈ N, because

0 < d̃1 ≤ ‖v1,n‖
p
p =

∞∑

i=1

‖v1,n‖
p
Lp(Qi)

≤ lp−2
n

∞∑

i=1

‖v1,n‖
2
Lp(Qi)

≤ c1 l
p−2
n

∞∑

i=1

‖v1,n‖
2
H1(Qi)

≤ c2 l
p−1
n ,

for suitable positive constants c1, c2 depending only on the Sobolev constant and the upper bound of
‖vn‖

2
H . Let y1n be the center of a cube Qin such that dn = ‖v1,n‖

p
Lp(Qin ) and observe that |y1n| → ∞,

by v1,n → 0 in Lp
loc(R

N ). Setting
ṽ1,n = v1,n(·+ y1n),

it turns out that ṽ1,n is a bounded PS sequence for I∞,λ. So, ṽ1,n → w1 weakly in H1(RN ) and
in Lp(RN ), in Lp

loc(R
N ) and a.e. in R

N , where w1 is a weak solution of (2.22), non trivial because
‖w1‖Lp(B√

N
(0)) ≥ l > 0. Moreover, in view of (2.27),

vn = v + v1,n = v + ṽ1,n(· − y1n) = v + w1(· − y1n) + [ṽ1,n(· − y1n)− w1(· − y1n)],

‖vn‖
2
H = ‖v‖2H + ‖v1,n‖

2
H + o(1) = ‖v‖2H + ‖w1‖2H + ‖ṽ1,n − w1‖2H + o(1),

Iλ(vn) = Iλ(v) + I∞,λ(v1,n) + o(1) = Iλ(v) + I∞,λ(w
1) + I∞,λ(ṽ1,n − w1) + o(1).

Iterating the procedure, taking into account that vn is bounded and that the action of the ground
state solution is positive, the proof is completed (see also [22, Lemma 3.2] for more details).

Finally, we recall the following well-known fact, see e.g. [6, Appendix A].

Lemma 2.5. Let w ∈ H1(RN ) be a non-trivial solution of

−∆w + λw = |w|p−2w,

for some λ > 0. Then
λ ≥ λ‖w‖, F∞(w) ≥ m‖w‖2

> 0,

where λρ is defined in (2.14) and mρ in (2.15), for every ρ > 0.
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3 Proof of Theorem 1.1

In this section we assume that L > 0 is such that assumption (1.5) implies the following explicit
bounds on V and W , for some fixed δ ∈ (0, 1):

‖V ‖N/2 < (1− δ)S; (3.28)

N |4− p|S−1‖V ‖N
2
+ 4S−1/2‖W‖N < B, (3.29)

[AMN |4− p|+ (N − 2)D]S−1‖V ‖N
2
+ [4AM + 2D]S−1/2‖W‖N < ABM , (3.30)

where
A = [2N − (N − 2)p], B = N(p− 2)− 4, D = N(p− 2)2,

M =

[
δ

γ

] γ
γ−2 [γ

2
− 1

] ( p

Gp

) 2
γ−2 1

mρ0ρ
s
0

,
(3.31)

with s = 2 2N−(N−2)p
N(p−2)−4 ; moreover:

3(p− 4)+S−1‖V ‖N/2 + 4S−1/2‖W‖N ≤ N(p− 2)− 4. (3.32)

Notice that (p− 4)+ = 0 if N ≥ 4.
We prove that F has a mountain pass geometry, which ensures by Proposition 3.3 the existence of a
Palais-Smale sequence. Then, in order to recover compactness for this sequence, we use the Splitting
Lemma 2.3, and, to apply this, we need to prove that the limit of the sequence of the Lagrange
multipliers related to the PS-sequence is positive.
To start with, we focus on the geometric structure of F , observing first the following scaling property.
For every u ∈ Sρ and h > 0 we define the function uh ∈ Sρ by

uh(x) = h
N
2 u(hx).

Since ∇xuh(x) = h
N
2 +1∇yu(hx), y = hx, we get

F (uh) =
h2

2

∫

RN

|∇u|2dx−
h

N
2 (p−2)

p

∫

RN

|u|pdx−

∫

RN

V
(x
h

)
u2(x)dx. (3.33)

For fixed u ∈ Sρ we infer:

∫

RN

V (x)u2
h(x) dx ≤ h2‖V ‖N/2‖u‖

2
2∗ −→ 0, as h → 0. (3.34)

Therefore, for every u ∈ Sρ it follows:

lim
h→0+

‖∇uh‖2 = 0, lim
h→+∞

‖∇uh‖2 = ∞ , (3.35)

lim
h→0+

F (uh) = 0, lim
h→+∞

F (uh) = −∞ . (3.36)

The following lemma gives a lower estimate for F , useful to prove that F has a mountain pass geometry.
Assumption (3.28) and inequalities (2.17) and (2.19) imply

Lemma 3.1.

F (u) ≥
δ

2
‖∇u‖22 − c(ρ)‖∇u‖γ2 , ∀u ∈ Sρ, (3.37)

where c(ρ) = Gp

p ρp−γ , with G defined in (2.18).
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Hence from (3.37) we infer that R̄ > 0 exists such that

M := inf{F (u) : u ∈ Sρ, ‖∇u‖2 = R̄} > 0.

Now, let us consider the function Zρ ∈ Sρ introduced in (2.14). By (3.35) and (3.36) there exist
0 < h0 < 1 < h1 such that

‖∇(Zρ)h0‖2 < R̄, F ((Zρ)h0) < M,

‖∇(Zρ)h1‖2 > R̄, F ((Zρ)h1) < 0.

Then, we define in a standard way the mountain pass value

mV,ρ := inf
ξ∈Γ

max
t∈[0,1]

F (ξ(t)) (3.38)

where
Γ = {ξ : [0, 1] → Sρ : ξ(0) = (Zρ)h0 , ξ(1) = (Zρ)h1}. (3.39)

Remark 3.2. Since
mρ = inf

γ∈Γ
max
t∈[0,1]

F∞(ξ(t))

(see [18]), it is immediately seen that
mV,ρ < mρ (3.40)

(it is sufficient to use the test path ξ(t) = (Zρ)h0(1−t)+h1t and use assumption (1.1)). Moreover, it
holds

mV,ρ ≥ Mmρ ∀ρ > 0 . (3.41)

In fact, if we set f(t) = δ
2 t

2 − c(ρ)tγ , by (3.37) we infer F (u) ≥ f(|∇u|) and hence mV,ρ is greater

than the maximum of f , which is achieved for t̄ρ =
(

δ
γ c(ρ)

) 1
γ−2

, getting

f(t̄ρ) = δ
γ

γ−2

[
1

2γ
2

γ−2

−
1

γ
γ

γ−2

]
1

c(ρ)
2

γ−2

.

Recalling that c(ρ) = Gp

p ρp−γ , by (2.15) we obtain (3.41).

Proposition 3.3. There exists a Palais-Smale sequence (vn)n for F constrained on Sρ at the level
mV,ρ, namely

F (vn) → mV,ρ, ∇Sρ
F (vn) → 0, as n → ∞, (3.42)

such that

‖∇vn‖
2
2 −

N(p− 2)

2p
‖vn‖

p
p −

1

2

∫

RN

V (x)(Nv2n + 2vn∇vn·x)dx → 0, as n → ∞, (3.43)

lim
n→∞

‖(vn)
−‖2 = 0. (3.44)

Moreover, the sequence (vn)n is bounded and the related Lagrange multipliers

λn := −
DF (vn)[vn]

ρ2
(3.45)

are bounded and verify, up to a subsequence, λn → λ, with λ > 0.
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Proof. The existence of a PS-sequence that verifies (3.43) and (3.44) follows as in [6, Proposition 3.11],
see also [18].
Step 1. Boundedness of the Palais-Smale sequence
We set

an := ‖∇vn‖
2
2, bn := ‖vn‖

p
p, cn :=

∫

RN

V (x)v2ndx, dn :=

∫

RN

V (x)vn∇vn·xdx. (3.46)

By (3.42), (3.43) and (3.45) we get

an − cn −
2

p
bn = 2mV,ρ + o(1) (3.47)

an − cn + λnρ
2 = bn + o(1)(a1/2n + 1) (3.48)

an −
N(p− 2)

2p
bn −

N

2
cn − dn = o(1). (3.49)

The term (a
1/2
n +1) is in (3.48) because we do not know that vn is bounded in H1(RN ) yet. By (3.47)

and (3.49) we obtain
N(p− 2)− 4

2p
bn = 2mV,ρ −

N − 2

2
cn − dn + o(1)

and, recalling the definition of B in (3.31), we infer:

an =
4

N(p− 2)− 4

(
2mV,ρ −

N − 2

2
cn − dn

)
+ cn + 2mV,ρ + o(1)

=
N(p− 2)

B
2mV,ρ −

N(4− p)

B
cn −

4

B
dn + o(1) .

(3.50)

Since mV,ρ < mρ , cn ≤ S−1‖V ‖N
2
an and |dn| ≤ S−1/2‖W‖Nan, we have:

0 ≤ Ban ≤ N(p− 2)2mρ +N |4− p|S−1‖V ‖N
2
an + 4S−1/2‖W‖Nan + o(1)

= N(p− 2)2mρ +
[
N |4− p|S−1‖V ‖N

2
+ 4S−1/2‖W‖N

]
an + o(1)

(3.51)

and hence: (
B −

[
N |4− p|S−1‖V ‖N

2
+ 4S−1/2‖W‖N

])
an ≤ N(p− 2)2mρ . (3.52)

By assumption (3.29) we have B −
[
N |4− p|S−1‖V ‖N

2
+ 4S−1/2‖W‖N

]
> 0, so that:

an ≤
N(p− 2)2mρ

B −
[
N |4− p|S−1‖V ‖N

2
+ 4S−1/2‖W‖N

] + o(1) . (3.53)

Step 2. Positivity of the Lagrange multiplier

By the previous step, we can assume that the sequences an, bn, cn, dn and λn converge, up to a
subsequence, to suitable a, b, c, d and λ, respectively.
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Since cn ≤ S−1‖V ‖N
2
an and |dn| ≤ S−1/2‖W‖Nan, recalling (3.41), the bound on an given by (3.53)

and the definitions in (3.31), by (3.47)–(3.49) we get:

λρ2 =
p− 2

p
b− 2mV,ρ

=
2(p− 2)

N(p− 2)− 4

(
2mV,ρ −

N − 2

2
c− d

)
− 2mV,ρ

=
2N − (N − 2)p

N(p− 2)− 4
2mV,ρ −

(N − 2)(p− 2)

N(p− 2)− 4
c−

2(p− 2)

N(p− 2)− 4
d

≥
1

B

{
[2N − (N − 2)p]M

−
N(N − 2)(p− 2)2S−1‖V ‖N

2

B −
[
N |4− p|S−1‖V ‖N

2
+ 4S−1/2‖W‖N

] −
2N(p− 2)2S−1/2‖W‖N

B −
[
N |4− p|S−1‖V ‖N

2
+ 4S−1/2‖W‖N

]
}
2mρ

=
1

B



AM −

[
(N − 2)S−1‖V ‖N

2
+ 2S−1/2‖W‖N

]
D

B −
[
N |4− p|S−1‖V ‖N

2
+ 4S−1/2‖W‖N

]



 2mρ

=
1

B

ABM −
{
[AMN |4− p|+ (N − 2)D]S−1‖V ‖N

2
+ [4AM + 2D]S−1/2‖W‖N

}

B −
[
N |4− p|S−1‖V ‖N

2
+ 4S−1/2‖W‖N

] 2mρ

(3.54)
and hence hypothesis (3.30) ensures the positivity of λ.

Lemma 3.4. Let v be a weak solution of (Pρ), for some ρ > 0. If (3.32) holds then

F (v) ≥ 0. (3.55)

Proof. The function v satisfies the Pohozaev identity:

1

p
‖v‖pp =

2

N(p− 2)
‖∇v‖22 −

1

p− 2

∫

RN

V (x)v2 dx−
2

N(p− 2)

∫

RN

V (x)v∇v · x dx (3.56)

and we get:

F (v) =
1

2
‖∇v‖22 −

1

2

∫

RN

V (x)v2 dx−
1

p
‖v‖pp (3.57)

=

(
1

2
−

2

N(p− 2)

)
‖∇v‖22 +

4− p

2(p− 2)

∫

RN

V (x)v2 dx+
2

N(p− 2)

∫

RN

V (x)v∇v · x dx.

If N ≥ 4 or N = 3 and p ∈ (103 , 4] then, using (2.20), (3.57) gives

F (v) ≥

(
1

2
−

2

N(p− 2)

)
‖∇v‖22 −

2

N(p− 2)
S−1/2‖W‖N‖∇v‖22

=

(
1

2
−

2

N(p− 2)
−

2

N(p− 2)
S−1/2‖W‖N

)
‖∇v‖22 ,

so, since by assumption (3.32)

1

2
−

2

N(p− 2)
−

2

N(p− 2)
S−1/2‖W‖N ≥ 0,
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inequality (3.55) follows.
If N = 3 and p ∈ (4, 6) then (3.57) gives

F (v) ≥

(
1

2
−

2

3(p− 2)

)
‖∇v‖22 −

p− 4

2(p− 2)
S−1‖V ‖3/2‖∇v‖22 −

2

3(p− 2)
S−1/2‖W‖3‖∇v‖22

=

[
3(p− 2)− 4

6(p− 2)
−

(
p− 4

2
S−1‖V ‖3/2 +

2

3
S−1/2‖W‖3

)
1

p− 2

]
‖∇v‖22 ,

and the claim follows from (3.32).

End of the proof of Theorem 1.1. Now, let us consider the bounded Palais-Smale sequence vn given
by Proposition 3.3. Since vn is bounded in H1(RN ), there exists v ∈ H1(RN ) such that, up to a
subsequence, vn converges weakly in H1(RN ) and a.e. in R

N to a function v ∈ H1(RN ), which turns
out to be a weak solution of

−∆v + (λ− V )v = |v|p−2v (3.58)

with ‖v‖2 ≤ ρ. To prove the theorem we will show that actually vn converge to v strongly in H1.
Then we are done, because in such a case ‖v‖2 = ρ and v ≥ 0 by (3.44).
Now, since

∫

RN

∇vn∇ϕdx+

∫

RN

V (x)vnϕdx−

∫

RN

|vn|
p−2vnϕdx = −λn

∫

RN

vnϕdx+ o(1)‖ϕ‖

for every ϕ ∈ H1(RN ), we have
∫

RN

∇vn∇ϕdx+

∫

RN

V (x)vnϕdx−

∫

RN

|vn|
p−2vnϕdx = −λ

∫

RN

vnϕdx+(λ−λn)

∫

RN

vnϕdx+o(1)‖ϕ‖

and hence
∫

RN

∇vn∇ϕdx +

∫

RN

V (x)vnϕdx −

∫

RN

|vn|
p−2vnϕdx = −λ

∫

RN

vnϕdx+ o(1)‖ϕ‖ ,

because vn is bounded in H1(RN ). Therefore, vn is also a Palais-Smale sequence for Iλ at level
mV,ρ +

λ
2 ρ

2, so that we can apply the Splitting Lemma 2.3, getting:

vn = v +

k∑

j=1

wj(· −yjn) + o(1) ,

with wj being solutions to
−∆wj + λwj = |wj |p−2wj

and |yjn| → ∞. Assume by contradiction that k ≥ 1 or, equivalently, that µ := ‖v‖2 < ρ. Recall that
by (2.15) and by Lemma 2.5

mα > mβ if 0 < α < β and F∞(wj) ≥ mαj
, (3.59)

where αj := ‖wj‖2, j ∈ {1, . . . , k}. The condition F (vn) → mV,ρ and (2.25) implies

mV,ρ +
λ

2
ρ2 = F (v) +

λ

2
µ2 +

k∑

j=1

F∞(wj) +
λ

2

k∑

j=1

α2
j . (3.60)

By (2.24) we have

ρ2 = µ2 +
k∑

j=1

α2
j ,
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and (3.60) becomes

mV,ρ = F (v) +

k∑

j=1

F∞(wj) . (3.61)

Using (3.55),(3.59) and the fact that αj < ρ, we infer that the right-hand side of (3.61) is strictly
greater than mρ. This contradict the fact that the left-hand side of (3.61) is strictly less than mρ,
proving our result.

4 Proof of Theorem 1.2

4.1 Existence of a local minimizer

In order to prove the first part of Theorem 1.2, we first show that, under (1.7), F restricted on Sρ

admits a mountain pass structure which depends on ‖V ‖r but is uniform with respect to ρ. More
precisely, we have the following

Proposition 4.1. Let N ≥ 1 and r ∈
(
max(1, N2 ),+∞

]
. There exist positive explicit constants σ, K,

Θ and Υ, only depending on N, p, r, such that, if (1.7) holds true then

inf{F (u) : u ∈ Sρ, R∗ − ε ≤ ‖∇u‖2 ≤ R∗} > 0.

where
R∗ = Θ · ‖V ‖Υr

and ε > 0 is sufficiently small, depending only on (a bound from above on) ρ.

To prove the proposition, we use the following elementary lemma.

Lemma 4.2. Let A,B, s, α, β be positive parameters, with α ≤ 1, and define

fz(t) = t−Azst1−α −Bzt1+β, z, t > 0.

Let z∗ and t∗ be defined as

z∗ =
( α

B

) α
α+sβ

(
β

A

) β
α+sβ

(α+ β)−
α+β
α+sβ , t∗ =

( α

B

) s
α+sβ

(
A

β

) 1
α+sβ

(α+ β)
1−s

α+sβ . (4.62)

Then
0 < z < z∗ =⇒ fz(t∗) > 0. (4.63)

Proof. By direct calculation, it follows that fz∗(t∗) = 0. Then (4.63) follows, as fz(·) is (pointwise)
decreasing with respect to z.

Proof of Proposition 4.1. Let

u ∈ Sρ, ‖∇u‖2 = R, r =
q

q − 2
(with 2 ≤ q < 2∗).

By Lemma 2.2 and (2.17) we know that

2F (u) ≥ R2 −G2
q‖V ‖ q

q−2
ρ2−

N(q−2)
q R

N(q−2)
q −

2

p
Gp

pρ
p−N(p−2)

2 R
N(p−2)

2 . (4.64)

Thus we can apply Lemma 4.2, with the corresponding notations, writing

t = R2, z = ρ
2N−(N−2)p

2 , A = G2
q‖V ‖ q

q−2
, B =

2

p
Gp

p, (4.65)
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and

α =
2N − q(N − 2)

2q
≤ 1, β =

N(p− 2)− 4

4
, s =

2

q
·
2N − q(N − 2)

2N − p(N − 2)
. (4.66)

In particular, only A depends on ‖V ‖ q
q−2

, while B,α, β and s just depend on N, p and r (via q). Then

α+ sβ =
p− 2

q
·
2N − q(N − 2)

2N − p(N − 2)
,

and we can write

ρ
2N−p(N−2)

2
∗ = z∗ = C(N, p, q) · ‖V ‖

−N(p−2)−4
4 · q

p−2 ·
2N−p(N−2)
2N−q(N−2)

q
q−2

,

in such a way that z < z∗ is equivalent to (1.7), with a suitable choice of σ and K (the choice is
explicit, by combining (4.62), (4.65) and (4.66)). Moreover

R2
∗ = t∗ = C(N, p, q) · ‖V ‖

q
p−2 ·

2N−p(N−2)
2N−q(N−2)

q
q−2

,

and the proposition follows, with a suitable choice of Θ,Υ (again, the choice is explicit, by combining
(4.62), (4.65) and (4.66)).

Hereafter we assume that ρ, V satisfy (1.7), that is

0 < ρ < ρ∗ := H · ‖V ‖−τ
r ,

for suitable H, τ . By Proposition 4.1 we know that, for every α < ρ∗,

inf{F (u) : u ∈ Sα, ‖∇u‖2 = R∗} > 0, (4.67)

where R∗ = Θ · ‖V ‖Υr is independent of α. We define

cV,α := inf{F (u) : u ∈ Sα, ‖∇u‖2 ≤ R∗}. (4.68)

The proof of the first part of Theorem 1.2 is based on the following proposition.

Proposition 4.3. If cV,ρ < 0 then cV,ρ is achieved by a solution of (Pρ).

In turn, the proof of the proposition is based on the following lemma.

Lemma 4.4. If cV,ρ < 0 then

0 < α ≤ ρ =⇒ cV,α ≥ cV,ρ.

Proof. If cV,α ≥ 0 then the lemma is trivial. On the contrary, let 0 > c′ > cV,α and u ∈ Sα such that
‖∇u‖2 < R∗ and F (u) < c′. For every t ≥ 1 we have

tu ∈ Stα and F (tu) =
t2

2

(
‖∇u‖22 −

∫

RN

V (x)u2 dx

)
−

tp

2
‖u‖pp ≤ t2F (u) < c′ < 0.

We claim that
∥∥∇ ρ

αu
∥∥
2
≤ R∗. If not, there exists t̄ ∈

(
1, ρ

α

)
such that ‖∇t̄u‖2 = R∗, ‖t̄u‖2 < ρ and

F (t̄u) < 0, in contradiction with (4.67). Thus, by definition,

cV,ρ ≤ F
( ρ

α
u
)
< c′.

Since c′ > cV,α is arbitrary, the lemma follows.
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Proof of Proposition 4.3. Let (un)n be a minimizing sequence for cV,ρ. By Proposition 4.1 we know
that ‖∇un‖2 ≤ R∗ − ε, for some ε > 0 suitably small. Therefore, by Ekeland’s principle, we can
assume that (un)n is a Palais-Smale sequence for F constrained on Sρ, i.e.

F (un) → cV,ρ, ∇Sρ
F (vn) → 0, as n → ∞. (4.69)

Since both the functional and the constraint are even, we can choose each un to be non-negative.
Furthermore, (un)n is bounded by construction, and therefore also the Lagrange multipliers

λn := −
DF (un)[un]

ρ2

are bounded. Up to subsequences, we obtain that un ⇀ u ≥ 0 weakly in H1(RN ), and λn → λ ∈ R.
By (4.69),

o(1) =
1

2

(
‖∇un‖

2
2 −

∫

RN

V u2
n dx− ‖un‖

p
p

)
+

1

2
λnρ

2 ≤ F (un) +
1

2
λnρ

2 = cV,ρ +
1

2
λρ2 + o(1),

which forces

λ ≥ −
2cV,ρ
ρ2

> 0.

Arguing as in the proof of Theorem 1.1 we have that (4.69) implies that (un)n is a (free) Palais-Smale
sequence for the action functional Iλ, with λ > 0. Then the Splitting Lemma 2.3 applies, yielding

un = u+

k∑

j=1

wj(· −yjn) + o(1) strongly in H1(RN ),

where
−∆u− V u+ λu = up−1, −∆wj + λwj = |wj |p−2wj , 1 ≤ j ≤ k,

and

‖u‖22 +
k∑

j=1

‖wj‖22 = ρ2, Iλ(u) +
k∑

j=1

I∞,λ(w
j) = cV,ρ +

1

2
λρ2, F (u) +

k∑

j=1

F∞(wj) = cV,ρ.

Writing ‖u‖2 = α ≤ ρ, we have that ‖∇u‖2 ≤ lim inf ‖∇un‖2 < R∗, thus F (u) ≥ cV,α. Lemma 4.4
yields

cV,ρ = F (u) +

k∑

j=1

F∞(wj) ≥ cV,α +

k∑

j=1

F∞(wj) ≥ cV,ρ +

k∑

j=1

F∞(wj),

forcing
k∑

j=1

F∞(wj) ≤ 0.

By Lemma 2.5 we deduce that k = 0, so that un → u strongly in H1(RN ) and the proposition
follows.

To show that cV,ρ < 0 we will use the fact that the bottom of the spectrum of the operator −∆− V
is non-positive. As we mentioned, a sufficient condition in this direction is contained in Remark 1.5.
For the reader’s convenience we sketch such result in the following lemma.

Lemma 4.5. Let V ≥ 0 satisfy (1.10). Then (1.8) holds true.
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Proof. Let BR and η be as in assumption (1.10), and without loss of generality let us assume that BR

is centered at 0.
In case N = 1 it is sufficient to choose, for a normalizing constant t∗ > 0,

t∗ϕ(x) =




1 |x| ≤ R(

kR−|x|
(k−1)R

)+

|x| ≥ R

with k > 1 sufficiently large. In case N = 2 it is sufficient to choose

t∗ϕ(x) =




1 |x| ≤ R(

ln(k−1)R−ln |x|
ln(k−1)

)+

|x| ≥ R

with k > 2 sufficiently large.
Finally, if N ≥ 3, let

t∗ϕ(x) =

{
1 |x| ≤ R

RN−2|x|2−N |x| ≥ R.

Letting |∂B1| = ωN we obtain

∫

RN

(|∇ϕ|2 − V (x)ϕ2)dx ≤

∫

RN\BR

|∇ϕ|2 dx −

∫

BR

γϕ2 dx

= R2(N−2)(N − 2)2ωN

∫ +∞

R

r2(1−N) · rN−1 dr −
ωN

N
RNγ

=
RN−2ωN

N

(
N(N − 2)−R2γ

)
≤ 0

by (1.10).

Now, let us prove that a local minimum solution exists. By Proposition 4.3, we just need to show
that, under the assumptions of the theorem, cV,ρ < 0. Let ϕ be as in (1.8). Notice that, for every
t > 0,

F (tϕ) ≤ −
tp

p
‖ϕ‖pp < 0.

Let t̄ = R∗
‖∇ϕ‖2

. Then ‖∇t̄ϕ‖2 = R∗ and F (t̄ϕ) < 0, hence (4.67) implies that

ρ∗ ≤ ‖t̄ϕ‖2 =
R∗

‖∇ϕ‖2
ρ, =⇒ ‖∇ϕ‖2 ≤

ρ

ρ∗
R∗ < R∗.

Resuming, we have that both ϕ ∈ Sρ and ‖∇ϕ‖2 ≤ R∗. By definition we infer

cV,ρ ≤ F (ϕ) < 0

and the theorem follows.

4.2 Mountain pass solution

The proof of the second part of Theorem 1.2, i.e. the existence of a mountain pass solution, can be
obtained arguing as in the proof of Theorem 1.1. Some changes are in order, especially for the Palais-
Smale condition, because in this framework Lemma 3.4 cannot work. In this case, instead of working
with a mountain pass geometry uniform in ρ, as we did to find the minimizer, it is more convenient
to use a mountain pass geometry dependent on ρ; this will allow a direct comparison between the
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mountain pass level and mρ, allowing to show that the Lagrange multipliers of the Palais-Smale
sequence are eventually positive. Observe that, by Remark 2.4, (1.9) ensures that the assumptions of
the Splitting Lemma 2.3 holds also for r = +∞.
In the following, we assume that σi, σ̄i, i = 1, 2, and L̃ in (1.9) are such that

‖V ‖r · ρ
(2−N

r
) 2(p−2)
N(p−2)−4 ≤ L1, ‖W‖s · ρ

(1−N
s
) 2(p−2)
N(p−2)−4 ≤ L1, (4.70)

‖V ‖r · ρ
2−N

r ≤ L2, ‖W‖s · ρ
1−N

s ≤ L2, (4.71)

‖V ‖r · ρ
2−N

r ≤ L3mρ, ‖W‖s · ρ
1−N

s ≤ L3mρ, (4.72)

for suitable positive constants Li to be chosen below independently of V , W and ρ (this is possible in
view of (2.15)). Moreover we notice that (4.70) is equivalent to

‖V ‖
2r

2r−N
r ≤ L′

1 ·
mρ

ρ2
, ‖W‖

2s
s−N
s ≤ L′

1 ·
mρ

ρ2
. (4.73)

Mountain pass geometry - revisited

We recall that by (4.64) we have, for every u ∈ Sρ,

F (u) ≥
1

2
‖∇u‖22 −

G2
q

2
‖V ‖ q

q−2
ρ2−

N(q−2)
q ‖∇u‖

N(q−2)
q

2 −
1

p
Gpρp−γ‖∇u‖γ2 , (4.74)

where, as usual, q ∈ [2, 2∗) satisfies q
q−2 = r. Let R̃ > 0 be such that

M̃0 :=
1

2
R̃2 −

1

p
Gpρp−γR̃γ = max

t≥0

1

2
t2 −

1

p
Gpρp−γtγ .

Then R̃ = Cρ−
p−γ
γ−2 , where C depends only on N and p. By a direct computation and (2.15) we have

that M̃0 = 2M̃mρ for a suitable constant M̃ > 0 independent on ρ. Then we can choose L1 > 0, only
depending on N , p and q, such that

G2
q

2
‖V ‖ q

q−2
ρ2−

N(q−2)
q R̃

N(q−2)
q ≤ M̃mρ ⇐⇒ ‖V ‖rρ

(2−N
r
) 2(p−2)
N(p−2)−4 ≤ L1. (4.75)

By (4.74), (4.75) and (4.70) we obtain

M̃ :=
1

2
R̃2 −

G2
q

2
‖V ‖ q

q−2
ρ2−

N(q−2)
q R̃

N(q−2)
q −

1

p
Gpρp−γR̃γ ≥ M̃mρ. (4.76)

Now, let us fix u0 = (Zρ)h0 , u1 = (Zρ)h1 ∈ Sρ such that

‖∇u0‖2 < R̃, ‖∇u1‖2 > R̃, F (u0) < M̃, F (u1) < 0,

and define the mountain pass value

mV,ρ := inf
γ∈Γ

max
t∈[0,1]

F (ξ(t)), Γ = {ξ : [0, 1] → Sρ : ξ(0) = u0, ξ(1) = u1}.

By (4.76) and (1.1) we infer

M̃mρ ≤ mV,ρ < mρ (4.77)

(the strict inequality follows as in Remark 3.2). As in Proposition 3.3, we get a Palais-Smale sequence
(vn)n, at the level mV,ρ, that satisfies (3.43), (3.44) and we have to verify that it is bounded, the
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related Lagrange multipliers (λn)n are bounded and converge, up to a subsequence, to a positive
value.

Bounded Palais-Smale sequence

The proof of this step goes on as the proof of Proposition 3.3 untill (3.50), with analogous notation.
In this framework, by Lemma 2.2 we have

[N(p− 2)− 4]an ≤ 2N(p− 2)mV,ρ +N |4− p|cn + 4|dn|+ o(1)

≤ 2N(p− 2)mρ +N |4− p|
(
G2

qρ
2−N

r ‖V ‖r

)
a

N
2r
n

+ 4
(
Gq1‖W‖sρ

1−N
s

)
a

1
2 (1+

N
s )

n + o(1)

(4.78)

where q1 ∈ [2, 2∗) satisfies 2q1
q1−2 = s. By assumption,

N

2r
< 1 and

1

2

(
1 +

N

s

)
< 1, (4.79)

hence when an ≥ 1

{
[N(p− 2)− 4]−N |4− p|G2

qρ
2−N

r ‖V ‖r − 4Gq1ρ
1−N

s ‖W‖s

}
an ≤ 2N(p− 2)mρ + o(1). (4.80)

Then we can choose L2 in (4.71) small, in such a way that

an ≤ max

{
1,

3N(p− 2)

N(p− 2)− 4
mρ

}
, (4.81)

and in particular the sequence (an)n is bounded. We deduce that the sequences bn, cn, dn and λn are
bounded as well, and they all converge, up to subsequences, to suitable a, b, c, d and λ, respectively.
Then we focus on the sign of the Lagrange multiplier λ.

Lower bound for the Lagrange multiplier

As in (3.54), by (4.77) and the estimates of Lemma 2.2 we obtain

λρ2 =
2N − (N − 2)p

N(p− 2)− 4
2mV,ρ −

(N − 2)(p− 2)

N(p− 2)− 4
c−

2(p− 2)

N(p− 2)− 4
d

≥ C1 · 2M̃mρ − C2ρ
2−N

r ‖V ‖ra
N
2r − C3ρ

1−N
s ‖W‖sa

1
2 (1+

N
s ),

(4.82)

where the nonnegative constants Ci only depend on N, p, q, q1. Now, if a ≥ 1, then (4.81) implies that
Cmρ ≥ 1 too. Then (4.82), (4.79) and (4.81) imply

λρ2 ≥
[
C′

1 − C′
2ρ

2−N
r ‖V ‖r − C′

3ρ
1−N

s ‖W‖s

]
mρ,

and using again (4.71), with a possibly smaller value of L2, we infer that λ > 0. If instead a ≤ 1, then
we can use (4.72) to write (4.82) as

λρ2 ≥ C1 · 2M̃mρ − C2ρ
2−N

r ‖V ‖r − C3ρ
1−N

s ‖W‖s =
[
C1 · 2M̃ − (C2 + C3)L3

]
mρ,

and also in this case λ > 0, provided L3 in (4.72) is chosen sufficiently small.

Palais-Smale condition

19



Up to now, we have shown that the Palais-Smale sequence (vn)n provided by the mountain pass
geometry and the corresponding sequence of Lagrange multipliers (λn)n satisfy:

F (vn) → mV,ρ, F ′(vn)φ = λnφ+ o(1)‖φ‖H1 , λn → λ > 0.

Then (vn)n is a Palais-Smale sequence also for Iλ and by the Splitting Lemma we can write

vn(x) = v(x) +

k∑

i=1

wi(x− yin) + o(1) in H1(RN )

where each wi ∈ H1(RN ) satisfies −∆w + λw = |w|p−2w, for i ∈ {1, . . . , k}, and the weak limit v
satisfies −∆w + (λ− V )w = |w|p−2w. Arguing as in (3.61) we get

mV,ρ = F (v) +

k∑

i=1

F∞(wi). (4.83)

Let us assume by contradiction that vn 6→ v strongly in H1, that is k > 0. Then we denote

µ = ‖v‖2, αi = ‖wi‖2, so that µ2 +

k∑

i=1

α2
i = ρ2.

Now, by Lemma 2.5 and (2.15),

k∑

i=1

F∞(wi) ≥

k∑

i=1

m‖wi‖2
≥ mα1 = mρ

(
α1

ρ

)−2θ

, θ :=
2N − p(N − 2)

N(p− 2)− 4
> 0. (4.84)

We claim that, taking into account (4.73), we have:

F (v) ≥ −θmρ

(
µ

ρ

)2

. (4.85)

If this is the case, using (4.84) and the fact that µ2 + α2
1 ≤ ρ2, we obtain

F (v) +

k∑

i=1

F∞(wi) ≥ −θmρ

(
µ

ρ

)2

+mρ

(
α1

ρ

)−2θ

≥ mρ

[
−θ + θ

(
α1

ρ

)2

+

(
α1

ρ

)−2θ
]

≥ mρ min
0<x≤1

[
−θ + θx+ x−θ

]
= mρ,

(4.86)

which completes the proof of the compactness, because it is in contradiction with (4.83) and the fact
that mV,ρ < mρ by (4.77).
To conclude, we are left to show (4.85). To this aim, let us set a = ‖∇v‖22, b = ‖v‖pp, c =

∫
RN V (x)v2dx,

d =
∫
RN V (x)v∇v · x dx. Taking into account the Pohozaev identity for v:

a−
N(p− 2)

2p
b−

N

2
c− d = 0,

we infer

F (v) =
1

2
a−

1

2
c−

1

p
b ≥

N(p− 2)− 4

2N(p− 2)
a−

p− 4

2(p− 2)
c+

2

N(p− 2)
d

≥ C0 [2a− C1c− C2|d|] ,

(4.87)
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where the nonnegative constants Ci only depend on N and p. Now, using Lemma 2.2, we have that

a− C1c ≥ a− C′
1‖V ‖rµ

2−N
r a

N
2r ≥ −C′′

1 ‖V ‖
2r

2r−N
r µ2, (4.88)

where in the last step we used the elementary inequality

a > 0, 0 < τ < 1, k > 0 =⇒ a− kaτ ≥ −(1− τ)τ
τ

1−τ k
1

1−τ .

Analogously,

a− C2|d| ≥ a− C′
2‖W‖sµ

1−N
s a

1
2 (1+

N
s ) ≥ −C′′

2 ‖W‖
2s

s−N
s µ2. (4.89)

Substituting (4.88) and (4.89) into (4.87), and exploiting assumption (4.73) we finally obtain

F (v) ≥ −CL′
1mρ

µ2

ρ2
,

and (4.85) follows by taking L′
1 sufficiently small.
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