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Since the discovery of Neural Stem Cells (NSCs) there are still mechanism to

be clarified, such as the role of mitochondrial metabolism in the regulation of

endogenous adult neurogenesis and its implication in neurodegeneration. Although

stem cells require glycolysis to maintain their stemness, they can perform oxidative

phosphorylation and it is becoming more and more evident that mitochondria are

central players, not only for ATP production but also for neuronal differentiation’s

steps regulation, through their ability to handle cellular redox state, intracellular

signaling, epigenetic state of the cell, as well as the gut microbiota-brain axis,

upon dietary influences. In this scenario, the 8-oxoguanine DNA glycosylase

(OGG1) repair system would link mitochondrial DNA integrity to the modulation

of neural differentiation. On the other side, there is an increasing interest in

NSCs generation, from induced pluripotent stem cells, as a clinical model for

neurodegenerative diseases (NDs), although this methodology still presents several

drawbacks, mainly related to the reprogramming process. Indeed, high levels

of reactive oxygen species (ROS), associated with telomere shortening, genomic

instability, and defective mitochondrial dynamics, lead to pluripotency limitation and

reprogramming efficiency’s reduction. Moreover, while a physiological or moderate

ROS increase serves as a signaling mechanism, to activate differentiation and

suppress self-renewal, excessive oxidative stress is a common feature of NDs

and aging. This ROS-dependent regulatory effect might be modulated by newly

identified ROS suppressors, including the NAD+-dependent deacetylase enzymes

family called Sirtuins (SIRTs). Recently, the importance of subcellular localization of

NAD synthesis has been coupled to different roles for NAD in chromatin stability,

DNA repair, circadian rhythms, and longevity. SIRTs have been described as involved

in the control of both telomere’s chromatin state and expression of nuclear gene

involved in the regulation of mitochondrial gene expression, as well as in several

NDs and aging. SIRTs are ubiquitously expressed in the mammalian brain, where

they play important roles. In this review we summarize the current knowledge on

how SIRTs-dependent modulation of mitochondrial metabolism could impact on

neurogenesis and neurodegeneration, focusing mainly on ROS function and their

role in SIRTs-mediated cell reprogramming and telomere protection.
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1. Introduction

Adult neurogenesis (AN) can be defined as “the birth and
development of new neurons in adulthood” (Just et al., 2022). The
discovery of the existence of neural progenitor cells (NPCs) in the
mice brain, paved the way to the identification of specific brain areas,
containing cells with a neurogenic potential, termed neural stem cells
(NSCs) (Reynolds and Weiss, 1992). A better understanding of the
mechanisms controlling adult neurogenesis could be the key for the
treatment of a wide range of neurodegenerative, neuropsychiatric,
and metabolic disease (Just et al., 2022). In the adult mammalian
brain, NSCs mainly reside in the subventricular zone (SVZ) located
in the wall of the lateral ventricles, and the sub-granular zone of
the dentate gyrus (DG), in the hippocampus (Llorente et al., 2022).
NSCs are capable to self-renew and, when needed, to differentiate
into the diverse cell types of the nervous system. In the last years,
extensive research focused on the understanding and the possible
manipulation of the molecular pathways preserving NSCs function,
as well as on their usage in transplantation, to restore cognitive
and behavioral deficits, in preclinical models of neurodegenerative
diseases (NDs). Although many progresses have been made in
the field, some aspects still need to be clarified, such as the
role of mitochondrial metabolism in the regulation of endogenous
adult neurogenesis and neurodegeneration. In addition, considering
the limited migratory capacity and the low availability of NSCs
for allogenic transplantation, the interest is moving toward the
definition of a suitable protocol for generating them from induced
pluripotent stem cells (iPSCs). Cell reprogramming could be a
powerful technique for the regenerative medicine filed, although
still characterized by several drawbacks generated during the
reprogramming process, such as the telomere shortening. Moreover,
the transcription factors used in somatic cells reprogramming
protocols may alter the genomic contents, leading to genetic
mutations (Chen et al., 2019), as well as to impact on mitochondrial
dynamics, resulting in excessive mitochondrial fission and ROS
production, thus greatly limiting pluripotency and reprogramming
efficiency. Furthermore, excessive ROS production might induce
apoptosis in the transplanted cells (Sart et al., 2014), although recent
studies challenged this dogma by demonstrating a physiological role
for ROS in the regulation of stem cell fate decision (Sart et al.,
2015). Indeed, iPSCs proliferation and differentiation are actively
controlled by mild levels of ROS (e.g., 1.8-fold the normal level)
(Lee et al., 2010). All these aspects, including genomic instability and
impaired mitochondrial dynamics, should be addressed to exploit cell
reprograming for clinical research as well as to comply efficiency and
safety concerns.

Recent studies showed the Sirtuins (SIRTs) protein family as
involved in the modulation of a variety of cellular processes,
associated with antioxidant (AOX) and redox signaling. In detail,
SIRT1, SIRT3, and SIRT5 protect the cell from ROS; SIRT2, SIRT6,
and SIRT7 modulate key oxidative stress genes and mechanisms;
whereas SIRT4 induces ROS production and performs antioxidative
roles, as well (Singh et al., 2018). In addition, SIRTs are involved
in the control of genomic instability (Shin et al., 2018). Despite the
remarkable number of works about the role of metabolic switch in
neurogenesis regulation, it is not completely understood how SIRTs
might regulate neurogenesis through mitochondria metabolism (Tay
et al., 2021), particularly through ROS and NAD system, as well

as their role in telomere length and genomic stability maintenance,
during cell reprogramming.

The purpose of this review is to summarize the current
knowledge about the emerging role of SIRTs, with a focus on
SIRT1, SIRT2, and SIRT3, as regulators of neurogenesis through
metabolic modulation and ROS signaling, in NDs and aging as well
as their role in the cell reprogramming. We think that genetic,
hormonal, and drug manipulation of NSCs mitochondria, may be
useful to prolong NSCs longevity and stability prior to their clinical
usage, or even to improve their endogenous function. Therefore,
a better understanding of the molecular mechanisms underlying
neurogenesis and cellular reprogramming may be of help to identify
new potential therapeutic targets.

2. Mitochondria alterations in
neurodegenerative diseases

Mitochondria are essential organelles for cell’s life and death,
as they not only provide ATP but are central in the modulation
of several cellular pathways, from Ca2+ signaling to apoptosis.
Alteration of mitochondrial functions is a common feature of both
apoptosis and autophagy. During apoptosis, mitochondria integrate
intrinsic and extrinsic death signals, with the loss of mitochondrial
membrane potential (MMP) and the permeability transition pore
considered as a latest executioner event associated with the release,
from the mitochondrial intermembrane space, of cofactors required
for caspases’ activation (Wang and Youle, 2009). MMP loss could
also be a signal for the induction of mitochondrial fission and
subsequent elimination of the damaged organelles, through a
specialized form of autophagy, termed mitophagy (Mormone et al.,
2006; Li et al., 2021). Functional versatility of mitochondria is
matched by a complex morphology as they not only display a complex
ultrastructure, but also appear interconnected and networked (Anesti
and Scorrano, 2006). In humans, the shape of both individual
mitochondria and the mitochondrial network depends upon fission
and fusion processes, which are tightly regulated by the so called
“mitochondria-shaping” proteins (Dhingra and Kirshenbaum, 2014),
able to promote fission (Drp1, Fis1), fusion (Mfn1/2, Opa1), and
transport (Miro, Milton) of the organelles (Detmer and Chan,
2007). The mitochondrial network is an extremely dynamic structure
subjected to continuous changes during cell-cycle progression and
cell division. The importance of mitochondrial dynamics is further
substantiated by the observation that mutations in mitochondria-
shaping proteins can result into NDs (Panchal and Tiwari, 2019),
like autosomal-dominant optic atrophy and Charcot-Marie-Tooth
(Carelli et al., 2009). In addition, mitochondrial dysfunction, caused
by excessive oxidative stress, depletion of cellular energy levels, and
defective protein production, associate with dopaminergic neurons
loss in Parkinson’s disease (PD). Sporadic PD etiopathogenesis
is complex, comprising both environmental and genetic factors,
able to affect mitochondrial life cycle, bioenergetic capacity,
quality control, dynamic changes (fusion and fission), subcellular
distribution, as well as cell death pathways regulation (Fukae et al.,
2007; Prasuhn et al., 2020). In addition, in a mouse model of
Alzheimer’s disease (AD), it has been reported that the expression
of the mitochondrial transport and dynamics regulator Miro2,
which is degraded through PINK1/Parkin-dependent mitophagy
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(Saotome et al., 2008; Shlevkov et al., 2016), was decreased in Nestin-
positive cells of the hippocampus (Woo et al., 2021). Indeed,
in cultured adult hippocampus-derived NSCs of normal mice,
Miro2 downregulation results into excessive mitochondrial fission,
increased ROS production, and autophagic cell death, rescued
by Miro2 over-expression and pharmaceutical inhibition of Drp1
activity (Mdivi-1) (Woo et al., 2021). In addition, both α-Synuclein
(α-SYN) and amyloid-β (Aβ), responsible for neurotoxic protein
aggregates accumulation in PD and AD, impair mitochondrial
respiration (Manczak et al., 2006; Reeve et al., 2015), suggesting
that mitochondrial defects also contributed to abnormal adult
hippocampal neurogenesis (AHN) (Zhang et al., 2019; Amber
et al., 2020). Taken together, this evidence supports the idea
that mitochondrial-associated abnormalities of adult hippocampal
neurogenesis, contribute to cognitive and psychiatric disturbances
in neurodegenerative illnesses. In Huntington’s disease (HD), the
degenerative process relies on both the acquisition of toxic function
by mutated huntingtin as well as on the loss of protection exerted by
the wild type protein, leading to diverse cellular alterations. Indeed,
mitochondria impairment and increased oxidative stress result into
cell death induction, by apoptosis and/or autophagy (Mormone et al.,
2006; Duan et al., 2014; Panchal and Tiwari, 2019). In vitro and in vivo
observations for Amyotrophic Lateral Sclerosis (ALS), suggested that
mutation of genes associated with the disease (SOD1, TDP-43, FUS,
and TAF15), can alter mitochondrial dynamics and induce oxidative
stress (Panchal and Tiwari, 2019; Kodavati et al., 2020), coupled to
the nuclear accumulation of the nuclear factor erythroid 2-related
factor 2 (NRF2), a master regulator of detoxification, AOX, and
anti-inflammatory mechanisms (Obrador et al., 2020).

Multiple sclerosis (MS) is a chronic demyelinating disease of
complex etiology affecting the CNS, where oligodendrocytes act as
myelination cells, in which a role for mitochondrial dysfunction
preceding the axonal damage has been suggested (Heidker et al.,
2017; Wentling et al., 2019). Indeed, it has been suggested that
inflammatory demyelination could result into neurodegeneration
through different mechanisms including energy depletion, due
to mitochondrial dysfunction and/or hypoxia related processes,
activated microglia, oxidative stress, activated astrocytes, iron
accumulation, Wallerian degeneration, and apoptosis. Hence, while
the primary therapeutic approach is still directed against the immune
system, new experimental protocols, aiming to lessen or delay MS
progression, are focused on neuronal and glial metabolism support
and/or remyelination promotion (Heidker et al., 2017).

Mitochondrial dependent generation of ROS proved to be
a common feature of NDs (Liu et al., 2017) and related to
neuronal injury and pathological progression (Ismail et al., 2020).
A better understanding of the molecular pathways controlled by
mitochondrial metabolism, through oxidative stress, would be useful
to design new therapeutic approaches targeting specific proteins or
molecules.

3. Mitochondrial and ROS metabolism

3.1. Metabolic regulation of neural stem
cell fate

Energy requirements of brain cells are quite diverse, with
neurons relying on mitochondrial-based oxidative phosphorylation

(OXPHOS) and glia cells mostly on glycolysis (Lopez-Fabuel et al.,
2016). SGZ and SVZ resident NSCs, preferentially rely on aerobic
glycolysis, while their more differentiated progeny generates ATP
mainly by OXPHOS (Rafalski et al., 2012; Zheng et al., 2016; Lorenz
and Prigione, 2017). Proteomic analysis of cultured NSCs, derived
at different ages, revealed that the main age-related alterations
were found in glycolysis, fatty acid and propanoate metabolism,
protein ubiquitination, valine, leucine, and isoleucine degradation
pathways (Castiglione et al., 2017). For a long time, stem cells have
been considered to rely only on glycolysis to fulfill their energy
requirements, mainly because of a combination of their peculiar
cellular demands and the hypoxic microenvironment where they
reside. Nevertheless, it has become recently clear that stem cells are
indeed capable of performing OXPHOS, even though glycolysis is
critical for stemness maintenance, rather than being an adaptation
to their environment (Maffezzini et al., 2020). In vivo, NPCs
differentiation may be induced by the activation of a transcriptional
program through NRF2, responsible for redox signaling genes
expression, thereby supporting neuronal differentiation by protecting
against ROS toxic insults (Lopez-Fabuel et al., 2016). Indeed, the
differentiation from a pluripotent progenitor cell into a neuron is
characterized by the reduced expression of glycolysis-related proteins
[e.g., Hexokinase 2 (HK2) and Lactate Dehydrogenase isoform A
(LDHA)], coupled to the activation of the Pyruvate Kinase PKM2,
to its constitutively active isoform PKM1, and the upregulation
of OXPHOS-related genes (Zheng et al., 2016). In vitro cultured
mice SVZ-derived NSCs showed the upregulation of different
energy metabolism-associated genes, such as: the Insulin-like growth
factor binding protein 3 (IGFBP3), Enolase I, and Cytochrome c
oxidase subunit VIIa, when compared to hematopoietic (HSCs)
and embryonic stem cells (ESCs) (Ivanova et al., 2002); hypoxia-
inducible factor (HIF1α), Acetyl-coenzyme A transporter, and
IGFBP3, when compared to differentiated cells of the lateral ventricle
(Ramalho-Santos et al., 2002; Bonnert et al., 2006). In addition, also
cultured postnatal NSCs showed increased expression of metabolic
genes, such as Acetyl-coenzyme A synthetase 1, Enolase I, and
Pyruvate dehydrogenase, as compared to differentiating neural cells
(Geschwind et al., 2001; Karsten et al., 2003), although other
metabolic genes (e.g., Glucose-6-phosphate dehydrogenase) were
upregulated during differentiation (Gurok et al., 2004).

Energy metabolism regulation is a crucial player in stem cell fate
determination and the right balance between stem cell quiescence,
multipotency, and differentiation relies on the reversible switching
between aerobic and anaerobic metabolism (Beckervordersandforth,
2017). Rodents subjected to calorie restriction (CR), a regimen
of calorie reduction without malnutrition, displayed an increased
numbers of newly produced neural cells in the SGZ, coupled
to increased expression of the brain-derived neurotrophic factor
(BDNF) (Lee et al., 2000); while in models of diet-induced obesity
and diabetes, adult neurogenesis results to be impaired (Pani,
2015). Furthermore, aberrant adult neurogenesis has been reported
in mice models for nutrient-triggered signals impairment, thus
confirming that nutrient-regulated switches influence NSCs fate
decisions. The transition between quiescent and activated states is
a critical step, as the required cell cycle entry is a major energetic
commitment (Cavallucci et al., 2016; Wentling et al., 2019). For this
reason, nutrient-responsive pathways and transducers, such as the
growth differentiation factor-11 (GDF11), the insulin-IGF cascade,
the AMPK/mTOR axis, and the transcription regulators CREB and
SIRT1 have been included, alongside the canonical “developmental”
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signals (e.g., Notch and Wnt), in the molecular networks controlling
NSCs self-renewal, migration, and differentiation, in response to local
and systemic inputs (Figure 1). In the context of metabolic diseases
as well as in aging, many of these nutrient-related cascades prove to
be dysregulated, thus suggesting a possible explanation/contribution
to both impaired neurogenesis and the cognition defects observed
(Katsimpardi et al., 2014; Fidaleo et al., 2017). Recently, a role
for short chain fatty acids (SCFAs) in adult neurogenesis has been
proposed. SCFAs are the major product of fiber fermentation in
the large intestine and, after entering systemic circulation, could
directly impact on mitochondrial metabolism in diverse body’s
tissues, including the brain (van de Wouw et al., 2018; Silva
et al., 2020). Specific diet regimens could increase SCFAs levels
which in turn could trigger mitochondrial biogenesis and premature
differentiation of NSCs, through a ROS- and ERK1/2-dependent
mechanism, thus resulting into a rapid depletion of the NSCs
pool (Ribeiro et al., 2020). Therefore, nutrients are necessary to
trigger neurogenesis but chronic overnutrition and/or metabolic
imbalances, leading to an impaired nutrient signaling in the brain
(Soto et al., 2018), could potentially result into NSCs exhaustion,
thus accelerating brain aging, and altering neurobehaviors (Soto
et al., 2018; Ribeiro et al., 2020). These observations suggest the
existence of a new role for mitochondria, as mediators of the gut
microbiota-brain axis, able to respond to dietary influences. Of note,
the role of nutrients in NSCs activation is not in conflict with the
established notion that CR enhances mammalian neurogenesis, as
previously discussed. In fact, starvation/refeeding cycles are likely
to synchronize NSCs, optimizing their refeeding response and re-
entry into a quiescent state. Intriguingly, feeding cycles are in strict
relationship with the circadian clock (Asher and Schibler, 2011) and
a NSCs quiescence maintenance defect has been reported in mice
model devoid of key molecular clock proteins (Bouchard-Cannon
et al., 2013). Indeed, when normal human fibroblasts were synced
in vitro, by means of two different protocols, rhythmic oscillations of
mitochondrial respiration and glycolytic activity have been observed
(Pacelli et al., 2019). Conversely, PD patients-derived fibroblasts,
carrying Parkin gene mutations, showed a severe dampening of the
bioenergetic oscillatory patterns, associated with a dysregulation of
core clock genes expression, which was also confirmed in iPSCs and
in the induced neural stem cells (iNSCs). These results highlight
the existence of a reciprocal interplay between mitochondrial
energy metabolism and clockwork machinery, pointing to a Parkin-
dependent mechanism of regulation, and a greater level of complexity
in PD pathophysiology, that could eventually be a common feature
of other NDs (Pacelli et al., 2019). This evidence agrees with those
emphasizing the conserved nature of diurnal variation of redox
control in eukaryotes, where key cellular activities depend upon the
coordination between the NAD-dependent control of metabolism
and the NADPH/H2O2 control of the redox proteome spatiotemporal
organization (Jones and Sies, 2015). Several evidence suggest that
energy metabolism and nutrient sensing are the major physiological
determinants of NSCs fate, as well as modulators of the entire
neurogenic process. Nevertheless, the molecular pathways underlying
metabolic regulation of neurogenesis, are still poorly understood.
Their full comprehension, as well as their interplay with novel
dietary and/or pharmacological approaches, aiming at improving
neurogenic activity and delaying its age-related decline, may be of
help in the prevention of neurodegenerative disorders and brain
aging (Cavallucci et al., 2016).

FIGURE 1

Nutrient pathways control of NSCs fate. Nutrient sensing and energy
metabolism are the major physiological determinants of neurogenic
processes.

3.2. ROS metabolism in the cell

Oxidative eustress has been defined as a “low physiological
exposure to prooxidants,” characterized by the involvement of
specific redox signaling targets, while oxidative distress as a
“supraphysiological exposure to prooxidants,” with unspecific
targets, disrupted redox signaling, and damaging molecule
modifications (Lushchak and Storey, 2021; Sies, 2021). Enzymatical
or non-enzymatical ROS generation could occur in different
cellular compartments, such as mitochondria, peroxisome,
endoplasmic reticulum (ER), and lysosome (Malard et al., 2021).
Nevertheless, approximately 90% of cellular ROS are generated by
the mitochondrial Electron Transport Chain (ETC) during ATP
production (Nissanka and Moraes, 2018). In fact, about 0.1–0.2% of
the O2 used by mitochondria is thought to generate ROS, through
the premature electron flow deriving from NADH or FADH2 to
O2, mainly through electron transport chain complexes I and III
(Chen et al., 2003; Tahara et al., 2009). ROS-dependent generation
of O2-derived reactive species is initiated by the conversion of O2 to
O2

.− and the formation of H2O2, hydroxyl radicals OH., OH−, and
many other derivative species (Olson et al., 2017). It is very unlikely
that O2

.− can play a role in physiology, especially considering its very
short lifetime (approximately 10−9 s), although it can possibly induce
oxidative damage in the neighboring area. Therefore, superoxide
dismutase 1 (SOD1) is more likely to act as a signaling rather than
antioxidative enzyme, because it converts O2

.− to the more stable
H2O2, which can be transported as a signaling molecule. However,
H2O2 is dangerous for the cell, as by the Fenton reaction it could
generate hydroxyl anion, the most toxic form of ROS (Angelova
and Abramov, 2018). These activation/deactivation cycles of the
H2O2 metabolism support complex time-dependent processes in
the life cycle of cells and organisms, as described by third principle
of the redox code (Jones and Sies, 2015). In mitochondria, O2

.−

generation from O2 depends upon the activity of different proteins,
such as glycerol 3-phosphate dehydrogenase and 2-oxoglutarate
dehydrogenase. Other sources of ROS are: (i) the peroxisomes,
through the activity of fatty acid β-oxidation, iron-Sculpture flavin
hydroxylase xanthine oxidoreductase (XOR), and urate oxidase
(UO), in the matrix, and by electron chain, in the membrane;
(ii) the ER, by nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOXs) and dual oxidases, and the microsomal
monooxygenase (MMO) system, which contains cytochrome P450
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oxidase (Malard et al., 2021). In addition, non-home iron containing
dioxygenases, lipoxygenases, and cyclooxygenases also generate O2

.−

from polyunsaturated fatty acids (PUFAs) (Snezhkina et al., 2019).
O2

.− reduces key transition metal ions iron Fe3+, copper Cu2+, and
manganese Mn3+, which generate O2 (Hayyan et al., 2016). Under
physiological conditions, ROS levels are tightly regulated by the ROS
scavenging system, through the activity of antioxidant enzymes that
can neutralize ROS by directly reacting with as well as accepting
electrons from them. Glutathione Peroxidases (GPXs), through
GSH/GSSG metabolism, and Peroxiredoxin (PRDX) generate
H2O from H2O2 (Angelova and Abramov, 2018), with a circadian
variation (Jones and Sies, 2015). Other two important antioxidant
defense enzymes are Catalase and the home containing enzyme
Myeloperoxidase (MPO). Catalase, the most abundant peroxisomal
antioxidant enzyme, dismutates H2O2 to O2 and H2O (Ogino et al.,
2001; Olson et al., 2017), while MPO catalysis the oxidation of Cl− by
H2O2 to hypochlorous acid (HOCl) (Garai et al., 2017). In addition,
H2O2 reacts with transition metal ions Fe2+ or Cu+ to generate OH.,
OH−, and the corresponding reactive Fe3+ or Cu2+ in the Fenton
reaction (Kajarabille and Latunde-Dada, 2019).

Proteins belonging to the NOX family are the second major
source of intracellular ROS, and this enzymatic ROS synthesis
contributes toward the maintenance of physiological ROS levels,
accordingly to cellular demands (Bedard and Krause, 2007). In
cultured hippocampal neurons, NOX enzymes are responsible for the
generation of almost 45% of intracellular hydrogen peroxide, thus
proving the key role of these enzymes’ activity on the redox state of
the cell (Bedard and Krause, 2007). The NOX-produced superoxide
anion is rapidly converted, either spontaneously or enzymatically (by
SOD), into hydrogen peroxide, which plays an important role in
killing pathogens, although excess superoxide can lead to oxidative
stress and cell damage. ROS accumulation leads to oxidative stress,
which produces adverse effects on multiple cellular components,
including proteins, lipids, and nucleotides. ROS generation in the
mitochondrial matrix leads to damage of mitochondrial proteins,
membranes, and DNA. Additionally, ROS can impair ATP synthesis
thus impacting on metabolic functions, such as fatty acid oxidation,
TCA cycle, urea cycle, amino acid, and home synthesis (Zorov et al.,
2014). Moreover, oxidative damage can result in cytochrome c release,
through the mitochondrial permeability transition pore, thus leading
to apoptosis induction (Rao et al., 2014). We can thus assume that
ROS levels act as a function of mitochondrial respiration and that
multiple factors, such as oxygen availability, NADH, FADH2, and
ubiquinone redox states, antioxidant factors activity, mitochondrial
morphology, as well as mutations in OXPHOS subunits, could
influence ROS levels as well (Maffezzini et al., 2020).

The brain is one of the most metabolically active among all
organs, highly susceptible to stresses, specifically to oxidative distress,
due to the multifaceted roles of ROS, especially superoxide anion
O2

.− and H2O2, in redox signaling. Indeed, dopamine metabolism,
via monoamine oxidases (MAO), and OXPHOS are important
sources for H2O2 generation, that could behave as a signaling
molecule. In addition, the brain shows low endogenous antioxidant
defense, as compared to other organs, mainly due to its reduced
glutathione (GSH) content and low catalase. Further, enriched
unsaturated lipids, such as omega-3 docosahexaenoic acid, cause
distress due to their susceptibility to lipid peroxidation related to
cell death, including ferroptosis (Cobley et al., 2018). Finally, brain
susceptibility is region- and time-dependent, based on the condition
that induces oxidative distress and the endogenous antioxidant

capacity. In fact, while many neuronal subtypes can cope with
oxidative stress rise, selected neuronal populations showed a higher
susceptibility to ROS increase (Mattson and Magnus, 2006; Wang
and Michaelis, 2010). The four areas of the brain most susceptible
to oxidative stress are the cerebral cortex, the hippocampus, the
striatum, and the cerebellum (Malard et al., 2021). These observations
agree also with the evidence that oxidative stress and poor antioxidant
defense, underlying the deleterious effects of vitamin B12 deficiency
in mice model, would act on the expression of histone modifying
enzymes that act on the behavior (Ghosh et al., 2020).

Even though high ROS levels associate with cellular dysfunction,
it is now evident that ROS are necessary for some physiological
cellular functions (Sart et al., 2015; Nissanka and Moraes, 2018).
Indeed, ROS act as second messengers by modulating cytokines and
growth factors, whose activity regulates classical signaling cascades
under both physiological and stress-related conditions, such as
ERK, JNK, MAPK, and JAK/STAT pathways (Simon et al., 1998).
Furthermore, the regulatory effect of ROS might be modulated not
only by classical ROS-scavenging enzymes, such as SOD, catalase,
peroxiredoxins (PRX), thioredoxin (TRX), glutathione peroxidase
(GPX), reductase (GR), and transferases (GST), but also by newly
identified ROS suppressors, including PTEN-induced putative kinase
1 (PINK1) and SIRT1 (Bigarella et al., 2014; Xavier et al., 2016).

4. Role of mitochondria in neural
stem cell commitment: The SIRT-ROS
interplay

Tissue development and regeneration rely on the balance
between stem cell self-renewal vs. differentiation, and several
reports highlighted mitochondria as a key player, with functional
alterations of the organelle leading to stem cell abnormalities
(Llorens-Bobadilla et al., 2015; Shin et al., 2015; Stoll et al., 2015;
Xie et al., 2016; Zheng et al., 2016; Khacho et al., 2019). The
hGFAP-SDHD mouse model, bearing homozygous deletion of the
succinate dehydrogenase subunit D gene (SDHD) restricted to the
cells of glial fibrillary acidic protein lineage, showed that the genetic
mitochondrial damage did not alter the generation, maintenance,
or multipotency of glia-like NSCs. However, a differentiation
impairment of neurons and oligodendrocytes, but not of astrocytes,
has been observed alongside with extensive brain atrophy (Diaz-
Castro et al., 2015). Another study proved the Nestin-Cdk5-Drp1
axis as a negative modulator of OXPHOS, which is indispensable
for neural stem/progenitor cell maintenance (Wang J. et al., 2018),
and it has also been reported that, during embryonic neurogenesis,
NSCs’ mitochondrial morphology acts as an upstream regulatory
mechanism for stem cell fate decisions (Rodolfo et al., 2016; Bueler,
2021). Indeed, enhanced mitochondrial fusion promotes NSCs
self-renewal, while mitochondrial fragmentation commits NSCs to
neuronal differentiation and maturation (Figures 2A, C). Khacho
et al. (2016) observed a reduction of uncommitted Sox2+ NSCs
and immature DCX+ neurons in the DG, when the mitochondrial
fusion proteins MFN1/2 were knocked out in adult hippocampal
NSCs. Indeed, when MFN2, OPA-1, and Drp1 were downregulated
in Sox2+ NSCs, they observed aberrant mitochondrial dynamics as
well as an impairment of NSCs self-renewal and fate decisions, linked
with changes in ROS signaling but not in ATP levels. Mitochondrial
dynamics also seem to regulate neurogenesis in the adult SVZ, as
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suggested by chemical inhibition (with Mdivi-1) of Drp1 in SVZ-
derived neurosphere cultures, which results in a reduction of both
NSCs migration form neurosphere as well as their differentiation
into neurons (Detmer and Chan, 2007). This evidence showed that
mitochondrial morphology changes could regulate mitochondrial
metabolism and ROS generation, whereby the commitment of
NSCs to a progenitor fate is mediated by a physiological increase
in mitochondrial ROS (mtROS), associated with mitochondrial
fragmentation (Khacho and Slack, 2018; Bueler, 2021; Ozgen et al.,
2022). Mitochondrial fragmentation fulfils a biological role to
regulate neuronal development (Khacho and Slack, 2018) and mtROS
would act as a rheostat to direct gene expression changes regulating
cell fate decisions (Maryanovich and Gross, 2013). Indeed, the
physiological mtROS increase functions as a signaling mechanism to
activate a cascade of events leading to the stabilization of the master
redox regulator protein NRF2, whose translocation into the nucleus
mediate the transcription of genes responsible for differentiation
induction and self-renewal suppression (Khacho et al., 2016). On the
other hand, ROS production and excessive fission are responsible for
neurodegeneration and are detrimental for neurogenesis (Rodolfo
et al., 2016; Bueler, 2021; Figure 2B). In this scenario, Sirtuins may
act as potential modulators of specific gene activation, leading to
neural differentiation. In fact, oxidative stress, or a general alteration
of cellular redox homeostasis, impacts on SIRTs activity at different
levels: (i) by inducing or repressing SIRTs genes expression; (ii) by
posttranslational oxidative modifications of SIRTs; (iii) by altering
SIRTs-protein interactions; (iv) by changing NAD+ levels (Santos
et al., 2016). Moreover, recent evidence highlights a molecular linkage
between mitochondrial DNA (mtDNA) integrity and the modulation
of neural differentiation, suggesting another way by which ROS
can modulate stem cells differentiation. Many pathological insults
can affect mtDNA integrity, but ROS-dependent oxidative damage
is the most discussed (Nissanka and Moraes, 2018). It has been
reported that increased mtDNA mutation loads correlate with a
reduction of NSCs population in the SVZ of adult mice, reduced self-
renewal capacity, and decreased mitochondrial respiration (Ahlqvist
et al., 2012; Nissanka and Moraes, 2018; Figure 3). Moreover,
during brain repair, mtDNA damage was shown to favor NSCs
differentiation into astrocytes, and to affect mitochondrial DNA
transcription, and replication (Xavier et al., 2016). Cells developed
different strategies to abolish the deleterious consequences of
ROS on DNA. Indeed, a multienzymes repair cascade, known
as the base excision repair (BER), leads to mtDNA repair and
replication. In this cascade, OGG1 activity triggering, allow for the
identification and elimination of several base lesions, including 8-
oxoguanine, one of the most abundant genomic base modifications
generated by reactive oxygen and nitrogen species. OGG1 acts as
a transcription modulator, which can control transcription factor
homing, induce allosteric transition of G-quadruplex structure, or
recruit chromatin remodelers (Wang R. et al., 2018). In particular,
OGG1 activation in the mitochondria results in the induction of
the mitochondrial DNA polymerase, Pol γ (Xavier et al., 2016).
Experiments in mice showed OGG1 as essential for the repair of
mtDNA damage and NSCs viability, upon mitochondrial oxidative
stress (Wang et al., 2011). In fact, differentiating neural cells
from ogg1−/− mice spontaneously accumulate mtDNA damage and
shift their fate toward an astrocytic lineage. Interestingly, these
events are associated with SIRT1 enzymatic activation, due to
an increased NAD+/NADH ratio, similarly to what observed in
wild type NSCs subjected to mtDNA damaging insults. Instead,

antioxidant administration reversed mtDNA damage accumulation
and increased neurogenesis in ogg1−/− cells. Moreover, the
expression of a mitochondrially targeted human OGG1 in ogg1−/−

NSCs results in the protection from mtDNA damage during
differentiation, and increased neurogenesis (Wang et al., 2011;
Figure 3). Similarly, it has been reported that AOX halted the
neurogenic to gliogenic lineage shift during NSCs differentiation,
by strongly reducing ROS generation and nuclear translocation
of NRF2 and SIRT1 (Santos et al., 2013). This evidence would
suggest that ROS-sensitive SIRTs activity could be modulated by
alterations of the mitochondrial respiratory chain, in response
to mtDNA damage, thus impacting on NSCs fate at different
levels.

5. Redox signaling in neurogenesis

5.1. ROS modulation of adult neurogenesis

Oxygen levels play a significant role in the molecular mechanisms
that guide stem cells to either differentiate or renew, by directly
influencing enzymatic reactions and by regulating specific
gene expression profiles, through transcription factors such as
HIF1α (Mootha and Chinnery, 2018). Energy generation in NSCs
preferentially relies on aerobic glycolysis, through HK2 and the
pentose phosphate pathway, and may be due to multiple factors, such
as their location within a hypoxic niche, the low energy requirements
of quiescence, and the need to minimize mtROS-dependent oxidative
stress, as shown in HSCs (Kunisaki et al., 2013). The differentiation
of ESCs into neural progenitors is regulated by the eicosanoid
pathway and by fatty acid metabolism (Yanes et al., 2010). Indeed,
stem cells’ mitochondria are relatively metabolically inactive, in
terms of ATP production, when compared with more differentiated
cells. Nonetheless, functional mitochondria are still required for
proper adult stem cells maintenance (Bigarella et al., 2014). Stem
cells maintain low basal levels of ROS, which preserves stem cell
potential by maintaining an appropriate balance between stem
cell quiescence, differentiation, and self-renewal. The oxidative
stress response mediated by Forkhead box O 3 (FOXO3) becomes
rapidly deactivated upon NSCs differentiation, suggesting that
mitochondrial oxidation-induced ROS are required in neural
progenitors (Shyh-Chang et al., 2013). In fact, in NSCs and HSCs
ROS reduction below the basal level is associated with reduced
regenerative potential, characterized by impaired proliferation,
differentiation, and self-renewal (Collins et al., 2018; Tan and Suda,
2018). However, high levels of H2O2 are required to maintain
regular NSCs and progenitor cells’ self-renewal, a process related to
Doublecortin (DCX), Nestin, and FOXO proteins (Le Belle et al.,
2011). Conversely, ROS accumulation leads to loss of quiescence
and induction of senescence, via p38-MAPK activation, leading
to stem cell exhaustion and impaired regenerative potential,
which could be reverted by administration of the antioxidant
N-acetylcysteine (NAC) (Ito et al., 2006; Paik et al., 2009; Takubo
et al., 2010; Ahlqvist et al., 2012; Borodkina et al., 2014; Garcia-Prat
et al., 2016; Shaban et al., 2017; Tan and Suda, 2018). Further,
accumulation of ROS to high levels ultimately results in cell death
(Sart et al., 2015; Tan and Suda, 2018). On the other hand, it has
been reported that p53-dependent mtROS reduction impacts on the
neural differentiation potential, by favoring neuronal rather than
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FIGURE 2

Mitochondrial dynamics regulate neurogenesis. (A) Mitochondrial fission promotes neuronal differentiation. (B) Excessive fission and ROS production
contributes to neurodegeneration. (C) Enhanced mitochondrial fusion promotes NSCs self-renewal.

FIGURE 3

mtDNA impact on neural differentiation. ROS increase leads to mtDNA damage which correlates with NSCs self-renewal reduction, decreased
mitochondrial respiration, and a shift toward the astrocytic lineage. OGG1 repair system protects NSCs from ROS-dependent mtDNA damage, thus
favoring neuronal differentiation.

astroglial conversion (Xavier et al., 2014). In the SGZ, transient
oxidative distress, stimulates the expression of oxidation-responsive
genes, which in turn drive neurogenesis by promoting NSCs and
progenitor cells differentiation (Walton et al., 2012). However, a
recent study in which mice NPCs from hippocampus were FACS-
sorted accordingly to their ROS levels, and subjected to staminal
markers and transcriptome analyses, unexpectedly showed that the
cells with the highest ROS levels were quiescent NSCs (qNSCs). Shifts
to lower ROS content primed NPCs to a subsequent state transition,
showing that lower ROS levels correlated with increased expression
of proliferation and differentiation genes. In addition, NOX2 was
not necessary for NPCs proliferation under physiological conditions,
even if it has been reported that a transient NOX2-dependent
ROS burst promotes exercise-induced recruitment of qNSCs to
proliferation (Adusumilli et al., 2021). While this evidence seems
to be in contrast with previous ones, they may not be mutually
exclusive, because the transient nature of ROS and ROS signals likely
triggers cell transitions without substantially altering ROS levels in
the next cell type, especially if the ROS burst also activates anti-
oxidative genes (Bueler, 2021). Interestingly, from the antioxidant
defense side, in vivo experiments in mice deficient for cytoplasmic
(SOD1) and mitochondrial SOD (SOD2), showed reduced adult
hippocampal neurogenesis, in favor of an increased generation of
new-born astrocytes (Garcia-Prat et al., 2016). In addition, NSCs
and NPCs proliferation were increased by the accumulation of
catalase in mitochondria (Liao et al., 2013). Finally, MPO inhibition
increases adult neurogenesis through, at least, DCX and SOX2

stimulation (Yu et al., 2018). ROS behavior during neurogenesis, is
like that described in the Hekimi’s Mitohormesis theory (Hekimi
et al., 2011), which states that cellular insults trigger protective
stress response, where ROS would act as secondary messenger.
Several key transcription factors and signaling pathways, including
NOTCH and WNT/β-catenin, NRF2, p53, PI3K/AKT, and pERK1/2
(Bouchard-Cannon et al., 2013), are involved in the ROS-dependent
modulation of both adult and embryonic neurogenesis. Therefore,
ROS can act as signaling molecules to modulate the stress response
pathway and small increases can extend lifespan. However, at
a certain point this age-dependent damage would increase past
the threshold where ROS signaling is sustained and maladaptive
(Figure 4).

5.2. SIRT-mediated ROS-dependent
neurogenesis

It has been shown that mild oxidative stress triggers SIRT1
activation and subsequent HES-1 mediated transcriptional inhibition
of MASH1, leading to increased astrogliogenesis (Prozorovski et al.,
2008). Additionally, mouse models of advanced aging, bearing a
deletion in the clock gene BMAL1, show high levels of ROS and SIRT1
expression in the brain, coupled with a reduction of hippocampal
adult neurogenesis in favor of an increased production of astrocytes
(Ali et al., 2015). SIRT1 activation is crucial for mitochondrial
homeostasis, as it regulates the expression of OXPHOS enzymes as
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FIGURE 4

NSCs cell-fate decision depends upon redox balance and SIRTs
activity. High oxidizing conditions favor NSCs differentiation into
astrocytes (astrogliosis), senescence, and cell death, whereas mild
oxidative/reducing conditions favor neuron formation (neurogenesis),
through a complex regulatory network modulated by SIRT1
expression and activity.

well as of the peroxisome proliferator-activated receptor γ (PPARγ)
coactivator-1a (PGC-1α), which is crucial for mitochondrial gene
expression (Lin J. et al., 2005). NAD+/NADH ratio, which is in
turn a measure of cellular redox status (Jones and Sies, 2015),
plays a role in regulating stem cell fate through SIRTs activity
(Haigis and Sinclair, 2010; Imai and Guarente, 2014, 2016). During
aging, the oxidative stress increase determines a NAD+ depletion
that negatively impacts on mitochondria (Du et al., 2003). In vivo
mice model of chronic cerebral hypoperfusion, showed that NAD+

improved cognitive function and reduced neuroinflammation in
association to mitochondrial protection and ROS inhibition through
the activation of SIRT1/PGC-1α pathway (Zhao et al., 2021).
Moreover, NAD+ levels depend upon the energetic level of the
cells, increasing during CR and decreasing under conditions of
high-energy load, such as high-fat diet. Interestingly, CR decreases
oxidative stress leading to increased NAD+ levels and improving
mitochondrial function, by the SIRT3-mediated increase of SOD2
activity (Qiu et al., 2010). Therefore, NAD plays a role in the mito-
nuclear protein imbalance, which has been described as a conserved
mechanism in the regulation of energy metabolism (Houtkooper
et al., 2013). Thus, as SIRTs enzymatic activity depends upon NAD+

levels they could act as metabolic sensors coupling cellular metabolic
status to regulatory responses (Nemoto et al., 2004; Canto and
Auwerx, 2009; Peng et al., 2010; Khoury et al., 2018). It has been
shown that ROS levels also influence the oxidation state of cysteine
(Cys)-containing redox sensors, following a diurnal variation (Blanco
et al., 2007), which alter the activity and localization of these proteins,
thereby regulating NSCs state and fate. SIRT1 contains critical
cysteine residues vulnerable to oxidation, whose alteration decreases
enzyme’s activity and favors its degradation (Cai et al., 2012; Chen
et al., 2012). Summarizing, pathological ROS balance alteration as
well as their age-associated physiological accumulation, may affect
SIRTs expression and/or activity and in turn NSCs fate decisions. It
would be of outmost importance to better clarify the exact molecular
mechanisms linking SIRTs enzymatic activity and ROS-dependent

modulation of the correct lineage specification and/or aging in NSCs
(Figure 5).

6. SIRT proteins in neurogenesis and
CNS aging-related diseases

In mammals, beside the above described SIRT1, seven SIRTs
(SIRT1-7) have been identified, all possessing a highly conserved
central nicotinamide adenine dinucleotide (NAD+)-binding site and
a conserved catalytic domain. SIRT1 mainly localizes in the nucleus;
SIRT2 in the cytoplasm, where primarily targets tubulin, PEPCK and
FOXO1; SIRT3, SIRT4, and SIRT5 in the mitochondria, targeting
various oxidative phosphorylation enzyme complexes and SODs;
SIRT6 and SIRT7 in the nucleus, with SIRT6 targeting histone
H3, PARP-1, and p65 (Walton et al., 2012; Maissan et al., 2021;
Figure 6). Recently, SIRTs have been reported to also modulate
neurodegeneration and toxicity associated with different proteins
such as α-synuclein (α-SYN), huntingtin (HTT), TAU, or amyloid-
beta (Aβ) peptide (Donmez, 2012). The possibility to direct NPCs
differentiation may be useful to protect brain against inflammatory
diseases, such as MS, which involves astrogliosis. In addition, the
ability to precisely direct NPCs differentiation toward neurons may
provide new therapeutic options for stroke, spinal cord injury, and
age-related cognitive conditions, characterized by neuronal loss, such
as AD and PD (Watroba et al., 2017). Aging is the major risk
factor for NDs development and aging stem cells lose their ability to
produce NPCs as well as their differentiation capacity, as described
above. The conspicuous presence of SIRTs in the brain and the
importance of their role in mitochondrial metabolism regulation,
suggest this proteins family as a good target candidate for therapeutic
protocols, aiming to control neurogenesis and NDs (Figure 5). SIRTs-
dependent modulation of pluripotency and differentiation is not
entirely understood, but it has been shown that SIRT1, 2, 3, 6, and 7
were involved in the modulation of these processes (Karuppagounder
et al., 2015; Correia et al., 2017). In this review, we mainly focused
on SIRT1 role in CNS, as this is the most studied member of
the family (Mishra et al., 2021). In vitro and in vivo observations
showed SIRT1 as required for proper differentiation of both ESCs
and adult stem cells. Indeed, SIRT1 expression, which is higher in
ESCs, decreases during differentiation, through a miRNA-mediated
post-transcriptional regulation (Saunders et al., 2010; Lee et al.,
2019). In addition, oxidative stress and inflammation can promote
NPCs differentiation toward the astrocyte lineage, through a SIRT1-
dependent regulation of the MASH1 promoter1. It has been shown
that the redox state does affect NPCs cell-fate decision in vitro,
with oxidizing conditions favoring differentiation into astrocytes,
whereas reducing conditions favor neuron formation (Libert et al.,
2008). In fact, administration of the SIRT1-activating compound
resveratrol to NPCs mimicked oxidizing conditions and increased
NPCs differentiation toward astrocytes, through a SIRT1-dependent
mechanism (Figure 4). Under oxidizing conditions, SIRT1 and
the hairy and enhancer of split 1 (HES1) form a complex that
binds to and deacetylates histones at the MASH1 promoter, while
recruiting co-repressors, such as TLE1 (Libert et al., 2008). Together,
these events cause a down-regulation of MASH1 expression and
block neuronal differentiation. The HES1-SIRT1 complex is not
detected under reducing conditions, where HES1 could recruit
transcription activators, such as CREB binding protein (CBP), to the
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FIGURE 5

ROS, SIRT1 and energy metabolism interplay. NAD+/NADH ratio is a measure of the cellular redox status, and plays a role in NSCs fate regulation, through
SIRT1 activity. SIRT1 regulates neural differentiation as well as cellular pathways related to NDs, by regulating the activity of different transcription factors.

FIGURE 6

SIRTs protein family. Intracellular distribution of SIRTs in the cytoplasm, the mitochondria, and the nucleus, allows them to play different roles in cellular
redox homeostasis.

MASH1 promoter, driving NPCs differentiation toward a neuronal
fate (Prozorovski et al., 2008). In a recent work, it has been
reported that extracellular glucose, through the coordinated action
of CREB and SIRT1, could modulate HES1 expression in NSCs
and NPCs. Indeed, excess glucose reduced CREB-activated HES1
expression and resulted in impaired cell proliferation. Moreover,
CREB-deficient NSCs expanded poorly in vitro and did not respond
to glucose availability. Elevated glucose levels also promoted SIRT1-
dependent repression of the HES1 promoter. Conversely, in low
glucose, CREB replaced SIRT1 on the chromatin associated with the

HES1 promoter, enhancing HES1 expression and cell proliferation.
Thus, the glucose-regulated antagonism between CREB and SIRT1
for HES1 transcription participates in the metabolic regulation
of neurogenesis (Fusco et al., 2016). These works suggested that
NSCs proliferative potential is subject to tight intrinsic regulation;
therefore, a better knowledge of SIRTs role in the modulation of
intracellular pathways controlling cell cycling would be of importance
for the reactivation of latent NSCs populations, to engage endogenous
neurogenesis, as a treatment for different NDs. In vivo and in vitro
AD models showed that SIRT1 could exert a protective action toward
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neuronal damage (Julien et al., 2009). Indeed, SIRT1 has been shown
to directly deacetylate TAU protein, thus increasing its susceptibility
to degradation and preventing neurofibrillary tangles formation (Min
et al., 2010; Xu et al., 2018). Moreover, autophagy-dependent Aβ

degradation may also be related to SIRT1 activity (Park et al., 2016), as
SIRT1 activation/overexpression has been reported to interfere with
microglia-mediated Aβ toxicity, through its ability to inhibit NF-κB
signaling (Chen et al., 2005). SIRT1 can also deacetylate PGC-1α, thus
increasing its transcriptional regulation activity. In fact, deacetylated
PGC-1α can instill transcriptional repression of β-secretase, which in
turn can reduce Aβ production levels and senile plaque accumulation
(Xu et al., 2018). These results are corroborated by a systematic
review where it has been shown the protective role of resveratrol
in AD patients (Buglio et al., 2022). Recently, the analyses of PD
animal and cellular models, showed that SIRT1 overexpression was
able to suppress α-SYN aggregates formation, through the activation
of the molecular chaperones, driven by Heat Shock Factor 1 (HSF1)
deacetylation (Donmez et al., 2012). Resveratrol was shown to have
a protective effect against α-SYN-induced toxicity in SK-N-BE cells
(Albani et al., 2009), and another study showed that resveratrol
administration results into increased PGC-1α transcription and
improved mitochondrial function, through the AMPK-SIRT1-PGC-
1α signaling pathway (Ferretta et al., 2014). In PD mouse models,
treatment with resveratrol and the polyphenol Epigallocatechin
gallate (ECGC), results in the protection against toxicity through
an up-regulation of PGC-1α, via SIRT1 activity (Xu et al., 2018).
In addition, CR or 2-deoxy-D-glucose (2-DG) administration were
found to reduce dopaminergic neurons loss in mice as well as
to improve motor function (Duan et al., 2003), corroborating the
involvement of SIRT1 in the longevity-modulating role of the
insulin/IGF signaling (IIS) under CR (Holzenberger et al., 2003; Suh
et al., 2008; Deelen et al., 2013). SIRT1 has a neuroprotective role also
in HD (Duan, 2013; Smith et al., 2014). In fact, it has been observed
that mutant HTT reduces SIRT1 activity, impairing its positive
role in neuronal survival, probably due to the structural similarity
between mutated HTT and SIRTs-interacting transcription factors
(Naia and Rego, 2015). A recent study showed that, in mouse, SIRT1
improved survival, neuropathology, and the expression of brain-
derived neurotrophic factor (BDNF), which requires the presence
of CREB-regulated transcription coactivator 1 (Jeong et al., 2011).
In HD knock in mice model, PGC-1α is repressed by mutant
HTT and PGC-1α knockout exacerbates neurodegeneration and
motor abnormalities. Conversely, PGC-1α expression ameliorates
mitochondrial dysfunction and rescued neuronal toxicity induced
by mutant HTT. In this context, SIRT1 ablation exacerbates
neurodegeneration, whereas SIRT1 overexpression improves motor
functions and rescued brain atrophy. As already described, PGC-1α

is a transcriptional coactivator regulating several key mitochondrial
processes, among which mitochondrial biogenesis and oxidative
phosphorylation. Accordingly, SIRT1 protection against HD-related
neurodegeneration is, at least partially, related to prevention of
mitochondrial function impairment, through PGC-1α activation
(Rodgers et al., 2005; Min et al., 2013). Several studies, using
resveratrol administration, indicated that SIRT1 may be protective
also in tissue culture and mouse models of ALS, by promoting
neuronal survival. Indeed, increased SIRT1 expression levels have
been reported for different brain regions in SOD1G93A transgenic
mice, suggesting a role for SIRT1 in the motor functions in
ALS, although the mechanisms and functional implications of
this increased SIRT1 expression still require elucidation (Lee J.

et al., 2012). One proposed mechanism is that SIRT1-dependent
deacetylation of HSF1, results in an increased expression of
molecular chaperones, like HSP70 and HSP25, that help to maintain
intracellular protein homeostasis, thus reducing motor neurons
toxicity (Watanabe et al., 2014); in another mechanism, SIRT1
activation results in an increased mitochondrial biogenesis, through
PGC-1α and MFN2 (Min et al., 2010; Imai and Guarente, 2014, 2016;
Park et al., 2016). Other works revealed that, in the ventral spinal
cord, resveratrol protective effects were associated with increased
expression and activation of SIRT1 and AMPK, resulting in the
normalization of the autophagic flux and, more importantly, in an
increased mitochondrial biogenesis (Mancuso et al., 2014). Finally, in
the spinal cord of wild type mice, SIRT1 expression decreases during
aging. Mouse models, either overexpressing or lacking SIRT1 in
motor neurons, showed that SIRT1 slows age-related degeneration of
motor neurons’ presynaptic sites at neuromuscular junctions (NMJs)
(Herskovits et al., 2018).

SIRT2 is abnormally overexpressed in AD, and it is responsible
for tubulin deacetylation, leading to microtubule destabilization,
TAU dissociation from microtubules, and its subsequent
oligomerization and aggregate formation (Silva et al., 2017). In
two mouse models, SIRT2 small molecule inhibitors have been
shown to reduce Aβ load and led to cognitive improvement (Biella
et al., 2016). In PD, SIRT2 inhibition reduces α-SYN aggregation
and toxicity, by modifying its acetylation levels (de Oliveira et al.,
2017). Instead, the potential role of SIRT2 in aging is suggested by
the association found between human longevity and a polymorphism
in the probably regulatory elements of the SIRT2 gene (Crocco et al.,
2016).

SIRT3 reacts to nutritional status and mediates some of
the beneficial effect of CR, including many of the CR-induced
transcriptional changes, as observed in the suppression of cochlear
neurons degeneration (Someya et al., 2010). SIRT3 is upregulated
when ROS are pharmacologically augmented in neuronal culture and
in human AD brains, while is reduced in cells expressing mutant HTT
(Weir et al., 2012). On the other hand, small molecules mediated
SIRT3 upregulation decreases ROS levels and prevents mitochondrial
dysfunction and cytotoxicity induced by mutant HTT (Fu et al.,
2012). It has been also suggested that SIRT3 plays a role in ALS, as its
overexpression protects against SOD1G93A-induced mitochondrial
fragmentation and neuronal cell death (Song et al., 2013), in
agreement with other works showing SIRT3 protection against aging-
linked apoptosis in mice and excitotoxic insults in cultured neurons
(Lee J. et al., 2012), although the exact mechanism remains elusive.
It has been proposed that Cyclophilin D (CYPD), a component of
the mitochondrial permeability transition pore, could be involved.
Indeed, CYPD reduction delays motor neuron cell death and extends
the lifespan of SOD1G93A mice (Martin et al., 2009). Notably, CYPD
is a SIRT3 substrate, and SIRT3-dependent deacetylation inhibits
CYPD function, prevents mitochondrial permeability transition and
age-related cardiac hypertrophy (Hafner et al., 2010). In the same
work, it has been shown that PGC-1α, similarly to SIRT3, is able
to restore mitochondrial dynamics and cell viability of mutant
SOD1G93A neurons (Song et al., 2013) and PGC-1α promotes
SIRT3 expression (Kong et al., 2010). SIRT3 was also shown to
physically interact with the long chain acyl-CoA dehydrogenase
(LCAD) in NSCs and to require its activation to prevent age-
impaired neurogenesis in mice (Santos et al., 2021). The repertoire
of SIRT3 interacting partners suggest further aspects of its role
also in longevity. In fact, SIRT3 deacetylation also supports the
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stability and activity of OGG1, thus protecting mtDNA from the
accumulation of the mutagenic damage produced by 8-oxoguanine
(Cheng et al., 2013); deacetylates the DNA repair regulator protein
Ku70 (Sundaresan et al., 2008); binds the heat shock protein
HSP70, resulting in an increased nuclear presence (Law et al.,
2009). Summarizing, these interactions are potentially linked to the
mechanisms of age-related neurodegeneration (Jesko et al., 2017).

Alzheimer’s disease patients showed decreased expression of
SIRT6 and mice lacking SIRT6 showed TAU protein stabilization
and increased phosphorylation, via the activation of the glycogen
synthase kinase 3 (GSK3) (Kaluski et al., 2017). Like SIRT1 and
SIRT3, also SIRT6 plays a role in CR (Kanfi et al., 2008). In cells
under H2O2-induced oxidative stress, the suppression of SIRT6
protein levels mediates premature senescence-like phenotype (Liu
et al., 2014). In turn, SIRT6 levels restoration rescues several
senescence linked traits, through the modulation of IIS-mTOR
signaling and restores the DNA base excision repair efficiency in
human foreskin fibroblasts from aged donors (Takasaka et al., 2014;
Xu et al., 2015). The links among SIRT6, DNA repair, and aging
also extend to telomere maintenance. Indeed, SIRT6 localizes to
telomeric chromatin where it facilitates the binding of Werner
Syndrome (WS) protein, a DNA helicase crucial for genome stability.
Accordingly, SIRT6 deficiency leads to replicative senescence and
telomere dysfunction, resembling the WS pathology (Michishita
et al., 2008). Moreover, to mitigate aging and oxidative stress SIRT6
interacts with several crucial pathways of transcriptional regulation
as NRF-2 and NF-κB (Kawahara et al., 2009; Pan et al., 2016).

Lastly, insufficient data are available on mitochondrial SIRT4,
SIRT5, and SIRT7 dysregulation in NDs and aging. In conclusion,
although until now relatively little is known about the role of all
SIRTs in neurogenesis and age-associated neurodegenerative diseases,
it is becoming clear that this protein family plays a role in adult
neurogenesis, controlled by mitochondrial metabolism and ROS, as
well as in the antioxidative defense in the aging brain and in the
aging-related CNS diseases (Singh et al., 2018; Figure 7).

7. Telomere shortening in NSCs and
CNS aging-related diseases: SIRTs
and ROS involvement and connection

Telomeres are chromosome termini structures consisting of
tandem DNA nucleotide repeats and the shelterin complex, a six-
protein complex comprising TRF1, TRF2, POT1, TIN2, TPP1, and
RAP1 (de Lange, 2018). It has been reported that in NSCs, isolated
from the subventricular zone (SVZ) of telomerase-deficient adult
mice, telomere attrition dramatically impairs in vitro proliferation.
In addition, NSCs with short telomere, showed upregulation of
p53 expression, in agreement with the importance of p53 pathways
in the telomere damage response in mice (Ferron et al., 2004).
SIRT1 overexpressing mice showed increased health span and longer
telomeres, as compared to both wt and SIRT1-deficient mice, the
latter showing even shorter telomeres. SIRT1 overexpression prevents
telomere shortening, as the mice grew older, through the stimulation
of the telomerase enzyme, whose activity is the major contributor to
telomere production (Palacios et al., 2010). Moreover, SIRT1 may also
influence a second telomeres maintenance pathway, called alternative
lengthening of telomeres (ALT). In fact, SIRT1 overexpression
increased the amount of homologous recombination, a key step in

FIGURE 7

SIRTs and neurodegenerative diseases.

the ALT pathway, all along the chromosomes and at chromosome
ends. Accordingly, SIRT1-deficient cells showed increased damage
at their chromosome ends (Palacios et al., 2010) and SIRT1-
overexpressing mice stay healthier for longer (Short, 2010). Notably,
it has been also shown that SIRT1 binds to the elongated telomeres of
differentiated cells reprogrammed into an embryonic stem cell-like
state (Palacios et al., 2010). Resveratrol and progesterone can mediate
telomerase activity in self-renewing human cells, with resveratrol
activating, and progesterone inactivating the enzyme. Nevertheless,
a direct connection between telomerase activity modulation and
SIRT1 activity has not been shown yet (Pearce et al., 2008; Koziel
et al., 2011). A study reported longer leukocyte telomere length
(LTL) in PD patients (Pearce et al., 2008) while others, examining
LTL in psychological stress, cognitive impairment, and dementia,
found shorter LTL associated with these conditions (Eitan et al.,
2014). In a recent study, whole genome sequencing of ALS patient’s
leukocyte-derived DNA, revealed longer telomeres, in agreement
with observations in PD patients (Al Khleifat et al., 2019). Another
work showed a trend for longer telomeres in microglia from human
post-mortem brain tissue with ALS (Linkus et al., 2016). However,
the same authors found that knocking out telomerase in SOD1G93A-
transgenic mice accelerated the ALS phenotype, concluding that
telomerase dysfunction might contribute to the age-related risk
for this disease. As discussed above, during normal aging as well
as in NDs an increase of oxidative stress in neurons and glial
cells is observed, but it is still unknown neither if oxidative stress
causes telomere erosion, nor if ROS-induced telomere shortening
in neurons and glia is a causal or contributing factor to NDs. As
reviewed by Eitan et al. (2014), short telomeres in immune cells,
astrocytes, and neurons could enhance oxidative stress-dependent
senescence as well as the associated secretion of pro-inflammatory
mediators (senescence-associated secretory phenotype), that may
enhance disease progression. Moreover, in vitro cultured neurons
showed that telomere damage can trigger cell death (Jurk et al.,
2012; Stephenson et al., 2018) while telomerase activation may
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reduce neuronal vulnerability (Cheng et al., 2007; Eitan et al.,
2012). In aged primary cells, increased ROS, caused by progressive
mitochondrial failure, is concomitant with telomere shortening
(Sanderson and Simon, 2017) and ROS neutralization does not
restore mitochondrial function but still inhibits telomere shortening,
thus suggesting ROS as the main player in telomere shortening
(Billard and Poncet, 2019). One possible explanation for this ROS-
dependent event relies on the presence of telomeric GGG repeats.
ROS influence the GGG repeats by generating stretches of 8-
oxoguanine, especially difficult to repair. The presence of unrepaired
single or tandem 8-oxoguanine drastically inhibits TRF1 and TRF2
binding, thus impairing telomerase recruitment and contributing
to telomere deprotection and shortening. Indeed, when oxidative
stress is combined with telomerase inhibitors, it results into faster
telomere shortening, only in oxidative damage repair deficient cells
(von Zglinicki, 2002; Billard and Poncet, 2019). To counteract
the deleterious telomeric consequences of ROS production, cells
exploit OGG1 activity, which plays an important role also at
telomeres, beside the mitochondrial one already described above.
In fact, it has been reported that OGG1 depletion results into
chronic replication stress and an increased telomere loss (Billard and
Poncet, 2019). As OGG1 activity modulation depends upon SIRT1-
dependent deacetylation, it is reasonable to hypothesize that SIRT1
plays a role in the repair of telomeric 8-oxoG in hippocampal cells
(Sarga et al., 2013; Figure 8). SIRT1 also plays a role in telomere
compaction and integrity, as showed by the attenuation of telomere
shortening during aging, in SIRT1 gain of function mouse model,
and by the reduction of H3K9me3 and fragile telomeres, in SIRT1
depletion model (Palacios et al., 2010). Finally, SIRT6 is responsible
for H3K9 deacetylation at telomeres, and its depletion leads to
replication defects, unrepaired DNA damage, and an accelerated
aging phenotype. Moreover, SIRT6 facilitate the binding of the DNA
helicase WRN, crucial for genome stability, to telomeres while SIRT6
deficiency leads to replicative senescence and telomere dysfunction,
resembling the pathology seen in WS (Michishita et al., 2008). To
mitigate aging and oxidative stress, SIRT6 interacts with several
crucial pathways of transcriptional regulation, such as NRF-2 and
NF-κB (Kawahara et al., 2009; Pan et al., 2016). All these data
confirm the interplay between ROS levels and SIRTs also in the
modulation and protection of telomere length, a key factor for NSCs
self-renewing, protection from NDs onset, and brain aging.

8. SIRTs in cellular reprogramming

8.1. SIRT1-mediated telomere elongation

Somatic cells reprogramming, by the forced expression of
Yamanaka factors (OCT-4, KL-4, SOX-2, and c-MYC), enables the
generation of iPSCs, displaying ESCs-like properties (Takahashi
et al., 2007). After reprogramming, also somatic mitochondria
can revert to an ESC-like state in terms of morphology, cellular
distribution, and rate of biogenesis (Prigione et al., 2010). Both
iPSCs and ESCs are characterized by a low redox status and by
the capability to repair their DNA, following oxidative damage
(Armstrong et al., 2010). However, the iPSCs reprogramming
protocol, through viral transduction, is associated with high ROS
generation, leading to oxidative damage, impaired cell survival,
and increased genetic aberrations. Administration of AOX, such

FIGURE 8

SIRT1 role in telomere length maintenance and cellular
reprogramming. SIRT1: acts on OGG1 deacetylation, preserving
telomere repairing; activates TERT transcription promoting telomere
elongation; acts by blocking p53 nuclear translocation through ROS
favoring the reprogramming; mutually interacts with OCT-4 in the
cellular reprogramming process; activates FOXO family of
transcription factors, which are required to maintain pluripotency;
miR-181a, miR-181b, miR-9, miR-204, miR-199a/b, and miR-135a
suppress SIRT1 expression, facilitating iPSCs reprogramming and
pluripotency; downregulated by miR-34a promotes iPSCs
differentiation into NSCs.

as NAC or vitamin C, improves reprogramming efficiency and
reduces genetic abnormalities (Ji et al., 2014), thus validating the
paradigm that also during the cell reprogramming, balanced levels
of oxidative phosphorylation must be maintained on the route to
pluripotency (Skvortsova et al., 2022). Telomere elongation is an
iPSCs hallmark, thus the role of SIRTs in pluripotency maintenance
has been extensively investigated. As described above, in iPSCs
SIRT1 is recruited to the telomeres and binds the telomeric repeats
(Palacios et al., 2010). In murine embryonic fibroblasts (MEFs)
reprogramming, SIRT1 is required for efficient post-reprogramming
telomere elongation, through a c-MYC-dependent regulation of the
mTERT gene, and SIRT1-deficient iPSCs accumulate chromosomal
aberrations and show a de-repression of telomeric heterochromatin
(De Bonis et al., 2014). Moreover, it has been shown that SIRT1
plays a role in the maintenance of iPSCs also after the acquisition
of pluripotency (Zhang et al., 2014). In late passages iPSCs, SIRT1
slows down c-MYC degradation, thus ensuring enough binding to the
TERT promoter and increasing TERT transcription and expression
(Wu et al., 1999; Figure 8).

8.2. SIRT1-p53 regulatory axis

It has been reported that reprogramming, by classic Yamanaka
factors, of human dermal fibroblasts (HDFs) from older human
subjects, was more difficult than those of youngers, but that could
be improved by SIRT6 expression. As of today, little is known about
the molecular mechanism of SIRT6 regulation (Sharma et al., 2013).
Several studies showed p53 as a negative regulator of reprogramming
and that reprogramming efficiency could be ameliorated by p53
pathway’s inhibition (Gong et al., 2016; Ong and Ramasamy, 2018).
In wild type mouse ESCs (mESCs), following DNA damage, p53
binding to Nanog promoter inhibits expression and results in
pluripotency loss and differentiation (Lin T. et al., 2005). In wt mESCs
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FIGURE 9

Energy metabolism regulation in NSCs fate determination. Imbalance
of redox cellular homeostasis, can affect SIRTs expression levels and
activity, leading to a modulation of the balance between stem cell
quiescence, self-renewal, and differentiation.

endogenous ROS could trigger apoptosis, through mitochondrial
translocation of p53 and BAX, while in SIRT1−/− mESCs they
promote nuclear p53 translocation and Nanog inhibition. Hence,
ROS-dependent SIRT1 activation, acts by blocking p53 nuclear
translocation (Han et al., 2008), thus modulating gene expression
under ROS control, confirming the role of ROS as signaling molecules
(Figure 8). Jang et al. (2017) showed that SIRT1 depletion in
human ESCs (hESCs) results in p53 hyperacetylation and a dramatic

reduction of DNA repair proteins, thus favoring DNA damage
accumulation. Nevertheless, SIRT1 role as well as its interplay with
different transcription factors are still under debate. In fact, even
if it has been reported that OCT-4 could directly interact with
and activate the SIRT1 promoter, thus in turn inactivating p53
through SIRT1-dependent deacetylation (Zhang et al., 2014), other
studies showed that SIRT1 and OCT-4, along with SOX2, co-occupy
the same distal enhancer region at the OCT-4 promoter, and cells
lacking SIRT1 showed hyper-acetylation of OCT-4 (Williams et al.,
2016). There are also controversial reports about a lack of binding
between SIRT1 and the OCT-4 promoter (Chen et al., 2014), and
other suggesting that SOX2 and SIRT1 interaction requires OCT-
4 (Mu et al., 2015). Nevertheless, a key role for SIRT1 is suggested
by the observation that SIRT1−/− MEFs exhibited decreased iPSCs
reprogramming efficiency, a defect that could be rescued by SIRT1
overexpression. In hESCs, SIRT1 also regulates the activation of
the FOXO family of transcription factors, which are required to
maintain pluripotency, by directly regulating the expression levels
of OCT-4, Nanog, and SOX-2 (Zhang et al., 2011). In addition,
SIRT1 downregulation has been observed during mouse iPSCs
differentiation into NSCs (Hu et al., 2014). Furthermore, miRNA
such as miR-181a, miR-181b, miR-9, miR-204, miR-199a/b, and miR-
135a have been shown to suppress SIRT1 expression, suggesting
a new strategy in the regulation of somatic cells reprogramming
toward iPSCs (Hsu et al., 2018). Indeed, SIRT1 may facilitate iPSCs
reprogramming and pluripotency, through the miR-34a-SIRT1-p53
axis, as SIRT1 downregulation by miR-34a, results in the inhibition
of MEFs-derived iPSC formation, suggesting a possible involvement
in iPSCs differentiation into NSCs. These results indicate that the
early stage SIRT1 repression may contribute to the initiation of

FIGURE 10

Sirtuins in the brain build up a connection between epigenetic and metabolism. SIRTs act as modulators in a complex molecular network, under direct
and indirect ROS control. SIRTs-ROS/AOX balance affects NSCs fate, reprogramming, and aging, mainly through mitochondria physiology regulation and
telomere protection.
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NSCs/NPCs differentiation from ESCs and iPSCs and explain, at
least partially, the developmental defects observed in the CNS of
SIRT1 deficient mice (Lee Y. et al., 2012; Figure 8). Despite these
data highlight that the SIRT1-p53 regulatory axis plays a role also in
cellular reprogramming, the real extent of SIRTs involvement in cell
reprogramming needs to be further investigated. Moreover, further
understanding of SIRTs involvement in age-related mitochondrial
alteration, like ROS levels increase, could also help to modulate,
or ameliorate stem cell reprogramming, through the usage of
SIRTs modulators, such as resveratrol, or NAD+ modulators, as
bioarginine.

9. Discussion

The scientific evidence we reviewed here, suggested that, in
the CNS, Sirtuins build up a connection between epigenetic and
metabolism, by acting as modulators in a complex molecular
network, under the direct and indirect ROS control, to determine
NSCs fate, reprogramming, and aging, through mitochondria
regulation and telomere protection. Indeed, oxidative stress, or a
general disruption of redox cellular homeostasis, can affect SIRTs
expression levels and activity, leading to a modulation of the balance
between stem cell quiescence, self-renewal, and differentiation
(Figure 9). Moreover, in physiological aging as well as NDs, neurons
and glial cells are characterized by increased oxidative stress and
several evidence suggest a key role for SIRTs in the antioxidative
defense in the brain (Figure 10). However, it is still unknown
whether oxidative stress can cause telomere erosion in CNS cell
populations, nor if ROS-induced telomere shortening could be a
causal or contributing factor to NDs. Nevertheless, SIRT1 and
SIRT6 proved to play a role in telomere compaction and integrity
maintenance. As we discussed, one possible explanation of ROS-
dependent telomere shortening relies on the presence of GGG
telomeric repeats, which are particularly sensitive ROS target sites,
for the generation of 8-oxoguanine stretches, which are especially
difficult to repair. The presence of unrepaired single or tandem 8-
oxoguanine drastically impairs the recruitment of telomerase, thereby
contributing to telomere deprotection and shortening observed in
aging and NDs. To counteract this deleterious ROS-dependent
effect, OGG1 activity plays an important role both at telomeres and
during the NSCs differentiation. In fact, OGG1 depletion results
into chronic replication stress and an accelerated telomere loss,
as well as in a shift of NSCs differentiation toward the astrocytic
lineage. ogg1−/− mice differentiating neural cells spontaneously
accumulate mtDNA damage coupled to a NAD+/NADH ratio
increase, which in turn leads to SIRT1 activation. SIRT1 activation,
caused by oxidizing conditions, inhibits MASH1 expression and
blocks neuronal differentiation but favors a shift toward an astrocytic
lineage. This evidence suggests that SIRTs, being dependent upon
NAD+ levels, could act as metabolic sensors able to couple cellular
metabolic status to a specific regulatory response. Moreover, ROS-
dependent oxidation of cysteine-containing redox sensors, such as
SIRT1, impairs their activity and localization, thereby regulating
NSCs state and fate. Finally, the role of SIRT1 in the regulation
of ROS-controlled gene expression during cellular reprogramming,
corroborate the importance of this protein family in the correct NSCs
lineage specification, both in vitro and in vivo.

Therefore, increased oxidative stress impact on mitochondrial
physiology, by generating mtDNA damage and/or electron transport
chain impairment, as well as on plasma cysteine homeostasis, thus
further increasing ROS generation. Indeed, SIRTs have been shown
to be involved not only in the regulation of antioxidative enzymes
expression and activity, but also in the production of pro-oxidants,
which, through the alteration of the NAD+/NADH ratio, affect SIRTs
activity in a feedback loop that helps prevent the cell from entering or
maintaining a state of oxidative stress.

We think that a deeper understanding of the molecular
mechanism underlying the ROS-dependent regulation of SIRTs
activity, as a response to cellular redox homeostasis alterations, would
be of great help in the modulation of both iPSCs reprogramming
and NSCs differentiation fate, as well as for a more detailed
comprehension of NDs, aging, and some behavioral anomalies
associated with nutrient deficiency. Moreover, a better knowledge
of activation/deactivation cycles of H2O2 production and responsive
redox protein systems, will help the understanding of the redox
biology of neurogenesis.
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