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Abstract

This short paper analyses the trade-offs associated with the deployment of contact tracing

applications to support policy responses in a pandemic. In many jurisdictions, the government

cannot force individuals to adopt such applications. We therefore analyze a simple model that

highlights the importance of individuals’ incentives to voluntarily adopt a reporting application

and reveal their infection status to the government who can then undertake contact monitoring.

We discuss the consequences of various policy options, such as security, communication and

anonymisation policies, in terms of the size and representativeness of the sample of infection

data that contract tracing applications generate.



1 Introduction

A strategy that governments and public health authorities around the world have pursued to

combat the coronavirus pandemic is to develop and seek widespread adoption of smartphone

apps that can aid contact monitoring and tracing. Contact tracing applications are viewed

as an important part of the toolkit to deal with a public health emergency, but their useful-

ness relies on their adoption and use by a representative sample of individuals. If the apps

are broadly adopted and utilized, they can provide readily available, accurate, and granular

information about infection status, which in turn can enable governments to swiftly enforce

localized lockdowns or allow targeted groups of individuals to self-quarantine and break the

chain of propagation. This in turn can help to halt the broader spread of the disease, whilst

limiting broader damage to the economy.

Government efforts have been focused on realizing the potential benefits to the broader

community of the information gathered from these apps, such as more efficiently targeted and

implemented lockdown or quarantining strategies. On the other hand, an intense debate has

focused on the potential privacy and security consequences for individuals from adopting these

apps. Apart from the possible privacy consequences of detailed data gathering on individual

movements, there are also issues associated with the vulnerability of different technological so-

lutions to attacks from malicious actors,1 and on the direct consequences of reporting individual

infection status on the liberty and freedom of movement of the adopter and their close contacts.

In some parts of the world, states can attempt to coerce citizens to adopt such apps and to force

them to share their personal data with public health authorities. However, such forced adoption

is antithetical to the basic nature of most democracies, provoking important discussions about

rights and trade-offs.2 Moreover, even coerced compliance in non-democratic societies is likely

1There is considerable debate on the best protocols to be utilized, with some consensus developing on bluetooth
protocols as the most promising. The details of implementation are critical, and numerous solutions have emerged in-
cluding decentralized solutions (such as DP3T, Gapple, and MIT PACT), centralized solutions (e.g., NHS, ROBERT),
and third-way (e.g., DESIRE). Imperial College’s 8 privacy questions to evaluate contact tracing apps are summarized
in this blogpost.

2Indeed the legislative framework in many countries has been designed to ensure contact tracing apps are and
will stay a purely voluntary decision. This includes very strong penalties for trying to make it mandatory (recently,
for example, the Belgian Data Protection Authority went as far as asking for criminal sanctions for mandatory app
downloads).
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https://github.com/DP-3T/documents
https://www.apple.com/covid19/contacttracing
https://pact.mit.edu/
https://github.com/nhsx/COVID-19-app-Documentation-BETA
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https://hal.inria.fr/hal-02570382/file/DESIRE-specification-EN-v1_0.pdf
https://blog.xot.nl/2020/04/19/google-apple-contact-tracing-gact-a-wolf-in-sheeps-clothes/


to face widespread evasion and reluctance to participate. In all cases, therefore, understanding

the incentives of individuals that lead to their decisions of whether and how to use tracking

apps seems critical.

In this short note, we provide a simple framework to document the trade-offs associated

with these questions, and to study individual decisions to install and adopt apps and truthfully

report. Our approach uses basic theoretical frameworks from economics to outline some trade-

offs associated with the rollout of tracing apps to acquire information to support policy responses

in the pandemic, the representativeness of the data acquired from these apps, and the net

benefits perceived by users in engaging in downloads.

To fix ideas, consider the example of young and healthy individuals, who receive a wage only

if they turn up to work, with low financial savings and limited access to government furlough or

other insurance schemes. Voluntary adoption of, and compliance with, tracing app downloads is

relatively costly for such individuals. Since they belong to a relatively low health risk category,

even conditional on contracting the virus, they may face mild symptoms. However, if they were

to report their infection status, the resulting impact on their income from compliance with a

fourteen day quarantine regime is substantially negative. These are direct costs of compliance,

in addition to any costs arising from their preferences for privacy, or the possibility of being

subject to malicious technological attacks because of the app download. That said, the social

value arising from their data provision is potentially quite high, and comparing private costs to

public benefits engenders a classic free-rider problem.

We develop these ideas further in our simple model below, casting the problem in more

general terms to determine the factors leading to the individual’s decision to contribute per-

sonal data, and the factors permitting the government to break the chain of propagation and

accurately assess infection rates based on individual decisions to adopt and report. While our

exercise is less detailed than those in the combined epidemiological and economic models that

are the focus of a fast-growing literature (see, e.g., Atkeson 2020, Berger et al. 2020, Eichen-

baum et al. 2020, and Stock 2020), the value added of our approach comes from the ability

to outline and formalize the trade-offs facing public policy in analyzing an important aspect

of pandemic response. The basic dilemma that we study is that individual preferences for pri-
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vacy and individual consequences from supplying data may differ substantially from the social

benefits accruing from decisions to adopt and truthfully report. This wedge is a more general

problem in the data economy, and studying this problem also helps to shed light on the broader

study of data privacy, a fast-growing area of study (see, e.g., Varian, 2009, 2010, Goldfarb and

Tucker, 2011, 2012, Acquisti et al., 2015, and Ramadorai et al., 2019).

2 A simple model of adoption

Each individual in a population observes a signal x ∈ [0, 1], which reveals their likelihood of

being infected. Let F (x) be the (cumulative) posterior distribution of perceived infection risk

in the population, conditional on individual information received. Individuals can adopt a

reporting technology which reveals verifiable information about their type to the government.

We write a ∈ {0, 1} for the decision to adopt this reporting technology (a = 1) or not (a = 0).

In addition to their infection probability x, each individual observes their private net benefit

b ∈
[
b, b̄
]

that they would derive from adopting the technology. Let H(b|x) be the distribution

of the net benefit b among people with infection risk x.

Since it is a net benefit, the parameter b incorporates costs as well as advantages of adoption.

On the cost side, b will be lower if there are potential restrictions on infected persons’ freedom

of movement or ability to work. Another possible cost is that of personal data being accessed

by third parties as a result of a leak or a malevolent attack on the data sharing technology (see,

e.g., Radaelli, et al., 2018, Vaudenay, 2020). On the benefit side, b will be higher if individuals

and those in their community benefit from personalized care if they reveal their vulnerability to

the government. Another possible component of the benefit can arise from social preferences,

for example, from the “warm glow” utility associated with contributing to the common goal

of fighting the epidemic (e.g., Morewedge et al., 2009, Bordalo et al., 2012). Importantly, we

allow the distribution of b to depend on x. This dependence is natural in a world where the

reporting technology passes individual, non-anonymised information to the government—the

government is more likely to impose restrictions on, or provide special care to, an individual

who has reported a higher likelihood of being infected.
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The government employs information gathered using the reporting technology to provide

public health services that can be accessed by both infected and non-infected individuals. We

assume that once the government has used this information optimally, each infected individual

derives utility:

V (P,D, x)

from health services (which allows for potentially different benefits conditional on infection

likelihood).

Here,

P = Pr [a = 1]

denotes the population-wide adoption rate, and

D = E [x|a = 1]− E [x]

is a measure of the deviation in infection rates between a representative sample provided by

adopting individuals and the true estimate of the average infection rate in the population. That

is, if D = 0, then the average infection rate among reporters is a good estimate of the average

infection rate in the population. If D > 0, then the government’s sample is positively selected

and over-represents infection rates, and it is negatively selected if D < 0. We further assume

that ∂V
∂P > 0, and ∂V

∂D

sign
= −D, so that large, representative samples allow the government to

choose better policies (i.e., value V is maximized when D = 0). Since each individual is infected

with probability x, she derives utility V (P,D, x) from public health services.

An additional natural assumption, although it is not required for the results we derive below,

is that ∂V (P,D, x)/∂x > 0, so that individuals with high infection risk benefit more from public

health policy.

We make a few comments on this very simple setting. First, the revelation of individuals’

“type” is not as rich as reality, where multiple individual revelations are combined by a central

agency to trace out a network of contacts and likely infections. Our model is a simplification,

in that participation conveys “types”. Despite this simplicity, the model captures the idea that
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giving away information to a central agency can be costly and needs to be incentivized. These

incentives are the focus of our analysis, and we believe that they would operate similarly in a

more fully specified model of contact networks. While such a more specified model would render

the associated costs and benefits more concrete, our approach provides some essential insights

in a more reduced-form fashion.

Second, we assume that the observed signal x can be verifiably disclosed to the government.

We make this assumption to simplify the exposition. In reality, one might expect partial verifia-

bility, in the sense that some aspects of individuals’ infection risk are easier to verify than others.

For example, verification of individuals’ reported test results is relatively straightforward, but

it is more difficult to verify an app user’s report of their contacts with others.

Third, the observed signal x does not necessarily have to come from the app (e.g., an

individual will observe his/her own symptoms). However, the signal may also come via the app

(e.g., a person is notified of their proximity to someone who tested positive). In either case, the

question is whether to act upon the signal (e.g., in both cases, to take a test and report the

results to the authorities).

Finally, we note that V (P,D, x) in our specification is an “indirect” utility function, in the

sense that it captures the expected utility that individuals enjoy once the government has chosen

the optimal health policy. Consequently, while V (P,D, x) does not depend directly on policy

choices in our formalism, this dependence is implicit, since we assume that the government

chooses the best possible policy from a social perspective, using available information.

2.1 Adoption decisions

In this simple model, the total utility of an individual with type (x, b) who takes adoption

decision a is:

V (P,D, x) + ba

Thus she optimally adopts the technology if and only if

b ≥ 0
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Although mathematically trivial, this contains an important point: Individual adoption deci-

sions will be driven by private net benefits and social preferences, not by individual valuations

of the public health benefit V (P,D, x).

One might intuitively expect, for example, that individuals with high infection risk x are

more likely to adopt the technology because they benefit most from health services. However,

this intuition is misleading, because the public health benefit V depends on aggregate adoption

decisions via the sample size and representativeness parameters P and D, but is not affected

by the decisions of one (infinitesimally) small individual.

An extreme implication of this result is that nobody will adopt the technology if there are

only private costs associated with adoption, regardless of how large the public benefits are. This

is an instance of the classic free-rider problem in public goods provision; the main difference

from the textbook case is that free-riding occurs via a lack of data provision, rather than a

lack of monetary contributions. This intuition may have been behind the experience in France,

where Covid-19 app adoption has been sluggish, hampering public health efforts.3

2.2 Sampling properties

Our analysis in the previous section implies that an individual with infection risk x adopts the

technology with probability:

Pr [a = 1] = Pr [b ≥ 0|x] = 1−H(0|x)

≡ p(x)

Thus the total rate of adoption in the population is

P = Pr [a = 1] =

∫ 1

0
p(x)dF (x)

= E [p(x)]

3“French Contact-Tracing App Struggles with Slow Adoption. It Isn’t Alone”, WSJ, June 23, available at
https://www.wsj.com/articles/french-contact-tracing-app-struggles-with-slow-adoption-it-isnt-alone-11592928266
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Moreover, to derive the representativeness metric, note that

E [x|a = 1] =
1

P

∫ 1

0
xp(x)dF (x)

=
E [x · p(x)]

P

= E [x] +
Cov [x, p(x)]

P

Hence we have

D =
Cov [x, p(x)]

P

Two insights emerge. First, the government’s sample is perfectly representative (i.e., D = 0)

if and only if the infection risk and the adoption propensity are uncorrelated (i.e., Cov [x, p(x)] =

0). Moreover, the government’s sample is positively (negatively) selected if and only if the infec-

tion risk x correlates positively (negatively) with the propensity p(x) to adopt the technology.

For example, if p′(x) > 0, then D > 0 and if p′(x) < 0, then D < 0.

Second, adoption rates P = Pr [a = 1] = E[p(x)] and representativeness D are nonlinearly

related to one another (i.e., they have an interactive relationship). Consider a case in which the

sample is not representative because it is positively selected (i.e., D > 0). In this case, increasing

the adoption rate (upping P ) will also increase representativeness (i.e., shrink D towards zero).

To understand the intuition for this result, consider a very simple case in which the net

benefit from adoption is perfectly correlated with x, so that b = α + βx. If β > 0, then the

adopters are all individuals with x ≥ −α
β (since adoption requires b > 0), i.e., the high-risk

group in the population. If β < 0, by contrast, then the adopters are those with infection risk

x ≤ −α
β , i.e., the low-risk group in the population. In this situation, if the baseline benefit

α increases, this increases participation P (since both conditions become more slack), and the

sample also becomes more representative in both cases.
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3 Policies, privacy, and adoption

We can use these derivations to discuss what types of policies might increase adoption rates.

Clearly, any policy that increases perceived net benefits b will increase participation by raising

the participation probabilities p(x). For example, one natural policy to increase participation is

to enhance the security of the data collection exercise. As we argued above, net benefits b are

lower when individuals expect the reporting technology to be vulnerable to hacks or attacks.

Another insight from the economic analysis of this problem is that one should target security

policies at marginal adopters with benefits just below zero. It is of no use, in terms of overall

participation, to put in place measures that reassure extremely privacy-conscious individuals,

because these individuals are very unlikely to switch their behavior to adoption since their

perceived net benefits are likely to be extremely low. This also raises an additional issue, which

is that we assume that the distribution of perceived benefits is uncorrelated with the infection

rate. This is a potentially testable hypothesis, and pending data on this issue, a possibility is to

extend this analysis to account for such a case. Finally, if one believes that part of the net benefit

b is driven by social preferences, then another policy to increase adoption is communication and

positive messaging. Encouraging the population to do their social duty can then have the effect

of shifting the distribution of b upwards, thereby increasing participation rates.

3.1 Increasing representativeness using anonymity guarantees

One important lesson from the above analysis is that participation breeds representativeness:

Any increase in aggregate participation P shrinks the deviation D from a representative sample

towards zero. Therefore, any of the above participation-based policies are also useful to gener-

ate a representative sample. However, in cases where it is not feasible to increase participation

further, it may be useful instead to work on directly reducing deviations from a representative

sample. Our analysis shows that the key step in this exercise is to decorrelate infection risk x

from the perceived costs and benefits of adoption which drive p(x). One obvious candidate for

a decorrelation policy is an anonymity guarantee. If it can be guaranteed that no individual is

identifiable after revealing their infection status, then the private costs and benefits associated
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with restrictions and personalised care conditional on infection status disappear, breaking the

link between x and p(x). Hence, a policy which removes considerations of penalties or ben-

efits associated with infection status from individuals’ calculations by truly anonymizing this

information will also help to increase representativeness.

Of course, while it is clear that this type of decorrelation policy has the potential benefit

of increasing the representativeness of the government’s dataset, it must be noted that such

anonymity guarantees also come at substantial costs. In an epidemic, anonymity severely limits

the government’s ability to crack down on local outbreaks, precisely because it removes the

ability to impose targeted restrictions on individuals with a high likelihood of infection, or

indeed their close contacts, as reaching out to them could violate any anonymity guarantees.

A solution might then be to impose a less precisely targeted policy, i.e., a broader lockdown

even in the presence of more precise information. The excess costs of such a broader lockdown

would then be traded off against the greater representativeness of data—acquired through higher

adoption rates arising from the provided anonymity.

3.2 Improving statistical technology

We note that, even with a sample that is not representative, one can estimate average infection

rates accurately using inverse propensity score weighting. If one takes the average of reported

x divided by adoption propensity scores p(x), one obtains:

E

[
x

p(x)
|a = 1

]
= E [x]

This is obviously not feasible as a direct estimator, because the infection risks x of non-

adopters are, by definition, unobservable. However, this additionally highlights the value of

independent testing data in the context of app downloads, also highlighted more broadly, for

example, by Romer, 2020, and Stock, 2020. For example, suppose the government were able to

see adoption rates (e.g., tracing app downloads) by demographic group, as well as the results

of existing infection tests by demographic group. A regression of adoption rates on infection

rates at the group level would, given high enough quality of data, provide an approximation of
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group-level adoption propensity scores.

Our framework can inform how best to target data collection efforts, through calculating

adoption rate differentials by geography including local infection rates, across demographic

groups and so forth. The model can help to highlight the location of “blind spots” in which

information would confer public benefits, but is lacking because of inadequate adoption. This

is important to achieve targeted and efficient public health efforts in such blind spots (e.g.,

information campaigns focused on adoption using social networks, GPs, local political networks,

or other mechanisms).

4 Conclusions

From evidence available to date in the coronavirus pandemic, several countries appear to be

struggling to achieve high adoption rates of government-endorsed contact tracing apps.4 We

provide a simple theory framework to outline some trade-offs associated with the rollout of

such tracing apps to acquire information to support policy responses. Our framework highlights

the interplay between the representativeness of the data acquired from these apps, and the

net benefits perceived by users in engaging in app downloads. The framework reveals that

widespread adoption will depend on a number of factors including the security of the data

collection exercise, and the possibility of anonymity guarantees for adopters, and helps to guide

discussions on possible directions for policy. Overall, we believe this area is important and

generally understudied, and hope that our initial contribution in the form of a framework will

help to spark more involved efforts on these questions going forward.

4According to this blogpost, Covid-19 contact tracing apps have been installed by 9.3 percent of residents across
the world’s 13 most populous countries with government-endorsed apps. In Italy, one of the worst hit countries in the
first wave of the pandemic, the percentage, for instance, was 7.2%, while it was 3.1% in France (July 2020 figures).
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