
IET Control Theory & Applications

Research Article

Algebraic approaches for the design of
simultaneous observers for linear systems

ISSN 1751-8644
Received on 16th January 2019
Revised 29th July 2019
Accepted on 24th September 2019
E-First on 14th October 2019
doi: 10.1049/iet-cta.2019.0073
www.ietdl.org

Laura Menini1, Corrado Possieri2 , Antonio Tornambe3

1Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma 00133, Italy
2Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino 10129, Italy
3Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma Tor Vergata, Roma 00133, Italy

 E-mail: corrado.possieri@polito.it

Abstract: In this study, algebraic techniques are proposed to design observers capable of estimating the state of multiple linear
continuous-time systems. In order to pursue this objective, first an algebraic technique is given to compute the set of all the
linear inverses of the observability map of a single plant. Such a result is then used to characterise, through algebraic geometry
tools, the simultaneous observability of multiple linear systems both in the forced and in the autonomous case. Such a
characterisation is finally employed to design a single observer that is capable of estimating the state of multiple linear systems.

1 Introduction
In various control and identification applications, the state of a
dynamical system cannot be fully measured, thus leading to the
need for tools capable of estimating unmeasured variables from
available measurements. Several solutions to such a problem have
been proposed for both linear [1] and non-linear [2–6] systems.

Although the design of a state observer for a single continuous-
time system can be carried out by using classical techniques, such
as the Luenberger observer [7] and the Kalman filter [8], the design
of a single observer capable of estimating the state of multiple
systems is much more challenging. This problem was firstly
introduced in [9] and can be summarised as follows: given a set of
plants, design a single observer that can estimate the state of each
of these plants. This problem is particularly interesting when one
aims at obtaining a reliable estimate of the state of a plant affected
by known perturbations that arise from sensor or actuator faults
[10].

Several techniques have been proposed in the literature to deal
with such a problem. For instance, it has been addressed in [9], by
using coprime factorisation technique, in [11], by using
evolutionary strategies, in [12], by using a parametrisation in terms
of a stable inverse and a stable null space, and in [13], by using a
state–space characterisation. Furthermore, in [14, 15], common
functional observers have been proposed for two linear systems
with unknown inputs. Such results have been extended in [16] to
deal with three systems with unknown inputs. On the other hand,
switching observers for switched systems have been given in [17–
20].

The main objective of this paper is to provide algebraic tools to
design a simultaneous observer for multiple linear systems. In
order to pursue this objective, in Section 3, the set of all the linear
embeddings of a continuous-time system is characterised and is
used to determine a parametrisation of the set of all the linear
inverses of its observability map. Such a parametrisation is then
used in Section 4 to provide necessary and sufficient conditions for
the existence of a simultaneous inverse, which holds for almost all
inputs, of the observability maps of a set of linear systems. Such a
result is specialised in Section 5 to the case of autonomous
systems, for which stronger results are obtained. In Section 6, the
theoretical results established in Sections 4 and 5 to guarantee
simultaneous observability of a set of systems are used to design a
state observer capable of estimating the state of multiple plants.
Several examples are given all throughout the paper to illustrate the
theoretical results.

The main difference between the tools given in this paper and
the ones given in [9, 11–13] is that the former, by employing
techniques borrowed from algebraic geometry, provides an exact
certificate for the simultaneous observability (or lack thereof) of a
set of linear continuous-time systems. Namely, given a set of
systems, the proposed method allows one to determine a closed-
form expression for the simultaneous inverse of the observability
map of such systems, if any, which can be directly used to design a
simultaneous observer.

2 Notation and preliminaries
In this section, some tools of algebraic geometry are reviewed
following the exposition in [21, 22].

Let ℤ, ℤ ⩾ 0, ℝ, and ℝ ⩾ 0 denote the sets of integer, natural, real,
and non-negative real numbers, respectively. For any integer
z ∈ ℤ, let ℤ ⩾ z := {a ∈ ℤ:a ⩾ z}. Symbols Im and 0m1, m2 denote the
m-dimensional identity matrix and the zero matrix of dimensions
m1 × m2, respectively; symbol ⊗ denotes the Kronecker product.
Let ei

m be the ith column of Im, i ∈ {1, …, m}. For any matrix
A ∈ ℝm1 × m2, symbol ℰr(A) denotes the reduced row echelon form
of A, which can be computed by using the Gauss–Jordan algorithm
[23].

A multi-index is a vector a = [a1 … an]⊤ ∈ ℤ ⩾ 0
n , with

n ∈ ℤ ⩾ 1. Letting x = [x1 … xn]⊤, symbol xa denotes the
monomial x1

a1…xn
an. A polynomial is a finite, linear combination of

monomials; a rational function is a ratio of polynomials, with the
denominator being different from the zero polynomial. The ring of
all polynomials in x with coefficients in the field K is denoted
K[x1, …, xn] (briefly, K[x]), whereas the field of all rational
functions in x is denoted K(x1, …, xn) (briefly, K(x)). On the other
hand, the set of all m-dimensional vectors (respectively, of all
matrices of dimensions m1 × m2) whose entries are polynomials in
K[x] and rational functions in K(x) are denoted Km[x] and Km(x)
(respectively, Km1 × m2[x] and Km1 × m2(x)), respectively.

A subset ℐ of K[x] is an ideal of K[x] if

• 0 ∈ ℐ, where 0 is the zero polynomial;
• if f , g ∈ ℐ, then f + g ∈ ℐ;
• if f ∈ ℐ and h ∈ K[x], then h f ∈ ℐ.

Given polynomials p1, …, pℓ ∈ K[x], the set
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V(p1, …, pℓ) := {x ∈ Kn: pi(x) = 0, i = 1, …, ℓ}

is the variety generated by p1, …, pℓ, and the set

⟨p1, …, pℓ⟩ := {∑i = 1
ℓ qi pi, qi ∈ K[x]}

is an ideal (which is referred to as the ideal generated by p1, …, pℓ,
and the set {p1, …, pℓ} is referred to as a basis of such an ideal).
The sets {0} and K[x] are ideals of K[x] and are denoted ⟨∅⟩ and
⟨1⟩, respectively. By the Hilbert basis theorem, each ideal ℐ in
K[x], ℐ ≠ ⟨∅⟩, is finitely generated, i.e. there is
{p1, …, pℓ} ⊂ K[x] such that ℐ = ⟨p1, …, pℓ⟩. The concepts of
ideal and variety are strongly related. Indeed, for any ideal ℐ in
K[x], the variety of ℐ is

V(ℐ) := {x ∈ Kn: p(x) = 0, ∀p ∈ ℐ},

and the identity

V(ℐ) = V(p1, …, pℓ)

holds for any basis {p1, …, pℓ} of ℐ. Similarly, for any subset
ℛ ⊂ Kn, the set

I(ℛ) := {p ∈ K[x]: p(x) = 0, ∀x ∈ ℛ}

is an ideal of K[x] even if ℛ is not a variety (such an ideal is
referred to as the ideal of ℛ). For any ideal ℐ of K[x], one has that
ℐ ⊂ I(V(ℐ)), but the converse inclusion need not hold, unless K is
an algebraically closed field. Similarly, for any ℛ ⊂ Kn, one has
that ℛ ⊂ V(I(ℛ)). In particular, the set Zℛ := V(I(ℛ)) is the
smallest variety in Kn that contains ℛ, and is called the Zariski
closure of ℛ. A property holds for ‘almost all’ x ∈ Kn (or,
equivalently, it is ‘generic’ in Kn) if the Zariski closure of the set
where such a property ‘does not hold’ does not coincide with Kn.

A monomial order ≻ on K[x] is a total, well ordering relation
on the set of monomials xa ∈ K[x]. The lexicographic order
(briefly, the Lex order), denoted ≻L, is a monomial order and is
defined as follows: xa ≻L xb if in the vector difference a − b the
first non-zero entry is positive. Hence, let any monomial order ≻
be fixed. For any p ∈ K[x], the leading term of p, denoted LT(p),
is the greatest term c xa appearing in p. A polynomial r ∈ K[x] is
reduced with respect to {p1, …, pℓ} if either r = 0 or no monomial
of r is divisible by any LT(pi), i = 1, …, ℓ. A finite set {g1, …, gτ}
of K[x] is a Gröbner basis of an ideal ℐ of K[x] if

⟨LT(g1), …, LT(gτ)⟩ = ⟨{c xa:∃ f ∈ ℐ:LT( f ) = c xa}⟩ .

A Gröbner basis {g1, …, gτ} is reduced if gi is reduced with respect
to {g1, …, gi − 1, gi + 1, …, gτ} and LT(gi) = xa, for some a ∈ ℤ ⩾ 0

n ,
i = 1, …, τ. Each ideal ℐ of K[x] has a unique reduced Gröbner
basis.

Given two ideals ℐ and J of K[x], the intersection of ℐ and
J, denoted ℐ ∩ J, is the set of all polynomials belonging to both
ℐ and J; in particular, ℐ ∩ J is an ideal of K[x] satisfying

ℐ ∩ J = (t ℐ + (1 − t)J) ∩ K[x],

where t is a single auxiliary variable.
The notion of ideal can be generalised to deal with polynomial

vectors in Km[x]. Namely, given polynomial vectors
p1, …, pℓ ∈ Km[x], the sub-module of Km[x] generated by
p1, …, pℓ is

⟨p1, …, pℓ⟩ = ∑
i = 1

ℓ
qi pi, qi ∈ K[x] .

Similarly, given a polynomial matrix
R = [r1 … rm2] ∈ Km1 × m2[x], define the image of R as a sub-
module of Km1[x],

Img(R) := ⟨r1, …, rm2⟩ .

On the other hand, for any polynomial matrix R ∈ Km1 × m2[x], the
syzygy of R is the sub-module of Km2[x] consisting of all
polynomial vectors p ∈ Km2[x] such that R p = 0m1, 1, where 0m1, 1 is
the zero polynomial vector.

Also, the concept of monomial order can be extended to the
deal with polynomial vectors in Km[x]. Indeed, a monomial in
Km[x] is a product of the form xa ei

m, so that each p in Km[x] can
be written as a finite linear combination, with coefficients in K, of
monomials in Km[x]. Hence, a monomial order ≻ on Km[x] is a
total, well ordering relation on the set of monomials in Km[x]. For
instance, the POT extension of the Lex order is a monomial order
on Km[x] and is defined as follows: xa ei

m ≻L xb ej
m if i < j or i = j

and xa ≻L xb. Hence, let any monomial order on Km[x] be fixed.
The leading term of p ∈ Km[x], denoted LT(p), is the greatest term
c xa ei

m appearing in p. Given a sub-module ℳ of Km[x], let
LT(ℳ) be the sub-module generated by the leading terms of all
p ∈ ℳ according to ≻. Hence, for any sub-module ℳ of Km[x], a
finite set {g1, …, gτ} of Km[x] is a Gröbner basis of ℳ if

⟨LT(ℳ)⟩ = ⟨LT(g1), …, LT(gτ)⟩ .

Reduced Gröbner bases of sub-modules can be defined as for
ideals, and it can be shown that there is a unique reduced Gröbner
basis for each sub-module in Km[x], once a monomial order has
been fixed.

3 Input–output embeddings of single-input
single-output (SISO) continuous-time linear
systems
Consider the following single-input single-output (briefly, SISO)
continuous-time linear system

ξ̇(t) = E ξ(t) + F ν(t), ψ(t) = G ξ(t) + H ν(t), (1)

where ξ(t) ∈ ℝn is the state vector, ν(t) ∈ ℝ is the scalar input, and
ψ(t) ∈ ℝ is the scalar output at time t ∈ ℝ ⩾ 0; ν(t) is assumed to be
differentiable a sufficiently high number of times. Let
ν(i)(t) := diν(t)/dt and ψ (i)(t) := diψ(t)/dt denote the ith time-
derivative of the input and of the output, respectively, i ∈ ℤ ⩾ 0. For
any N ∈ ℤ ⩾ 0, let νe, N(t) = [ν(0)(t) … ν(N)(t)]⊤ be a vector having
as entries the input and its time-derivatives and let
ψe, N(t) = [ψ (0)(t) … ψ (N)(t)]⊤ be a vector having as entries the
corresponding output response and its time-derivatives. Hence,
consider the following definition (see [24, 25]).
 

Definition 1: A polynomial p ∈ ℝ[ψe, N, νe, N] is an embedding
of system (1) if

p(ψe, N(t), νe, N(t)) = 0, ∀t ∈ ℝ ⩾ 0 .

An embedding is linear if deg(p) = 1.
In order to characterise the set of all embeddings of system (1),

which is an ideal of ℝ[ψe, N, νe, N] by of [24, 26], define, for all
N ∈ ℤ ⩾ 0, the matrices
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MN :=

H 0 … 0
G F H … 0

⋮ ⋮ ⋱ ⋮
G EN − 1 F G EN − 2 F … H

, (2a)

ON :=

G
G E

⋮
G EN

. (2b)

Thus, consider the following lemma.
 
Lemma 1: For any N ∈ ℤ ⩾ 0, letting ξ(t) be the state response of

system (1), one has

ψe, N(t) = ON ξ(t) + MN νe, N(t), ∀t ∈ ℝ ⩾ 0 . (3)
 
Proof: The proof follows directly from the analysis carried out

in Section 5.1.2 of [27] and from Proposition 1 of [28]. □
Given N ∈ ℤ ⩾ 0, N ⩾ n − 1, define the observability map of

order N of system (7),

ΨN(ξ, νe, N) := ON ξ + MN νe, N,

which, by Lemma 1, relates the current state of system (7) and the
time-derivatives of its input ν up to order N, with the time-
derivatives of the output ψ  up to order N. Hence, in order to
determine the set of all embeddings of system (7), define the
matrix

QN := ON −IN + 1 MN ∈ ℝ(N + 1) × (2 N + n + 2),

which, by (3), is such that

QN

ξ(t)
ψe, N(t)
νe, N(t)

= 0N + 1, 1, ∀t ∈ ℝ ⩾ 0 . (4)

Thus, let ZN := ℰr(QN) be the reduced row echelon form of QN and
partition such a matrix as follows:

n columns 2 N + 2columns

ZN =
ZN , 1, 1 ZN , 1, 2

0ν, n ZN , 2, 2
,

i.e., let ZN , 2, 2 ∈ ℝν × (2 N + 2) be the matrix obtained by retaining only
the last 2 N + 2 columns of ZN and the rows that contain a pivot.
Thus, consider the following theorem.

 
Theorem 1: Let ZN be partitioned as above. The set of all linear

embeddings of system (1) in ℝ[ψe, N, νe, N] is

ℒ = ∑
j = 1

μ
cj qj, ∀cj ∈ ℝ ,

where q1, …, qμ are given by

q1 … qμ
⊤ = ZN , 2, 2

ψe, N

νe, N
.

Furthermore, JN := ⟨q1, …, qμ⟩ is the ideal of all embeddings in
ℝ[ψe, N, νe, N] of system (1).

 
Proof: By [23], there exists a matrix ΛN such that ZN = ΛN QN,

and, therefore, it results that,

ZN

ξ(t)
ψe, N(t)
νe, N(t)

= 0ν, 1, ∀t ∈ ℝ ⩾ 0 .

In particular, this implies that the polynomials q1, …, qμ are linear
embeddings of system (1). Note that there is no embedding of
system (1) in ℝ[ψe, N, νe, N] that is not in JN, because the steps
carried out to compute ZN = ℰr(QN) are exactly those to compute
the reduced Gröbner basis of the ideal generated by the relations
given in (3) according to the Lex order with
ξ1 ≻L …ξn ≻L ψ (0) ≻L … ≻L ψ (N) ≻L ν(0) ≻L … ≻L ν(N) [21] via the
Buchberger's algorithm [29, 30]. Hence, the statement follows
directly from Theorem 2 of [24]. □

 
Remark 1: If pair (E, G) is observable, then matrix ZN , 2, 2 has

exactly N − n + 1 rows due to the fact that the matrix ON has rank
n, and hence ZN , 1, 1 = In.

By combining the results established in Lemma 1 and in
Theorem 1, the set of all linear inverses of the observability map of
system (1) is characterised by the following corollary.

 
Corollary 1: Assume that pair (E, G) is observable. For any

N ∈ ℤ ⩾ 0, N ⩾ n, the set of all linear inverses of the observability
map ΨN( ⋅ , ⋅ ) of system (7), i.e. the set of all linear functions
ΞN( ⋅ , ⋅ ) such that

ΞN(ΨN(ξ, νe, N), νe, N) = ξ, ∀ξ ∈ ℝn, ∀νe, N ∈ ℝN + 1,

is parametrised by

ΞN(ψe, N, νe, N) = On − 1
−1 (ψe, n − 1 − Mn − 1 νe, n − 1)

+ ∑
j = 1

N − n + 1
cj qj(ψe, N, νe, N),

(5)

where the polynomials q1, …, qN − n + 1 are defined as in Theorem 1
and c1, …, cN − n + 1 are arbitrary vectors in ℝn.

 
Proof: By Remark 1, if pair (E, G) is observable, then

ν = N − n + 1. In view of Lemma 1, the set of all linear formulas
relating ξ(t) with ψe, N(t) and νe, N(t) corresponds to the set of all
solutions in ξ to the system of equations given in (3). Since pair
(E, G) is observable, one of the formulas that relates ξ(t) with
ψe, N(t) and νe, N(t) is ξ(t) = On − 1

−1 (ψe, n − 1(t) − Mn − 1 νe, n − 1(t)), which
corresponds to (5) with c1 = ⋯ = cμ = 0. Thus, since (4) is a
system of linear equations that hold for all times t ∈ ℝ ⩾ 0, the
formula given in (5) follows by the facts that, by Theorem 1, ℒ is
the set of all the linear embeddings of system (1) and that the set of
all the solutions to (4) is given by the sum of a particular solution
to (4) and the set of all the solutions of the corresponding
homogeneous equation [23]. □

The expression in (5) can be used also to find non-linear
formulas relating to the current state ξ(t) of system (1) with ψe, N(t)
and νe, N(t). Indeed, by a trivial extension of Corollary 1, non-linear
formulas relating the state and the time-derivative of the input and
of the output are given by

ΞN(ψe, N, νe, N) = On − 1
−1 (ψe, n − 1 − Mn − 1 νe, n − 1)

+ ∑
j = 1

N − n + 1
cj(ψe, N, νe, N) qj(ψe, N, νe, N),

(6)

where cj(ψe, N, νe, N) are arbitrary vector functions of ψe, N and νe, N.
The expression given in (6) is exploited in the following Section 4
to characterise the simultaneous observability of a set of linear
systems.

The following example illustrates the application of Corollary
1.
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Example 1: Consider system (1) with

E = 0 1
−1 0 , F = 0

1 , G = 1 0 , D = 1.

Letting N = 3 and by using the result established in Corollary 1, it
turns out that the set of all linear inverses of the observability map
Ψ3( ⋅ , ⋅ ) of system (7) can be parametrised as

Ξ3(ψe, 3, νe, 3) = ψ (0) − ν(0)

ψ (1) − ν(1)

+c1 (ψ (1) + ψ (3) − 2ν(1) − ν(3))
+c2 (ψ (0) + ψ (2) − 2ν(0) − ν(2)),

where c1 and c2 are arbitrary vectors in ℝ2.

4 Simultaneous inverse of the observability map
for multiple SISO continuous-time linear systems
Consider the SISO continuous-time linear system:

ẋ(t) = A x(t) + B u(t), y(t) = C x(t) + D u(t), (7)

where x(t) ∈ ℝn, u(t) ∈ ℝ, and y(t) ∈ ℝ denote the state vector, the
input, and the output, respectively, at time t ∈ ℝ ⩾ 0; u(t) is assumed
to be differentiable a sufficiently high number of times. Assume
that A, B, C, and D are not known, but that it is known that the
tuple (A, B, C, D) belongs to the following finite set:

S := {(A1, B1, C1, D1), …, (As, Bs, Cs, Ds)},

with s ∈ ℤ ⩾ 2.
The main objective of this section is, given the set S, to

compute a function, if any, that relates the current state x(t) of
system (7) with the time-derivatives of u(t) and y(t) up to order N
(ue, N = [u(0) … u(N)]⊤, u(i)(t) = diu(t)/dti, i = 0, …, N and
ye, N = [y(0) … y(N)]⊤, y(i)(t) = diy(t)/dti, i = 0, …, N,
respectively), for some N ∈ ℤ ⩾ 0.

By Lemma 1, letting Mk, N and Ok, N be the matrices obtained by
substituting, in the expressions given in (2) for MN and ON, E with
Ak, F with Bk, G with Ck, and H with Dk, k = 1, …, s, it results that
there exists k ∈ {1, …, s} such that

ye, N(t) = Ok, N x(t) + Mk, N ue, N(t) .

Thus, define the observability map of order N of the kth system,

Ψk, N(x, ue, N) := Ok, N x + Mk, N ue, N, (8)

which relates the current state of system (1) and the time-
derivatives of u(t) and y(t) up to order N, provided that A = Ak,
B = Bk, C = Ck, and D = Dk. Therefore, the main objective of this
section is to compute, if any, a function ΦN( ⋅ , ⋅ ) such that

ΦN(Ψk, N(x, ue, N), ue, N) = x,

for ‘almost all’ x ∈ ℝn, ue, N ∈ ℝN + 1, and for all k ∈ {1, …, s}. If
such a function exists, then it is called simultaneous inverse of the
observability maps Ψk, N( ⋅ , ⋅ ), k = 1, …, s.

 
Assumption 1: Pair (Ak, Ck) is observable, k = 1, …, s.
Clearly, if Assumption 1 does not hold, then there does not exist

a simultaneous inverse of the observability maps Ψk, N( ⋅ , ⋅ ),
k = 1, …, s, due to the fact that the relation given in (8) is not
invertible for some k ∈ {1, …, s}. In addition, as well known,
‘almost all’ pairs (Ak, Ck) are observable.

Under Assumption 1, let N ∈ ℤ ⩾ 0, N ⩾ n, and let

Gk, N := {gk, N , 1, …, gk, N , ℓ}, (9)

be the reduced Gröbner basis according to the Lex order with
y(0) ≻L … ≻L y(N) ≻L u(0) ≻L … ≻L u(N) of the set all embeddings of

χ̇ k(t) = Ak χk(t) + Bk u(t),
y(t) = Ck χk(t) + Dk u(t), (10)

for k = 1, …, s. Note that, by Remark 1, the set Gk, N is composed
by exactly ℓ := N − n + 1 linear polynomials and can be easily
computed by using the method illustrated just above Theorem 1.
Hence, for k = 1, …, s, let

Jk, N := In ⊗ [gk, N , 1 … gk, N , ℓ]

=
gk, N , 1 … gk, N , ℓ … 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 … gk, N , 1 … gk, N , ℓ

,

and define the following vector (being linear in ye, n − 1 and ue, n − 1)

θk := Ok, n − 1
−1 (ye, n − 1 − Mk, n − 1 ue, n − 1) . (11)

Define the matrices

WN :=
J1, N −J2, N … 0n, n ℓ

⋮ ⋮ ⋱ ⋮
J1, N 0n, n ℓ … −Js, N

, (12a)

Θ :=
θ1 − θ2

⋮
θ1 − θs

, (12b)

and consider the following theorem.
 
Theorem 2: Let S be given and N ∈ ℤ ⩾ n; under Assumption 1,

consider the following sub-module of ℝn (s − 1)[ye, N, ue, N]:

P := ⟨[WN Θ]⟩ .

Let SN ∈ ℝ(n ℓ s + 1) × ϱ[ye, N, ue, N] be the reduced Gröbner basis of the
syzygy of [WN Θ] with respect to the POT extension of the Lex
order with y(0) ≻L … ≻L y(N) ≻L u(0) ≻L … ≻L u(N). Thus, there
exists a simultaneous inverse ΦN( ⋅ , ⋅ ) of the observability maps
Ψk, N( ⋅ , ⋅ ), k = 1, …, s, that holds for ‘almost all’ ue, N if and only
if there is ω ∈ ℝ[ue, N], ω ≠ 0, such that the polynomial matrix SN
can be partitioned as

SN =
SN , 1, 1

01, ρ

SN , 1, 2

ω
SN , 1, 3

SN , 2, 3

n ℓ s rows
1 row .

In such a case, by letting SN , 1, 2 be partitioned as

SN , 1, 2 =
SN , 1, 2, 1

⋮
SN , 1, 2, s n ℓ rows

n ℓ rows

,

a simultaneous inverse of the observability maps Ψk, N( ⋅ , ⋅ ),
k = 1, …, s, holding for ‘almost all’ ue, N, is

ΦN = θ1 + 1
ω (J1, N SN , 1, 2, 1) . (13)

 
Proof: Since SN is a syzygy matrix of the polynomial sub-

module P, whose basis is [WN Θ], it holds that
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WN SN , 1, 2 + Θ ω = 0n (s − 1), 1 .

In particular, by the definition of the polynomial matrices WN and
Θ, the following polynomial relations hold:

1
ω J1, N SN , 1, 2, 1 + θ1 = 1

ω J2, N SN , 1, 2, 2 + θ2,

⋮
1
ω J1, N SN , 1, 2, 1 + θ1 = 1

ω Js, N SN , 1, 2, s + θs .

Hence, letting ΦN(ye, N, ue, N) be defined as in (13), by Theorem 1,
ΦN( ⋅ , ⋅ ) is a simultaneous inverse of the observability maps
Ψk, N( ⋅ , ⋅ ), k = 1, …, s. Furthermore, it holds for ‘almost all’ ue, N
because the set where it cannot be applied is the variety
V(ω) ⊂ ℝN + 1, which does not coincide with ℝN + 1 since ω ≠ 0.

On the other hand, assume that there exists a simultaneous
inverse ΦN( ⋅ , ⋅ ) of the observability maps Ψk, N( ⋅ , ⋅ ),
k = 1, …, s, that holds for ‘almost all’ ue, N. By Theorem 1, since
ΦN( ⋅ , ⋅ ) can be used for ‘almost all’ ue, N, there exist
ck, j ∈ ℝn(ye, N, ue, N) whose entries are rational functions with
numerator in ℝ[ye, N, ue, N] and denominator in ℝ[ue, N] such that

ΦN = Ok, n − 1
−1 (ye, n − 1 − Mk, n − 1 ue, n − 1)

+ ∑
j = 1

N − n + 1
ck, j gk, N , j,

for k = 1, …, s. By taking pairwise differences of the expression
above for k ∈ {1, …, s}, one obtains that

θ1 − θ2 + ∑
j1 = 1

N − n + 1
c1, j1 g1, j1 − ∑

j2 = 1

N − n + 1
c2, j2 g2, j2 = 0,

⋮

θ1 − θs + ∑
j1 = 1

N − n + 1
c1, j1 g1, j1 − ∑

js = 1

N − n + 1
cs, js gs, js = 0,

which implies that there exists a vector in the reduced Gröbner
basis of the syzygy of P with respect to the POT extension of the
Lex order with y(0) ≻L … ≻L y(N) ≻L u(0) ≻L … ≻L u(N) whose last
entry is a polynomial in ℝ[ue, N]. □

Theorem 2 provides necessary and sufficient conditions for the
existence of a simultaneous inverse ΦN( ⋅ , ⋅ ) of the observability
maps Ψk, N( ⋅ , ⋅ ), k = 1, …, s, together with computational tools to
compute a closed-form expression of such an inverse.

The next example illustrates the application of such a technique.
 
Example 2: Let s = 2 and

A1 = 1 −1
1 −1 , B1 = 0

1 , C1 = [1 1], D1 = 1,

A2 = 1 2
1 −1 , B2 = 1

0 , C2 = [1 0], D2 = 1.

By letting N = 4, and computing the sets Gk, 4, k = 1, 2, as in (9),
one obtains the following polynomials of ℝ[ye, 4, ue, 4]:

G1, 4

g1, 1 = y(4) + 2u(2) − u(3) − u(4),
g1, 2 = y(3) + 2u(1) − u(2) − u(3),
g1, 3 = y(2) + 2u(0) − u(1) − u(2),

G2, 4

g2, 1 = 3y(2) − y(4) − 2u(2) + u(3) + u(4),
g2, 2 = 3y(1) − y(3) − 2u(1) + u(2) + u(3),
g2, 3 = 9y(0) − y(4) − 6u(0) + 3u(1) + u(2) + u(3) + u(4) .

On the other hand, by computing Θ as in (12b), one obtains

Θ =
− 1

2 y(0) + 1
4 y(1) + 1

4u(0) − 1
4u(1)

y(0) − 3
4 y(1) − 1

4u(0) + 3
4u(1)

.

Finally, by computing the reduced Gröbner basis of the syzygy of
[W4 Θ], one of its elements is:

−2y(0) + y(1) + u(0) − u(1)

0
6y(0) − 3y(1) − 3u(0) + 3u(1)

4y(0) − 3y(1) − u(0) + 3u(1)

0
−12y(0) + 9y(1) + 3u(0) − 9u(1)

2y(0) − y(1) − u(0) + u(1)

0
0

−4y(0) + 3y(1) + u(0) − 3u(1)

0
0

24u(0) − 12u(1) − 12u(2)

.

Therefore, since the last entry of such a vector is in ℝ[ue, 4], by
Theorem 2, there exists a simultaneous inverse Φ4( ⋅ , ⋅ ) of the
observability maps Ψk, 4( ⋅ , ⋅ ), k = 1, 2, that holds for ‘almost all’
ue, 4. In particular, such an inverse can be obtained by using (13),

x1 = − (u(0) − u(1) − 2y(0) + y(1))(2u(2) − u(3) − u(4) − 3y(2) + y(4))
12( − 2u(0) + u(1) + u(2)) ,

x2 = (u(0) − 3u(1) − 4y(0) + 3y(1))(2u(2) − u(3) − u(4) − 3y(2) + y(4))
12( − 2u(0) + u(1) + u(2)) ,

and can be used for all times t ∈ ℝ ⩾ 0 such that

ue, 4(t) ∉ V(ω), (14)

where ω = 2u(0) − u(1) − u(2). It is worth noticing that if
ue, 4(t) ∈ V(ω) for all times t ∈ ℝ ⩾ 0, then system (7) may be
unobservable without knowing which of the tuples (A1, B1, C1, D1)
and (A2, B2, C2, D2) is governing the dynamics of the system.
Indeed, letting

u(t) = c0

3 − c1

3 exp(−2t) + 2c0

3 + c1

3 exp(t), (15)

one has that ue, 4(t) ∈ V(ω) for all t ∈ ℝ and for all c1, c2 ∈ ℝ.
Hence, letting u be as in (15), if the dynamics of system (7) are
governed by (A1, B1, C1, D1) and the initial condition is

x1, 0 =
− 3c0

4 − c1

4
c1

4 − c0

4

,

then the state and output response of system (7) are given by

x1(t) =
− 2c0 + c1

3 exp(t) + c1 − c0

12 exp( − 2t)

c1 − c0

4 exp( − 2t)
,

y1(t) = 0,

respectively. On the other hand, letting u be the input given in (15),
if the dynamics of system (7) are governed by (A2, B2, C2, D2) and
the initial condition of the system is
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x2, 0 =
−c0

− c1

2
,

then the state and output response of system (7) are given by

x2(t) =
− 2c0 + c1

3 exp(t) + c1 − c0

3 exp( − 2t)

− 2c0 + c1

6 exp(t) + c0 − c1

3 exp( − 2t)
,

y2(t) = 0,

respectively. Hence, since y1(t) = y2(t) for all t ∈ ℝ ⩾ 0, but x1(t)
need not be equal to x2(t) for all t ∈ ℝ ⩾ 0, it is not possible to
reconstruct the state of system (7) from measurements of u and y
without knowing which one among the tuples (A1, B1, C1, D1) and
(A2, B2, C2, D2) is governing its dynamics.

Finally, consider the following definition.
 
Definition 2: A polynomial p ∈ ℝ[ye, N, ue, N] is an embedding

of system (7) if, ∀x ∈ ℝn, ∀ue, N ∈ ℝN + 1, ∀k ∈ {1, …, s},

p(Ψk, N(x, ue, N), ue, N) = 0.
Note that Definition 2 generalises Definition 1 to deal with

systems whose dynamical matrices are not known. Indeed, by the
construction given above, it results that if p ∈ ℝ[ye, N, ue, N] is an
embedding of system (7), then

p(ye, N(t), ue, N(t)) = 0, ∀t ∈ ℝ ⩾ 0,

independently of which (Ak, Bk, Ck, Dk) ∈ S is governing the
dynamics of the system. The following proposition is a
straightforward corollary of Theorem 1.

 
Proposition 1: Let the polynomials gk, N , 1, …, gk, N , ℓ be defined

as in (9), k = 1, …, s. The set of all embeddings of system (7) is

TN = ⋂
k = 1

s
⟨gk, N , 1, …, gk, N , ℓ⟩ . (16)

The interest in the set TN defined in (16) relies on the fact that
it allows to construct several simultaneous inverses of the
observability maps Ψk, N( ⋅ , ⋅ ), k = 1, …, s. Indeed, by the same
reasoning used to prove Corollary 1, letting the assumptions of
Theorem 2 hold, letting ΦN( ⋅ , ⋅ ) be defined as in (13), and letting
{λ1, …, λϰ} ⊂ ℝ[ye, N, ue, N] be the reduced Gröbner basis of the
ideal TN given in (16), the function
(ye, N, ue, N) ↦ ΦN(ye, N, ue, N) + ∑ j = 1

ϰ cj(ye, N, ue, N) λj(ye, N, ue, N),
where c1, …, cϰ are arbitrary vectors in ℝn[ye, N, ue, N], is a
simultaneous inverse of the maps Ψk, N( ⋅ , ⋅ ), k = 1, …, s, that
holds for ‘almost all’ ue, N.

5 The case of autonomous systems
In this section, the analysis carried out in Section 4 is specialised to
the case of the following autonomous systems:

ẋ(t) = A x(t), y(t) = C x(t) . (17)

Assume that the matrices A and C are not known, but that it is
known that pair (A, C) belongs to the set

S^ = {(A1, C1), …, (As, Cs)},

where s ∈ ℤ ⩾ 2.The results stated in Theorem 2 still hold for
system (17), and the main objective of this section is to show such
a statement can be simplified when dealing with autonomous
systems. Toward this end, consider the following example in which

the results of Theorem 2 are applied to a systems being
autonomous.
 

Example 3: Let s = 3 and consider the matrices

A1 = 1 −1
0 1 , C1 = [1 0], (18a)

A2 = 0 1
2 1 , C2 = [0 1] (18b)

A3 = 2 1
−1 1 , C3 = [1 1] . (18c)

By letting N = 5, and computing the sets Gk, 5, k = 1, 2, 3, as in (9),
one obtains the following polynomials of ℝ[ye, 5]:

G1, 5

g1, 1 = y(3) − 2y(4) + y(5),
g1, 2 = y(2) − 3y(4) + 2y(5),
g1, 3 = y(1) − 4y(4) + 3y(5),
g1, 4 = y(0) − 5y(4) + 4y(5),

G2, 5

g2, 1 = 2y(3) + y(4) − y(5),
g2, 2 = 4y(2) − 3y(4) + y(5),
g2, 3 = 8y(1) + 5y(4) − 3y(5),
g2, 4 = 16y(0) − 11y(4) + 5y(5),

G3, 5

g3, 1 = 3y(3) − 3y(4) + y(5),
g3, 2 = 3y(2) − 2y(4) + y(5),
g3, 3 = 9y(1) − 3y(4) + 2y(5),
g3, 4 = 9y(0) − y(4) + y(5) .

Hence, by considering that

g1, 1

g1, 2

g2, 1

g2, 2

g2, 3

g2, 4

=

0 0 0 1 −2 1
0 0 1 0 −3 2
0 0 0 2 1 −1
0 0 4 0 −3 1
0 8 0 0 5 −3
16 0 0 0 −11 5

y(0)

y(1)

y(2)

y(3)

y(4)

y(5)

,

g1, 3

g1, 4

g3, 1

g3, 2

g3, 3

g3, 4

=

0 1 0 0 −4 3
1 0 0 0 −5 4
0 0 0 3 −3 1
0 0 3 0 −2 1
0 9 0 0 −3 2
9 0 0 0 −1 1

y(0)

y(1)

y(2)

y(3)

y(4)

y(5)

,

and that the matrices on the right-hand side of the expressions
above have full rank, by the same reasoning used in the proof of
Theorem 1, one has that

⟨g1, 1, g1, 2, g2, 1, g2, 2, g2, 3, g2, 4⟩ = ⟨y(0), y(1), …, y(5)⟩,
⟨g1, 3, g1, 4, g3, 1, g3, 2, g3, 3, g3, 4⟩ = ⟨y(0), y(1), …, y(5)⟩ .

Therefore, it results that, letting W5 be defined as in (12a),

Img(W5) = ⟨y(0)e1
4, …, y(5)e1

4, y(0)e2
4, …, y(5)e4

4⟩,

i.e., there exists a constant matrix K ∈ ℝ24 × 24 such that

W5 K = I4 ⊗ ye, 5
⊤ .

Hence, since the polynomial vector Θ has linear entries in ye, 1, i.e.
there exists a matrix Υ ∈ ℝ4 × 2 such that

Θ = Υ ye, 1,
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by Lemma 2.2 of [31] and Lemma 4 of [32], there exists a constant
vector in the syzygy of [W5 Θ] (the explicit expression of such a
vector is omitted for brevity). Thus, by Theorem 2, there exists a
simultaneous inverse Φ5( ⋅ ) of the observability maps Ψk, 5( ⋅ , ⋅ ),
k = 1, 2, 3, that, by using (13), is given by

Φ5(ye, 5) =
− 11

14
7
2 − 5

7 − 31
14

3
2

2
7

73
14

35
4

1
28

51
7

19
4

27
28

ye, 5 .

In view of the construction illustrated in Example 3, the
following theorem specialises the results given in Theorem 2 to the
case of autonomous systems.

 
Theorem 3: Let s ∈ ℤ ⩾ 2. If N ⩾ n s − 1, then, for ‘almost all’

A1, …, As ∈ ℝn × n and C1, …, Cs ∈ ℝ1 × n, there exists a linear
simultaneous inverse of the observability maps x ↦ Ok, N x,
k = 1, …, s, i.e., there exists LN ∈ ℝn × (N + 1) such that

LN Ok, N x = x, ∀x ∈ ℝn, k = 1, …, s . (19)
 
Proof: First, note that, for ‘almost all’ A1, …, As ∈ ℝn × n and

C1, …, Cs ∈ ℝ1 × n, pairs (Ak, Ck) are observable [27]. Let Gk, N be
defined as in (9), k = 1, …, s: in view of Remark 1, such sets are
composed by exactly N − n + 1 linear polynomials for ‘almost all’
matrices A1, …, As ∈ ℝn × n and C1, …, Cs ∈ ℝ1 × n. By using the
construction made in Example 3, there exists a matrix
Hk ∈ ℝ(N + 1) × (N + 1) such that

g1, (k − 2)n + 1 … g1, (k − 1) n … gk, N , N − n + 1
⊤

= Hk ye, N,

for k = 2, …, s. Furthermore, such a matrix has full rank for
‘almost all’ A1, …, As ∈ ℝn × n and C1, …, Cs ∈ ℝ1 × n. Thus, by the
same reasoning used in Example 3, it results that

Img(WN) = ⟨y(0)e1
n(s − 1), …, y(N)e1

n(s − 1),
y(0)en(s − 1)

n(s − 1), …, y(N)en(s − 1)
n(s − 1)⟩ .

Therefore, by Lemma 2.2 of [31–33], there exists a constant vector
in the syzygy of [WN Θ]; therefore, by (13), there exists a linear
inverse of the observability maps x ↦ Ok, N x, k = 1, …, s, for
‘almost all’ matrices A1, …, As ∈ ℝn × n and C1, …, Cs ∈ ℝ1 × n. □

Theorem 3 provides a ‘generic’ result on the number of time-
derivatives of the output that have to be taken into account in order
to allow one to jointly invert the observability maps x ↦ Ok, N x,
k = 1, …, s. Finally, the following proposition characterises the
number of time-derivatives of the output to be taken into account to
guarantee the existence of a linear embedding for system (17).

 
Proposition 2: Let the set S^

 be given and let the ideal TN of
ℝ[ye, N] be defined as in (16), with Bk = 0n, 1 and Dk = 0,
k = 1, …, s. If N ⩾ n s, then there exists a linear polynomial
p ∈ TN.

 
Proof: Define Ae := diag(A1, …, As) ∈ ℝ(n s) × (n s),

Ce := [C1 … Cs] ∈ ℝ1 × (n s), and consider the extended system

ζ = Ae ζ, ϖ = Ce ζ . (20)

It can be easily derived that if p is an embedding of system (20),
then it is also an embedding of system (17). Thus, the result
follows directly from Theorem 1. □

The following example illustrates the application of Proposition
1.

 

Example 4: Consider again the matrices given in (18). By
letting N = 6, computing the sets Gk, 6, k = 1, 2, 3, as in (9), and
computing the ideal TN as in (16), one obtains the polynomial

p = 6y(0) − 15y(1) + 8y(2) + 9y(3) − 13y(4) + 6y(5) − y(6)

is in the ideal TN and hence it is a (linear) embedding of system
(17).

6 State observer design
In this section, it is shown how the tools given in Sections 4 and 5
can be used to design a state observer for systems (7) and (17). In
particular, in Section 6.1, it is shown how the methods proposed in
Section 5 can be used to design a state observer for system (17)
without knowing which of the pairs (A1, C1), …, (As, Cs) is
governing its dynamics, whereas in Section 6.2, it is shown how
the techniques given in Section 4 can be used to design a state
observer for system (7), without knowing which of the tuples
(A1, B1, C1, D1), …, (As, Bs, Cs, Ds) is governing its dynamics.
Assumption 1 is supposed to hold throughout this section.

6.1 Design of state observers for multiple autonomous
systems

Assume that N ⩾ n s − 1, let L be such that (19) holds, and let

p = α0 y0 + ⋯ + αN yN + yN + 1 = α⊤ ye, N + yN + 1,

be a linear embedding of system (17) in TN + 1 (note that, in view
of the results established in Section 5, such that L and α exist for
‘almost all’ A1, …, As ∈ ℝn × n and C1, …, Cs ∈ ℝ1 × n). Since p is a
linear embedding of system (17), independent of the pairs
(A1, C1), …, (As, Cs) which is governing its dynamics, the time-
derivatives of the output y satisfy

ẏe, N(t) = V ye, N(t), (21)

where

V =
0N , 1 IN

−α⊤ . (22)

Thus, a state observer for system (17) that is independent of the
pairs (A1, C1), …, (As, Cs) which is governing its dynamics can be
‘generically’ given by

y^̇e, N(t) = (V − T Y) y^e, N(t) + T y(t), (23a)

x^(t) = L y^e, N(t), (23b)

where Y = [1 01, N], T is such that V − T Y has eigenvalues with
negative real part, y^e, N(t) is an estimate of ye, N(t) and x^(t) is an
estimate of x(t). As a matter of fact, system (23) is a classical
Luenberger observer [1] for system (21) and hence the estimation
error y^e, N(t) − ye, N(t) converges exponentially to 0. Therefore,
since x(t) = L ye, N(t), it results that also the estimation error
x^(t) − x(t) converges exponentially to 0, i.e., system (23) is an
exponential state observer for system (17). System (23) is referred
to as a simultaneous state observer for multiple autonomous
systems. The next example illustrates the application of this
observer.
 

Example 5: Consider the mechanical system depicted in Fig. 1,
which is constituted by two bodies having mass m and two springs
having stiffness k. Let the output y be the position of the first body.

Letting the masses be unitary and assuming that it is not knwon
whether the stiffness is k = 1 or k = 2, the dynamics of such a
system are given by system (17) with s = 2 and
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A1 =

0 1 0 0
−2 0 1 0
0 0 0 1
1 0 −1 0

, A2 =

0 1 0 0
−4 0 2 0
0 0 0 1
2 0 −2 0

,

C1 = [1 0 0 0], C2 = [1 0 0 0] .

Using the results established in Section 5 (see Examples 3 and 4
for the explicit steps that have to be carried out in order to compute
the matrix L and the vector α), one obtains

L =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
4
3 0 − 7

6 0 − 7
6 0 − 1

6 0

0 4
3 0 − 7

6 0 − 7
6 0 − 1

6

,

α⊤ = [−4 0 −18 0 −23 0 −9 0] .

Hence, letting V be defined as in (22), one has that the matrix (see
equation below) is such that V − T Y has eigenvalues with negative
real part. Thus, the simultaneous state observer (23) provides an
exponentially converging estimate of the state of the mechanical
system depicted in Fig. 1 independently of whether k = 1 or k = 2.

Numerical simulations have been carried out to test such an
observer. Fig. 2 depicts the behaviour of the mechanical system,
the time history of the state of the observer (23) and the estimation
error obtained when k = 1, x(0) = [1 0 −1 0]⊤, y^e, 7(0) = 07, 1. 

On the other hand, Fig. 3 depicts the time behaviour of the
mechanical system, the time history of the state of the observer
(23) and the estimation error obtained when k = 2,
x(0) = [1 0 −1 0]⊤, y^e, 7(0) = 07, 1. 

In order to compare the proposed observer with the ones
existing in the literature, the simultaneous observation scheme
given in Section III of [13] has been implemented for the
mechanical system depicted in Fig. 1 by designing the observer
gains as for the observer (23). Figs. 4 and 5 depict the results of
numerical simulations of such an observer in which the system has
been initialised at the same initial condition of the ones reported in
Figs. 2 and 3 and the observer has been initialised at 012, 1. 

As shown by such figures, although the transient behaviour of
the observer given in Section III of [13] is similar to the one of the
observer (23) and both are capable of estimating the state of the
mechanical system without knowing whether the stiffness of the
springs is k = 1 or k = 2, the observer given in [13] has a higher
state dimension; as a matter of fact, it has 12 states whereas the
observer (23) has eight states. Nonetheless, the computations to be
performed off-line to design the proposed observer are slightly
more complex than the ones required to design the observer given
in Section III of [13]. In fact, while the latter can be designed by
determining two stabilising gains for two linear plants, the former
requires first the computation of the matrix L and of the vector α
(see Examples 3 and 4 for the explicit steps that have to be carried
out) and, second, the computation of the stabilising gain T.

6.2 Design of state observers for multiple systems with
inputs

When dealing with systems with inputs, the design strategy
proposed in Section 6.1 cannot be directly applied due to the fact
that there need not exist a linear embedding for system (7) that
holds independently of which of the tuples
(A1, B1, C1, D1), …, (As, Bs, Cs, Ds) is governing its dynamics.
However, it is still possible to design a state observer for such a
system by using the results given in [34].

Let N ∈ ℤ ⩾ 0 be fixed so that there exists a simultaneous
inverse ΦN( ⋅ , ⋅ ) of the observability maps Ψk, N( ⋅ , ⋅ ),

Fig. 1  A mechanical system with two masses and two springs
 

T = 16.64 121.3 470.1 830.3 −508.1 −4601 −1830 21, 922 ⊤,

Fig. 2  Time behaviour of the state of the mechanical system, time history
of the state of the state observer (23), and estimation error x~ = x − x̂
obtained when k = 1

 

Fig. 3  Time behaviour of the state of the mechanical system, time history
of the state of the observer (23), and estimation error x~ = x − x̂ obtained
when k = 2
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k = 1, …, s, that holds for ‘almost all’ ue, N (see Theorem 2 for the
conditions ensuring that such an assumption hold). Hence,
assuming that, for all times t ∈ ℝ ⩾ 0, the input u is such that

dN + 1

dtN + 1 u(t) ⩽ Δ for some Δ ∈ ℝ ⩾ 0 and that the corresponding state
response of system (7) is such that x(t) ⩽ Λ for some Λ ∈ ℝ ⩾ 0,
an observer for system (7) that is independent of which of the
tuples (A1, B1, C1, D1), …, (As, Bs, Cs, Ds) is governing its dynamics
is ‘generically’ given by

y^̇
(0)(t) = y^(1)(t) + κ1

ε (y(t) − y^(0)(t)), (24a)

y^̇
(1)(t) = y^(2)(t) + κ2

ε2 (y(t) − y^(0)(t)),

⋮
(24b)

y^̇
(N)(t) = κN + 1

εN + 1 (y(t) − y^(0)(t)), (24c)

u^̇
(0)(t) = u^(1)(t) + κ1

ε (u(t) − u^(0)(t)), (24d)

u^̇
(1)(t) = u^(2)(t) + κ2

ε2 (u(t) − u^(0)(t)),

⋮
(24e)

u^̇
(N)(t) = κN + 1

εN + 1 (u − u^(0)), (24f)

x^(t) = ΦN(y^e, N(t), u^e, N(t)) (24g)

where y^e, N(t) = [y^(0)(t) … y^(N)(t)]⊤ is the estimate of ye, N(t),
u^ e, N(t) = [u^(0)(t) … u^(N)(t)]⊤ is the estimate of ue, N(t), the
coefficients κ1, …, κN + 1 are such that the polynomial
ςN + 1 + κ1ςN + … + κNσ + κN + 1 is Hurwitz, ε is a sufficiently small
positive real parameter, and x^(t) is an estimate of x(t). As a matter
of fact, by [34], if (dN + 1/dtN + 1)u(t) ⩽ Δ and x(t) ⩽ Λ (thus
implying by Lemma 1 that there exists Λ̄ such that
(dN + 1/dtN + 1)u(t) ⩽ Λ̄), then the estimation errors
ye, N(t) − y^e, N(t)  and ue, N(t) − u^e, N(t)  can be made arbitrarily

small in an arbitrarily small amount of time by letting the
parameter ε be sufficiently small. Therefore, in view of the
absolute continuity of the function ΦN( ⋅ , ⋅ ) in its domain, system
(24) is able of ‘practically’ estimate (i.e. with arbitrarily small
estimation error and convergence time) the state of system (7),
without requiring the knowledge of which of the tuples
(A1, B1, C1, D1), …, (As, Bs, Cs, Ds) is governing its dynamics. Such a
system is referred to as a simultaneous state observer for multiple
systems with inputs.

The next example illustrates the application of such an observer.
 
Example 6: Consider the electric circuit depicted in Fig. 6,

which is composed by a capacitor with capacitance c, an inductor
with inductance l two resistors with resistance r, and two
switches. Assume that the position of the two switches is not
known and let the output y be the voltage across the resistor and let
the input u be the current delivered by the current source.

Letting the values of the parameters be unitary, the dynamics of
the circuit are modelled by system (7) with s = 3,

A1 =
0 1

− 1
2 0 , B1 = 0

1 , C1 = [0 1],

A2 =
0 1

− 1
2 −1 , B2 = 0

1 , C2 = [0 1],

A3 =
0 1

− 1
2 − 1

2
, B3 = 0

1 , C3 = [0 1],

and D1 = D2 = D3 = 0, corresponding to the possible
configurations of the switches. Letting N = 6 and using the results
established in Section 4 (see Example 2 for the explicit steps that
have to be carried out), one obtains a simultaneous inverse
Φ6( ⋅ , ⋅ ) of the observability maps Ψk, 6( ⋅ , ⋅ ), k = 1, 2, 3, (whose
explicit expression is omitted for compactness), which can be used
for all input functions u(t) such that u(2)(t) does not vanish (or
vanishes at isolated time instants). Hence, such a function can be
used to design the simultaneous state observer (24).

Fig. 4  Time history of the state of the observer given in Section III of [13]
and estimation error x~ = x − x̂ with k = 1

 

Fig. 5  Time history of the state of the observer given in Section III of [13]
and estimation error x~ = x − x̂ with k = 2

 

Fig. 6  An electric circuit with two switches
 

60 IET Control Theory Appl., 2020, Vol. 14 Iss. 1, pp. 52-62
© The Institution of Engineering and Technology 2019

 17518652, 2020, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cta.2019.0073 by C

ochraneItalia, W
iley O

nline L
ibrary on [11/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Numerical simulations have been carried out to test such an
observer. Fig. 7 depicts the time behaviour of the state of the
electrical circuit and the estimation error obtained by using the
state observer (24) with ε = 10−3, y^e, 6(0) = 07, 1, and κ1 = 7, κ2 = 21,
κ3 = 35, κ4 = 35, κ5 = 21, κ6 = 7, κ7 = 1, when no switch is closed,
x(0) = [1 0]⊤, u(t) = 0.01 t2. 

Fig. 8 depicts the behaviour of the electrical circuit system and
the estimation error obtained by using the state observer (24) with

the same parameters as above, when one switch is closed,
x(0) = [1 0]⊤ and u(t) = 0.01 t2. 

Finally, Fig. 9 depicts the behaviour of the electrical circuit
system and the estimation error obtained by using the observer (24)
with the same parameters as above, when two switches are closed,
x(0) = [1 0]⊤ and u(t) = 0.01 t2. 

As shown by Figs. 7–9, the simultaneous state observer (24) is
capable of practically reconstructing the state of the electrical
system without requiring the knowledge of the position of the
switches.

Note that the results given in [13] cannot be directly applied to
design an observer for the considered electrical circuit since [13]
does not deal with the case of three systems with inputs.
Furthermore, also the approach given in [16] cannot be directly
used since Assumption A2 of [16] does not hold for the considered
system.

7 Conclusions
In this paper, algebraic geometry tools have been proposed to
characterise the simultaneous observability of a set of linear
systems and to design a simultaneous state observer. In order to
pursue this objective, first an algebraic technique has been
proposed to compute the set of all the embeddings of a single linear
system and it has been used to find a parametrisation of all the
linear inverses of its observability map. Such a parametrisation has
been used to provide necessary and sufficient conditions for the
existence of a simultaneous inverse, holding for almost all inputs,
of the observability maps of multiple linear systems and to provide
an algebraic geometry technique capable of computing such an
inverse. The results given for SISO linear system have been then
specialised to the case of autonomous systems, for which much
stronger results hold. In particular, a ‘generic’ result has been given
on the number of time-derivatives of the output that have to be
taken into account in order to allow one to jointly invert k
observability maps. Finally, it has been shown how such techniques
can be directly used to design simultaneous observers for multiple
linear systems by coupling them with ‘practical’ high-gain
observers. The theoretical results have been corroborated and
illustrated by several examples reported all throughout the paper.

The main advantage of the tools given in this paper with respect
to others given in the literature [9, 11–13] is that they provide an
exact certificate for the simultaneous observability of a set of linear
system or for the lack thereof. Furthermore, they allow one to
compute directly a closed-form expression for the simultaneous
inverse of the observability maps of the systems in the set, which
can be readily used to design simultaneous observers by interfacing
it with high-gain observers.

It is worth pointing out that although, for simplicity, the results
given in Section 6.2 have been illustrated assuming that the input is
Ck for some sufficiently large k ∈ ℤ ⩾ 0, the proposed technique can
be employed also if the input is discontinuous, provided that there
is a minimum dwell time between two consecutive discontinuities
(see [24] for further details).

As shown in Example 5, the proposed simultaneous state
observer for multiple autonomous systems has state dimension
smaller than others available in the literature, although the
computations that have to be carried out off-line to design the
observer may be slightly more complex. Furthermore, as shown in
Example 6, the given simultaneous state observer for multiple
systems with inputs can be used in some cases in which other
design procedures cannot be used, although it requires more strict
hypotheses on the input, which has to be piecewise Ck for some
sufficiently large k ∈ ℤ ⩾ 0, with a minimum dwell time between
two consecutive discontinuities.

It is worth mentioning that the proposed algebraic technique for
a single system can be extended so to deal with unknown inputs. In
fact, by [35, 36], the state ξ of system (1) is observable with
unknown inputs if and only if system (1) is differentially flat. In
such a case, by letting ℐN := ⟨ψe, N − ON ξ − MN νe, N⟩ be the ideal
generated by the relations given in (3), an inverse of the
observability map ΨN(ξ, νe, N) that is independent of the input ν and

Fig. 7  Time behaviour of the state of the electrical circuit and estimation
error x~ = x − x̂ obtained when no switch is closed

 

Fig. 8  Time behaviour of the state of the electrical circuit and estimation
error x~ = x − x̂ obtained when one switch is closed

 

Fig. 9  Time behaviour of the state of the electrical circuit and estimation
error x~ = x − x̂ obtained when two switches are closed
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its time derivatives can be determined by computing the Gröbner
basis of KN := ℐN ∩ ℝ[ξ, ψe, N] according to the Lex order with
ψ (0) ≻L … ≻L ψ (N) ≻L ξ1 ≻L …ξn. In particular, there exists a
rational inverse of the observability map ΨN(ξ, νe, N) that is
independent of the input ν and its time derivatives if and only if
there are polynomials g1, …, gn ∈ KN such that LT(gi) = φ(ψe, N)xi,
i = 1, …, n (see [24] for further details). Designing a common
unknown input observer is therefore, easy with the method
proposed here if such polynomials exist, as shown in the following
example.

 
Example 7: Consider system (7) with s = 2,

A1 =
− 1

3
2
3

− 5
3

1
3

, B1 = −3
3 , C1 = [1

3
1
3],

A2 =

7
3

10
3

− 13
3 − 7

3

, B2 = −1
1 , C2 = [1

3
1
3] .

By defining the ideal ℐ1, 1 := ⟨ye, 1 − O1, 1 x − M1, 1 ue, 1⟩ and
computing the reduced Gröbner basis of K1, 1 := ℐ1, 1 ∩ ℝ[x, ye, 1]
according to the Lex order with y(0) ≻L y(1) ≻L x1 ≻L x2, one obtains
that K1, 1 = ⟨g1, g2⟩ with

g1 = x2 − 2y0 − y1,
g2 = x1 − y0 + y1,

which implies that

θ1 =
y0 − y1

2y0 + y1

is an inverse of the observability map Ψ1, 1(x, ue, 1) that is
independent of the input u and its time derivative. Furthermore, by
computing the reduced Gröbner basis of the syzygy of [W3 Θ],
one of its elements is [0 0 0 0 0 0 0 0 1]⊤, and hence
θ1 is a common inverse of the observability maps Ψ1, 3(x, ue, 3) and
Ψ2, 3(x, ue, 3) that is independent of the input u and its time
derivatives. Therefore, a common unknown input observer for the
considered system can be designed by coupling the observer (24a)–
(24c) with such an inverse.

On the other hand, if there do not exist polynomials
gk, 1, …, gk, n ∈ ⟨ye, N − Ok, N x − Mk, N ue, N⟩ ∩ ℝ[ye, N, x] such that
LT(gk, i) = φ(ψe, N)xi, i = 1, …, n, k = 1, …, s, it is not easy to
extend the techniques proposed in this paper; this would
correspond to design unknown input observers for multiple
systems in the case of unknown input detectability, as in [14–16].
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