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Acidic pH shift occurs in many physiological neuronal activities such as synaptic
transmission and synaptic plasticity but also represents a characteristic feature of many
pathological conditions including inflammation and ischemia. Neuroinflammation is a
complex process that occurs in various neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, and Huntington’s disease. Acid-sensing
ion channels (ASICs) represent a widely expressed pH sensor in the brain that play a key
role in neuroinflammation. On this basis, acid-sensing ion channel blockers are able to
exert neuroprotective effects in different neurodegenerative diseases. In this review, we
discuss the multifaceted roles of ASICs in brain physiology and pathology and highlight
ASIC1a as a potential pharmacological target in neurodegenerative diseases.
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INTRODUCTION

The maintenance of cytosolic pH in its physiological range is required for normal neuronal activity,
and even minor alterations can have serious consequences. Under normal physiological conditions,
intra- and extracellular pH is maintained between 7.0 and 7.3; however, normal neuronal activity
causes local pH changes (Chen and Chesler, 1992; Chesler and Kaila, 1992; Makani and Chesler,
2007; Magnotta et al., 2012). In the mammalian central nervous system (CNS), increased neuronal
activity and the intense synchronous synaptic activity occurring in the synaptic plasticity process
alter pH, producing alkalinization followed by acidification (DeVries, 2001; Du et al., 2014).

Under pathological conditions, including ischemic strokes, seizures, and inflammation
associated with several neurodegenerative diseases, the pH shifts toward a persistent acidification
that is correlated with neuronal hyperexcitability (Chiacchiaretta et al., 2017).

Neuroinflammation within the brain or spinal cord is mediated by the release of cytokines,
chemokines, reactive oxygen species produced from resident microglia and astrocytes, endothelial
cells, and peripherally derived immune cells (DiSabato et al., 2016). In the last decades, correlation
between neuroinflammation and neurodegeneration has become increasingly solid in the light
of accumulating evidence gathered on Alzheimer’s disease (AD), Parkinson’s disease (PD), and
multiple sclerosis (MS) (Salter and Stevens, 2017).

Several studies in animal models and in humans have demonstrated that neurodegenerative
diseases, characterized by a persistent inflammatory state, are associated with a significant reduction
in the brain pH (Amor et al., 2010; Tyrtyshnaia et al., 2016; Decker et al., 2021), suggesting that
neuroinflammation per se affects brain pH level. All this evidence has prompted the investigation
of the role of acid-sensing ion channels (ASICs) in neurodegenerative diseases. The present
work provides an overview of the possible roles of ASIC1a in neurodegenerative conditions and
highlights this protein as a new potential therapeutic target.
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ACID-SENSING ION CHANNEL
CHANNELS: pH SENTINELS IN THE
BRAIN

ASICs belong to a class of voltage-insensitive cation channels,
which are widely expressed in the central and peripheral nervous
systems (Sherwood et al., 2012; Vullo and Kellenberger, 2020;
Rook et al., 2021). Today, it is well accepted that protons (H+)
can act as neurotransmitters through the specific activation
of proton-sensing channels, and these channels were cloned
and named for the first time as ASICs in 1997 (Waldmann
et al., 1997). Thereafter, many studies have investigated their
structure, expression, and localization, and many experimental
ligands, to explore and understand the role and function of
ASIC in physiological and pathological processes, were developed
(Figure 1; Chesler, 2003; Mango and Nisticò, 2020; Rook et al.,
2021). Among six different mammalian protein subunits that
have been cloned (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and
ASIC4), ASIC1 and ASIC2 are predominant subunits in the CNS
(Waldmann et al., 1997; Chen et al., 1998; Bässler et al., 2001).
Each ASIC subunit has two transmembrane domains and a large
extracellular domain enriched with acidic residues. ASICs can
be assembled as either homotrimers or heterotrimers to form
functional channels (Bassilana et al., 1997; Babinski et al., 1999;
Jasti et al., 2007; Gonzales et al., 2009; Magnotta et al., 2012;
Rook et al., 2021).

The most important characteristic of ASICs is the high
pH sensitivity (Wemmie et al., 2013) making them the best
candidates for pH sentinels in the brain that can detect and
respond to small pH variations (Papalampropoulou-Tsiridou
et al., 2020; Rook et al., 2021). A recent study has provided
insights into the role of ASIC currents in the generation of action
potential (AP) firing in neurons in relation to the speed of pH
change. The authors demonstrate that moderate acidification (4–
10 s) mediates AP increase, while slow acidification (>10 s) is not
able to induce AP changes, suggesting a new important parameter
that influences ASIC modulation of neuronal depolarization
(Alijevic et al., 2020).

Most studies are focused on the most abundant form of an
ASIC channel expressed in the CNS, which is represented by
ASIC1a. Activation of ASIC1a plays a key role in pathological
processes by promoting neuronal death via calcium (Ca2 +)-
mediated toxicity (Yermolaieva et al., 2004). The abundant
expression of ASIC1a in discrete regions of the brain, such as the
hippocampus, cortex, striatum, and amygdala (Alvarez de la Rosa
et al., 2003; Wemmie et al., 2003; Coryell et al., 2009) and the
characteristic to be Ca2+ permeable has suggested a role for this
channel in calcium-related processes such as synaptic plasticity,
learning and memory, as well as neuronal death (Wemmie
et al., 2002; Gao et al., 2015; Wang et al., 2015). Accordingly,
blocking ASIC1a affects multiple forms of synaptic plasticity in
many brain regions including the amygdala and hippocampus
(Wemmie et al., 2002, 2003; Du et al., 2014; Mango et al., 2017;
Mango and Nisticò, 2020). Inhibition of ASIC1a produces a
reduction in magnitude of both forms of synaptic plasticity long-
term potentiation (LTP) and long-term depression (LTD) and
ASIC1a KO mice show impairment of learning and memory

evaluated with the Morris water maze and elevated-plus maze
behavioral tests.

Moreover, the interplay between ASIC1a and NMDA,
AMPA, and GABA receptors represents a potential target
for acidotoxicity and exitotoxicity that occur in pathological
conditions, such as ischemia (Gao et al., 2005, 2016; Chen et al.,
2011; González-Inchauspe et al., 2017). Intriguingly, protons are
able to modulate different synaptic receptors including AMPA
and NMDA glutamate receptors (Tang et al., 1990; Traynelis and
Cull-Candy, 1990; Lei et al., 2001), as well as GABAA receptors
(Kaila, 1994; Dietrich and Morad, 2010), indicating that pH
changes affect neuronal excitability, neurotransmission, and post-
synaptic responses (Chen and Chesler, 1992; Makani and Chesler,
2007; Dietrich and Morad, 2010).

NEUROINFLAMMATION PROCESS AND
pH SHIFT IN NEURODEGENERATIVE
DISORDERS

Growing evidence supports the relationship between
neuroinflammation and synaptic degeneration as a common
feature in neurodegenerative diseases including AD, PD, and MS
(Nisticò et al., 2017; Guzman-Martinez et al., 2019). Acidosis
and accumulation of protons in the extracellular space represent
hallmarks of the inflammatory process (see Diaz et al., 2018).
The shift to the acidic pH was observed in normal aging
and in patients affected by a variety of neurodegenerative
disorders and was also confirmed in experimental models of
neuroinflammation (Roberts and Sick, 1996; Roberts and Chih,
1997; Friese et al., 2007; Vergo et al., 2011; Mandal et al., 2012;
Tyrtyshnaia et al., 2016).

To date, there is limited experimental evidence linking
ASICs to neuroinflammation. For example, NSAIDs were
reported to act against ASICs by both preventing inflammation-
induced increase in expression and directly inhibiting the
channels (Voilley et al., 2001). Our group has published that
CHF5074 (also called CSP-1103), a flurbiprofen derivative,
induces inhibition of ASIC1a-mediated currents elicited by
application of pH 5.5 bath medium (IC50 ∼50 nM) (Mango
et al., 2014). A previous work has also demonstrated an increased
expression of ASIC3 on nerve afferents supplying joints in
response to inflammatory stimulus and an anti-inflammatory
action exerted by ASIC3 inhibitors in animal models of
rheumatoid arthritis. Notably, ASIC−/− animals manifest higher
joint inflammation and destruction compared with ASIC+/+

controls (Sluka et al., 2013).
Therefore, ASICs represent the receptors on which the protons

act as neurotransmitter and prolonged changes in pH shift likely
contribute to the chronic inflammatory states underlying the
neurodegenerative process.

Alzheimer’s Disease
AD is a major cause of dementia in the world population. AD
is characterized by chronic neurodegeneration with progressive
memory impairment (Chapman et al., 1999), and currently, there
is limited effective treatment or cure.
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FIGURE 1 | Acid-sensing ion channel 1a (ASIC1a) structure and the binding sites of its modulators. (A) A schematic view of the ASIC1 subunit highlighting the
different domains: finger (purple), knuckle (turquoise), β-ball (orange), palm (yellow), and thumb (blue) and transmembrane domains (red). The binding sites for the
different drugs are also indicated. (B) Crystal structure of an ASIC1 subunit obtained from chicken ASIC1 binding Mit-Tx (Baconguis et al., 2014). The domains are
colored as in panel A. Readapted from Boscardin et al. (2016).

Several studies highlighted a shift to acidic pH in the AD brain
caused by reduced cerebral perfusion (Siesjo, 1988). Changes
in pH have also been observed in cerebrospinal fluid and
post-mortem brain tissue of AD patients (Liu et al., 1999;
Preece and Cairns, 2003).

ASIC1a plays a key role in synaptic plasticity processes
including neurotransmission, dendritic structural remodeling,
learning and memory, and fear response. This has been widely
demonstrated in non-clinical studies using electrophysiological
and behavioral approaches in mice (Wemmie et al.,
2002, 2003; Chu and Xiong, 2012; Huang et al., 2015;
Mango and Nisticò, 2019).

However, the role of ASIC1a in the synaptic alterations
underlying AD remains still elusive. Indeed, our group
has previously demonstrated an involvement of ASIC1a in
hippocampal LTD ion in two experimental models of AD
(Mango and Nisticò, 2018). Specifically, blocking ASIC1a with
the selective blocker psalmotoxin-1 inhibited the enhancement
of mGlu receptor-dependent LTD seen in the hippocampal slices,
which were either treated with Aβ oligomers or obtained from
Tg2576 mouse model of AD (Mango and Nisticò, 2018). The
significance of these results remains to be established, and further
studies need to be conducted in order to clarify the ASIC1a
involvement in AD pathophysiology.

Parkinson’s Disease
PD is a neurodegenerative disorder characterized by progressive
and selective degeneration of dopaminergic neurons localized
in the substantia nigra pars compacta (SNpc) area of
the brain and cytoplasmic inclusions of alpha-synuclein
aggregates, called Lewy bodies (Gelders et al., 2018). The
neurodegeneration is responsible for motor and non-motor
symptomatology including tremor, rigidity, bradykinesia,
olfactory dysfunction, sleep disturbance, and cognitive
impairment (Gelders et al., 2018).

Several studies described an elevated concentration of
neuroinflammatory markers in PD patients suggesting the
hypothesis that inflammation plays a role in neurodegeneration
(Gelders et al., 2018). Also, PD is associated with lactic
acidosis, and a study performed using an animal model
of PD, the MPTP-treated mouse, described an involvement
of ASIC1a in neurodegeneration of dopaminergic neurons.
Indeed, blocking ASIC1a with amiloride or psalmotoxin-1
preserved dopaminergic neurons of SNpc from degeneration
(Arias et al., 2008). Mutations in Parkin gene associated
with autosomal recessive juvenile onset of PD (Kitada et al.,
1998) or lack of the Parkin gene facilitate ASIC1a currents
in hippocampal neurons evoked by application of acidic
extracellular solution, and increase vulnerability of dopaminergic
neurons, suggesting a significant role of ASIC1a in PD
pathophysiology (Joch et al., 2007).

Nevertheless, not many studies have been performed to verify
the role of ASIC1a as a therapeutic target for PD.

Multiple Sclerosis
MS is a chronic autoimmune inflammatory disease characterized
by demyelination and axonal degeneration processes
(Goldenberg, 2012).

Many studies investigated the involvement of ASIC1a in
MS using a well-accepted animal model of MS that is
the experimental autoimmune encephalomyelitis (EAE) model
(Friese et al., 2007; Bjelobaba et al., 2018). Previous studies
found ASIC1a upregulation in axons and oligodendrocytes in
the EAE model and in MS patients (Vergo et al., 2011). In
MS patients, a relationship between elevated ASIC1a expression
and axon injury markers was demonstrated, and this was
also confirmed in EAE mice (Vergo et al., 2011; Arun et al.,
2013). Also, administration of ASIC blocker amiloride attenuated
demyelination and neuronal damage in EAE animal model as well
as in a cohort of MS patients (Arun et al., 2013), indicating that
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ASIC1a inhibition is neuroprotective and represents a promising
therapeutic strategy for MS.

Huntington’s Disease
HD is a rare hereditary neurodegenerative disease characterized
by movement and cognitive disorders and polyglutamine repeat
as pathologic hallmarks (Agostinho et al., 2013). Not much
evidence is present in literature linking ASIC1a to HD. The
acidosis that occurs in the brain of HD patients and in mouse
models of HD suggests an involvement of these channels in the
pathophysiology of HD (Tsang et al., 2006; Josefsen et al., 2010).
Notably, blocking ASIC1a with an amiloride derivative benzamil
was able to alleviate pathology through reduction of Huntingtin–
polyglutamine aggregation, the HD hallmark in the striatum of
R6/2 mice model of HD (Wong et al., 2008).

ACID-SENSING ION CHANNEL
MODULATORS AND THEIR POTENTIAL
THERAPEUTIC USE

Experimental evidence suggests that ASIC1a could represent a
new therapeutic target for neurodegenerative diseases. Below, we
present the main ligands targeting ASIC1a, and the binding sites
of ASIC1a are illustrated in Figure 1.

Amiloride
Amiloride a potassium-sparing diuretic agent and acts as a non-
specific ASIC1a inhibitor in the range of 1–100 µM, which act
by binding to the ion pore (Schild et al., 1997; Leng et al.,
2016). Clinical studies have detected a neuroprotective and
myeloprotective effect in patients with primary progressive MS
(Arun et al., 2013). Nevertheless, amiloride was not effective in
reducing the brain atrophy in patients with secondary progressive
multiple sclerosis (De Angelis et al., 2020). In the light of these
data, it could be important to test other amiloride analogs, such
as benzamil with increased potency and selectivity for ASIC1a
(Leng et al., 2016).

Non-steroidal Anti-inflammatory Drugs
Non-steroidal anti-inflammatory drugs (NSAIDs) are a class
of drugs widely used for the treatment of inflammation, pain,
and many other disorders (Voilley, 2004). Previous studies have
demonstrated that flurbiprofen, ibuprofen, and derivates mediate
a direct inhibition of ASIC currents acting on the β-ball domain,
with a significant reduction in evoked currents by the application
of acidic medium (Voilley et al., 2001; Mango et al., 2014).

Small Molecules
Different small molecules targeting ASICs were developed and
represent new pharmacological tools used to study the ASICs
function. Some of these molecules are clinically tested for
therapeutic use, as PPC-5650 for the irritable bowel syndrome
(Dubé et al., 2009; Olesen et al., 2015).

In this class can be cited NS-383 small potent inhibitor of
ASIC1a (Munro et al., 2016) and two potent allosteric antagonists
of ASIC1a JNJ-799760 and JNJ-67869386, which act by binding to

the acidic pocket (Liu et al., 2021). Other new potent antagonists
are represented by A-317567 and 5b (Dubé et al., 2005; Buta et al.,
2015).

Psalmotoxin-1
Psalmotoxin-1 (PcTx-1) was the first toxin identified as a
selective ASIC1a inhibitor, which acts by binding to an acidic
pocket (Escoubas et al., 2000). Although, the structure of PcTx-
1 does not allow passage through the blood–brain barrier,
previous studies demonstrated its neuroprotective effect in
different experimental models of neurodegenerative diseases via
intrathecal or intracerebroventricular administration (Diochot
et al., 2012; Baron et al., 2013; Chassagnon et al., 2017).

ASC06-IgG1
ASC06-IgG1 is a novel selective ASIC1a-blocking monoclonal
antibody, which showed potent, sustained, and highly selective
inhibition of ASIC1a (Qiang et al., 2018). This specific
antibody shows a neuroprotective effect against ischemia (Qiang
et al., 2018). Further studies are needed to investigate the
neuroprotective effect of ASC06-IgG in experimental models
of neurodegenerative diseases. Today, numerous monoclonal
antibodies have been approved or are under development for
neurological diseases (Sirbu et al., 2021), but many limitations,
including the route of administration, as well as class-specific
and target-associated risks, have limited their use (Loureiro et al.,
2014, 2017; Teleanu et al., 2019).

CONCLUSION

Neurodegenerative diseases are characterized by different and
multifactorial processes sharing accumulation of misfolding
proteins, damage of specific neuronal populations, and chronic
inflammation state neuroinflammation. Another common
feature is the shift to the acidic pH in the brain, which might
contribute to apoptosis, protein misfolding, excitotoxicity, and
neurodegeneration (Parton et al., 1991; Bender et al., 1997; Ding
et al., 2000; Liu et al., 2012; Wang et al., 2012).

Emerging evidence supports the role of ASIC activation
in several physiological processes such as synaptic plasticity
and memory. On the other hand, ASICs are implicated in
the pathophysiology of inflammatory and neurodegenerative
diseases including PD, MS, AD, and HD.

The complex molecular pathways leading to
neurodegeneration makes the search for novel effective agents
difficult. In this frame, the development of potent and specific
blockers for individual ASIC subunits, as well as the targeting
of endogenous signaling molecules modulating the function of
ASICs, might represent a new approach for the treatment of
neurodegenerative conditions.
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