We correct some errors in [CTW22].
The first one is concerned with Proposition 3.3. The constant C^{\prime} should actually be $C^{\prime \prime}=(1+|k|)^{\frac{\beta+1}{2}} \sqrt{\frac{C}{|k|(\beta+1)}}$ instead of $C^{\prime}=\sqrt{\frac{C}{k(\beta+1)}}$. This does not affect the main results of the paper, because we only need that there is such a constant, and we do not need the specific dependence on k. On the other hand, this specific dependence could be useful for other purposes.

The previous value of C^{\prime} works for ϕ_{k} with $k>0$, but for ϕ_{-k} there is a sign mistake at the commutation relation between ϕ_{-k} and L_{0} in the last displayed formula of the proof.

To see that the corrected $C^{\prime \prime}$ work for $-k$ (in the assumption k and $-k$ needs to be exchanged but it results in the same inequality) for Ψ_{n} a generic vector in V_{n}, we calculate

$$
\begin{aligned}
\left\|\phi_{-k}\left(L_{0}+\mathbb{1}\right)^{-\frac{\beta+1}{2}} \Psi_{n}\right\|^{2} & =\left\|\phi_{-k}(n+\mathbb{1})^{-\frac{\beta+1}{2}} \Psi_{n}\right\|^{2} \\
& \leq(1+k)^{\beta+1}\left\|\phi_{-k}(n+\mathbb{1}+k)^{-\frac{\beta+1}{2}} \Psi_{n}\right\|^{2} \\
& =(1+k)^{\beta+1}\left\|\left(L_{0}+\mathbb{1}\right)^{-\frac{\beta+1}{2}} \phi_{-k} \Psi_{n}\right\|^{2} \\
& \leq(1+k)^{\beta+1}\left\|\left(L_{0}+\mathbb{1}\right)^{-\frac{\beta+1}{2}} \phi_{-k}\right\|^{2} \cdot\left\|\Psi_{n}\right\|^{2} \\
& \leq(1+k)^{\beta+1}\left\|\phi_{k}\left(L_{0}+\mathbb{1}\right)^{-\frac{\beta+1}{2}}\right\|^{2} \cdot\left\|\Psi_{n}\right\|^{2} \\
& \leq(1+k)^{\beta+1}\left(C^{\prime}\right)^{2}\left\|\Psi_{n}\right\|^{2} .
\end{aligned}
$$

As $\phi_{-k}\left(L_{0}+\mathbb{1}\right)^{-\frac{\beta+1}{2}} \Psi_{n}$ are mutually orthogonal for different n, for a general Ψ we obtain $\left\|\phi_{-k}\left(L_{0}+\mathbb{1}\right)^{-\frac{\beta+1}{2}} \Psi\right\|^{2} \leq(1+k)^{\beta+1}\left(C^{\prime}\right)^{2}\|\Psi\|^{2}$, which is what we had to prove with $C^{\prime \prime}=$ $(1+k)^{\frac{\beta+1}{2}} \sqrt{\frac{C}{k(\beta+1)}}$.

In addition, in Proposition 3.2, Theorem 3.5, Lemma 3.6, Theorem 3.7, the fields ϕ etc. should be assumed to be hermitian. Note however that in a unitary vertex operator algebra every primary field ϕ with conformal dimension d is equal to $\phi_{1}+i \phi_{2}$ with ϕ_{1} and ϕ_{2} hermitian primary fields of the same dimension d.

References

[CTW22] Sebastiano Carpi, Yoh Tanimoto, and Mihály Weiner. Comm. Math. Phys., Vol. 390, 169-192 (2022). https://arxiv.org/abs/2103.16475.

