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Abstract
Aims and data synthesis Glucose variability (GV) is increasingly considered an additional index of glycemic control. Grow-
ing evidence indicates that GV is associated with diabetic vascular complications, thus being a relevant point to address in 
diabetes management. GV can be measured using various parameters, but to date, a gold standard has not been identified. 
This underscores the need for further studies in this field also to identify the optimal treatment.
Conclusions We reviewed the definition of GV, the pathogenetic mechanisms of atherosclerosis, and its relationship with 
diabetic complications.
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Abbreviations
GV  Glucose variability
HbA1c  Glycated hemoglobin
ACS  Acute coronary syndrome
CVD  Cardiovascular disease
T2D  Type 2 diabetes
SMBG  Self-monitoring of blood glucose
CGM  Continuous glucose monitoring
FPG  Fasting plasma glucose
MAGE  Mean amplitude of glucose excursion
MODD  Mean of daily differences
AGP  Ambulatory glucose profile
TIR  Time in range
UKPDS  UK prospective diabetes study group
DCCT   The diabetes control and complications 

study
ADVANCEE  Action in diabetes and vascular disease
VADT  Veterans affairs diabetes trial

Introduction

Cardiovascular and cerebrovascular diseases are the leading 
cause of death worldwide [1]. Diabetes mellitus—alongside 
hypertension, hypercholesterolemia and smoking—is among 
the most relevant independent risk factors for coronary 
artery disease. The progression of atherosclerosis occurs 
earlier and more rapidly in subjects with hyperglycemia 
than in the general population; in accordance, people with 
type 2 diabetes mellitus (T2D) are twice as likely to have 
heart disease or a stroke than people without diabetes [2, 
3]. Beyond macrovascular atherosclerotic complications, 
microvascular diseases affecting small vessels (namely dia-
betic retinopathy, nephropathy and neuropathy) play also a 
pivotal role in increasing the overall morbidity and mortality 
attributable to diabetes. Early recognition of diabetes itself 
and beginning of adequate treatment are therefore critical 
to mitigate the burden of disease determined by these micro 
and macrovascular complications [4, 5].

High blood glucose levels, especially when accompanied 
by augmented glucose fluctuations over the day, can affect 
various kinds of molecular mechanisms in various target 
cells and tissues [6], resulting in the leading cause of both 
micro- and macrovascular complications in the diabetic 
patient. At the macrovascular level, hyperglycemia induces 
a pro-inflammatory and pro-thrombotic state, promotes 
protein glycation and the formation of reactive oxygen spe-
cies; all these are contributing factors for atherosclerosis. 
Additionally, diabetic microangiopathy itself can accelerate 
atherosclerosis. The vasa vasorum, small vessels located in 
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the adventitia, respond to hyperglycemia-induced hypoxia 
and ischemia with neoangiogenesis that would appear to link 
the micro and macrovascular disease [7]. However, optimal 
glucose control has demonstrated clear beneficial effects 
on microvascular complications, but less on macrovascular 
ones, since multiple risk factors beyond glycemic control 
need to be addressed to substantially reduce cardiovascular 
events in diabetic patients [8, 9].

There is some evidence that cardiovascular atheroscle-
rotic complications can occur in patients with impaired 
glucose homeostasis, even years before the onset of diabe-
tes itself. For instance, in the "Glucose Tolerance in Acute 
Myocardial Infarction" prospective study, the presence of 
impaired glucose tolerance (i.e., the condition that occurs 
before the development of overt diabetes) was the main 
predictor of acute myocardial infarction and cardiovascular 
death [10]. More recently, increased blood glucose excur-
sions over the day, including hypoglycemic periods and post-
prandial increases, have gained attention in the pathogenesis 
of diabetic vascular complications, since this sort of glucose 
dysregulation seems to be significantly associated with ves-
sel damage, perhaps more than mean blood glucose values 
themselves.

Glucose variability

Glycated hemoglobin (HbA1c) is currently the gold stand-
ard biochemical parameter for the assessment of glycemic 
control and treatment efficacy in diabetic patients [11]. How-
ever, HbA1c is a measure of mean blood glucose concentra-
tions [12, 13], not necessarily reflecting the short-term gly-
cemic peaks and nadirs (lasting minutes or hours), especially 
in the post-prandial state, which could add or modify the risk 
of vascular damage [14]. As a matter of fact, two distinct 
diabetic patients with similar Hb1Ac values may have differ-
ent glycemic fluctuations, and the individual risk of vascular 
complications may be highly affected by the extent of both 
post-prandial glycemic excursions and episodes of hypogly-
cemia [14]. For these reasons, the role of glucose variabil-
ity (GV) has gained attention in recent years, in terms of 
significant association with cardiovascular disease risk in 
patients with T2D. A number of studies suggest that poor 
post-prandial blood glucose control may contribute to vascu-
lar risk, especially in those with established atherosclerotic 
disease, rather than chronic hyperglycemia per se [15–17]. 
Importantly, even though a certain degree of variability can 
be observed in subjects with normal glucose tolerance and 
without evidence of atherosclerotic disease, the impairment 
in post-prandial glucose excursions and consequent relation-
ship with hemostatic and endothelial abnormalities is typical 
of individual with diabetes or impaired glucose regulation 
[16, 18]. For all these reasons, it is essential to establish 

the level above which GV is intended of pathological sig-
nificance in order to recognize this abnormality as soon as 
possible and improve prevention of diabetic vascular com-
plications. However, there is currently no consensus on how 
best assessing GV and defining when it is of pathological 
relevance, in order to help physicians improving the cardio-
vascular risk assessment in patients with T2D. Therefore, 
in this review, we examined the concept and definition of 
GV, the mechanisms by which it affects the development 
and progression of atherosclerosis, and its potential role as 
a predictor of CVD.

Glycemic variability indicators

Previous definition of GV was rather generic, potentially 
including inter-day variability in fasting blood glucose, gly-
cemic post-prandial peaks or glycated hemoglobin variabil-
ity. More recently, this concept has been specified in more 
details, so that the widely accepted definition of GV consid-
ers the intra-day glycemic excursions, including episodes 
of hyperglycemia and hypoglycemia. It is characterized by 
the amplitude, frequency and duration of glucose devia-
tions from the steady state during a certain period of time 
as measured by Continuous Glucose Monitoring (CGM) 
systems [19, 20]. There are numerous metrics to assess GV, 
some of them are simple to estimate and use in clinical prac-
tice, and others are more complex and less immediate [21]. 
However, no gold standard measure to fully evaluate GV 
has been identified to date. Basically, there are predomi-
nantly two types of GV according to the length of time-
interval: (1) long-term GV, based on serial determinations 
over a longer period of time, involving serial fasting plasma 
glucose (FPG), post-prandial glucose (PPG) measurements 
and, less frequently, HbA1c values; (2) short-term GV, rep-
resented by both intra-day and inter-day GV [19–22], which 
is more closely related to the concept of glucose fluctuations, 
the risk of hypoglycemia and the adverse clinical outcomes 
of GV related to vascular damage [23, 24]. Some of the key 
metrics to express the amplitude of short-term GV are sum-
marized in Table 1. The most immediate indexes to assess 
GV are calculated referring to the glycemic mean values over 
the day, in order to primarily capture mealtime-related glu-
cose excursions [21]. The standard deviation (SD), including 
total SD, intra-day SD and inter-day SD, is the subsequent 
index of dispersion of the data around the mean glycemic 
value and was initially found to be the simplest approach to 
assess glycemic variability. However, its use implies that 
glucose measures are normally distributed, which is typi-
cally not the case. Another measure designed to capture 
mealtime-related glucose excursions is the mean amplitude 
of glucose excursion (MAGE). This metric includes the mean 
of glycemic excursions from nadir to peak blood glucose 
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levels and vice versa that are > 1.0 SD of blood glucose 
mean value [25]. Therefore, takes into account, glycemic 
peaks and nadirs occurring daily but does not account for the 
total number of fluctuations. It strongly depends on the sam-
pling frequency, with no clear distinction between beginning 
and ending of peaks and nadirs. Further, it is questionable 
whether only mealtime excursions or excursions larger than 
1.0 SD would have clinical importance. Other GV indices 
include the J-index, which is calculated from the mean blood 
glucose and SD [21]; the low blood glucose index (LBGI) 
and high blood glucose index (HBGI), which is designed 
to be sensitive to the frequency and severity of hypoglyce-
mia or hyperglycemia; and the average daily risk, which is 
designed to predict both severe hyperglycemia and hypo-
glycemia [21]. However, all these methods are not adjusted 
for the mean blood glucose, whereas GV is known to be 
significantly influenced by the mean blood glucose over the 
considered period. For this reason, while most physicians 
being familiar with the use of SD in clinical practice, the 
preferred amplitude measure to assess GV in research is the 
coefficient of variability (CoV), which is calculated from the 
SD divided by the mean glycemic value. CoV incorporates 
the advantage over SD of being a measure that takes into 
account mean blood glucose, thus being more descriptive of 
hypoglycemic excursions. Accordingly, some recent consen-
sus statements for the interpretation of CGM data in diabetic 
patients recommends that CV should be used as the primary 
measure for assessing GV, with increased GV defined as 
CoV ≥ 36% [26, 27].

Finally, several metrics have been developed in order to 
additionally assess the so-called inter-day glycemic variabil-
ity. Among them, the mean of daily differences (MODD)—
namely the absolute difference in blood glucose levels at 
the same time on consecutive days—is widely used while 

having the limitation of being easily affected by the con-
tent and time of the different meals between the considered 
days [21]. The Ambulatory Glucose Profile (AGP) is used 
in daily practice using CGM. In the AGP, a curve showing 
the median blood glucose levels and a curve showing the 25 
and 75 percentiles of blood glucose levels within a specified 
period, called the interquartile range (IQR), are drawn. The 
median, IQR and other values obtained using the AGP can 
be used to evaluate within-day and between-day glycemic 
fluctuations [28]. CGM technology can further expands the 
ability to assess glycemic control throughout the day, quan-
tifying the time below, within, and above the established gly-
cemic targets. The most important of these clinical metrics 
are the time in targeted blood glucose range (TIR), namely 
the percentage of time that a person spends with their blood 
glucose levels in a target range. The range varies depending 
on the person, but general guidelines suggest starting with a 
range of 70 to 180 mg/dl [29].

Pathogenesis of cardiovascular 
complications in diabetes

Chronic hyperglycemia and GV are both important markers 
of endothelial and cardiovascular damage even in patients 
with diabetes of short duration and optimal glycemic con-
trol. In fact, they increase the production of reactive oxygen 
species (ROS), which inactivate nitric oxide (NO), leading 
to endothelial dysfunction and vascular complications. ROS 
interact with protein, lipid and DNA generating numerous 
oxidative products [30]. Among these, nitrotyrosine and 
8-hydroxydeoxyguanosine (8-OHdG) are responsible for the 
extent of vascular damage induced by periodic or continu-
ous exposure to highly variable glycemic levels [31]. The 

Table 1  Key metrics commonly used to express glucose variability

GV Glucose variability; MAGE Mean amplitude of glucose excursion; SD Standard deviation; CoV Coefficient of variation; LBGI Low blood 
glucose index; HBGI High blood glucose index; CGM Continuous glucose monitoring

Amplitude of GV (temporal resolution range: hours to days) Description

MAGE Average of absolute differences between glucose peaks and nadirs (each 
difference needs to be greater than 1 SD from the mean). MAGE 
reflects within-day GV

SD Variation around the mean blood glucose (intra-day or inter-day)
CoV = SD/mean Magnitude of variability relative to mean blood glucose
LBGI Measure of frequency and magnitude of hypoglycemia (amplifies hypo-

glycemic excursions without accounting for hyperglycemia)
HBGI Measure of frequency and magnitude of hyperglycemia (amplifies 

hyperglycemic excursions without accounting for hypoglycemia)

Timing of GV based on CGM (temporal resolution range: minutes to 
hours)

Description

Time within, above or below target range Quantitative measure of time spent within an individual’s target glucose 
range; time spent below this range; time spent above this range
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assessment of events downstream of ROS generation, such 
as cell apoptosis, nuclear factor (NF) kB activation in mono-
nuclear cells, cell growth and collagen synthesis, in cultured 
human renal tubulointerstitial cells [32, 33], has helped 
demonstrate endothelial pathological effects sustained by 
the variability of blood glucose concentration. Quagliaro 
et al. examined the different effect that GV and consist-
ently high level of blood glucose exert on the generation of 
ROS, by measurement of nitrotyrosine and 8-OHdG, and 
the consequent effects of oxidative stress on cell apoptosis. 
They showed that apoptosis is markedly increased in human 
umbilical vein endothelial cells (HUVECs) when exposed to 
periodic changes in glucose concentration, compared with 
those exposed to constant high concentrations [34]. Further-
more, GV increases protein kinase C (PKC) activity, enzyme 
whose main action is to transfer a phosphate group of ATP 
to a hydroxyl group on a serine, threonine or tyrosine of the 
target molecule. This phosphorylation is essential for the 
performance of a variety of intracellular protein functions. 
Hyperglycemia leads to an increase in diacylglycerol (DAG) 
content, which in turn activates various PKC isoforms, with 
transduction of several intracellular signals that alter gene 
expression of numerous pro-atherogenic factors. Activa-
tion of PKC increases the production of several cytokines, 
extracellular matrix, fibrinolytic-acting PAI-1(Plasminogen 
activator inhibitor-1) and ET-1(endothelin 1), as well as 

stimulating the production of vascular endothelial growth 
factor (VEGF) [35] and of vasoconstrictors (Fig. 1). Another 
important mechanism in determining the endothelial dys-
function is the oxidation of low density lipoproteins (LDLs) 
[36], which has been shown to associate with mean glucose 
excursions in prospective studies [37]. Increased oxidative 
stress facilitates LDLs oxidation mechanisms, with forma-
tion of so-called ox-LDLs, which are able to penetrate into 
the subendothelial layers where they activate monocytes 
that first turn into macrophages and then into foam cells, 
contributing to the formation of atherosclerotic plaque. Ox-
LDLs cause activation of endothelial cells, have cytotoxic 
effects on the endothelium and stimulate the production of 
several cell growth factors and adhesion molecules. Ox-
LDLs also cause activation of several pro-inflammatory 
genes, increase platelet aggregation and thrombogenesis 
[38]. Taken together, all these mechanisms significantly con-
tribute to the development and progression of atherosclerosis 
in patients with T2D. Endothelial dysfunction, furthermore, 
in patients with insulin resistance and pre-diabetes causes 
coronary disease with consequent highest rate of major 
adverse cardiovascular events (MACEs) and worse progno-
sis despite optimal medical therapy and vessels revasculari-
zation [39]. Endothelial dysfunction, so, plays a key role in 
the pathogenesis of the diabetic vascular complications but 
only partially explains the increased risk of coronary artery 

Fig. 1  Hyperglycemia and glucose variability directly impair 
endothelial function by increasing local reactive oxygen species pro-
duction. They accelerate nitric oxide decay, damping its vasodilator 
effect. Endothelial dysfunction causes expression of adhesion mol-
ecules. Platelets and monocytes migrate into intima. Monocytes first 
turn into macrophages and then into foam cells, contributing to the 
formation of atherosclerotic plaque. Platelets and macrophages acti-
vates secrete growth factor like PDGF, EGF, TGF α that lead smooth 

muscle cells proliferation. They synthesize collagen, elastin forming 
extracellular matrix. All this plays a key role in the development of 
atherosclerosis. ROS Reactive Oxygen Species; NADPH Nicotina-
mide Adenine Dinucleotide Phosphate; NO Nitric Oxide; FAD Fla-
vin Adenine Dinucleotide; eNOS Endothelial Nitric Oxide Synthase; 
PGI2 Prostaglandin I2; TBX Thromboxane; COX1-2 Cyclooxygenase; 
NF-κB Nuclear Factor kappa-light-chain-enhancer of activated B cells
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disease (CAD) in diabetic patients. Recent findings suggest 
a potential involvement of epigenetics, including DNA meth-
ylation, histone modifications and noncoding RNA control 
(ncRNA); indeed, hyperglycemia can also induce epigenetic 
modifications that lead to increased endothelial dysfunction 
and atherosclerosis.

Hyperglycemia determines DNA demethylation in 
endothelial cells through an upregulation of TETs. Hyper-
glycemia activates the NFκB-p65 gene in endothelial cells 
by mono-methylation of lysine 4 on histone 3 (H3K4m1) 
through histone methyltransferase Set7 and demethylation 
of H3K9 on the p65 promoter by lysine-specific demethylase 
1 [40]. The NFκB upregulation causes increase in adhesion 
molecules, cytokines and chemokines, resulting in inflam-
mation and atherosclerosis. Hyperglycemia also induces 
TET-2 mediated DNA demethylation changes that are 
involved in the differentiation of the vessel smooth muscle 
cells in a phenotype characterized by loss of contractility and 
increased proliferation and secretion of extracellular matrix 
proteins. Hyperglycemia causes reduction in the GPx-1 
gene, which encodes the glutathione peroxidase-1 enzyme, 
crucial in preventing oxidative stress and endothelial dys-
function. The knowledge of epigenetic mechanisms, so, it 
might help to predict the development and progression of 
diabetes complications [41].

Clinical implications

There is ample evidence that glycemic control is crucial in 
preventing CVD and reducing mortality. Since the 1990s, 
with the UKPDS [42] (UK Prospective Diabetes Study 
Group) and DCCT [43] (The Diabetes Control and Com-
plications Study) studies, it has been observed that ade-
quate glycemic control significantly contributes to reduce 
the occurring of cardiovascular complications in diabetic 
patients. The results of the UKPDS trial, which enrolled 
more than 3000 diabetic patients without cardiovascular 
disease at baseline and followed-up for 10 years, demon-
strated the importance of tight glycemic control (defined 
as fasting blood glucose < 100 mg/dl) in reducing the inci-
dence of microvascular complications, and with a trend 
toward a slightly non-significant 16% relative risk reduc-
tion in myocardial infarction. Such differences in the risk 
reduction between micro- and macrovascular complications 
in the UKPDS trial have been attributed to various and het-
erogeneous pathophysiological mechanisms. This because 
hyperglycemia and GV are likely to play a major role in 
the pathogenesis of microvascular complications, whereas 
several other extra-glycemic factors—including hyperten-
sion, smoking, dyslipidemia and overweight—are perhaps 
more directly involved in the development of atheroscle-
rosis. This hypothesis was confirmed by the results of the 

STENO-2 trial [44], which showed that intensified multifac-
torial intervention—with tight glucose regulation as well as 
the use of renin–angiotensin system blockers, aspirin and 
lipid-lowering agents—determined major beneficial effects 
with respect to cardiovascular events compared with conven-
tional therapy. The role of tight glycemic control in reducing 
microvascular complications of diabetes was clearly demon-
strated by the DCCT/EDIC study [45], which enrolled only 
patients with type 1 diabetes who are known to suffer of 
greater glycemic excursions and GV than those with T2D. 
After a median follow-up of 6.5 years, researchers observed 
that intensive insulin treatment, with the goal of maintain-
ing blood glucose concentrations close to the normal range, 
reduced the progression of diabetic retinopathy, nephropa-
thy and neuropathy compared with conventional therapy. 
When looking at a population of patients with longstanding 
T2D and high cardiovascular risk, as those enrolled in the 
ADVANCE (Action in Diabetes and Vascular Disease) trial 
were [46], a strategy of intensive glucose control involving 
gliclazide and other drugs as required, yielded a significant 
risk reduction in microvascular complications (primarily 
nephropathy) but no significant reduction in macrovascular 
complications. Of note, following analysis, of the dataset of 
the ADVANCE trial, showed that visit-to-visit variability 
of fasting glucose, as well as of HbA1c, were significantly 
related with vascular events and to an increased risk of mor-
tality [47]. Similar results were reported by The Veterans 
Affairs Diabetes Trial (VADT) [48] and by the Action to 
Control Cardiovascular Risk in Diabetes (ACCORD) trial 
[49], which both failed to demonstrate in the primary analy-
sis a clear beneficial effect of intensive vs standard anti-
hyperglycemic therapy on cardiovascular events, at least in 
patients with long duration of diabetes. The ACCORDION 
study evaluated the long-term effects of the ACCORD thera-
peutic strategy and demonstrated an increase in cardiovas-
cular mortality, a result already largely demonstrated in the 
ACCORD study, but did not show an increase in both mor-
tality and non-fatal cardiovascular events. The mechanisms 
leading to increased mortality are still to be elucidated; how-
ever, it appears that the absence of diabetic retinopathy is an 
important predictor of the beneficial effect of intensive glu-
cose control on the risk of cardiovascular disease and possi-
bly death [50]. However, a secondary analysis of the VADT 
trial including coefficient of variation (CV) and average 
real variability (ARV) for fasting glucose and HbA1c, both 
measured every three months for up to 84 months, showed 
that variability of fasting glucose was significantly associ-
ated with CVD events, and this relationship was particularly 
evident in patients receiving intensive glucose control [51].

In the end, while these secondary analysis from RCTs 
being not fully conclusive in disentangle the contribution 
of CV toward the risk of coronary heart diseases, there is 
some experimental evidence supporting the role of CV 



1296 Acta Diabetologica (2023) 60:1291–1299

1 3

in the pathogenesis of atherosclerosis. In accordance, 
the effect of GV on atherosclerotic plaque morphology has 
been experimentally investigated in patients with coronary 
artery disease using virtual histology intravascular ultra-
sound [52]. In this study, GV was expressed as the mean 
amplitude of glycemic excursions (MAGE index) and was 
significantly associated with the volume of necrotic core 
in the atherosclerotic plaque. Moreover, glucose fluctua-
tion and hypoglycemia turned out to be the only independ-
ent predictor of the formation of thin cap fibroatheroma, 
which characterizes the vulnerable plaque at higher risk of 
rupture [52], even in patients with coronary artery diseases 
taking intensive lipid-lowering therapy [53]. D’Onofrio 
et al. analyzed hyperglycemic thrombi in STEMI patients 
showing that they have a higher size and increased miR33, 
reactive oxygen species and pro-inflammatory markers and 
a lower endothelial SIRT1 expression. The miR33/SIRT1, 
thus, pathway is responsible for the increased pro-inflam-
matory and pro-coagulable state of coronary thrombi in 
hyperglycemic STEMI patients [54]. Paolisso et al. ana-
lyzed the link between stress hyperglycemia, infarct size 
and inflammatory burden in diabetic patients with acute 
myocardial infarction (AMI) treated with Sodium-glucose 
Cotransporter 2 Inhibitors (SGLT2-I), compared with 
other oral antidiabetic (OAD) agents. SGLT2-I would also 
appear to play a key cardioprotective role in acute coro-
nary syndromes (ACS), independent of glycemic control; 
in fact, patients treated with SGLT2-I showed significantly 
lower inflammatory burden and infarct size than those 
treated with OAD agents [55].

So, is tight glycemic control during ACS useful? Studies 
are scarce and sometimes controversial, particularly because 
of the risk of hypoglycemia due mainly to insulin therapy. 
SGLT2-I and Glucagon-Like Peptide-1 Receptor Agonists 
(GLP1-RA) would seem to be the solution to this problem, 
as they reduce the risk of hypoglycemia and have cardio-
protective pleiotropic effects not only in the cardiovascular 
prevention, but also in acute conditions, such as ACS [56].

To date, these two drug classes also appear to be the 
only ones to improve coronary microvascular dysfunction 
(CMD), a condition that results in a significantly worse prog-
nosis with a higher risk of MACES at 5 years [57]. Until a 
few years ago, CMD therapy consisted in controlling car-
diovascular risk factors, but the results of preclinical studies 
on the effects of SGLT2-I and GLP1-RA in this field are 
decidedly encouraging. However, further studies are needed 
to confirm their role on microcirculation and to identify the 
precise mechanisms [58, 59].

The anti-inflammatory effect of SGLT2-I would be impli-
cated in improving autonomic dysfunction in patients with 
vasovagal syncope (VVS). It could consequently result in a 
lower recurrence rate of VVS in SGLT2-I users than in non-
SGLT2-I users at 1-year follow-up [60]. It had already been 

hypothesized that cardiac autonomic dysfunction could lead to 
a higher recurrence rate of VVS in patients with T2DM com-
pared to non-diabetics; therefore, it is essential to understand 
the treatment to reduce the alterations of the autonomic func-
tion [61]. The negative effect of hyperglycemia on sympathetic 
tone not only worsens the prognosis in patients with syncope, 
but also in Takotsubo Syndrome (TTS). Hyperglycemia would 
cause a chronic alteration of cardiac metabolism with impaired 
norepinephrine reuptake and consequent more severe sympa-
thetic denervation [62].

Taking together, this experimental evidence may sup-
port the role of GV and hyperglycemia in the development 
of diabetic cardiovascular complications, and its relevance 
as further target of glycemic control in order to reduce the 
burden of atherosclerotic vascular disease and autonomic 
dysfunction in patients with T2DM.

Glucose variability and macrovascular 
complications: state of the art

In the last decade, techniques have been developed that allow 
CGM [63] mainly used by patient with T1DM and in 2014, 
the flash glucose monitoring (FGM) system was introduced 
[64].

Recently, it has been reported that high GV is associated 
with the development and progression of diabetic vascular 
complications. Several studies have shown that long-term 
GV, in particular HbA1c and fasting plasma glucose vari-
ability, was associated with increased risk of macrovascular 
events [65] such as myocardial infarction, stroke, periph-
eral artery disease and all-cause mortality. Short-term GV, 
especially CGM, was associated with carotid intima-media 
thickness [66], high arterial stiffness [67], all-cause mortal-
ity and CV mortality [68]. In addition, higher CGM and 
lower CGM time in range (TIR) were associated with higher 
carotid-femoral pulse wave velocity [67].

Some data suggest that diabetic management through 
CGM may also improve clinical outcomes and reduce the 
risk of complications. Accordingly, the American Diabetes 
Association and the Italian National Health Service (NHS) 
have recommended the use of CGM for the management of 
patients with T1DM and T2DM treated with multiple daily 
insulin injections [69].

Recently, a survey of diabetologists and cardiologists was 
conducted to obtain expert consensus on the use of CGM in 
diabetic patients at high risk of CV or with a history of CV 
events [70]. The experts agreed that CGM is a prognostic 
tool for T1DM and T2DM treated with multiple daily insulin 
injections. They strongly believe that TIR provides more 
information than HbA1c and that, this is a useful tool to 
optimize the treatment of people with heart disease.
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While the clinical benefits of CGM are established, stud-
ies about FGM are scarce, in fact to date there is no evidence 
of its possible role in reducing macrovascular complications.

Conclusion

In this review, we highlighted the role of glucose variabil-
ity in the pathogenesis of atherosclerotic disease, describ-
ing potential mechanisms and summarizing the results of 
the main supporting studies currently available. While GV 
being a physiological phenomenon in the context of glu-
cose homeostasis regulation, fluctuations of blood glucose 
can be extremely enhanced in patients with diabetes, thus 
contributing not only to the increased mean blood glucose 
values but also to the development of chronic vascular com-
plications. Although there is no definitive demonstration 
from RCTs, a growing body of evidence suggests that GV 
contributes to the development of CVD through different 
pathogenetic mechanisms. Several metrics are currently 
available to express GV but, to date, the gold standard has 
not been identified, universal definition is lacking and the 
role of CGM and FGM on macrovascular complications is 
also uncertain. This underscores the need for further studies 
in this field, in order to better define the practical use of GV 
as new efficacy goal for diabetic treatment, over and above 
standard parameters of glycemic control.
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