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Background
Ageing greatly increases the risk for many chronic dis-
eases that profoundly threaten the health of elderly 
individuals [1]. Most age-related diseases, such as ath-
erosclerosis, nonalcoholic steatohepatitis (NASH), 
osteoarthritis, Alzheimer’s disease (AD), cardiovascular 
disorders and several cancers [2–8], result from con-
tinuous low-level inflammation called “inflammaging” 
[9]. Normal levels of inflammation can help organisms 
defend against microbial invasion and repair tissues, 
and the inflammatory response is attenuated when it is 
no longer needed [10]. In aged organisms, inflamma-
tion appears to be difficult to control, and therefore, 
inflammatory responses persists at low levels. Multiple 
mechanisms have been reported to contribute to age-
related inflammation, including redox stress responses, 
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Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and 
“inflammaging”. Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising 
candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for 
some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell 
population reduction and differentiation ability, reduced migratory and homing capacity and, most important, 
defective immunosuppression. It is necessary to explore the relationship between the “inflammaging” and 
aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we 
discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for 
rejuvenating aged MSCs in future treatments.
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glycation, mitochondria dysfunction, and immune sys-
tem deregulation [11]. However, altered negative regula-
tion of inflammation deserves attention.

Ageing of stem cells (SCs) is involved in age-related 
diseases. MSCs are endowed with a potent immune 
suppression capacity in the inflammatory environment 
due to their ability to inhibit T, B, dendritic, and natural 
killer cell functions and to favour macrophage polariza-
tion no acquisition of an anti-inflammatory phenotype 
[12]. Gene expression profiling of bone marrow-derived 
MSCs isolated from the femoral heads of elderly and 
middle-aged donors revealed differentially expressed 
genes in pathways related to ageing, such as oxidative 
stress-induced DNA damage, telomere attrition, differen-
tiation and epigenetic regulatory pathways [13–17]. Here, 
we focus on alterations to aged MSCs that are associated 
with inflammaging.

Cell therapy based on MSCs [18–23] is a promising 
treatment for many diseases, especially immune-related 
diseases [24–26]. However, the effects of MSC therapy 
are not always satisfactory in some elderly patients, 
such as those who undergo autologous transplantation 
[27–30]. This observation indicates that ageing probably 
affects the therapeutic efficacy of MSCs. Quality control 
of aged MSCs and improves to the ageing microenviron-
ment of patients are probably both important strategies 
for realizing the highest therapeutic efficacy. Ageing has 
indeed been demonstrated to affect various functions of 
MSCs. Thus, development of strategies to increase the 
therapeutic effect of aged MSCs is an urgent need. Fur-
thermore, the undesirable role of senescent cells can 
be minimized, even in cases in which young MSCs are 
employed. In this review, we discuss changes to naturally 
ageing MSCs and how these alterations contribute to 

inflammaging. Furthermore, we provide perspective on 
ways to increase the therapeutic effects of aged MSCs.

Characteristics of aged MSCs
In studies of aged MSCs, senescence and ageing are often 
conflated, but these processes are very different. Gener-
ally, senescence is a cellular programme mainly activated 
by stress, including stress caused by DNA damage, onco-
gene activation, and replication-related telomere short-
ening [31] both in vivo and in vitro. Ageing is a natural 
condition of individuals caused by the passage of time 
[32]. Thus, aged MSCs are chronologically ageing cells 
that are retained in old organisms (in humans, older than 
60 years and, in transgenic mice, 18 months old or older) 
(Fig. 1).

Senescent phenotype and impaired contribution to the stem 
cell pool
To some extent, aged MSCs share some common fea-
tures with senescent cells [33]. Both present with an 
enlarged, flat morphology instead of a spindle shape. 
Similar to those in senescent cells, the activation of the 
p53 pathway and the expression of its target genes, p21 
and p16Ink4α, are commonly used as markers, in addition 
to the increased activation of β-galactosidase, to distin-
guish aged MSCs [34, 35]. During ageing, the number of 
MSCs in vivo decreases, and this outcome is probably 
due to a decline in proliferative and cell colony-forma-
tion ability [36, 37]. These are among the reasons why 
autologous MSC therapy in ageing patients is hampered 
[38], and stem cell exhaustion has been suggested to be 
a hallmark of ageing [39, 40]. In parallel to the inhibited-
proliferation phenotype, the expression of genes involved 
in apoptosis and cell cycle inhibition, including p53, p21, 

Fig. 1  Characteristics of aged MSCs
 With ageing, MSCs express many senescence markers, including an enlarged and flattened cell shape, upregulation of p53, p21, and p16 expression, 
increased activation of beta-galactosidase, and increased miR-335 expression in MVs. Ageing suppressed some basic functions of MSCs, including their 
proliferation, CFU formation, migration and homing. Aged MSCs also present a skewed trilineage differentiation pattern, with enhanced adipogenesis 
and reduced osteogenesis and chondrogenesis rates
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p16Ink4α and Bax, is upregulated in bone marrow MSCs 
isolated from 23- to 24-month-old mice [41]. Mesen-
chyme homeobox 2 (MEOX2), which functions as a 
negative regulator of proliferation, has been found to be 
upregulated in aged MSCs [42]. Extracellular microvesi-
cles have been proposed to be novel biomarkers of age-
ing MSCs [43]. For instance, the expression of miR-335 
in extracellular microvesicles has been found to correlate 
with the age of donors of human MSCs, and overexpres-
sion of miR-335 caused the acquisition of a senescence 
phenotype and reduced the differentiation potential of 
MSCs [44].

Skewed differentiation
Regarding the effect of ageing on the differentiation 
potential of MSCs, particular attention has been given 
to adipogenesis, osteogenesis and chondrogenesis. 
Decreased osteogenic and chondrogenic differentiation 
potential in aged MSCs has been reported in several 
studies [37, 45–47]. In addition, during MSC ageing, 
adipogenesis is favoured, while osteogenesis is simulta-
neously disfavoured, impairing bone formation capacity 
[48–50] and subsequent osteoporosis [48, 51, 52]. These 
findings are consistent with the effects of increased adi-
pose tissue accumulation in bone marrow during ageing. 
This shift in cell differentiation programmes is likely due 
to changes in gene expression. For instance, ageing trig-
gers changes in the transcription of the nuclear recep-
tor peroxisome proliferator-activated receptor gamma 
(PPARγ) and CCAAT/enhancer binding protein alpha 
[C/EBPα] and inhibits the expression of Runt-related 
transcription factor2 (RUNX2) [53, 54].

In contrast, a study by Khanh and colleagues reported 
that the brown/beige adipocyte differentiation capacity 
of adipose MSCs derived from young and aged donors 
was inversely correlated with age. Impaired expression of 
Sirt1 was shown to be critical for repressed beige adipo-
cyte differentiation [55]. These data, which seem contra-
dictory, suggested that the effect of ageing on adipocyte 
differentiation ability is probably dependent on the spe-
cific type of adipocyte involved. In addition, MSCs con-
stitute a population of adult stem cells with obvious 
heterogeneity, which means that analyses of MSCs from 
different subgroups and different donors might lead to 
different results.

In addition to the altered differentiation potential gov-
erned by gene expression changes during ageing, MSCs 
also show the potential to transdifferentiate into endo-
thelial-like cells in both in vivo and in vitro systems [56–
58]. Duscher et al. discovered age-related depletion of a 
pro-vascular subpopulation of MSCs via single-cell tran-
scription analysis, and these results indicated the reduced 
ability of aged MSCs to support vessel formation [59].

Decreased migration and homing properties
Migration and homing to injury and inflammatory sites 
are necessary for MSCs to facilitate tissue injury repair 
and immunosuppression. The release of signalling fac-
tors such as cytokines and chemokines results in MSC 
recruitment. Stromal derived factor-1 [SDF-1] is one 
of the most important MSC-recruiting chemokines 
secreted at an injury site, and this effect is mediated by 
SDF-1 binding to its receptor, C-X-C motif chemokine 
receptor 4 (CXCR4), which is expressed on the surface of 
MSCs. In addition, various other chemokine receptors, 
such as C-C chemokine receptor type 2 (CCR2), C-C 
chemokine receptor type 27 (CCR7), C-X-C motif che-
mokine receptor 5 (CXCR5), and C-X3-C Motif Chemo-
kine Receptor 1 (CX3CR1) [60–63], are involved in MSC 
migration. Proteinases such as matrix metalloprotein-
ases (MMPs) are also crucial for degrading components 
of the extracellular matrix and generating space to allow 
MSC migration [64–67]. Several studies have reported 
that aged MSCs display a lower ability to home to wound 
sites relative to the ability of young MSCs [36, 68]. More-
over, by measuring the migration rate in vitro, Geibler et 
al. showed that young MSCs showed significantly higher 
migratory potential than aged MSCs throughout several 
passages in culture [69]. Consistent with these observa-
tions, the expression of CXCR4 and C-X-C motif chemo-
kine receptor 7 (CXCR7) on the surface of aged MSCs 
has been found to be significantly reduced compared to 
that in young counterparts [70, 71]. Tumour necrosis 
factor receptor (TNFR), interferon-γ receptor (IFNGR) 
and CCR7 level reduction was also involved in the age-
dependent decrease in the migratory capacity and the 
activation of bone marrow MSCs [68]. Impaired migra-
tion of aged MSCs suggests an attenuated response of 
aged MSCs to injury signals.

Altered properties dominated by p53
p53 has attracted much attention in the context of MSC 
ageing because of its crucial role in cell cycle arrest and 
regulated expression of other age-related genes. In addi-
tion, it has been demonstrated that p53 knock-in mice 
showed obvious signs of organismal ageing [72–74].

Role of p53 in the osteogenesis of aged MSCs
As a transcription factor, p53 not only regulates the 
cell cycle [75–78] but is also involved in bone forma-
tion [79–81]. Upregulation of p53 pathway activity in 
the context of ageing may play a critical role in mediat-
ing the reduction in osteoblastogenesis by human MSCs, 
indicating that intrinsic alterations in human MSCs with 
ageing may contribute to skeletal ageing in humans [81]. 
Osteosclerosis has been detected in p53-knockout mice, 
and there is also evidence suggesting that p53 regu-
lates osteoblast differentiation through the action of the 
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transcription factors Runx2 and Osterix [82]. p53 induces 
the transcription of several miRNAs, including miR-29 
and miR-34a, to regulate stemness and differentiation 
[83, 84]. Another study identified an additional miRNA, 
miR-145a, targeted by p53. The authors found that the 
p53/miR-145a/Cbfb axis inhibited the osteogenic dif-
ferentiation of MSCs [80]. Overexpression of p53 inhib-
ited osteogenesis in young MSCs in culture and in those 
implanted into NOD/SCID mice by inhibiting the tran-
scription of the miR-17‐92 cluster, which is decreased in 
aged mice. More importantly, Smurf, a direct target gene 
of miR‐17, plays an important role in the p53/miR‐17 
cascade during osteogenesis [85].

Preventive role of p53 in the tumor cell transformation of 
aged MSCs
As a cancer suppressor gene [86, 87], p53 plays a key 
role in the prevention of the tumoral cell transforma-
tion of MSCs. Fibrosarcomas frequently develop in aged 
mice. Hanchen et al. used a genetically tagged bone mar-
row (BM) transplantation model to show that aged mice 
develop MSC-derived fibrosarcomas. They also showed 
that transplantation of aged MSCs recapitulated the 
development of naturally occurring fibrosarcomas in 
old mice, with gene expression changes or p53 muta-
tions similar to those identified in an in vivo model [88]. 
A study verified the effect of p53 on the tumoral trans-
formation of AT-MSCs by using p53-knockout mice. The 
authors showed that wild-type or p21−/−p53+/+ MSCs 
did not show any sign of tumor cell transformation of the 
MSCs. However, loss of p53 favoured the fibrosarcoma 
formation by MSCs after either subcutaneous or intra-
femoral injection in immunodeficient mice [89]. Inac-
tivation of Rb and p53 in BM-MSC-derived osteogenic 
progenitors has been proven to give rise to osteosar-
coma-like tumours [90].

Mechanistically, p53 mutations drive the tumoral trans-
formation of aged MSCs, which is probably dependent 
on the loss of p53 binding to the survivin gene promoter, 
leading to abnormally upregulated survivin expression, 
which ultimately results in unlimited cell proliferation 
[91]. The mutation of p53 in aged mice is the main rea-
son for the tumoral transformation of aged MSCs. Thus, 
upregulation of p53 in aged MSCs may be an underlying 
mechanism of inherent self-protection and homeostatic 
maintenance.

Involvement of Aged MSCs in inflammaging
Inflammaging has been described as the persistence of 
long-term and low-grade systemic chronic inflamma-
tion [92]. For two decades, inflammaging has been widely 
studied and has emerged as an important concept to 
enable dynamic reassessments of the immune responses 
in elderly people [93, 94]. Inflammaging is a strong risk 

factor for many chronic diseases in elderly individuals. 
Unbalanced inflammation can lead to severe organ dam-
age and disrupt homeostasis. Multiple mechanisms have 
been reported to contribute to inflammaging [11], includ-
ing redox stress, glycation, dysfunction of mitochondria, 
and deregulation of the immune system [95–97]. All of 
these mechanisms are related to accelerated inflamma-
tion. Increasing evidence indicates that aged MSCs can 
also contribute to inflammaging.

Activation of the innate immune system
The accumulation of damaged macromolecules and cel-
lular debris can trigger inflammaging because both con-
ditions activate innate immunity via damage-associated 
molecular patterns (DAMPs) [98, 99]. The inflammaging 
process involves macrophages that secrete high amounts 
of proinflammatory cytokines and chemokines [100]. 
These factors, in turn, activate inflammatory signalling 
pathways, including the NF-κB and STAT pathways [101, 
102].

The debris of aged MSCs are relevant sources of 
DAMPs. During ageing, MSCs are enlarged and hetero-
geneously shaped and granules and cell inclusions accu-
mulate in the cytoplasm, forming cellular debris [103]. 
Debris from MSCs can induce innate immune responses 
through the activation of innate immune cell receptors, 
including NOD-like receptor 4 (NLR4) and Toll-like 
receptor 4 (TLR4) [104–107]. Chemokines and cytokines 
secreted by cells in the activated innate immune system 
further promote inflammation cascade activation that 
may contribute to inflammaging (Fig. 2).

Secretion of inflammatory factors by MSCs with SASP 
Aged MSCs share similar phenotypical traits with senes-
cent cells, including the senescence-associated secreted 
phenotype (SASP), which characterizes high levels of 
secreted inflammatory bioactive factors, including cyto-
kines, chemokines and proteinases. The SASP plays an 
essential role in mediating MSC conversion from an anti-
inflammatory cell type to a proinflammatory cell type. 
A significant increase in the expression levels of several 
SASP molecules, such as monocyte chemoattractant pro-
tein-1 (MCP-1), interleukin 6 (IL6), interleukin 8 (IL8), 
interleukin 1β (IL1β) and interleukin 1α (IL1α), have 
been revealed in aged MSCs compared to young MSCs 
(Fig. 2). Protein analysis of conditioned medium obtained 
from cultures of young and aged MSCs showed a marked 
increase in the secretion of MCP-1, IL6, IL8, IL1α, C-X-C 
motif ligand 2 (CXCL2) and C-C motif ligand 4 (CCL4) 
in aged MSCs relative to young MSCs [108]. Other stud-
ies have also reported that aged MSCs release excessive 
secretome factors, including IL6, IL8, IFN-γ, MCP-1, C-C 
motif ligand 12 (CCL12), C-C motif ligand 11 (CCL11), 
WNT1-inducible-signalling pathway protein 1 (WISP-1) 
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and matrix metalloproteinases (e.g., MMP2) [109–111]. 
IL6 is considered the most important cytokine in inflam-
maging. Augmented IL6 expression in elderly people has 
been associated with reduced physical abilities, cognitive 
dysfunction, the onset of cancers, and disease progres-
sion of general degenerative disorders [111].

The SASP of aged MSCs is probably related to the per-
sistent increase in the activation of TLR signalling [112]. 
Enhanced adipogenesis with ageing might contribute to 
acquisition of the SASP [113, 114]. Exosomes, which are 
secreted cellular microvesicles, also play important roles 
in the inflammatory secretome of MSCs [115].

Aged MSCs facilitate monocyte recruitment and a 
proinflammatory macrophage polarization shift
Martini and colleagues reported that cardiac MSCs 
acquire the ability to express chemokines, such as CCL2, 
CCL8, CXCL12, and CX3CL1, which are ligands of the 
CCR2 receptor and play major roles in monocyte recruit-
ment. By using an inhibitor of CCR2, the authors proved 
that aged cMSCs promoted monocyte recruitment 
through the action of CCR2, thus contributing to inflam-
maging [116].

MSCs are able to promote the polarization of mac-
rophages from the M1 to the M2 phenotype to exert 

anti-inflammatory effects [117]. However, SASP factors 
have been demonstrated to polarize macrophages by 
shifting the M2 phenotype towards the M1 phenotype 
[118] (Fig. 2). Thus, aged MSCs affect macrophage polar-
ization in opposite ways [119]. Interestingly, although 
macrophages cocultured with young MSCs expressed 
M2 phenotype markers, such as arginase 1 (Arg1) and 
interleukin 10 (IL10), those cocultured with aged MSCs 
showed increased expression of M1 phenotype-related 
tumour necrosis factor-α (TNF-α). In addition, macro-
phages cocultured with aged MSCs exhibited increased 
migratory ability, which is a property typical of classically 
activated M1 macrophages [120]. As described above, 
aged MSCs can produce essential inducers of M1 macro-
phage differentiation, including IFN-γ and IL1, and acti-
vate the NF-κB signalling pathway [121].

Impaired inhibition effect of T cells
The immunosuppressive effects of MSCs are mainly 
directed towards T cells. However, aged MSCs display a 
diminished capacity to suppress T cell proliferation and 
activation [122, 123]. Allogeneic coculture systems show 
that young MSCs were able to effectively inhibit phytohe-
magglutinin (PHA)-induced PBMC proliferation, while 
aged MSCs exhibited a significantly reduced ability to 

Fig. 2  Involvement of aged MSCs in the development of inflammaging. 
 Ageing MSCs secrete a large amount of SASP factors, favouring the formation of an inflammatory microenvironment. Debris produced in aged MSCs 
can be considered a kind of DAMP and induces macrophage activation through receptors expressed on these cells; for example,, TLR4, NLR4 and RAGE. 
Aged MSCs promote monocyte recruitment by secreting ligands of CCR2 and induce the shift of macrophages from the M2 to the M1 phenotype. The 
immunosuppressive capacity of MSCs decreases with ageing and manifests by the reduced inhibitory effects of T cells mediated through IL-6, IL-8, CCL2, 
and miRNA carried by EVs and ROS production
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impair PHA-PBMC proliferation [109]. Another study 
reported that the suppressive ability of aged MSCs on 
both CD4+ and CD8+ T-cell proliferation was impaired 
compared with that of young MSCs. The diminished 
ability to suppress T cells is probably due to SASP fac-
tor secretion, since neutralization of IL6, IL8 and CCL2 
enhances the immunomodulatory function of elderly 
MSCs [123]. Priming MSCs with proinflammatory fac-
tors stimulates the production of extracellular vesicles 
(EVs), which exhibit potent anti-inflammatory effects 
and enhanced therapeutic potential [124, 125]. Altera-
tion of EVs and related miRNAs may explain the 
impaired immunomodulation properties of aged MSCs. 
EVs secreted by MSCs obtained from an aged donor 
showed reduced immunosuppression activity relative to 
MSC-EVs obtained from a younger donor [126]. These 
differences were ascribed to ectopic levels of MSC-EV 
miRNAs, including miR-223-5p, miR-125b-5p and miR-
127-3p. These data support previous findings highlight-
ing that age-related alterations in miRNA amounts in 
MSCs-EVs were associated with altered immunomodu-
latory properties of aged MSCs [127–129]. AT-MSCs 
obtained from elderly people were characterized by 
increased oxidative stress compared to MSCs obtained 
from younger people, and ROS decreased the ability of 
MSCs to suppress T cells [130].

A series of immunosuppressive molecules, such as 
indoleamine-2,3-dioxygenase (IDO) (in humans), induc-
ible nitric oxide synthase (iNOS) (in rodents), prostaglan-
din E2 (PGE2), transforming growth factor β (TGF-β), 
tumour necrosis factor-inducible gene 6 protein (TSG6), 
and IL10, have been demonstrated to exert immunosup-
pressive effects on MSCs [131]. In particular, IDO has 
been found to be downregulated in replication-associated 

senescent MSCs [132, 133]. However, there is an urgent 
need to expand this research to identify the mechanisms 
underlying the decreased immunosuppression of natu-
rally aged MSCs.

Potential strategies to rejuvenate aged MSCs
MSCs have been widely used for treating immune-related 
diseases, and their immunosuppressive capacity has been 
evaluated in clinical trials. More than 12% of clinical tri-
als of MSC-based treatments have been performed for 
immune-related diseases, such as graft-versus-host dis-
ease (GvHD), Crohn’s disease, psoriasis, urticaria, and 
arthritis (https://www.clinicaltrials.gov/). However, the 
therapeutic effects have been unsatisfactory, probably 
due to the quality of the MSCs. Ageing is an important 
factor affecting the therapeutic effects of MSCs, espe-
cially for use in autologous transplantation in elderly 
individuals. Thus, determining how to improve the thera-
peutic efficacy of aged MSCs is an urgent need for pro-
moting the clinical applications of MSCs (Fig. 3).

Identifying superior cells
Based on many studies, the heterogeneity of MSCs 
increases with ageing. Lise Lefèvre et al. identified 
a CD73+ kidney mesenchymal stromal cell (kMSC) 
population that was increased in the kidneys of ageing 
organisms. Aged CD73+ kMSCs displayed senescence-
associated hallmarks, including a low proliferation rate 
and DNA damage accumulation. In addition, these 
cells produced niche factors required to recruit mono-
cytes, ultimately promoting a positive regulatory loop 
in response to local inflammation [134]. Another study 
showed that CD271+CD146+ MSCs were predominant 
in children, while CD271+CD146− MSCs were most 

Fig. 3   Strategies to rejuvenate aged MSCs
 Aged MSCs suitable for treatment can be obtained by sorting surface markers. Senescent MSCs can be deleted with senolytics. Pretreatment can be 
performed with several reagents able to target the AMPK signalling pathway, ROS and autophagy factors to rejuvenate aged MSCs. Gene modification for 
inducing the upregulation or knocking down some target genes favours aged MSC rejuvenation
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common in adults [135], with the number of CD271+ 
cells declining with increasing donor age [136]. CD71+, 
CD146+ and CD274+ BM-MSCs are reported to be neg-
atively correlated with donor age [137]. Based on the 
heterogeneity of aged MSCs, depletion of a subgroup of 
aged MSCs or enrichment of a subgroup with young fea-
tures maintained in vitro before transplantation may be 
alternative cell to increase the therapeutic effect of aged 
MSCs.

Elimination of senescent cells
Eliminating senescent cells delays the onset of several 
pathologies and allegedly promotes a healthy lifestyle and 
increased lifespan [138, 139]. Many studies have identi-
fied agents that specifically eliminate senescent cells 
through the production of senolytic compounds [140]. 
Most of these products function mainly through apopto-
sis induction and immune system activation to eliminate 
senescent cells. Senolytics can be categorized into several 
classes according to their different targets; they include 
the B-cell lymphoma 2 (BCL-2) family, HSP90 and the 
p53 pathway compounds [141]. Some senolytic effects 
are produced via the combination of two drugs, such as 
dasatinib plus quercetin (D + Q), which have been proven 
to remove naturally occurring senescent cells from 
human adipose tissue [142]. D + Q has also been evalu-
ated for use in treating age-associated diseases in clinical 
trials (https://www.clinicaltrials.gov/), and D + Q alleg-
edly showed significant beneficial effects [143], indicat-
ing it exhibits some potential as a combination senolytic 
agent.

Pretreatment
Several studies have indicated that aged MSCs can be 
rejuvenated. MSCs derived from aged donors showed a 
lower level of fibroblast growth factor 21 (FGF21), and 
overexpression of FGF21 in aged MSCs inhibited senes-
cence via the AMP-activated protein kinase (AMPK) sig-
nalling pathway. Thus, targeting FGF21 might represent 
a novel strategy to increase the quality of aged MSCs 
[144]. The expression of miR-155-5p was much higher in 
MSCs obtained from aged donors than in MSCs obtained 
from young donors, and miR-155-5p downregulation 
decreases senescence of aged MSCs by activating AMPK 
signalling. Hence, an AMPK activator, AICAR, may 
be used to renew aged MSCs [145]. Other AMPK acti-
vators, such as melatonin [146], C1q/tumour necrosis 
factor-related protein 9 (CTRP9) [147], and macrophage 
migration inhibitory factor (MIF) [148], have also been 
reported to exert an antiaging effect on MSCs.

ROS production is the major contributor to MSC age-
ing and age-related diseases. Compounds with antioxi-
dant activity, such as lactoferrin [149], acetovanillone, 
N-acetyl cysteine (NAC), NAC and l-ascorbic acid 

2-phosphate, vitamin E, metformin, fullerol, fucoidan, 
carvedilol, nicorandil and 5-azacytidine, might be able 
to rejuvenate aged MSCs [150]. β-Carotene is another 
candidate for rejuvenation of aged MSCs. It has been 
reported that β-carotene can relieve ageing in MSCs, 
as evidenced by the reduced expression of p16 and p21. 
β-Carotene has also been shown to reduce ageing rates in 
tissues and organs in vivo and appeared to inhibit ageing 
caused by antioxidative stress by regulating KAT7-P15 
signalling [151].

Hypoxia has been demonstrated to suppress the senes-
cence of aged MSCs in several reports. Hypoxic precon-
ditioning enhanced the in vivo angiogenic capacities of 
human AT-MSCs obtained from older donors. Hypoxia 
also repressed the expression of ageing-associated gene 
p16Ink4α and ageing inducer aminoacyl-tRNA synthe-
tase‐interacting multifunctional protein 3 (AIMP3) [152]. 
Hypoxia probably reverses the ageing of MSCs partially 
by activating autophagy [153]. Rapamycin, an autophagy 
activator that inhibits the mammalian target of rapamy-
cin (mTOR) pathway, has also been reported to exert 
an antiaging effect on MSCs and to enhance the immu-
nomodulatory potency of MSCs [154]. Interestingly, 
another study reported that young MSC-derived apop-
totic vesicles were able to restore nuclear alterations, as 
well as the self-renewal and osteogenic and adipogenic 
lineage differentiation capacity of aged bone marrow 
MSCs via autophagy activation [155].

Gene modifications
In addition to pretreatment, gene modification is a widely 
used method to modify MSCs. There have only been a 
few studies using gene modification as a strategy to reju-
venate MSCs and recover their function. In a study of 
MSC reprogramming, which was similar to an approach 
used for cell rejuvenation, the expression of GATA-bind-
ing protein 6 (GATA6) was found to be attenuated, and 
that of Forkhead box P1 (FOXP1) was upregulated. Thus, 
knocking down GATA6 and inducing FOXP1 overex-
pression showed the potential to ameliorate the expres-
sion of cellular hallmarks of ageing [156]. Liu et al. found 
that leucine-rich repeat-containing 17 (LRRc17) expres-
sion in BM-MSCs was highly positively correlated with 
age. LRRc17 knockdown rejuvenated aged MSCs and 
increased their therapeutic efficacy in the context of 
osteoporosis [157]. In another study on MSC treatment 
in OP, it was reported that reactivating optineurin or 
inhibiting FABP3 activity rescued osteoporotic pheno-
types [49]. AIMP3-induced senescence was negatively 
regulated by hypoxia‐inducible factor 1α (HIF1α) and 
positively regulated by Notch3, which means that HIF1α 
overexpression and Notch3 knockdown inhibited the 
senescence of MSCs [152].

https://www.clinicaltrials.gov/


Page 8 of 12Yang et al. Biology Direct           (2023) 18:40 

Conclusions
MSCs undergo numerous changes with natural ageing, 
including acquisition of a senescence phenotype and 
reductions in differentiation, migratory and homing abil-
ity, and they contribute to inflammaging in the ageing 
body. All these alterations are probably due to changes 
at the molecular level, including gene expression changes 
and epigenetic modifications [33]. These changes sup-
port the view that stem cell ageing results in body age-
ing and age-related diseases. Therefore, aged MSCs can 
be considered targets for therapy developed to prevent 
or attenuated inflammaging. A considerable number of 
senolytics have been identified for targeting and eliminat-
ing senescent cells in vivo.

The changes in MSC property with ageing not only 
favour inflammaging but also affect their therapeutic 
potential. Indeed, impaired osteogenic differentiation, 
migration or immune regulation reduces the therapeu-
tic effect of MSCs in tissue injury repair and inflamma-
tion-related disease treatment. The undesirable effects 
of senescence in aged MSCs can be minimized in sev-
eral ways, as previously discussed. The same approaches 
might also be employed to increase therapeutic effects, 
even on young MSCs. Notably, a study on human gingival 
tissue MSCs (GMSCs) reported that irrespective of donor 
age, GMSCs displayed effective neurogenesis, immuno-
regulation and regenerative potential [158–161]. These 
findings suggest a possible option for treating elderly 
patients who need autologous transplantation of MSCs. 
However, MSC therapy was less effective in an elderly 
cohort than in a young cohort, indicating that old plasma 
might carry factors that inhibit the function of MSCs 
[162]. Murphy and coauthors proposed that growth dif-
ferentiation factor 11 (GDF11), mTOR, CCL11, and the 
insulin/insulin-like growth 1 (IGF1) signalling pathways 
may be relevant to stem cell function [163, 164]. There-
fore, in addition to MSC quality, the microenvironment 
of patients also needs to be considered or improved for 
successful MSC therapy.

Based on the mechanisms underlying MSC func-
tion that are affected by ageing, the development of 
develop novel strategies to ameliorate inflammaging 
and to increase the therapeutic efficacy of aged MSCs is 
promising.
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