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Abstract: Focal adhesion plaques (FAPs) play an important role in the communication between cells
and the extracellular matrix (ECM) and in cells’ migration. FAPs are macromolecular complexes
made by different proteins which also interact with matrix metalloproteinases (MMPs). Because
of these fundamental properties, FAPs and MMPs are also involved in cancer cells’ invasion and
in the metastatic cascade. The most important proteins involved in FAP formation and activity
are (i) integrins, (ii) a complex of intracellular proteins and (iii) cytoskeleton proteins. The latter,
together with MMPs, are involved in the formation of filopodia and invadopodia needed for cell
movement and ECM degradation. Due to their key role in cancer cell migration and invasion, MMPs
and components of FAPs are often upregulated in cancer and are thus potential targets for cancer
therapy. Polyphenols, a large group of organic compounds found in plant-based food and beverages,
are reported to have many beneficial healthy effects, including anticancer and anti-inflammatory
effects. In this review, we discuss the growing evidence which demonstrates that polyphenols can
interact with the different components of FAPs and MMPs, inhibit various pathways like PI3K/Akt,
lower focal adhesion kinase (FAK) phosphorylation and decrease cancer cells’ invasiveness, leading
to an overall antitumoral effect. Finally, here we highlight that polyphenols could hold potential as
adjunctive therapies to conventional cancer treatments due to their ability to target key mechanisms
involved in cancer progression.

Keywords: focal adhesion plaques; polyphenols; integrins; FAK; cytoskeleton; matrix metalloproteinases;
extracellular matrix; epithelial–mesenchymal transition; metastasis; cancer

1. Introduction

The focal adhesion plaques (FAPs) are integrin-containing protein complexes consist-
ing of different classes of molecules that connect the cytoskeleton with the extracellular
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matrix (ECM). This whole system is extremely dynamic, and the continuous turnover and
changes in conformation of its components, due to transient modifications such as protein
phosphorylation and dephosphorylation, affect the behavior of the cells themselves [1].
Focal adhesions are the most studied integrin adhesion complexes (IACs), together with
invadosomes. FAPs contain repeats of focal adhesion units arranged in parallel [2], whereas
the invadosome is a cellular structure with an actin-rich core that can act like a “foot”,
allowing cells to move [3]. Invadosomes include invadopodia and podosomes, which are
essentially the same structure but are differentially termed according to their involvement
in physiological (podosomes) or pathological (invadopodia) processes. In a tumor context,
the invadosome plays a key role in the metastatic cascade [4].

FAPs mediate cell adhesion by connecting the cytoskeleton to the ECM, and together
with matrix metalloproteinases (MMPs) also play an essential role in the migration of cells
in both physiological and pathological processes. Accordingly, FAPs and MMPs have a role
in cancer cell migration and invasion and are crucial for epithelial–mesenchymal transition
(EMT) [5].

Many proteins are involved in FAPs, with a precise arrangement from the outside
to the inside of the cells. ECM proteins and glycosaminoglycans (fibronectin, vimentin,
elastin, collagen, hyaluronic acid) bind to integrins, which recruit intracellular anchoring
proteins, such as talin and paxillin; these, in turn, bind other cytoplasmic proteins, such
as focal adhesion kinases (FAK), whose phosphorylation state can modify cytoskeletal
organization, with the participation of other molecules [6].

Due to their key role in cancer cell migration and invasion, MMPs and components of
FAPs are often upregulated in cancer and are thus potential targets for cancer therapy.

Indeed, the inhibition of signaling pathways associated with focal adhesion dynamics
or the disruption of the interactions between cancer cells and the ECM at focal adhesion
sites are strategies under investigation for preventing or limiting metastasis. In this regard,
several studies have assessed the effects of polyphenols on FAPs and MMPs. Polyphenols
are natural compounds present in many dietary plants, with antioxidant, anti-inflammatory
and anticancer properties [7,8].

In this review, we firstly describe the proteins involved in FAP structure and function,
in particular integrins, signal transduction effectors and cytoskeleton proteins; next, we
discuss the evidence obtained in in vitro and in vivo studies on the effects of polyphenols
on FAP components and MMPs. Besides, a variety of studies show potential synergistic
effects when polyphenol treatments are combined with chemotherapeutic drugs [9]. The
ultimate aim is therefore to provide a better view and understanding of the potential
possibilities offered by the future use of polyphenols as anti-cancer agents.

2. Focal Adhesion Plaques (FAPs): Structure and Functions
2.1. Integrins: Key Proteins in FAPs Formation

Integrins are a family of proteins which pair to form 24 types of heterodimers [10,11]. They
all have a large extracellular portion of approximately 1600 amino acids and two smaller
intracellular terminal tails of approximately 20–50 amino acids [10]. The heterodimers
share a general structure consisting of two different chains, an α and a β chain. Eighteen
α chains isoforms and 8 β chain isoforms have been identified, and through the different
combinations, the 24 different heterodimers are created [11]. The different types of integrins
can communicate with each other, as explained by Gonzales et al., who observed how the
inhibition of one integrin can modify the binding affinity between a different integrin and
its ligand, a phenomenon defined as “transdominant inhibition of integrin function”, in
which talin appears to play a key role. The failure of this crosstalk seems to be implicated
in some pathologies [12].

Integrins have a role in connecting and transmitting signals between the extracellular
environment and the cytoskeleton. Moreover, in addition to providing an intracellular
signal when they bind an extracellular ligand, integrins can also be regulated by signals
generated inside the cell. Indeed, they can be activated through two different forms
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of signaling: inside-out and outside-in mechanisms. Inside-out signaling occurs when
intracellular proteins, like talin and kindlin, bind to an inactive integrin cytoplasmic domain,
leading to a conformational change of the extracellular domain, which results in integrin
activation. The inside-out signaling is activated by a chemokine binding to its receptor and
allows the recruitment of different proteins (vinculin, paxillin, FAK) to the intracellular
portion of the integrin, triggering various signaling cascades involved in adhesion to the
cytoskeleton, cell survival and migration processes. Moreover, the strong binding between
active integrins and their ECM ligands initiates outside-in signaling by activating FAK and
inducing Src-mediated phosphorylation of proteins within IACs and multiple downstream
signaling pathways [13,14].

The association of focal adhesions with intracellular proteins, such as FAK/Src, has
also been related with physiological and pathological processes, including tumor cell
survival, progression and invasiveness [15]. Recent studies have also demonstrated how
IACs, and proteins associated with them, are involved in the regulation of cell cycle and
division [16].

In the tumor context, one mechanism by which integrins promote invasiveness is the
activation of several genes involved in the EMT, which is marked by a switch between the
expression of the epithelial cadherin (Epithelial cadherin, E-cadherin) and the mesenchymal
isoform (Neural cadherin, N-cadherin) and by the expression of particular integrins such
as the αV integrin [17]. Indeed, integrins and cadherins are inherently connected through
the actin cytoskeleton and share signaling molecules. While the integrin–actin axis has
been recognized for its ability to sense mechanical pressures, several studies showed
that cadherins are also capable of mediating signal transduction and cells’ response. In
fact, there is growing evidence that the actin cytoskeleton, intracellular forces, signaling
intermediates of integrins and cadherins and their spatial distribution, are all regulated
by mechanically driven crosstalk [18]. In addition to mesenchymal cadherins, different
integrin complexes are known to increase their expression during EMT. These include α5β1,
which binds to fibronectin, and α1β1 along with α2β1, that are connected with collagen I
and have been demonstrated to cause the disruption of E-cadherin complexes [19].

During the EMT, cancer cells use developmental processes to acquire migratory and
invasive properties that enable them to start the metastatic cascade and colonize different
sites of the body. These events include a significant rearrangement of the actin cytoskeleton
and the concurrent formation of membrane protrusions, such as lamellipodia, filopodia,
invadopodia and podosomes, necessary for invasive growth [20].

2.2. Intracellular Proteins Involved in Signal Transduction and Their Scaffolding Role

Intracellular proteins involved in the formation, regulation and activity of FAPs are
talin, kindlin, vinculin, paxillin and FAK. Talin binds with its Four-point-one, Ezrin, Radixin,
Moesin (FERM) subdomain to the intracellular portion of the activated integrins (β3). This
allows the recruitment of kindlin, and direct contact of the integrin with vinculin, which
then binds the cytoskeleton (actin). FAK also binds talin, leading to FAK autophospho-
rylation and paxillin phosphorylation. Activated paxillin can thus bind to vinculin, thus
stabilizing FAP structure and activating a signaling cascade for the transcription of genes
involved in cells’ migration and survival [21].

Talin is a key element of FAPs because it is an important regulator of integrin ac-
tivity [22–24]. Priddle et al. demonstrated the importance of talin in the formation of
adhesion plaques by observing how in cells negative for the talin gene (−/−), FAP forma-
tion was completely impaired [25]. Talin also appears to be necessary for the recruitment
of paxillin to the plaques, while it does not appear to be crucial for the adhesion-induced
phosphorylation activation of FAK and Src, as demonstrated by Giannone et al. [26]. The
recruitment of talin near the plaque is important in its initial formation, when the bond
between integrins and the cytoskeleton is still weak, and when the cell undergoes mechani-
cal stimuli that require the formation of even stronger bonds [26]. A recent study carried
out by Di Paolo et al. demonstrated how talin exerts its action in the formation of FAPs
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through binding to phosphatidylinositol phosphate kinase type Iγ (PIPKIγ), leading to an
increase in phosphatidylinositol(4,5)-bisphosphate (PIP2) close to the plaques and acting as
feedback in the synthesis of other adhesion proteins such as vinculin and talin itself [27]. A
specific isoform of PIPKIγ, PIPKIγ661, binds talin at the same site where talin binds the
β tail of integrins; Src is able to phosphorylate PIPKIγ661 at residue Y644, increasing its
affinity for talin, thus competing with integrins and regulating plaque formation [24].

Kindlins are a family of proteins involved in integrin activation. There are three main
members of this family, kindlin-1 (expressed in epithelial tissues), kindlin-2 (expressed in
many tissues) and kindlin-3 (expressed in hematopoietic cells). In the absence of kindlin,
integrins are unable to switch from the low-affinity to the high-affinity state for their
ligand [28]. Unlike talin, kindlins bind the distal NxxY motif on the β1, β2 and β3 tails of
integrins. However, talin and kindlin are both necessary to correctly cluster integrins [29].

Vinculin is an essential component of the FAP, having the purpose of connecting the
structures of the plaque itself with the proteins of the cytoskeleton [30]. It is composed
of 1066 amino acids and has five distinct domains able to form bonds with other proteins
such as paxillin, talin, actin and other vinculin molecules [31]. Vinculin, under normal
conditions, is found in a closed conformation. When talin binds to integrins in response to
stimuli, vinculin binds to talin, thus opening its structure and releasing the binding site for
F-actin [32]. When the head of vinculin binds integrins, its tail forms bonds with the actin
cytoskeleton, thus generating tensile forces that allow cells’ movement [32]. These forces
are exerted by myosin bound to actin, which, being bound to vinculin, transmits them to
the adhesion plaque, therefore generating movement [33]. It has been demonstrated that
vinculin is necessary in maintaining adhesion to the substrate, as cells that overexpress
vinculin have larger focal adhesions, while cells that express a smaller quantity of vinculin
have a lower amount of focal adhesions [34]. Several studies suggest that vinculin con-
tributes to maintaining the stability of adhesions thanks to the support of other proteins
such as talin and paxillin [35,36]. Given the essential role of vinculin in the formation of
FAPs, it is obvious that it is also involved in their destruction, a fundamental step in the
process of cell migration. Some studies show how PIP2 and calpain may be involved in the
inactivation of vinculin, thus leading to the disruption of focal adhesions. Specifically, PIP2
appears to be able to decrease the binding between vinculin and actin, as supported by
the fact that cells in which PIP2 is overexpressed have fewer focal adhesions [37]. Calpain,
a Ca2+-dependent protease, is instead capable of cleaving talin, breaking the bond with
vinculin and disassembling the adhesions. In support of this theory, cells mutated in the
calpain gene show an inhibition of adhesion plaques turnover [38].

One of the most important proteins of the FAP is FAK, a tyrosine kinase, which
can bind to these structures thanks to a C-terminal region called FAT (Focal Adhesion
Targeting). This binding domain is essential for FAK signaling activity, as demonstrated
by Shen et al. [39]. The main action of FAK is to activate a series of signals and pathways
involved in cell survival, tumorigenesis, invasiveness and cell mobility [40–43]. After the
binding of integrins with their ligands, the activation of FAK occurs when its Y397 tyrosine
residue is phosphorylated [42]. This modification leads to the recruitment of further kinases,
such as Src, which in turn phosphorylates FAK in different tyrosine residues, such as Y576
and Y577, increasing its kinase activity [43]. However, Src is able to phosphorylate FAK also
in different tyrosine residues, such as Y925, which is localized in the FAT region, leading
to the detachment of FAK from the adhesion plaque [43]. All this evidence gives the idea
of how the turnover of adhesion plaques is a fluid phenomenon and also how FAK is
an extremely crucial protein in its regulation, as further demonstrated by Ilic et al., who
observed that in FAK-deficient mice (−/−), there was an increase in FAP formation and a
decrease in cell migration [44].

Lastly, paxillin plays a very important role as a scaffold protein in focal adhesions. It
has several binding domains including a proline-rich motif able to bind the SH3 domain of
Src and five LD motifs able to bind several proteins including FAK [45] and can also directly
bind the cytoplasmic β1 and α4 tails of integrins [46]. The tyrosine residues that cause
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paxillin activation are Y31 and Y118, which can bind various proteins such as Crk [47].
This binding is essential to allow paxillin localization in the adhesion plaque and carry
out its effect in cell migration [48], which can be positive or negative depending on the
cell type and the type of binding with Crk [49–51]. Binding to the α4 subunits of integrins
leads to an inhibition of α4β1-dependent cell migration [51]. Paxillin can also activate
small GTPases, such as Rac, through the formation of a protein complex with β-PIX and
GIT2/PKL, triggering a signaling cascade that leads to an increase in cell migration [48],
again confirming the complexity of FAP structure.

3. Matrix Metalloproteinases and Their Role in the Invasion Process

MMPs are a family of Zn-dependent metalloenzymes with the characteristic ability
to degrade ECM proteins [52]. They are divided into three subfamilies depending on the
substrate they recognize: interstitial collagenases, stromelysins and gelatinases [52]. The
overall activity of MMPs is regulated at all levels, from transcription to post-translational
modifications [52].

In most cases, the transcription of the genes coding for MMPs is regulated by hormones
and growth factors such as transforming growth factor-alpha (TGF-α), platelet-derived
growth factor (PDGF), epidermal growth factor (EGF), interleukin-1β (IL-1β), nerve growth
factor (NGF), tumor necrosis factor-α (TNF-α), with IL-1α appearing to be the activator
required for the synthesis of interstitial collagenases [53]. MMPs’ expression is also stim-
ulated by certain conditions such as calcium influx [54], UV light exposure [55], and cell
shape changes [56]. MMPs’ activation process has now been elucidated and consists of
the so-called “cysteine switch”: a cysteine residue within the site where the Zn atom is
located forms a bond with it and maintains the enzyme in latent form [57]; when this
bond is interrupted for physical and/or chemical reasons, a conformational change occurs
followed by a proteolytic cleavage which activates the enzyme. One of the ways in which
cysteine–Zn binding is disrupted appears to involve the plasmin activation cascade [58].
Logically, there is a way to regulate the action of MMPs so as to maintain their physiological
role and prevent their pathological action, and this regulation is carried out by the family
of tissue inhibitors of MMPs (TIMPs). Three different isoforms of TIMP, TIMP-1, TIMP-2
and TIMP-3 have been isolated [59]. TIMP-1 is a glycoprotein capable of forming a 1:1
bond with collagenases even in their latent form, inhibiting their activation and catalytic
activity [60]. TIMP-2 is a non-glycosylated protein and is highly specific for gelatinase A,
forming a 1:1 bond with it even in the latent form and inhibiting its proteolytic activity and
activation [61]. Finally, TIMP-3, unlike the others that are secreted by the cell and remain
soluble in the ECM, is already localized in the ECM and tends to form stable bonds with its
components [62].

The majority of malignant tumors show an overexpression of these endopeptidases,
which allow them to have a greater ability to infiltrate surrounding tissues and form
metastases. The MMPs mainly involved in tumor invasion and present in invadopodia
are certainly MMP-9 and MMP-2. These two MMPs have the specific ability to degrade
type IV collagen present in the basement membrane, allowing tumor cells to invade. This
degradation also exposes new portions of type IV collagen which can be recognized by
the integrins expressed on the surface of the tumor cells, causing their activation and the
ensuing cell survival and migration processes [63].

4. Polyphenols

Polyphenols are a large group of natural compounds derived from plants and con-
sequently found in beverages and food such as fruits, vegetables, spices, cereals, nuts,
legumes, olives, tea, coffee and wine [64]. Polyphenols can be classified into flavonoids and
non-flavonoids based on their chemical structures (Figure 1) [65].
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A plethora of studies indicate that natural polyphenols may be used in both cancer
prevention and treatment, thanks to their antioxidant and anti-inflammatory activities, as
well as to the modulation of multiple molecular events involved in carcinogenesis [66].
Due to their ability to simultaneously interact with several pathways implicated in car-
cinogenesis, polyphenols can prevent the proliferation of cancer cells [67]. Both in vitro
and in vivo, polyphenols have the ability to modulate several signal transduction path-
ways involved in the genesis of different cancers. For instance, these compounds have
shown strong effects on transcription factors such as nuclear factor erythroid 2 (Nrf2),
β−catenin, peroxisome proliferator activator receptor-gamma (PPAR-γ), signal transducer
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and activator of transcription 3 (STAT3), nuclear factor-κB (NF-κB) and activator protein-1
(AP-1). Polyphenols have also been shown to target growth factor receptors [epidermal
growth factor receptor (EGFR), ErbB2, vascular endothelial growth factor (VEGFR) and
Insulin-like growth factor 1 receptor (IGF1-R)], protein kinases [(RAS/RAF, mammalian
target of rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K), BCR-ABL and AMP-
activated protein kinase (AMPK)] and pro-inflammatory mediators [interleukins (ILs),
tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and 5-lipoxygenase (5-LOX)].
Furthermore, polyphenols have both pro- and anti-oxidant characteristics [68]. For in-
stance, neoplastic transformation is significantly influenced by the interaction of signaling
pathways regulated by ErbB receptors, NF-κB and the Hedgehog (Hh)/glioma-associated
(GLI) oncogene cascade (Hh/GLI). Indeed, the Hh signaling cascade ends through the
actions of GLI zinc finger transcription factors, which regulate gene expression, and it has
been observed that the EGFR and the Hh/GLI pathways work together to synergically
cause oncogenic transformation, which largely depends on EGFR-mediated activation of
the RAS/RAF/MEK/ERK pathway [69,70]. In addition, it has also been observed that
inhibitory-κB kinase α (IKKα) increases the invasive potential of ErbB2-positive breast
cancer cells, which in turn causes ErbB2 to activate NF-κB via the canonical pathway [71].
Moreover, cell transformation can result from deregulation of MAPK; indeed, 40% of malig-
nant tumors have mutations in the RAS–RAF–MEK–ERK pathway, mostly in RAS. Due to
their ability to modulate multiple signaling pathways, including PI3K/Akt and MAPK, as
well as key proteins involved in the development of cancer, such as p53 and RAS, polyphe-
nols are ideal candidates with potential therapeutic effects for the prevention or treatment
of various types of cancer. For example, by downregulating phospho-ERK in pancreatic
cancer cells, resveratrol inhibits the MAPK signaling pathway and nicotine’s potential to
stimulate cell growth; meanwhile, kaempferol is able to inhibit the activity of MMP-9, by
deactivating the MAPK/AP-1 pathway in breast cancer cells [72]. It has also been reported
how polyphenols can interact with neural receptors and signaling pathways, for exam-
ple the PI3K/Akt and ERK1/2 pathways, thereby influencing cellular responses [73–76].
Specifically, by modulating different cellular functions, polyphenols play an important
role in neuroprotection being antioxidant, anti-inflammatory and anti-apoptotic. These
functions are carried out by activating pathways such as the PI3K/Akt, Akt-ERK1/2 and
MAPK [77]. Moreover, polyphenols have also been found to interact with neural substrates
involved in the modulation of cytoskeletal dynamics [73–76].

Polyphenols also have the ability to influence several processes involved in carcino-
genesis, including cell cycle, apoptosis, angiogenesis and autophagy. For example, in
normal cells, autophagy has an anticarcinogenic effect and prevents cells from malignant
transformation. Conversely, anomalies in autophagy are linked to drug resistance, invasion
and metastasis [78]. Emerging evidence suggests that polyphenols promote protective
autophagy, but they can also cause autophagic cell death in cancer cells. In this regard,
several studies have shown how polyphenols are able to induce cytoprotective autophagy
by promoting the autophagosome formation via the conversion of LC3-I to LC3-II, de-
creasing PI3K/Akt/mTOR and Akt/STAT3 pathways and increasing proteins such as
Beclin 1, ATG5, ATG7, ERK, AMPK and ULK1 [65]. During carcinogenesis, loss of function
mutations in tumor suppressor genes, such as p53, can prevent apoptosis, promote cell
survival and the development of cancer. In this context, several effects have been ascribed
to polyphenols, including the upregulation of the pro-apoptotic cleaved caspases-3, -8,
and -9 and PARP and the downregulation of the anti-apoptotic Bcl-2 and Bcl-xL, leading
to the loss of mitochondrial membrane potential and the release of cytochrome c, which
all contribute to the decrease in cell proliferation, cell cycle arrest and induction of cell
death [79]. Reactive oxygen species (ROS) have multiple impacts on the development
and incidence of cancer, which is why antioxidants have drawn attention as potential
therapeutics. Flavonoids are naturally occurring polyphenols that have been shown to
have anticancer and antioxidant properties. Free radicals (R-O•) are reduced by flavonoids
by receiving an electron and a hydrogen atom from them. Moreover, flavonoids prevent
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nuclear NF-κB response element (NF-κB RE) from binding to NF-κB and operate as ligands
to activate PPARγ, which in turn suppresses the NF-κB RE. The expression of COX-2 is
attributed to this response element. Consequently, reduced oxidative stress is the outcome
of flavonoids’ dual inhibition of COX-2 transcription. Lastly, flavonoids prevent Keap1
from binding itself to Nrf2, and this promotes the production of phase II detoxifying
enzymes by enabling Nrf2 nuclear translocation and activation of electrophile response
element (EpRE) [80]. Because of all these considerations, polyphenols are potential drugs
for cancer therapies, even though further investigations are required to fully understand
the mechanisms underlying polyphenol-induced regulation of cancer.

4.1. Flavonoids: Classification and Description

Flavonoids originate from phenylalanine and are well present in the daily food in-
take [81]. The chemical structure includes 15 carbon atoms with two aromatic rings (A,
B) linked by a three-carbon bridge, composing a heterocyclic ring (ring C), hence C6–
C3–C6 [82,83]. Flavonoids are classified into subclasses, according to the different func-
tional groups, ring C’ level of oxidation and possible combinations of rings B and C [84].
The main subclasses are flavonols, flavones, flavan-3-ols, anthocyanins, flavanones and
isoflavones [65,83]. The primary flavonoid core can have numerous substituents. Hydroxyl
groups can be found at positions 40-, 5- and 7-. Those are very common as most flavonoids
exist as glycosides and have increased water solubility; instead, other groups generate
lipophilic flavonoids, like methyl groups and isopentyl units [83].

Flavonols are formed by an unsaturated C ring at C2-C3, hydroxylated at C3 and
oxidized at C4 (Figure 1A) [85]. The main flavonols are quercetin, kaempferol, myricetin,
rutin and fisetin [65]. They can mainly be found in tea, red wine, fruits and vegetables and
are identified as the most common and largest flavonoid subgroup. Resembling flavones,
flavonols differ in methylation and hydroxylation forms, specifically hydroxyl groups play
a major role in biological activities, especially in antioxidant activity [85].

Flavan-3-ols originate in flavans, which have a 2-phenyl-3,4-dihydro-2H-chromen-3-ol
skeleton (Figure 1B) [86]. They can display a variety of structures and consist of a series of
compounds, such as catechin, epicatechin, epigallocatechin, gallocatechin and proantho-
cyanidins [65]. Flavan-3-ols contribute to plant defense and are found in most plants [87].
These compounds also show several health beneficial properties like antioxidant, cardio-
preventive, anticarcinogen, antiviral, antimicrobial and neuroprotective properties [86].

Flavones have a double bond between C2 and C3 in the flavonoid skeleton and are
oxidized at C4 (Figure 1C) [88]. The synthesis of flavones in parsley cells can be upregulated
by UV light, leading to a production of apigenin and luteolin in concentrations >20 times
higher in celery leaves than in stalks [89]. Flavones also have important antioxidant
properties thanks to their ability to scavenge ROS [90]. Indeed, luteolin was found to be
one of the most potent inhibitors of xanthine oxidase, a key enzyme in ROS production.
Flavones also have anti-inflammatory and anticancer functions [91].

A class of water-soluble flavonoids found in abundance in fruits and vegetables are
called anthocyanins. Berries (both red and purple), grapes, apples, plums, cabbage and
foods with high natural colorant content are dietary sources of anthocyanins. The six
common anthocyanins are pelargonidin, peonidin, petunidin, delphinidin and cyanidin
(Figure 1D). These substances are vacuolar pigments that dissolve in water, primarily
found in fruits and flowers but also found in vegetative organs [92–94]. The production
of anthocyanins is stimulated by unfavorable circumstances including biotic and abiotic
stressors [95]. Numerous in vitro studies have assessed the biological and pharmacological
potential of these molecules and shown that they have the ability to function as antimicro-
bial agents, counteract oxidative stress and prevent the onset and progression of a variety
of non-communicable diseases, including cancer, heart disease, neurological and metabolic
disorders [95]. Together with other polyphenols and flavonoids, anthocyanins have the
capacity to function as free radical scavengers against hazardous oxidants such as reactive
nitrogen species (RNS) [96–98].
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Flavanones are natural compounds that have a variety of aromatic components and
substantial activity (Figure 1E). Flavanones show great promise in the treatment of cardio-
vascular disorders, cancer and many other conditions. The chemical alteration of flavanones
determines their bioavailability and bioactivity. There are two categories of flavanones:
naturally occurring and artificially produced. A broad spectrum of compounds with A-
or B-ring substitutions, such as hydroxy, methoxy, methylenedioxy, O- and C-glycosyl,
C-methyl, C-benzyl, C-hydroxymethyl, C-formyl and C-isoprenyl substituents (including
furano or dihydrofurano rings), conjugations to stilbene, anastatin, phenolic acid and
diarylheptanoid moieties, are included in the flavanone class. Flavanones are found in
nature in both aglycone and glycosidic forms in every section of numerous higher plant
families, including the Rutaceae, Compositae and Leguminosae [99]. However, citrus fruits
including grapefruit, sweet and sour oranges and tangelos have the highest concentra-
tions of these chemicals [99]. Because of their great frequency in food, the flavanones
naringenin and hesperetin in the forms of aglycone and glycoside are of particular interest.
Naringenin is a hydroxyl derivative of flavanone (5,7,4′-trihydroxyflavanone) and has
anti-inflammatory, anti-ulcer, diastolic, estrogenic and skin-protective properties [100–102].
Hesperetin (4′-methoxy-5,7,3′-trihydroxyflavanone) is the primary flavonoid in lemons,
limes, oranges, tangerines and tangor species of citrus fruits, where it is found as glycoside
(hesperidin). Like naringerin, hesperetin is a flavanone that lowers cholesterol but also
has hypolipidemic, anticoagulant, antioxidant, anticancer, anti-inflammatory, antiviral
and antifungal properties. Because of its characteristics, hesperetin might be useful in
the treatment of hypertension [99,103–105]. According to recent research, flavonoids may
have advantageous neuropharmacological effects, such as anticonvulsant and antidepres-
sant qualities, and hesperetin may be able to shield neurons from oxidative or nitrosative
stress-related damage. Through mechanisms that differ from those of traditional antide-
pressants, citrus flavanones also exhibit antidepressant effects [104]. In addition, hesperetin
inhibits the intracellular reproduction of certain viruses. One more flavanone compound is
2′-hydroxyflavanone, that was extracted from the complete plant of Mimosa pudica (L.) and
reported to have anti-inflammatory properties in vitro [106].

Isoflavones are phytoestrogens, i.e., low-molecular substances that plants produce
and store in response to stress and microbial attacks (Figure 1F). In plants, they serve as
phytoalexins rather than hormones. These molecules, which are active defense factors,
possess antioxidant, antiviral, fungistatic and antibacterial qualities [107–109]. Legumes
from the family Fabaceae are the primary source of isoflavones [110]. Specifically, red clover
(Trifolium pratense) contains formononetin and biochanin A, while soybeans (Glycine max)
contain daidzein, genistein and glycitein. Genistein (7,4′-dihydroxy-6-methoxyisoflavone),
daidzein (7,4′-dihydroxyisoflavone), glycitein (7,4′-dihydroxy-6-methoxyisoflavone), biochanin
A (5,7-dihydroxy-4′-methoxyisoflavone) and formononetin (7-hydroxy-4′-methoxyisoflavone)
are isoflavone phytoestrogens [111]. Isoflavones can exist as glycosides or aglycons and
can generate 6-O-malonylglycosides, 6-O-acetylglycosides, 7-O or, in some plant species,
8-C-β-d-glycosides [112]. As an alternative treatment for a variety of hormonal-related
disorders, such as breast and prostate cancers [109,113], cardiovascular diseases [114], os-
teoporosis [115] or menopausal symptoms [116,117], isoflavones are thought to be chemo-
protective [118]. Isoflavones might also be regarded as endocrine disruptors, potentially
having detrimental effects on the environment [119] or on the health of a specific popu-
lation segment [120,121]. Despite having a distinct chemical structure from endogenous
estrogens, isoflavones share a phenol group that allows them to connect to and activate
estrogen receptors (ER) [122]. Isoflavones bind to ER in target tissue cell to control gene
expression. They do not, however, stay in the cell nucleus for very long. Phytoestrogens
act as estrogen agonists or antagonists: when they bind to the ER, they can hinder the
actions of endogenous estrogens, whereas they function as weak estrogens when there is a
condition of estrogen deficiency [123].
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4.2. Non-Flavonoids: Classification and Description

Although the structural skeleton of polyphenols contains several hydroxyl groups on
aromatic rings, the basic structure of non-flavonoids is a single aromatic ring (Figure 1).
Phenolic acids, stilbenes, lignans, coumarins, curcuminoids and xanthones are examples of
non-flavonoid compounds [65].

Phenolic acids, principally their derivatives from benzoic and cinnamic acids, con-
stitute the main class of this group [124]. Benzoic acid and cinnamic acid are chemical
precursors of phenolic acids. Few edible plants contain hydroxybenzoic acids, which have a
C6-C1 structure and low nutritional value (Figure 1G). Gallic acid (GA), the most common
phenolic acid, and protocatechuic acid are members of this subclass. Grapes, wine, green
and black teas and mangoes are the primary dietary sources of GA in its non-sugar galloyl
ester form. Additionally, GA is present as complex sugar esters and is the biosynthetic
precursor of hydrolysable tannins (gallotannins and ellagitannins) [83]. Hydroxycinnamic
acids with a C6–C3 structure are mostly found as glycosylated forms or as tartaric, quinic
and shikimic acid esters: caffeic acid, ferulic acid, p-coumaric acid and sinapic acid are the
most prevalent hydroxycinnamic acids. The most common phenolic acid, caffeine, makes
up 75–100% of the total hydroxycinnamic acid in most fruits [125]. The biological actions of
phenolic acids, including their anti-inflammatory, anti-atherosclerotic, immunoregulatory,
anti-allergenic, anti-thrombolytic, antimicrobial, antitumor, anti-obesity, anticancer and
anti-diabetic qualities, have generated increased interest [126].

Stilbenes are produced by plants, particularly berries, peanuts, rhubarb, grapes and
others, as means of self-defense in stressful environments caused by pathogens and
UV radiation [127]. Stilbenes are specialized metabolites formed by a C6–C2–C6 (1,2-
diphenylethylene) structure (Figure 1H) [128]. Stilbenes are synthetized in a small but
diverse group of plants because stilbene synthase (STS) is rarely present [127]. Stilbenes
include resveratrol and pterostilbene: these compounds have many interesting health-
promoting properties, such as anticancer, anti-inflammatory, anti-aging, antioxidant and
anti-atherogenic effects [128,129].

Lignans, which are secondary metabolites found in vascular plants, are widely dis-
tributed throughout the plant kingdom and are linked to a variety of physiological pro-
cesses that are beneficial to human health. They originate from the biosynthetic pathway of
shikimic acid. These secondary plant metabolites are classified as diphenolic compounds as
they are derived from the combination of two phenylpropanoid C6–C3 units at the β and
β′ carbon (Figure 1I). Their chemical structure is similar to the 1,4-diarylbutan, and they
can be attached to additional ether, lactone or carbon bonds [130]. The most commonly
studied compounds are pinoresinol, lariciresinol, arctigenin, honokiol, sesamin, magnolol,
seicolariciresinol, matairesinol and medioresinol [65]. In the kingdom of plants, they have
been found in about 70 families, including grains, vegetables, trees and grasses: roots, rhi-
zomes, stems, leaves, seeds and fruits all contain lignans [131]. Several biological activities
of lignans have been suggested, including anticancerous, antioxidant [132], antiviral [133],
antibacterial [134] and immunosuppressive properties [135].

Coumarin and its derivates are alpha-benzopyrones and can be classified into four
main categories: (i) simple coumarins, (ii) furano coumarins, (iii) pyrano coumarins and
(iv) dicoumarins. Coumarins (1,2-benzopyrone or 2H-1-benzopyran-2-one) comprise a
very large class of compounds that can be found in fruits (at high levels), leaves, flowers,
stems and roots of several plants, especially Rutaceae and Apiaceae [65]. Coumarin,
which is present in cinnamon and other plants, is the prototype of this class of molecules
(Figure 1J) [136]. Coumarin and its derivates have gained significance in recent times:
investigations into the biological activity of coumarin derivatives have demonstrated
that these compounds exhibit a large range of biological activities, including antitumor,
antibacterial, antifungal, anti-inflammatory, anticoagulant (vitamin K epoxide reductase)
and triglyceride-lowering effects. Natural sources are notable in this context because of their
low toxicity, low drug resistance, low cost and good efficacy. Moreover, new compounds
extracted from natural sources and the combination of these substances with established
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chemotherapeutic drugs could represent future therapeutic strategies to improve patient
outcomes, especially in cancer patients [137,138].

Curcuminoids are diketone compounds that include curcumin, demethoxycurcumin
and bisdemethoxycurcumin, each of which has a unique substituent for the benzene
ring. The main member of the curcuminoids subclass is curcumin (1,7-bis-(4-hydroxy-3-
methoxyphenyl)-1,6-heptadiene-3,5-dione). Curcumin, which is widely used in cooking,
was first discovered in 1910, derives from the rhizome of the plant Curcuma longa and is
found in the spice turmeric [139]. This compound has several functional groups where the
planar aromatic ring systems are attached to α,β-unsaturated carbonyl groups (Figure 1K).
Since curcumin can alter several targets and signaling pathways connected to cancer, it is
regarded as a pleiotropic molecule and a multifunctional drug [84]. Both synthetic and nat-
ural curcuminoids have a variety of biological activities, including anti-inflammatory [139],
antioxidant [140], anticancer [141,142], antimicrobial [143] and anti-Alzheimer’s disease
properties [144].

Xanthones are a significant group of oxygenated heterocycles that are found in fungi,
higher plants and lichens [145] as secondary metabolites. The core tricyclic skeleton of
xanthones consists of one pyranoid ring and two benzenoid rings (Figure 1L) [146]. Three
major families and seven major genera of higher plants, the Anacardiaceae (Mangifera),
Gentianaceae (Gentiana and Swertia) and Guttiferae (Calophyllum, Garcinia, Platonia and
Hypericum), have been reported to be rich in xanthones [147]. The biological activities of
xanthones are extensively described, with a focus on how they might be used as therapeutic
agents. Biological and pharmacological activities of natural xanthones comprise antimi-
crobial, antiviral, antioxidant, anti-atherosclerotic and cardioprotective effects [148,149].
The most prevalent xanthone isolated from the mangosteen, α-mangostin, received a lot of
interest due to its anticancer effects observed in numerous studies on cancer cell lines and
animal models [150]. While the mechanisms underlying these anticancer effects have been
extensively studied, those of minor xanthones, such as gartanin, β-mangostin, γ-mangostin,
garcinone C and garcinone E, as well as those of extracts from the pericarp, roots, rind and
stem of mangosteens, are less understood and still need to be investigated [151].

5. Effects of Polyphenols on FAPs and MMPs

Several in vitro and in vivo studies investigated the effects of the different classes of
polyphenols on FAP components and MMPs. In particular, as reported in the next sections,
polyphenols are able to affect the functions of integrins and cadherins, MMPs, cytoskeleton
components and intracellular proteins like FAK, paxillin, vimentin and talin (Figure 2). The
effect of polyphenols on MMPs’ synthesis and expression has been frequently evaluated
by Western blotting, while their enzymatic activity was assessed by wound healing assay.
As for the formation and development of metastases, these have been observed using
immunohistochemical techniques.

5.1. Effects of Polyphenols on Integrins and Cadherins

Through the cytoskeleton, integrins and cadherins are tightly connected to each other
and, when deregulated, can promote migration and invasion of tumor cells through various
mechanisms, including the EMT. Although cadherins are not directly part of the FAPs,
numerous studies have shown how the action of specific polyphenols can revert the EMT,
for example, by promoting the switch from mesenchymal cadherin (N-cadherin) to its
epithelial isoform (E-cadherin) [17].

For the differentiation and function of epithelial cells, both cell–matrix and cell–cell
adhesions are critical. In addition to mediating cell-to-cell interactions, classical cadherins
are strong activators of signal transducer and activator of transcription 3 (STAT3), providing
survival signaling. (E)-cadherin is necessary for cells to stay closely associated within
differentiated epithelial tissues. The FAK/Src complex is bound by integrin receptors,
which mediate cell adhesion to the ECM. Consequently, coordinated activation of the
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complementary cadherin/STAT3 and integrin/FAK pathways can significantly improve
the survival and growth of tumor cells [152].
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This section reports how different polyphenols interact with integrins and cadherins,
resulting in the reduction in motility and proliferation of cancer cells.

Tumor progression and metastasis are significantly influenced by the overexpression of
N-cadherin. Since p130CAS enables FAK to upregulate N-cadherin expression in pancreatic
cancer cells, Vu et al. wondered if the flavan-3-ol epigallocatechin-3-gallate (EGCG) could
inhibit FAK and reduce N-cadherin expression. In fact, they reported that N-cadherin
expression is abolished in BxPC-3 pancreatic cancer cells treated with EGCG, which is
consistent with the inhibition of FAK activity [153]. In another study, Sen et al. investigated
the effect of EGCG on signaling molecules that may be involved in the control of MMP-2
activation in the human breast cancer cell line MCF-7. They observed that the adherence of
MCF-7 cells to ECM, vitronectin and fibronectin was decreased by EGCG treatment. EGCG
(>20 µM) resulted in reduced levels of integrin receptors α5, β1, αV and β3 mRNAs [154].

Flavones, such as luteolin and apigenin, were found to reduce the expression of
adhesion molecules in different studies. In particular, luteolin (0.50 µM) considerably
reduced the expression of adhesion molecules on the surface of human umbilical vein
endothelial cells (HUVECs) and inhibited TNF-α-induced ICAM-1 expression [155]. Hasnat
et al. evaluated the effect of apigenin on the expression of integrin subunits 4, 5, V and 3 in
melanoma cells. Integrin subunits 4, 5, V and 3 were clearly downregulated in melanoma
cell lysates after apigenin treatment (15 µM) [156].

Through their interaction with β-catenin, cadherins regulate cytoskeleton remodeling
and adhesion junctions, stabilizing adhesive contact and polarization of epithelial cells [157].
Zhang et al. employed the adenomatous polyposis coli multiple intestinal neoplasia
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(ApcMin/+) mouse model to evaluate the effects of naringin on intestinal tumorigenesis.
Naringin suppressed the expression of β-catenin and regulated GSK-3β activity in intestinal
adenomatous cells, blocking tumorigenesis progression [158]. In another study, Han et al.
demonstrated that naringenin downregulates the expression of mesenchymal-like markers
and upregulates E-cadherin, which all contribute to a reduction in PC-3 prostate cancer
cell migration [159]. A significant increase in the E-cadherin marker was also observed
in vitro and in vivo in colorectal cancer (CRC) cells upon treatment with umbelliprenin,
a sesquiterpene coumarin. It was suggested that the umbelliprenin (>100 µM)-induced
increase in E-cadherin expression could result in stable cell connections and likely prevent
the expression of beta-cadherin-induced metastatic factors [160]. Similarly, curcumin
dose-dependently upregulated the expression of E-cadherin in CRC cells. Consequently,
curcumin enhanced intact or tight cell–cell connections and reduced EMT, preventing CRC
cell invasion, migration and metastasis [161]. Mani et al. demonstrated that tumor cell
adhesion and chemotaxis are significantly reduced by curcumin plus light on bladder
carcinoma and HUVEC cells. In particular, curcumin combined with exposure to visible
light reduced all integrin subtypes expressed on these cells (α2, α3, α5, α6, β1 and β3) [162].

Yang et al. showed that bornyl cis-4-hydroxycinnamate, a phenolic acid isolated from
Piper betle stems (20 µM), significantly and dose-dependently inhibits the EMT and thus the
migration of A2058 and A375 melanoma cells, by increasing E-cadherin protein levels and
by decreasing Snail and N-cadherin protein levels [163]. Similarly, Yu et al. demonstrated
that E-cadherin expression significantly increases in human head and neck squamous
cell carcinoma (HNSCC) cells upon caffeic acid phenethyl ester (CAPE) treatment. These
findings suggested that CAPE (>50 µM), at least in part, could enable the modification of
EMT status through the induction of E-cadherin expression, thereby limiting the aggressive
behavior of HNSCC cells in vitro [164]. The increase in E-cadherin expression, along with
the inhibition of MMP-2/MMP-9 expression and thus of EMT, was also observed upon
α-mangostin treatment in pancreatic cancer cell lines MIAPaCa-3 and BxPCa-2 [165]. Chei
et al. observed that magnolol downregulates N-cadherin and upregulates E-cadherin,
effectively reducing EMT in human CRC cells HCT116 and SW480. Moreover, in these cell
lines, magnolol was able to inhibit both TGF-β-induced cell invasion and EMT [166]. Cheng
et al. demonstrated that magnolol inhibits the migration of LN229 and U87MG glioma cells
and reduces the expression of proteins linked to focal adhesions. In particular, N-cadherin
and β-catenin showed decreased membrane levels in response to magnolol. In addition,
the presence of magnolol enhanced the interaction between N-cadherin and β-catenin.
Moreover, in an orthotropic xenograft model, magnolol treatment (5 µM) decreased the
expression of N-cadherin and phospho-MLC proteins, in addition to inhibiting tumor
progression [167]. Similarly, mangiferin has been demonstrated to strongly inhibit β-
catenin pathway’s activation in breast cancer cell lines in vitro and in vivo [168]. Indeed,
upon mangiferin treatment, it was observed a higher expression of E-cadherin and a lower
expression of MMP-7, MMP-9, vimentin and active β-catenin [168,169].

Brockmueller et al. investigated the involvement of β1-integrin receptors in the anti-
invasive and antimetastatic properties of the stilbene resveratrol employing two CRC
cell lines (HCT116, RKO). Their findings demonstrated that resveratrol dose-dependently
inhibits the adhesion adapter protein paxillin, which promotes migration, concurrently
upregulating the expression of E-cadherin. Resveratrol (2.5 µM) also prevented tumor
microenvironment-induced p65-NF-κB phosphorylation and nuclear translocation, which
is linked to modifications in the expression patterns of EMT biomarkers (slug, vimentin,
E-cadherin), factors related to metastasis (CXCR4, MMP-9, FAK) and apoptosis (caspase-
3) [170]. In addition, Buhrmann et al. examined the molecular mechanisms underlying
resveratrol’s effects on TNF-β/TNF-βR-induced EMT and migration in CRC cells (HCT116,
RKO, SW480). Similar to TNF-α, TNF-β caused a significant increase in cell proliferation
and morphological changes in CRC cells, which included the formation of filopodia and
lamellipodia, the acquisition of an epithelial-like mesenchymal shape, a reduction in E-
cadherin expression and increased migration/invasion. The treatment of CRC cells with
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resveratrol induced an increase in the expression of E-cadherin and a clear inhibition of
vimentin expression. On the whole, these findings indicated that after TNF-β treatment, all
three CRC cell lines underwent EMT and that resveratrol (5 µM) was able to prevent this
induction [171].

Important steps in the multistep cascade of migration and metastasis involve the
expression of receptors on endothelial cells and CAMs on tumor cells. Mostafa et al. dis-
covered that several phenolic acids and other metabolites produced by the fermentation of
anthocyanins by microbiota can inhibit the phosphorylation of signaling proteins, a process
that consequently inhibits the migration of cancer cells. They tested plasma anthocyanins
and their metabolites (>100 µM) on two pancreatic cancer cell lines (PANC-1 and AsPC-1)
and showed that the plasma metabolites extracted after juice intake significantly reduced
the expression of β1-integrin and ICAM-1 on PANC-1 cells [172].

In conclusion, the reported findings demonstrate that polyphenols are able to in-
hibit the enzymatic activity of integrins and in some cases to favor the switch from the
mesenchymal to the epithelial form of integrins and cadherins, thus reversing the EMT
(Table 1).

5.2. Effects of Polyphenols on FAP Intracellular Proteins

The ultimate effect of signal transmission from the ECM to the inside of the cell
depends on the action of intracellular proteins, such as FAK, ERK, Akt, able to bind
membrane receptors, such as integrins, and translate the input signal via the activation of
factors, such as NF-κB and AP-1, capable of increasing the transcription levels of genes
involved in cell survival and migration.

Flavonols were shown to affect FAK phosphorylation [173,174] and to inhibit the
STAT3 signaling pathway, IL-6-induced STAT3 signaling, IL-6-induced EMT [175], as well
as PI3K/Akt [174] and ERK1/2-pathways [176]. In detail, Lee et al. found that quercetin
(>50 µM) greatly reduces FAK phosphorylation and suppresses the invasive potential and
migration of pancreatic cancer and epidermoid carcinoma cells in vitro [173]. Further,
quercetin (>100 µM) reduced FAK, ERK1/2 and phospho (p)-ERK1/2 levels, inhibiting the
migration and invasion of SAS human oral squamous cell carcinoma cells [176]. Similarly,
Hung et al. demonstrated that kaempferol (50 µM) reduces FAK phosphorylation but
also inhibits the PI3K/Akt pathway, resulting in suppression of cell invasion, migration
and metastasis in human renal cell adenocarcinoma (786-O) and human kidney-2 (HK-2)
cells [174]. In addition, it has been reported that quercetin (>50 µM) reverses IL-6-induced
EMT, invasion and migration of PC cancer cells by blocking the STAT3 signaling path-
way [175]. Quercetin treatment (80 µM) also suppressed the phosphorylation of c-Met and
its downstream effectors including Gab1 (GRB2-associated-binding protein 1), FAK and
PAK (p21-activated kinases) in the human medulloblastoma cell line DAOY, human hep-
atoma HepG2 and melanoma A375 and A2058 cell lines [177]. Like flavonols, flavan-3-ols
(50 µM) are found to have a potential use in cancer treatment considering that they can
inhibit FAK and significantly lower the levels of phospho-ERK (20 µM), as demonstrated in
pancreatic cancer, breast cancer, melanoma and fibrosarcoma cells [153,154]. The flavone
luteolin was reported to block EGFR tyrosine kinase activity, which resulted in the reduc-
tion in FAK expression also accompanied by lower FAK tyrosine phosphorylation levels,
leading to cell invasion inhibition in MiaPaCa-2 and A431 tumor cell lines [173]. Moreover,
studies performed in different cancer cell lines showed that apigenin is able to inhibit FAK
expression [178], FAK/Src activation, which affected motility and cytoskeleton remodeling
(25 µM) [179], to block NNK-induced FAK phosphorylation and ERK activation, resulting
in an overall lower proliferation and migration (50 µM) [180], and to inhibit the ERK-FAK
pathway leading to a repression of the cells’ migratory ability [156].

Anthocyanins are found to have an inhibitory effect on phospho-Akt (>15 µM) [181]
and MAPK signaling pathways (>50 µM) [182], to lower FAK expression and interaction
with HER-2 (>100 µM) [183] and to inhibit the PI3K/Akt/NF-κB pathway (>40 µM) [184]. In
particular, cyanidin-3-O-sambubioside and delphinidin lowered the expression of phospho-
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Akt or blocked the MAPK signaling pathway, inducing a decrease in MMP-9 and leading to
the inhibition of the metastatic processes in breast cancer cells [181,182]. In the same tumor
cell type, black rice anthocyanins were able to decrease the interaction between HER-2 and
FAK [183]. Further, anthocyanins from blueberry extract modulated the PI3K/Akt/NF-κB
pathway, resulting in inhibition of growth and metastatic potential of different cancer
cells [184]. Naringin (>600 µM) suppressed EGFR and ERK phosphorylation levels in HeLa
and in the A549 lung cancer cell line [185]. Furthermore, naringenin and naringin (50 µM)
suppressed TPA-induced AP-1 activity by inhibiting the phosphorylation of ERK and c-Jun
N-terminal kinase (JNK) in HepG2, Huh-7, HA22T and BNL CL2 cell lines [186]. They
also suppressed TPA-induced DNA-binding and activation of ERK/PI3K/Akt upstream
of NF-κB and AP-1. Lastly, naringenin and hesperetin (10 µM), administered alone or in
combination, inhibited the phosphorylation of FAK and p38 signaling in vitro and in vivo
in human pancreatic cancer [187].

Similarly, the isoflavone genistein inhibited FAK phosphorylation in pancreatic cancer
(60 µM) and hepatocellular carcinoma cells (10 µM) [188,189]. In addition to inhibiting
FAK phosphorylation, genistein (>200 nM) also inhibited HSP27 phosphorylation, MMP-2
induction and cell invasion, by blocking phosphorylation (i.e., activation) of p38 MAPK in
human PCa cells [190]. Moreover, genistein (>25 µM) inhibited p38 and MAPK activation
in other cancer cell lines [191].

Numerous studies showed that also the non-flavonoid compounds coumarins actively
interact with intracellular protein of FAPs. Osthole (15 µM) decreased the phosphorylation
of FAK and cell motility in human glioma cells [192]. 4-hydroxycoumarin (4-HC) treatment
(500 µM) caused a decrease in β-paxillin protein and mRNA levels, a decrease in FAK
phosphorylation, the inhibition of the capacity to originate pulmonary metastases and
the downregulation of Adhesion Regulating Molecule-1 (ARM-1) in melanoma cells [193].
Farnesiferol C (FC) decreased the expression of CD34, Ki-67 and of phosphorylation of
most of the kinases downstream of VEGFR2 (FAK, Src, ERK1/2, p38 MAPK and c-Jun-
NH2-kinase) in HUVEC cells [194]. In addition, gossypol (20 µM), a small BH3-mimetic
polyphenol extracted from cotton seeds, was able to inhibit the activation of ERK1/2 and
Akt and to stimulate activation of p38 and JNK1/2, required for apoptosis induction in
head and neck carcinoma cells [195].

Many studies investigated the effects of curcumin on FAK and the associated sig-
naling [196]. Curcumin affected v-Src kinase and FAK enzymatic activity and Akt phos-
phorylation [197,198]. The study by Lin et al. showed that curcumin (15 µM) is able to
decrease protein kinase C (PKC), FAK, NF-κB p65 and Rho-A protein levels, leading to the
inhibition of ERK1/2, MKK7, COX-2 and ROCK1 in mouse–rat hybrid retina ganglion cells
(N18) [199]. Further, Chen et al. evaluated the effects of curcumin in human colon cancer
cell lines from the NCI-60 panel (including HCT-116, HT-29, HCT-15, HCC-2998, Colo205,
Km-12 and SW-620 cells), both in vitro and in SCID mice, and found that this polyphenol
inhibits FAK phosphorylation and decreases CD24 expression [161]. Further, curcumin
(>10 µM) decreased the protein levels of FAK, phospho-FAK, Rac1 and Cdc42 in mouse
neuroblastoma N18 and rat glioma C6 cell lines [200]. Treatment with curcumin (11.5 µM)
altered the phosphorylation of several kinases such as TNK2, FRK, AXL and MAPK12 and
phosphatases such as PTPN6, PTPRK and INPPL1 in the Cal-27 cell line [201]. A similar
finding was observed in the study by Choe et al., in which curcumin caused the inhibition
of the RCP-induced EGFR/FAK phosphorylation in ovarian cancer cells [202]. Curcumin
in combination with exposure to light also suppressed phospho-FAK expression in bladder
carcinoma cells [162]. In addition, a combined treatment with curcumin (>50 µM) and
wikstroflavone B (WFB) (>100 µM) inhibited viability, migration, colony formation and
invasion in four human nasopharyngeal carcinoma (NPC) cell lines, by modulating several
proteins, such as survivin, cyclin D1, p53 and p21, STAT3 and FAK [203].

As for the class of phenolic acids, there are several works demonstrating their in-
volvement in the regulation of intracellular proteins. For example, CAPE (20 µM) was
demonstrated to be able to inhibit FAK phosphorylation and the downstream p38 and c-Jun
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N-terminal kinase (JNK) signaling pathways in a human tongue squamous carcinoma cell
line (SCC-9) [204]. A reduction in FAK phosphorylation and paxillin inhibition was also ob-
served in the SNU-1041 cell line upon CAPE treatment (4 µM) [164]. Similarly, caffeic acid
3,4-dihydroxyphenethyl ester (CADPE) caused the inhibition of AP-1 and c-fos nuclear fac-
tor activity as well as the inhibition of PMA-induced FAK, ERK and MEK phosphorylation
in human gastric and breast carcinoma cell lines (25 µM) [205]. Ferulic acid (FA) inhibited
SMAD and FAK activity in an immortalized rat cell line (HSC-T6) (30 µM) [206]. Another
phenolic acid, GA (>50 µM), was reported to have dose-dependent effects in the regulation
of intracellular proteins in prostate cancer: these included the inhibition of growth factor
receptor-bound protein 2 (GRB2), PKC, NF-κB p65, JNK, ERK1/2, p38 and phospho-Akt.
Moreover, it caused the increase in PI3K and Akt and in TIMP-1 gene levels but also the
inhibition of FAK and Rho-A mRNA levels [207]. A similar mechanism of action is exerted
by methyl gallate (MG), which was able to reduce viability, migration, Akt and ERK1/ERK2
phosphorylation and to inhibit paxillin phosphorylation and focal adhesion turnover in the
rat C6 glioma cell line (5 µg/mL) [208]. Bornyl cis-4-hydroxycinnamate also induced the
inhibition of the FAK/PI3K/Akt/mTOR, MAPK and GRB2 signaling pathways in A2058
and A375 cell lines, according to the work by Yang et al. [163]. In addition, ellagic acid (EA)
(30 µM) induced the accumulation of p53, the inhibition of Akt and also the increase in the
PTEN phosphatase activity in the mouse melanoma cell line B16F10 [209]. A decrease in
FAK and Akt phosphorylation was also observed in the study on the effects of Crataegus
berries, leaves and flowers compounds, carried out in U87MG human glioblastoma cells
(250 µg/mL) [210]. The chloropyramine–cinnamic acid hybrids (10 µM) also inhibited
FAK autophosphorylation and reduced focal adhesion formation and stress fibers in the
MDA-MB-231 cell line [211]. Mostafa et al. tested the effect of plasma anthocyanins and
their metabolites in PANC-1 and AsPC-1 cell lines and found that these molecules induce
the reduction in NF-κB, FAK and p65 activity [172].

The class of lignans is involved in the regulation of intracellular proteins through
various mechanisms. In particular, magnolol (20 µM) inhibited NF-κB signaling, NF-κB
activity, phospho-p65 and phospho-IκBα in breast cancer cell lines in vitro and in vivo [212].
Further, nordihydroguaiaretic acid (NDGA) (>10 µM) was able to inhibit cell migration
by suppressing NRP1 expression and function, leading to attenuated cell motility, cell
adhesion to ECM and FAK signaling in prostate cancer cells in vitro and in vivo [213].

Several works showed that resveratrol suppresses tumor cell growth by acting as a FAK
inhibitor. Resveratrol-mediated antitumor effects are enhanced by inhibition of FAK and
cytoskeleton proteins, as demonstrated in human colorectal cancer SW480 and HCT116 cell
lines (5 µM) [214] and in the colon cancer HT29 cell line (100 µM) [215]. Resveratrol (25 µM)
also inhibited cell migration, increasing filopodia formation and decreasing the number of
focal adhesions and FAK activity in the human breast cancer cell line MDA-MB-231 [216].

In conclusion, the different classes of polyphenols act in the tumor area on multiple
intracellular proteins involved in focal adhesion plate turnover by inhibiting phosphoryla-
tion upstream of the FAK protein and preventing its activation, as well as by inhibiting the
activation of downstream proteins, such as ERK and Akt, thus causing a blockade of signal
transduction pathways involved in cell survival and migration (Table 1).

5.3. Effects of Polyphenols on Cytoskeleton

Different studies have reported that polyphenols are able to affect cytoskeleton organi-
zation in normal and cancer cells. An earlier study by Medrano and Andreu reported that
gossypol inhibits the in vitro assembly of microtubules without their distortion. Thus, the
authors proposed that gossypol may act as a new tubulin ligand [217,218]. Later, Hu et al.
reported that apigenin is able to reduce the expression of FAK by affecting its protein stabil-
ity in ovarian cancer cells and that the decrease in FAK was paralleled by the disruption
of actin polymerization and by the decrease in stress fibers. Indeed, the actin fibers were
located compactly in the cell periphery upon apigenin treatment rather than in the inner
part of the cell, as observed in untreated control cells. Accordingly, apigenin suppressed the
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in vitro migration and invasion of human ovarian cancer cells and their ability to induce
metastasis in nude mice [178]. Similarly, Franzen et al. showed that apigenin reduces
FAK/Src signaling in prostate cancer cells and that such effect was accompanied by actin
cytoskeleton remodeling and by the appearance of exaggerated filopodia, which stimulated
a strong attachment of cancer cells to an adhesive surface. Consistent with these findings,
both motility and invasiveness of cancer cells were decreased by the treatment [179]. The
effect of curcumin on cytoskeletal organization was studied by Kim et al., who reported
that the treatment of chick limb bud mesenchymal cells with this compound significantly
increased actin stress fibers. This effect was paralleled by the decreased expression of
β1 integrin and by the reduction in FAK phosphorylation. The modulation of the actin
cytoskeleton was supposed to be dependent on Akt signaling inactivation [198]. Different
studies have demonstrated that curcumin is able to bind microtubules and to suppress
their dynamic changes in cancer cells. In fact, curcumin depolymerized mitotic spindle mi-
crotubules in breast cancer cells [219,220] and interphase and mitotic spindle microtubules
in cervical and breast cancer cells [220]. In addition, Lee et al. showed that cervical cancer
cells’ death induced by vinblastine was inhibited by the pre-treatment with curcumin,
which diminished microtubules depolymerization [221]. Inhibition of FAK by EGCG and
the ensuing modification of cytoskeleton organization was reported in benign prostatic
hyperplasia cells. The authors demonstrated that EGCG disrupted the organization of
F-actin and decreased paxillin distribution. The effect of EGCG on the disorganization
of actin cytoskeleton was mirrored by the decreased cells’ migration [222]. EGCG also
induced cytoskeleton reorganization by rescuing the abnormal actin organization pro-
moted by the protease-activated receptor 2 agonist peptide (PAR2-AP) or by factor VIIa
in human colon cancer cells and inhibited cell migration [223]. The ability of EGCG to
inhibit FAK phosphorylation and actin cytoskeleton organization during cells’ adhesion
was also reported in fibroblasts which, in the presence of EGCG, reduced their motility as
well [224]. To further support the effect of polyphenols in modulating the organization of
the cytoskeleton, Chen et al. reported that resveratrol decreased the expression of α-smooth
muscle actin (α-SMA) and the level of β-catenin, which indirectly anchors the cadherins to
the cytoskeleton in leiomyoma cells [225]. The effect of resveratrol on the cytoskeleton was
further investigated by Azios et al., who showed that resveratrol sustains the extension of
actin structures like filopodia in breast cancer cells in a time- and concentration-dependent
modality. At low concentration (5 µM), resveratrol increased rapid, sustained leading-edge
lamellipodia by enhancing Rac activity and thus promoted cell migration and invasion. On
the other hand, resveratrol at high concentration (50 µM) induced the rapid extension of
unpolarized filopodia by the inhibition of Rac and Cdc42 activity and thus inhibited cell
migration [226]. A high concentration of resveratrol disturbed cytoskeleton remodeling
and ROCK1 in human tubular epithelial cell as well [227]. The resveratrol derivative
(Z)-3,5,4′-trimethoxystilbene was shown to prevent tubulin polymerization in colon cancer
cells [228]. On the other hand, resveratrol and its analogs were extensively reported to
be able to reverse EMT, which involves cytoskeleton reorganization in different types of
tumors [171,229].

5.4. Effects of Polyphenols on MMPs

MMPs are involved in the degradation of ECM components such as proteins (collagen,
vitronectin and fibronectin) and glycosaminoglycans. In a tumor context, MMPs are often
overexpressed or their enzymatic activity is increased, thus allowing tumor cells to invade
surrounding tissues more efficiently. Several studies reported the effects of flavonoids on
the activity of MMPs.

Quercetin, a polyphenol contained in numerous foods such as capers, red onions, red
apples, grapes and cabbage, was demonstrated to inhibit metastasis formation and EMT
in pancreatic cancer cell lines, epidermoid carcinoma cells and squamous cell carcinoma
cells of the tongue, by decreasing the secretion of MMPs and gelatinases [173,175,176].
Hung et al. observed the decrease in the invasive capacity of renal adenocarcinoma
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cells upon kaempferol treatment in vitro and in vivo. This effect was achieved through
a strong inhibition of MMP-2 activity, due to an inhibition of the PI3K/Akt signaling
pathway [174]. Similar effects were demonstrated for EGCG (10 µM). Chen et al. observed
a dose-dependent decrease in the invasive capacity of squamous carcinoma of the tongue
cells through an inhibition of the synthesis of MMPs and plasminogen activator (uPA), with
a significant decrease in interactions between cells and ECM [230]. In another study, Sen
et al., by investigating the antitumor effects of EGCG in different tumor cell lines [MCF7
(breast cancer), A375 (melanoma) and HT-1080 (fibrosarcoma)], observed a dose-dependent
decrease in MMP-2 mRNA levels and activity and also a greater difficulty of the cells in
forming bonds with ECM components such as vibronectin and vitronectin [154]. Similarly,
the anthocyanin delphinidin was shown to lower MMPs by acting at the transcriptional
level and inhibiting the activity of NF-κB in MCF-7 breast cancer cells [182].

Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, are capable
of inhibiting the expression of MMPs, in particular MMP-2, and plasminogen activator-
urokinase (PAI) in metastatic lung cancer and melanoma cells (A549, B16-F1) [231,232]. A
similar effect was observed by Lee et al. upon treatment of breast cancer cells (MDA-MB
231) with cyanidin-3-O-sambubioside, associated with the reduction in the gelatinolytic
activity of MMPs, in particular MMP-9 [181]. The decrease in MMP-9 activity along
with MMP-1 or MMP-2 was observed in different tumor cell lines (HCC38, HCC1937,
MDA-MB 231, A549) after treatment with blueberry extract [184] or with the flavanone
naringenin (100 µM) [233]. Yen et al. also demonstrated how naringin is able to inhibit the
synthesis of MMP-9 at the transcriptional level by reducing the activity of AP-1 and NF-κB
in hepatocarcinoma cells (Hep-G2, Huh7, HA22T, and BNLCL2) [186]. Xu et al. studied
the combined effect of naringenin (1–1000 µM) with tamoxifen on MCF-7 human breast
adenocarcinoma cells, observing an overall dose-dependent downregulation of MMP-2
and MMP-9 expression [234]. A decrease in the induction of MMP-2 and cell migration
following a block in the phosphorylation of MAP kinase p38 was observed upon in vitro
and in vivo treatment of prostate cancer cells with the isoflavone genistein [190,191].

Numerous studies showed that the non-flavonoid compounds have an important im-
pact on the action of several enzymes involved in the degradation of the ECM such as MMPs,
thus influencing cell invasiveness and motility. Velasco-Velázquez et al. demonstrated
how 4-hydroxycoumarin (4-HC) inhibited the formation of lung metastases by murine
melanoma cells (B16-F10) [193]. Twarock and his team observed that 4-methylumbelliferone
(4-MU) (300 µM) was able to inhibit filopodia, focal adhesion formation and cell migration
in human esophageal carcinoma cell lines [235]. Lee et al. reported that FC used in different
concentrations on HUVECs and in vivo on Sprague–Dawley rats is capable of inhibiting
VEGF-induced cell migration as well as the expression of MMP-2 [194]. Studying the
effect of osthole on human glioma cells, Tsai and his research group found that osthole
is able to inhibit the expression of MMP-13 in a dose-dependent manner, thus lowering
the cells’ ability to migrate [192]. Umbelliprenin also appeared able to inhibit the catalytic
activity of certain MMPs such as MMP-2 and MMP-9 in vivo and thus the formation of
metastases, as demonstrated by Naderi Alizadeh et al. [160]. In addition, studying the
effect of polyphenols on ovarian (HeLa and A2780) and cervix (SiHa and HeLa) tumor cell
lines, Jamialahmadi et al. and Ying et al. found that auraptene (>12.5 µM) and angelol-A
(120 µM) were able to inhibit the expression of MMP-2 and MMP-9, lowering the invasive
capacity of the two tumor cell types [236,237].

One of the polyphenols that has certainly been most studied in the medical field is cur-
cumin. Specifically, in evaluating the action of curcumin on the invasive capacity of tumor
cell lines, Lin et al. and Thiyagarajan et al. demonstrated how even low concentrations
of curcumin are already able to inhibit the enzymatic action of MMP-2 and MMP-9 in a
mouse–rat hybrid retina ganglion cell line (N18) [199,200]. Shao and his collaborators found
that curcumin and the biflavonoid wikstroflavone B, alone and in combination, negatively
modulated the synthesis of several proteins, such as MMP-2 and MMP-9, thus blocking cell
migration in four human NPC cell lines (CNE1, CNE2, HONE1 and C666-1) [203].
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Similarly, the caffeic acid derivative CAPE (50 µM) was able to dose-dependently
decrease MMP-2 and MMP-9 synthesis and enzymatic activity in human fibrosarcoma cells
(HT1080) [238]. The same effect was observed by Lee and his research team using CAPE
on human hepatocarcinoma SK-HEP1 cells (12.5 µM) [239]. Peng et al. demonstrated that
CAPE also lowers the catalytic activity of MMP-2 in human tongue squamous carcinoma
SSC-9 cells [204]. Another caffeic acid ester, CADPE, was studied by Han et al., who
demonstrated that it is able to reduce the invasive capacity of human gastric carcinoma and
breast carcinoma cells by inhibiting the PMA-dependent MMP-9 activation pathway [205].
A similar inhibition of MMP-2 and MMP-9 activities was found upon treatment with a
caffeic acid derivative, PT93 (>30 µM), on immortalized rat HSC-T6 cells [240]. Liu et al.
instead focused their studies on another compound belonging to the class of phenolic acids
(GA) and demonstrated that GA treatment inhibited MMPs’ activity in prostate carcinoma
cells (PC-3) by increasing the synthesis of the inhibitor TIMP-1 [207]. A GA derivative,
methyl gallate (MG), was employed to treat C6 rat glioma cells, resulting in an inhibition of
adhesion plate turnover and thus a decrease in cell migration [208]. Another phenolic acid,
bornylcis-4-hydroxycinnamate, was demonstrated to be able to decrease the expression
of MMP-2 and MMP-9 by inhibiting FAK/PI3K/Akt/mTOR, MAPK and GRB2 signaling
pathways in melanoma cells [163]. Yang et al., employing a hybrid of cinnamic acid and
chloropyramine on breast carcinoma cells (MDA-MB-231), showed that this compound is
able to inhibit the formation of focal adhesions [211].

Within the class of lignans, the most studied polyphenol is magnolol. Several studies
reported the decrease in invasiveness and MMP-2/MMP-9-mediated migration in several
breast cancer cell lines [212], in a cholangiocarcinoma cell line (30 µM) [241] and in a prostate
cancer cell line (>5 µM) [242]. Another lignan, honokiol (>7.5 µM), dose-dependently
decreased the number of lung cancer H1299 cells capable of invading the surrounding
tissue through an inhibition of MMP-2/-9 [243].

Similar effects were reported for the stilbenes resveratrol and pterostilbene. The com-
bined treatment with resveratrol and pterostilbene (>25 µM) resulted in a greater inhibition
of the expression of MMP-2 and MMP-9, accompanied by a strong reduction in cell growth
in three different cervical cancer cell lines (HeLa, SiHa and CaSki) [244]. Further, it has been
reported that resveratrol is able to increase filopodia formation, inhibit cell migration and
decrease the percentage of focal adhesions in a dose-dependent manner in breast cancer
cells [216]. Pterostilbene (10 µM) was also studied by Pan and his team, who demonstrated
inhibition of MMP-9 upon treatment of breast cancer cells [245]. Similar effects were in-
duced by the xanthones α-mangostin and mangiferin. α-mangostin (>7.5 µM) was found to
inhibit MMP-2 and MMP-9 in pancreatic cancer cells [165]. Mangiferin (200 µM) suppressed
the TNF-α-induced expression of MMP-9 by inhibiting the transcription factor NF-κB in
prostate cancer cells [246]. Moreover, mangiferin inhibited the growth and invasiveness
of ER-positive and ER-negative breast cancer cells in vitro and in vivo by lowering the
expression of MMP-7 and MMP-9 and by reducing the EMT [168]. A similar effect was ob-
served in astroglioma, melanoma and ovarian cancer cells upon treatment with mangiferin
(100 µM), with a global inhibition of MMP-1, -2, -7, -9, -14 and of EMT [247,248]. An overall
reduction in the expression of MMP-2 and MMP-9 was also observed by Luo and his team
upon treatment of glioma cells with gartaninin [249]. An inhibition of cell migration and
a downregulation of the FAK/MMP-dependent signaling pathway were observed after
treatment with cratoxylumxanthone C in A549 lung cancer cells (7.5–30 µM) [250].

In conclusion, polyphenols are able to decrease the enzymatic activity of MMPs and
in some cases can also act at the gene level, leading to a reduction in MMPs’ expression
(Table 1).
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Table 1. Effects of polyphenols on the modulation of FAPs components and tumor cell’s
invasive behavior.

Polyphenol In Vitro Model In Vivo Model Effect on FAP Ref.

Flavonoids

Flavonols

Quercetin

Human pancreatic cancer
cell lines (PATU-8988)
(20–40–80–160 µM)

↓ Invasion and metastasis
↓ STAT3 signaling pathway
↓ IL-6-induced EMT and
MMP secretion

[175]

Human medulloblastoma
cell line (DAOY); human
hepatoma cell line
(HepG2); human
melanoma cell lines (A375,
A2058)
(20–40–60–80 µM)

↓ Migration and invasion
↓ Activation of c-Met and
downstream molecules
↓ FAS

[177]

Human pancreatic cancer
cell line (MiaPaCa-2) and
skin tumor cell line (A431)
(10–20–50–100 µM)

↓ EGFR tyrosine kinase
activity and its signal
pathway
↓ MMP-9/-2 enzymatic
activity
↓ FAK protein
phosphorylation

[173]

Human oral squamous cell
carcinoma cell line (SAS)
(25–50-100–200–400 µM)

↓ Migration and invasion
↓ MMP-9/-2 enzymatic
activity
↓ FAK, p-ERK1/2

[176]

Kaempferol

Human renal cell
adenocarcinoma cell line
(786-O) and human
proximal tubule epithelial
cell line (HK-2)
(25–50–75–100 µM)

SCID mice i.v.
inoculated with 1 × 106

786-O cells and treated
with 2–10 mg/kg of
kaempferol by oral
gavage

↓ Cell invasion and
migration
↓ MMP-2 expression
↓ FAK phosphorylation
↓ PI3K/Akt pathway
↓ Tumor mass in mice

[174]

Flavan-3-ols

Epigallocatechin-3-
gallate (EGCG)

Human benign prostate
hyperplasia cell line
(BPH-1)
(from 1 to 100 µM)

↓ Cell migration
↓ Actin cytoskeleton
organization and paxillin
distribution
↓ Focal adhesion proteins

[222]

Human pancreatic cancer
cell lines (AsPC-1, BxPC-3)
(25–40–75–80–100 µM)

↓ Cell adhesion
↓ FAK and IGF-1R
activation

[153]

Human tongue squamous
cell carcinoma cell line
(SCC-9)
(5–10–15–20 µM)

BALB/c nu/nu mice
s.c. inoculated with
1 × 107 SCC-9 cells and
treated with 10–20
mg/kg of EGCG by
oral gavage

↓ Cell invasion and
motility
↓ Cell–matrix interaction
↓ MMP-2 expression and
activity
↓ FAK phosphorylation
↓ NF-κB and Snail-1 levels
↓ u-PA expression
↓ PMA-induced MMP-9
expression
↓ Tumor mass in mice

[230]
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Table 1. Cont.

Polyphenol In Vitro Model In Vivo Model Effect on FAP Ref.

Human breast cancer cell
line (MCF-7), human
melanoma cell line (A375)
and human fibrosarcoma
cell line (HT-1080)
(5–10–20–40 µM)

↓ MMP-2 enzymatic
activity and mRNA levels
↓ MT1-MMP expression
↓ Binding with the
extracellular proteins
(vitronectin and
fibronectin)
↓ Integrin receptor
expression
↓ FAK expression
↓ ERK phosphorylation
↓ VEGF expression

[154]

Flavones

Apigenin

Human pancreatic cancer
cell lines (PC3-M, C4-2B,
DU145)
(10–25–50 µM)

↓ Cell motility
↑ Filopodia and matrix
attachment
↓ Actin structures
formation during
migration
↓ FAK/Src activation

[179]

Human pancreatic cancer
cell lines (BxPC-3,
MIAPaCa-2)
(50 µM)

↓ NNK-induced pancreatic
cellular
proliferation
↓ NNK-induced FAK
phosphorylation
↓ NNK-induced ERK
activation

[180]

Human melanoma cell
lines (A2058, A375)
(10–20–50 µM)

↓ Integrin subunits
expression
↓ ERK phosphorylation
↓ Cell migration

[156]

Human ovarian cancer cell
line (A2780)
(20–40 µM)

↓ Cell migration and
invasion
↓ Actin organization and
focal adhesion formation
↓ FAK phosphorylation
and expression

[178]

Luteolin

Human pancreatic cancer
cell line (MiaPaCa-2) and
skin tumor cell line (A431)
(10–20–50–100 µM)

↓ EGFR tyrosine kinase
activity
↓ MMP-9/-2 secretion
↓ FAK phosphorylation
and expression levels

[173]

Anthocyanins

Mulberry
Anthocyanins,
Cyanidin 3-rutinoside
and Cyanidin
3-glucoside

Highly metastatic human
lung carcinoma cell line
(A549)
(25–50–100 mM)

↓ MMP-2
↓ u-PA
↑ TIMP-2
↑ plasminogen activator
inhibitor (PAI)

[231]
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Table 1. Cont.

Polyphenol In Vitro Model In Vivo Model Effect on FAP Ref.

Mulberry
Anthocyanins (MACs)

C57BL/6 mice
inoculated via a right
groinal injection with
melanoma B16-F1 cells
and treated with food
administration of PBS
plus 1–2 or 3% of
MACs

↓ MMP-2/-9 expression [232]

Cyanidin-3-O-
sambubioside

Human breast cancer cell
line (MDA-MB-231)
(1–10–30 µM)

↓ p-Akt and MMP-9
activity and expression
level

[181]

Delphinidin
Human breast cancer cell
line (MCF-7)
(15–30–60–90 µM)

↓ MMP-9 gene
transcriptional activity by
blocking the activation of
NF-κB through MAPK
signaling pathways

[182]

Black Rice
Anthocyanins

Human breast cancer cell
lines
(MCF-7, MDA-MB-453)
(100–200–300–400–500 µM)

↓ Interaction between
HER-2 and FAK, FAK and
cSrc, cSrc and p130 Cas,
and FAK and p130 Cas
↓ Phosphorylation of FAK,
cSrc and p130 Cas

[183]

Blueberry Extract

Human breast cancer cell
lines (HCC38, HCC1937,
MDA-MB-231)
(10–20–40–80 µM)

Inhibition of MMP-1 and
plasminogen activator
inhibitor-1 secretion
↑ u-PA secretion
↓ MMP-9 and
PI3K/Akt/NF-κB pathway

[184]

Flavanones

Naringenin

Human lung cancer cell
line (A549)
(25–50–100–200–300 µM)

↓ MMP-2/-9 enzymatic
activity [233]

Human prostate cancer cell
line (PC-3)
(25–50–100–200–300 µM)

↓ Cell migration and
invasion
↓ u-PA, SNAI1, SNAI2 and
TWIST1 activity
↑ E-cadherin

[159]

Naringin

Human cervical cancer cell
line (HeLa) and human
lung cancer cell line (A549)
(400–3200 µM)

↓ EGFR and ERK
phosphorylation levels [185]

ApcMin/+ mice treated
with 150 mg/kg of
naringin by gavage

Modulation of the activity
of GSK-3β and inhibition
of β-catenin expression in
intestinal adenomatous
cells

[158]

Naringenin and
Naringin

Human hepatocellular
carcinoma cell lines
(HepG2, Huh-7, HA22T,
BNLCL2)
(25–50–100 µM)

↓ MMP-9 transcription by
inhibiting AP-1 and NF-κB
activity
↓ ERK and JNK signaling
pathways

[186]
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Table 1. Cont.

Polyphenol In Vitro Model In Vivo Model Effect on FAP Ref.

Naringenin and
Hesperetin

Human pancreatic cancer
cell lines (Panc-1,
MiaPaCa2)
(1–5–10–20 µM)

BALB/c nude mice s.c.
inoculated with 107

Panc-1 cells and treated
with 10–30 mg/kg of
naringenin and
hesperetin alone and in
combination

↓ FAK phosphorylation
↓ p38 signaling pathway [187]

Naringenin and
Tamoxifen

Human breast cancer cell
line (MCF-7)
(Tamoxifen 0.001–50 µM,
Naringenin 1–1000 µM)

↓ MMP-2/-9 expression
levels [234]

Isoflavones

Genistein

Human pancreatic cancer
cell lines (AsPC-1, BxPC-3,
Capan-2)
(60 µM)

↓ FAK phosphorylation [188]

Human hepatocellular
carcinoma cell line
(MHCC97-H)
(5–10–20 µM)

Male athymic BALB/c
nu/nu mice s.c.
inoculated with
MHCC97-H cells and
treated i.p. with
50 mg/kg of genistein

↓ FAK expression and
phosphorylation [189]

Human prostate cancer cell
line (PC3-M)
(1–10.000 nM)

Male athymic BALB/C
mice (orthotopic
implantation of PC3-M
cells) treated with
100–200 mg/kg of
genistein administered
with food

↓ FAK phosphorylation
↓ HSP27 phosphorylation
↓ MMP-2 induction and
cell invasion by blocking
p38 phosphorylation

[190]

Human prostate cancer cell
lines
(PC-3, PC3-M, DU-145)
(1–50 µM)

↓ MMPs activity
↓ Cell invasion
↓ p38 activation

[191]

Non-flavonoids

Coumarins

4-Hydroxycoumarin
(4-HC)

Murine melanoma cell line
(B16-F10)
(500 µM)

↓ β-paxillin mRNA
expression levels
↓ FAK phosphorylation
↓ Lung metastasis
↓ ARM-1

[193]

4-Methylumbelliferone
(4-MU)

Human esophageal
squamous carcinoma cell
line (OSC1)
(300 µM)

↓ Filopodia and focal
adhesion formation [235]

Osthole
Human glioma cells
(U251, HS683)
(1–10–30 µM)

↓ MMP-13 expression
levels
↓ FAK phosphorylation
↓ Cell motility

[192]
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Table 1. Cont.

Polyphenol In Vitro Model In Vivo Model Effect on FAP Ref.

Umbelliprenin

BALB/c mice s.c.
inoculated with 1 × 105

colorectal cancer cells
CT26 and treated i.p.
daily with 12.5 mg/kg
of umbelliprenin

↑ IFN-γ levels
↓ IL-4 levels
↑ E-cadherin levels
↓ Ki-67 levels
↓ MMP-9/-2 expression
levels
↓ VEGF levels
↓ Lung and liver metastasis

[160]

Auraptene

Human ovarian cancer cell
line (A2780) and human
cervical cancer cell line
(HeLa)
(0.78125–1.5625–3.125–
6.25–12.5–25–50–100 µM)

↓ Invasion and migration
↓ MMP-2/-9 enzymatic
activity

[236]

Angelol-A

Human cervical cancer cell
line (SiHa and HeLa) and
human proximal tubular
(PTC) cell line (HK2)
(40–80–120–160–200 µM)

↓ MMP-2 and VEGF-A
expression by ↑ expression
of miR-29a-3p (that targets
the VEGFA-3′ UTR)

[237]

Curcuminoids

Curcumin

Mouse–Rat hybrid retina
ganglion cell line (N18)
(7.5–15 µM)

↓ PKC, FAK, NF-κB p65
and Rho A protein levels
↓ ERK1/2, MKK7, COX-2
and ROCK1
↓ MMP-2 and MMP-9

[199]

Human colon cancer cell
lines from NCI-60 panel
(HCT-116, HT-29, HCT-15,
HCC-2998, Colo205,
Km-12, SW-620)
(10–20–30–40–50 µM)

SCID mice inoculated
in the spleen with
1 × 106 HCT-116 cells
and treated with
1 g/kg of curcumin
administered daily by
gastric intubation

↓ Sp-1 transcriptional
activity and Sp-1 regulated
genes (ADAM10, CALM1,
EPHB2, HDAC4 and
SEPP1)
↓ Inhibition of FAK
phosphorylation
↓ CD24 expression
↑ E-cadherin expression

[161]

Mouse neuroblastoma cell
line (N18) and Rat glioma
cell line (C6)
(2.5–5–10–25–50 µM)

↓ Formation of filopodia on
the intracellular surface
↓ MMP-2 and MMP-9
enzymatic activity
↓ Protein levels of FAK,
pFAK, Rac1 and Cdc42

[200]

Human tongue squamous
cell carcinoma cell line
(Cal-27)
(11.5 µM)

↓ Phosphorylation of
several kinases (TNK2,
FRK, AXL, MAPK12) and
phosphatases (PTPN6,
PTPRK and INPPL1)

[201]

Curcumin plus visible
light

Human bladder carcinoma
cell lines (RT112, UMUC-3)
(0.27–0.54–1.08 µM)

↓ FAK phosphorylation
↓ Integrin expression [162]
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Curcumin and
Wikstroflavone B
(WFB)

Four human NPC cell lines
(CNE1, CNE2, HONE1,
C666-1)
(20–40–60–80–100 µM CUR,
100–200–300–400 µM WFB)

↓ Cell migration, invasion,
colony formation and
viability by modulating
several proteins (Survivin,
cyclin D1, p53 and p21,
MMP-2, MMP-9, STAT3
and FAK)

[203]

Phenolic acids

Caffeic Acid 3,4-
Dihydroxyphenethyl
Ester (CADPE)

Human gastric carcinoma
cell lines (MGC-803,
HGC-27, AGS) and human
breast carcinoma cell line
(MDA-MB-231)
(1–5–10–25–50 µmol/L)

↓ PMA-induced increase in
MMP-9 activity
↓ c-fos and AP-1 nuclear
factor activity
↓ PMA-induced FAK, ERK
and MEK phosphorylation

[205]

Caffeic Acid Phenethyl
Ester (CAPE)

Human fibrosarcoma cell
line (HT1080)
(20–50–80–100 µM)

↓ MMP-2/-9 enzymatic
activity
↓ MMPs mRNA levels

[238]

Human hepatocellular
carcinoma cell line
(SK-Hep1)
(6.25–12.5–25 µM)

↓ MMP-2/-9 activity
↓ NF-κB DNA-binding
activity

[239]

Human tongue squamous
carcinoma cell line (SCC-9)
(5–10-20–40 µM)

↓ FAK phosphorylation
↓ p38 and c-jun signaling
pathways
↓ MMP-2 activity

[204]

Human hypopharyngeal
squamous cell carcinoma
(SNU-1041)
(4 µM)

↓ EMT progression
↑ E-cadherin expression
↓ FAK phosphorylation
↓ Paxillin expression

[164]

Gallic Acid (GA)
Human prostate cancer cell
line (PC-3)
(25–50–100–150 µM)

↓ MMP-2/-9 activity
↓ GRB2, PKC, NF-κB p65,
JNK, ERK1/2, p38, p-Akt
↑ PI3K and Akt inhibition
of FAK and Rho-A mRNA
levels
↑ TIMP-1 gene levels

[207]

Methyl Gallate (MG) Rat glioma cell line (C6)
(0.1–0.5–1–5–10–20 µg/mL)

↓ Cell viability, invasion
and migration
↓ Akt phosphorylation
levels
↓ ERK1/2 phosphorylation
↓ Paxillin phosphorylation
and focal adhesion
turnover

[208]

Ferulic Acid (FA)
Immortalized rat cell line
(HSC-T6)
(1–3–10–30–100–300 µM)

↓ α-1 collagen and
fibronectin expression
↓ SMAD activity
↓ FAK activity

[206]
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PT93 (a novel caffeic
acid amide derivate)

Human malignant
glioblastoma cell lines
(T98G, U87, U251) and
normal mouse neuron cells
(HT22)
(1–3–10–30–100–200–300 µM)

↓ MMP-2/-9 activity [240]

Bornyl cis-4-
Hydroxycinnamate

Human melanoma cell
lines (A2058, A375)
(1–3–6–12–18–24–32–36 µM)

↓ MMP-2 and MMP-9
expression through
inhibition of
FAK/PI3K/Akt/mTOR,
MAPK and GRB2 signaling
pathways
↓ EMT progression

[163]

Ellagic Acid (EA)
Mouse melanoma cell line
(B16-F10)
(15–30 µM)

↑ p53 accumulation
↑ PTEN phosphatase
activity
↓ Akt activity

[209]

Ethanolis extract of
Ocinum sanctum leaves
(EEOS)

Head and neck squamous
cell carcinoma cell lines
(HN4, HN12, HN30, HN31)
(0.05–0.1–0.2–0.4–0.8
mg/mL)

↓ MMP-2/-9 activity [251]

Extracts of Crataegus
berries, leaves, and
flowers compounds

Human glioblastoma cell
line (U87MG)
(100–250-500 µg/mL)

↓ FAK and Akt
phosphorylation [210]

Chloropyramine-
cinnamic acid hybrids

Human breast cancer cell
line (MDA-MB-231)
(5–10–20 µM)

↓ FAK Y925
phosphorylation
↓ Focal adhesion formation

[211]

Plasma anthocyanins
and their metabolites

Human pancreatic cancer
cell lines
(PANC-1, AsPC-1)

↓ β1- and β4-integrins and
intercellular adhesion
molecule-1
↓ NF-κB p65 and FAK
activity

[172]

Lignans

Magnolol

Human breast cancer cell
line (MDA-MB-231)
(10-20-30 µM)

Female (nu/nu) mice
s.c. inoculated with
MDA-MB-231 (6 × 106)
or MCF-7 (4 × 106)
cells and treated i.p.
with 40 mg/kg of
magnolol four times
a week

↓ MMP-2/-9 activity
↓ NF-κB activity
↓ p65 and p-IKB activity

[212]

Human
cholangiocarcinoma cell
line (MZ-ChA-1)
(10–20-30–40 µM)

↓ MMP-2/-7/-9 levels [241]
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Human colorectal
adenocarcinoma cell lines
(HCT116, SW480)
(2.5–5–10 µM)

↑ Epithelial markers
(E-cadherin, ZO-1, claudin)
↓ Mesenchymal markers
(N-cadherin, TWIST-1, Slug
and Snail)

[166]

Human glioblastoma cell
lines
(U87MG, LN229)
(20–40–60 µM)

BALB/cAnN.C-
Foxn1nu/CrlNarl nude
mice (105 LN229-Luc2
cells implanted in the
right cerebral
hemisphere) treated i.p.
with 20 mg/kg/day of
magnolol for 10 days

↓ Focal adhesion formation
↓ N-cadherin expression [167]

Human prostate cancer cell
line
(PC-3)
(2.5–5–10–20 µM)

↓ Cell migration by
attenuating MMP-2/-9
expression

[242]

Honokiol
Human non-small-cell lung
carcinoma cell line (H1299)
(2.5–5–7.5–10 µM)

↓ Cell migration
↓ Cell invasion
↓ MMP-2/-9 activity

[243]

Nordihydroguaiaretic
acid (NDGA)

Human prostate cancer cell
line (PC-3)
(10–20 µM)

Nude mice s.c. or i.v.
inoculated with 5 × 106

PC-3 or luc-PC-3 cells
and treated i.v. with
50–100 mg/kg of
NDGA

↓ Cell migration by
suppressing NRP1
expression
↓ FAK signaling pathway

[213]

Stilbenes

Resveratrol

Human colon cancer cell
lines (HCT116, RKO)
(1–2–5 µM)

↓ EMT progression, NF-κB
nuclear translocation and
paxillin expression by
targeting the β1-integrin
receptor

[170]

Human colon cancer cell
lines (HCT116, SW480)
(5 µM)

↓ FAK activity
↓ Cytoskeletal proteins [214]

Human colon cancer cell
line (HT29)
(50–100–150 µM)

↓ Talin expression
↓ FAK phosphorylation [215]

Human breast cancer cell
line (MDA-MB-231)
(1–10–25–50–100 µM)

↓ Cell migration
↓ Focal adhesion formation
↓ FAK phosphorylation
↑ Filopodia formation

[216]

Human colon cancer cell
lines
(HCT116, RKO, SW480)
(5 µM)

↓ NF-κB pathway
↓ FAK activity
↓ Vimentin production
↓ Slug nuclear factor
activity
↑ E-cadherin expression

[171]
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Resveratrol and
Pterostilbene

Human cervical cancer cell
lines
(HeLa, CaSki, SiHa)
(6.5–12–5–20–25–40–50–
100–200 µM)

↓ MMP-2/-9 expression [244]

Pterostilbene
Human breast cancer cell
line (MCF-7)
(5–10–20–30 µM)

↓ HRG-β1-mediated cell
invasion, motility and
cancer cell transformation
through downregulation of
MMP-9 activity

[245]

Xanthones

Mangiferin

Human breast cancer cell
lines (MDA-MB-231,
BT-549, MCF-7, T47D)
(75–150–300 µM)

SCID female mice s.c.
inoculated with 2 × 106

MDA-MB-231 cells and
treated with 100 mg/kg
of mangiferin by
gavage

↓ MMP-7/-9 activity
↓ EMT progression
↓ Catenin pathway
↓ Tumor weight and
progression
↑ Apoptosis induction
↑ E-cadherin expression

[168]

Human prostate cancer cell
line (LNCaP)
(100–200–400 µM)

↓ TNF-α-induced MMP-9
expression by inhibition of
NF-κB nuclear factor
activity

[246]

Human astroglioma cells
(U87MG, U373MG,
CRT-MG)
(30–100–300 µM)

↓ MMP-7/-9 expression
↓ EMT progression [247]

C57BL/6 male mice
inoculated in footpads
with B16-BL6 cells and
orally treated with
50–100–200 mg/kg of
mangiferin

↓ MMP-1/-2/-9/-14
expression
↓ VLA-4/-5/-6 expression

[252]

Human ovarian cancer cell
lines (A2780, ES-2)
(37.5–75–150–300 µM)

BALB/c female nude
mice s.c. inoculated
with 4 × 106 cells and
treated with
20–60 mg/kg of
mangiferin

↓ MMP-2/-9 activity [248]

α-Mangostin

Human pancreatic cancer
cell lines
(BxPC-3, MIAPaCa-2)
(5–7.5–10–15 µM)

↓ MMP-2/-9 activity
↑ E-cadherin expression [165]

Gartanin
Human glioma cell line
(T98G)
(3–10 µM)

↓ MMP-2/-9 activity [249]
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Cratoxylumxanthone C

Human lung cancer cell
lines (A549), human liver
cancer cell line (HepG2),
human breast cancer cell
line (MCF7)
(7.15–15 µM)

↓ Cell migration
↓ FAK/MMP-2 pathway [250]

Abbreviations: ↑, increase/upregulation; ↓, decrease/downregulation; ADAM10, ADAM metallopeptidase do-
main 10; AP-1, activator protein 1; ARM-1, regulating molecule-1; AXL, AXL receptor tyrosine kinase; c-Met,
mesenchymal–epithelial transition factor; CALM1, calmodulin 1; CD24, cluster of differentiation 24; Cdc42, cell
division cycle 42; c-Met, mesenchymal–epithelial transition factor; COX-2, cyclooxygenase-2; DNA, deoxyribonu-
cleic acid; EGFR, epidermal growth factor receptor; EMT, epithelial–mesenchymal transition; EPHB2, ephrin
receptor B2; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; FAS, apoptosis antigen 1; FRK,
tyrosine-protein kinase FRK; GRB2, growth factor receptor-bound protein 2; GSK-3β, glycogen synthase kinase-3
beta; HDAC4, histone deacetylase 4; HER-2, human epidermal growth factor receptor 2; HRG-β1, heregulin
β1; HSP27, heat shock protein 27; IFN-γ, interferon gamma; IGF-1R, insulin-like growth factor-1 receptor; IL,
interleukin; INPPL1, inositol polyphosphate phosphatase-like 1; i.p., intraperitoneal; i.v., intravenous; JNK, c-Jun
N-terminal kinase; Ki-67, nuclear protein Ki67; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated
protein kinase; MMP, matrix metalloproteinase; mRNA, messenger ribonucleic acid; MT1-MMP, membrane type 1
matrix metalloproteinases; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor-kappa B; NNK, nicotine-
derived nitrosamine ketone; NRP1, neuropilin-1; p21, activating factor-1/cyclin-dependent kinase inhibitory
protein-1; p38, p38 mitogen-activated protein kinase; p130Cas, p130 Crk-associated substrate; PAI, plasminogen
activator inhibitor-1; p-Akt, phosphorylated Akt; p-ERK1/2, phosphorylated extracellular signal-regulated kinase
1/2; p-FAK, phosphorylated FAK; PI3K, phosphoinositide 3-kinase; p-IκB, phosphorylated IκB kinase; PKC,
protein kinase C; PMA, phorbol 12-myristate 13-acetate; PTEN, phosphatase and tensin homolog; PTPN6, tyrosine-
protein phosphatase non-receptor type 6; PTPRK, protein tyrosine phosphatase receptor type K; Rac1, Ras-related
C3 botulinum toxin substrate 1; Rho A, Ras homolog family member A; ROCK1, Rho-associated kinase 1; s.c.,
subcutaneous; SEPP1, selenoprotein P; SMAD, suppressor of mothers against decapentaplegic; SNAI1/Snail,
snail family transcriptional repressor 1, zinc finger protein 1; SNAI2/Slug, snail family transcriptional repressor
2, zinc finger protein 2; Sp-1, transcription factor Sp1; Src, proto-oncogene tyrosine-protein kinase Src (or cSrc);
STAT3, signal transducer and activator of transcription 3; TIMP-1/2, tissue inhibitor matrix metalloproteinases
1/2; TNF-α, tumor necrosis factor-alpha; TNK2, tyrosine kinase non-receptor 2; TWIST-1, twist-related protein 1;
u-PA, urokinase-type plasminogen activator; VEGF, vascular endothelial growth factor; VLA-4/5/6, very late
activation antigen-4/5/6; v-Src, tyrosine-protein kinase transforming protein Src; ZO-1, zonula occludens protein 1.

6. Discussion

The FAP is a complex biological structure that connects the outside with the inside of
the cell, allowing the cell to detect and respond to signals from the ECM. The continuous
turnover of the FAPs allows cell motility and cancer cell invasion. The process of invasion
and, subsequently, of metastasis is allowed by the degradation of the ECM. The plaque
needs different proteins to work properly, which are present in the ECM, cell membrane
and cytoskeleton. The main proteins involved in cell invasion are MMPs, found in the ECM,
and cadherins found at the cell membrane [253]. Specifically, MMPs degrade ECM proteins,
while changes in cadherins expression levels contribute to the EMT, also important to start
the cell’s invasion process [254]. The FAP is also fundamental for cell survival thanks to
the presence of multiple protein kinases, such as Akt, mTOR, PI3K and MAPKs, that start
pro-survival signaling cascades [255]. Due to their key role in cancer cell migration and
invasion, MMPs and components of FAPs are often upregulated in cancer and are thus
potential targets for cancer therapy. In this regard, several studies have assessed the effects
of polyphenols on FAPs and MMPs. Polyphenols are a large group of organic compounds
found in plant-based food and beverages, classified into two main classes, flavonoids and
non-flavonoids based on their chemical structure [256]. They are known for many beneficial
properties like anticancer, anti-inflammatory, antioxidant and anti-aging properties.

This review provided a wide picture of the multifaced effects of polyphenols on FAPs
in a tumorigenic context. In fact, polyphenols have been reported to inhibit enzymatic
activity and/or expression of MMPs, specifically -2 and -9, and to promote the switch from
mesenchymal to epithelial cadherins, thus inhibiting EMT [257,258]. Moreover, different
polyphenols have shown the capacity to block FAK phosphorylation and the downstream
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pathway [259]. In some cases, polyphenols also showed the ability to block the formation
of invadosomes, thus minimizing cells movement.

One of the biggest problems with the use of polyphenols in the medical field is
their poor bioavailability and low concentration in the bloodstream once administered
orally [260]. This obviously has a strong impact on the effective dose that is delivered to
cancer cells. One way to counteract this problem could be to combine several polyphenols
with each other, thereby increasing their overall concentration at the cellular level and
adding together the effects of the individual compounds [261,262]. Dietary variables can
also impact the bioavailability of polyphenols, in addition to endogenous factors. The
release of polyphenols can be influenced by a specific food matrix, and the composition
and structure of polyphenols can be changed during food preparation [263]. Due to
these factors, plasma only contains nano- or micromolar amounts of polyphenols and
their metabolites (0–4 µM following an ingestion of 50 mg of aglycone equivalents) [264].
This is due to the fact that polyphenols are stably bound inside the food in which they
are contained, and therefore, it is already difficult to break them apart and make them
soluble. In addition, there are multiple enzymes produced by the intestinal microbiota
that can metabolize these compounds, and only a very small amount of them reaches
the bloodstream. The bioavailability of polyphenols also varies depending on the class,
with a well-defined hierarchy: phenolic acids > isoflavones > flavonols > catechins >
flavanones/proanthocyanidins > anthocyanins [265]. For all these reasons, the doses of
polyphenols provided in oral treatments in in vivo experiments must be higher than those
used in vitro. It should be also considered that in addition to the difficulties present at
the level of intestinal absorption and metabolism, in in vivo models, there are much more
complex cellular mechanisms and interactions than those present in stabilized cell cultures.

Despite the huge advances made in recent years in the research and analysis of the
anticancer effects of polyphenols, the main problem of their low bioavailability remains
unresolved. The research so far mainly focused on in vivo and in vitro models, and few
clinical trials have started to investigate the effects of polyphenols as anticancer drugs
in humans. Future research may focus on strategies aimed at increasing polyphenols’
bioavailability. Recently, several strategies are being considered. One of these may be the
use of different classes of polyphenols joined to certain anticancer drugs [266]. This strategy,
however, is not free from risks since the interaction between polyphenols and drugs can
induce the occurrence of side effects, and the mechanisms of action are not yet fully clear.
Another method can be the use of nanotechnology to produce lipid nanoparticles to be
employed as “containers” for polyphenols, so as to allow them to cross the intestinal
barriers and reach the blood circulation in larger quantities [267–270].

Considering the studies reported so far, polyphenols could have a potential as adju-
vants for chemo- and radiotherapy because of their capacity to inhibit key proteins used by
cancer cells to invade the ECM and promote cell survival.

7. Conclusions

In conclusion, this review provides a comprehensive understanding of the diverse
effects of polyphenols on FAPs in a tumorigenic context. Polyphenols exhibit promising
abilities to inhibit crucial proteins involved in cancer progression, such as MMPs, and
facilitate the reversal of EMT, thus affecting cancer cell invasion. However, their clinical ap-
plication is hindered by challenges related to their poor bioavailability and low bloodstream
concentration after oral administration. Strategies to enhance polyphenol bioavailability,
such as combination therapies and nanotechnology-based delivery systems, are being
explored. Despite these challenges, polyphenols hold potential as adjunctive therapies to
conventional cancer treatments due to their ability to target key mechanisms involved in
cancer progression. Future research efforts should prioritize the development of effective
strategies to improve polyphenol bioavailability and elucidate their mechanisms of action
in clinical settings.
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