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A B S T R A C T

This study focuses on the dynamics of melting with natural convection in a square enclosure heated from
a side boundary (heating source). This is done through an ad-hoc developed numerical model based on the
lattice Boltzmann method. The understanding of the convection melting process in such a setup is particularly
relevant for the technical exploitation of Phase Change Materials (PCMs) as thermal energy storage and thermal
management systems in different applications of technical interest in the field of sustainable energy systems.
This study addresses novel and key issues related to the boundary conditions related to the heating source by
considering heating sources presenting alternating insulating and conductive patches. The size of the patches
has been systematically changed in order to address the role of heterogeneities in the heating source and the
heat transfer phenomenon is quantified via the analysis of the dynamics of the average melting front position
and the time dependence of the Nusselt number. Side-by-side comparisons between heterogeneous heating
sources and homogeneous (conductive) ones are systematically investigated. It is found that the heterogeneity
of the boundary conditions changes the dynamics of the heat transfer mechanism introducing additional
convective mechanisms of transport that would be absent in the homogeneous case. This study is instrumental
to distill engineering principles for the design and development of suitable boundary conditions to exert a
passive control on the PCM system for energy storage.
1. Introduction

The phase change from solid to liquid (melting) in the presence of
natural convection is ubiquitous in countless phenomena of scientific
and technical interest, ranging from geophysical contexts [1–3], to
industrial processes [4] and crystal growth [5] just to cite a few
examples. In this wide panorama, the heat fluxes generated by thermal
convection [6,7] drive local melting of a solid boundary, resulting in a
complex dynamical scenario [8–10].

Convection melting is key for the technical exploitation of Phase
Change Materials (PCMs) as thermal energy storage and thermal man-
agement systems, due to their large latent heat [11]. Such a peculiarity
allows for the storage and release of large amounts of thermal energy
during the phase change process. Several substances, from metals to
polymers and beeswax, can be used as PCMs, each presenting its own
advantages and disadvantages related to the operating conditions in
terms of phase-transition temperature, latent heat and thermal conduc-
tivity [12,13]. The adoption of PCMs is known to boost the energetic
performance of renewable energy systems, which require energy stor-
age solutions for their proper operation [14]. This is the reason why
PCMs have been adopted to realize solar energy storage [15], for
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applications ranging from domestic heating [16] to heat pump sys-
tems [17]. Recent advances in the understanding of PCMs melting and
solidification has led to interesting results in the field of metal hydride
management, to boost the capability of hydrogen storage [18–21]. The
properties of phase change materials can be designed and adapted to
the chosen application during the manufacturing process, for example
by mixing multiple materials, adding conductive supports or fillers, or
encapsulating the system in a conductive shell. Reviews on these topics
are given in [4,13,22–24]. A sketch of convection melting dynamics in
a PCM is given in Fig. 1. The PCM is contained in an enclosure and
heated from a side boundary under the effect of gravity. After an initial
stage dominated by conduction dynamics, the interaction between the
temperature gradient and gravity allows for the onset of convection [8].
The hotter liquid rises, promoting melting in the upper region and a
non-linear melting front 𝑠 = 𝑠(𝑦, 𝑡), defined as the boundary between the
liquid and the solid phase, emerges. Given the complexity of the system,
both in equations and boundary conditions, there are few analytical
results; thus, experiments [8,25] and computer simulations [26–29] are
key to assess PCM behaviour [30].
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Nomenclature

Physical quantities

𝐶𝑝 Specific heat.
𝑒(𝑡) Kinetic energy.
𝐹𝑔 Buoyancy force.
𝑔 Acceleration of gravity.
ℎ Enthalpy.
𝐿𝑓 Latent heat of fusion.
𝐿𝑥, 𝐿𝑦 Dimensions of the system.
𝑝 Fluid pressure.
𝑠 Melting front position.
𝑇 Temperature.
𝑇0 Reference temperature.
𝑇∞ Stationary temperature.
𝑇𝐶 Cold temperature.
𝑇𝐻 Hot (source) temperature.
𝑇nw Near-wall temperature.
𝑢 Fluid velocity.

LBM quantities

{𝑐} Velocities set.
𝑐𝑠 Speed of sound.
𝑓𝑖, 𝑔𝑖 Distribution functions.
𝑆𝑖, 𝑆ℎ𝑖 Source terms.
𝑤𝑖 Weights.

Greek symbols

𝛼 Thermal expansion coefficient.
𝜅 Thermal diffusivity.
𝜆 Length of insulating patches.
𝜈 Kinematic viscosity.
𝜙 Liquid fraction.
𝜌 Fluid density.
𝜌0 Reference density.
𝜏, 𝜏ℎ LBM relaxation times.
𝜃 Dimensionless time.

Adimensional numbers

Nu Nusselt Number.
Pr Prandtl Number.
Ra Rayleigh Number.
Ste Stefan Number.

Boundary Conditions (BCs) play a fundamental role in the con-
ection dynamics [6]: examples include different system inclinations
ith respect to buoyancy forces [31,32] and heterogeneities of the
oundary walls with insulating patches or roughness [3,33–35]. In the
resence of a moving boundary in a melting substance, further non-
inearities are added to the system [2,7,36,37]. Thus, the impact of
oundary conditions in the evolution of convection melting in PCMs
s of paramount importance. PCM boundaries are usually assumed
s ideal, i.e. homogeneous conductive and/or insulating BCs, but in
eal situations such boundaries are frequently associated to the onset
f heterogeneities, connected to the layout of the boundaries (which
requently are associated with the presence of thermal supports), [13,
8,39] and to non-linear phenomena, such as the detachment from
he boundary during solidification [40], which are difficult to predict.
oreover, understanding how a change in BC influences the heat
2 
exchange could provide a way to passively control the thermal storage.
he impact of BCs on convection melting in PCM’s has been studied in
ome papers in the literature: in [41] the authors studied the effect that
linear variation in the heating temperature plays on the melting of a
CM; in [42] the role of asymmetric flow BCs was investigated; in [43]
he authors simulated the effects of protruding heating sources attached
o a vertical wall of the enclosure containing the PCM; in [44] the
erformance of a PCM in porous media in the presence of conductive
ins was investigated. In this paper, the role of heterogeneities in the
eating source is investigated by studying a simple model of a PCM
nside an enclosure (Fig. 1) where the heating source is characterized by
sequence of alternating thermal insulating and conducting patches of

ength 𝜆. This study hinges on numerical simulations based on the lat-
ice Boltzmann method (LBM) [26,45–48]. LBM is grounded in kinetic
heory and offers a series of advantages including an easy modelling of
Cs, a feature that is instrumental in the scope of this study. The paper

s organized as follows: Section 2 introduces the reference continuum
quations for the system under study and recalls the basic ingredients
f the LBM used to solve the macroscopic equations for convection
elting; in Section 3 some basic benchmark tests for the LBM used

re provided; Section 4 presents results and discussions for convection
elting in PCM by addressing the importance of heterogeneity in the
C of the heating source; conclusions will follow in Section 5.

. Problem statement

This section contains the reference equations and general statements
or the problem under study. The system is a two-dimensional box of
ize 𝐿𝑥 × 𝐿𝑦 = 𝐿 × 𝐿 with an heating source (left side wall) patterned

with a regular array of insulating patches alternating with conductive
patches at temperature 𝑇𝐻 . The other walls are all insulating and
the box is filled with a solid at the melting temperature 𝑇𝐶 . The
cceleration of gravity is parallel to the heating source, pointing in the
egative 𝑦 direction. The system is sketched in panels (a) and (b) of
ig. 1.

.1. Macroscopic equations

The equations that describe the fluid dynamics in the system are the
ontinuity equation and the Navier–Stokes equations with a buoyancy
orce 𝐹𝑔

𝑡𝜌 + ∇⃗ ⋅
(

𝜌𝑢
)

= 0 (1)

(𝜕𝑡 + 𝑢 ⋅ ∇⃗)𝑢 = 𝜌𝜈∇2𝑢 − ∇⃗𝑝 + 𝐹𝑔 (2)

here 𝑢 = 𝑢(�⃗�, 𝑡) is the velocity vector, 𝜌 = 𝜌(�⃗�, 𝑡) the fluid density,
= 𝑝(�⃗�, 𝑡) the fluid pressure and 𝜈 the kinematic viscosity (a constant in

he case at hand). The Buoyancy term 𝐹𝑔 is considered in the Boussinesq
approximation [6,36]:

𝐹𝑔 = −𝛼𝜌0(𝑇 − 𝑇0)𝑔 (3)

where 𝑇0 is a reference value for the temperature 𝑇 = 𝑇 (�⃗�, 𝑡), 𝜌0 a
eference value for the density and 𝛼 the thermal expansion coefficient.
ensity and momentum dynamics given in Eqs. (1) and (2) are coupled
ith the advection–diffusion equation with a melting term for the

emperature field:

𝑡𝑇 + ∇⃗ ⋅ (𝑇 𝑢) = 𝜅∇2𝑇 −
𝐿𝑓

𝐶𝑝
𝜕𝑡𝜙 (4)

where 𝜅 is the thermal diffusivity, 𝐿𝑓 the latent heat of fusion and 𝐶𝑝
the specific heat of the substance. The field 𝜙 = 𝜙(�⃗�, 𝑡) is the liquid
fraction, defined as the relative volume occupied by the liquid phase
in a certain position. 𝜙 depends on the local enthalpy ℎ which in turn
depends on the local temperature field 𝑇 [49]. Before the inception of
the phase transition process, no liquid is present in the computational
domain, thus 𝜙 = 0; when the phase transition is accomplished, only
the liquid phase is present, with 𝜙 = 1 [13,36].
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Fig. 1. Panel (a): Sketch of the PCM system with heterogeneous heating source on the left wall, with conductive patches at temperature 𝑇𝐻 alternating with insulating patches.
The length of the patches is 𝜆 (see Panel (b)). All other walls are insulating. The enclosure is filled with a solid at the melting temperature 𝑇𝐶 . Panel (c): selected snapshots of
the temperature map during the melting process with 𝜆 = 0.2 ⋅ 𝐿. The dashed line indicates the normalized melting front �̂� = 𝑠∕𝐿, where 𝑠 = 𝑠(�̂�, 𝜃) is the melting front location
and 𝜃 the dimensionless time (see text for details). Spatial coordinates have been made dimensionless with the system size, �̂� = 𝑥∕𝐿, �̂� = 𝑦∕𝐿.
All the bulk equations above must be coupled with appropriate BCs.
For the fluid dynamics part, all boundaries are implemented as no-slip
impenetrable walls, implying a zero velocity in contact with the wall

𝑢wall = 0. (5)

For the thermal dynamics, a heating source and three adiabatic walls
are implemented. The heating source is heterogeneous (see Fig. 1),
alternating insulating patches with conductive patches. The size of the
patches is 𝜆. The BC on the conductive patches is implemented as a
constant temperature in time

𝑇wall(𝑡) = 𝑇𝐻 = const , (6)

while on the insulating patches (and the insulating walls) zero perpen-
dicular heat flux is imposed as
𝜕𝑇
𝜕𝑛

|

|

|

|wall
= 0 (7)

where 𝑛 is the normal direction to the wall.
To study the dynamics of PCM melting, the following non-

dimensional quantities are of relevance:

1. The Rayleigh Number Ra:

Ra =
𝑔𝛼(𝑇𝐻 − 𝑇𝐶 )𝐿3

𝑦

𝜈𝜅
, (8)

which is the ratio between buoyancy forces and dissipation;
2. The Stefan Number Ste:

Ste =
𝐶𝑝

𝐿𝑓
(𝑇𝐻 − 𝑇𝐶 ) , (9)

that is the ratio between conductive and latent heat;
 𝑠

3 
3. The Prandtl Number Pr:

Pr = 𝜈
𝜅
, (10)

given by the ratio between viscous and thermal dissipation;
4. The Nusselt Number Nu:

Nu = 𝑄
𝜅(𝑇𝐻 − 𝑇𝐶 )

, (11)

giving the heat transfer through the left wall (Q) in dimen-
sionless units. In the case of a two dimensional computational
domain, Nu can be computed as [8]

Nu = −
∫ 𝐿𝑦
0 𝜕𝑥𝑇 (𝑥 = 0, 𝑦) 𝑑𝑦

𝑇𝐻 − 𝑇𝐶
. (12)

5. The average melting front position:

𝑠𝑎𝑣(𝑡) =
1
𝐿𝑦 ∫

𝐿𝑦

0
𝑠(𝑦, 𝑡) 𝑑𝑦. (13)

where 𝑠(𝑦, 𝑡) is the instantaneous melting front position (see
Fig. 1).

6. Dimensionless time [19,46]:

𝜃 =
𝐶𝑝𝜅(𝑇𝐻 − 𝑇𝐶 )

𝐿𝑓𝐿2
𝑦

𝑡. (14)

When needed, spatial variables will also be made dimensionless with
respect to the characteristic size of the system, �̂� = 𝑥∕𝐿𝑥, �̂� = 𝑦∕𝐿𝑦,
̂ = 𝑠∕𝐿 , �̂� = 𝑠 ∕𝐿 .
𝑥 𝑎𝑣 𝑎𝑣 𝑥
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2.2. The lattice Boltzmann method

The set of continuum equations is solved via a lattice Boltzmann
method (LBM). Over the years, the LBM has allowed for the simulations
of complex phenomena at the intersection between engineering, physics
and, recently, biology [50–53]. In particular, the LBM approach has
already been used to simulate the macroscopic equations for convec-
tion melting [46,47]. This paper’s implementation closely follows the
implementation by Huber et al. [46], hence only the main ingredi-
ents are recalled here. The LBM is based on the idea of solving the
hydrodynamic equations starting from the evolution of probability dis-
tribution functions in a discrete kinetic space, 𝑓𝑖(�⃗�, 𝑡), representing the
robability to find in the discrete space–time location (�⃗�, 𝑡) a mesoscale

particle with kinetic velocity 𝑐𝑖. The kinetic velocity space is discretized
sing a finite set of velocities 𝑐𝑖, 𝑖 = 0,… , 𝑁 − 1 and corresponding
eights 𝑤𝑖 [54,55]. There are various choices for these sets: for the

wo dimensional system in this study the choice was the D2Q9 velocity
et [54] with 𝑁 = 9 velocities: 𝑐0 = (0, 0), 𝑐1 = (+1, 0), 𝑐2 = (0,+1),
𝑐3 = (−1, 0), 𝑐4 = (0,−1), 𝑐5 = (+1,+1), 𝑐6 = (−1,+1), 𝑐7 = (−1,−1),
𝑐8 = (+1,−1) and weights 𝑤0 = 4∕9, 𝑤1,2,3,4 = 1∕9, 𝑤5,6,7,8 = 1∕36. The
evolution dynamics of the LBM over a unitary time lapse (𝛥𝑡 = 1) and
unitary grid spacing (𝛥𝑥 = 1) is:

𝑓𝑖(�⃗� + 𝑐𝑖, 𝑡 + 1) − 𝑓𝑖(�⃗�, 𝑡) =

= −1
𝜏

(

𝑓𝑖 − 𝑓 (eq)
𝑖

)

(�⃗�, 𝑡) +
(

1 − 1
2𝜏

)

𝑆𝑖(�⃗�, 𝑡).
(15)

The left side represents the streaming of the PDF, while the right side
represents contributions of collision and source terms 𝑆𝑖. Specifically,
he simulations at hand make use of the BGK collision operator, which
elaxes the particle distribution to its equilibrium 𝑓 (eq)

𝑖 with a charac-
eristic relaxation time 𝜏 [54–56]. The discrete equilibrium distribution
epends on (�⃗�, 𝑡) via the density and velocity field. The expression for
he equilibrium distribution is

(eq)
𝑖 (𝜌, 𝑢) = 𝑤𝑖𝜌

(

1 +
𝑐𝑖 ⋅ 𝑢
𝑐2𝑠

+
(𝑐𝑖 ⋅ 𝑢)2

2𝑐4𝑠
− 𝑢 ⋅ 𝑢

2𝑐2𝑠

)

(16)

here 𝑐2𝑠 = 1
3 is the squared speed of sound in the system. The

source term 𝑆𝑖 depends on (�⃗�, 𝑡) via the velocity field and the external
buoyancy force 𝐹𝑔 (see Eq. (3)). In this study it was modelled according
to Guo et al.’s [57] prescription:

𝑆𝑖(𝑢, 𝐹𝑔) = 𝑤𝑖

(

𝑐𝑖
𝑐2𝑠

+
(𝑐𝑖 ⊗ 𝑐𝑖) ⋅ 𝑢

𝑐4𝑠
− 𝑢

𝑐2𝑠

)

⋅ 𝐹𝑔 . (17)

rom the moments of the distribution in the velocity space one can
ecover the macroscopic quantities of density and momentum density:

=
∑

𝑖
𝑓𝑖 =

∑

𝑖
𝑓 (eq)
𝑖

𝑢 =
∑

𝑖
𝑓𝑖𝑐𝑖 +

1
2
𝐹𝑔 . (18)

It can be shown that the macroscopic quantities 𝜌 and 𝜌𝑢 satisfy hydro-
ynamic equations via an asymptotic expansion known as Chapman–
nskog expansion, whose details can be found in [54,55]. The
hapman–Enskog expansion allows to relate the kinematic viscosity of
he fluid to the relaxation time of the LBM [54]

= 𝑐2𝑠
(

𝜏 − 1
2

)

. (19)

he LBM can also be used to simulate advection diffusion equa-
ions [54,55]. In this paper Eq. (4) was simulated with a second Lattice
oltzmann distribution [46,54,55], 𝑔𝑖(�⃗�, 𝑡), which evolves according to:

𝑖(�⃗� + 𝑐𝑖, 𝑡 + 1) − 𝑔𝑖(�⃗�, 𝑡) =

= − 1 (𝑔𝑖 − 𝑔(eq))(�⃗�, 𝑡) + 𝑆ℎ𝑖(�⃗�, 𝑡)
(20)
𝜏ℎ 𝑖

4 
with equilibrium distribution given by

𝑔(eq)
𝑖 (𝑇 , 𝑢) = 𝑤𝑖𝑇

(

1 +
𝑐𝑖 ⋅ 𝑢
𝑐2𝑠

+
(𝑐𝑖 ⋅ 𝑢)2

2𝑐4𝑠
− 𝑢 ⋅ 𝑢

2𝑐2𝑠

)

. (21)

The temperature field is recovered with the zero-th moment of the
distribution:

𝑇 =
∑

𝑖
𝑔𝑖 =

∑

𝑖
𝑔(eq)
𝑖 . (22)

To model the melting, one has to model the liquid fraction 𝜙 first: this
was done via a smoothed step function [36] and then by writing it as
a function of the enthalpy [36]:

𝜙(�⃗�, 𝑡) =

⎧

⎪

⎨

⎪

⎩

0 ℎ < ℎ𝑠
ℎ(�⃗�,𝑡)−ℎ𝑠
ℎ𝑙−ℎ𝑠

ℎ𝑠 ≤ ℎ ≤ ℎ𝑙
1 ℎ > ℎ𝑙 .

(23)

where

ℎ(�⃗�, 𝑡) = 𝐶𝑝𝑇 (�⃗�, 𝑡) + 𝐿𝑓𝜙(�⃗�, 𝑡 − 1) (24)

is the local enthalpy, ℎ𝑠 = 𝐶𝑝𝑇𝐶 the solid enthalpy and ℎ𝑙 = ℎ𝑠+𝐿𝑓 the
liquid enthalpy. At the initial time of any simulation the liquid fraction
is set to zero, 𝜙(�⃗�, 0) = 0, corresponding to a solid system. Thanks to
the heat transfer, the enthalpy will change, resulting in a change in the
liquid fraction. A lattice site will be considered as liquid if 𝜙 ≥ 0.5. The
melting term enters the LBM dynamics via the source term [46,47]:

𝑆ℎ𝑖(�⃗�, 𝑡) = 𝑤𝑖
𝐿𝑓

𝐶𝑝

(

𝜙(�⃗�, 𝑡) − 𝜙(�⃗�, 𝑡 − 1)
)

. (25)

Finally, the thermal diffusivity is set by the relaxation time of the
thermal distribution [54]

𝜅 = 𝑐2𝑠
(

𝜏ℎ −
1
2

)

. (26)

The implementation based on LBM used here closely follows the one
used by Huber et al. [46], with the main differences being that here the
thermal dynamics is simulated using a D2Q9 velocity set and a second-
order (in terms of 𝑢) equilibrium distribution instead of a D2Q5 and
first-order. While for the thermal LBM a D2Q5 would be sufficient, opt-
ing for D2Q9 improves precision (see Section 3 and Fig. 4). The same
arguments apply to the choice of a second order thermal equilibrium.

Regarding the BC implementations in the LBM, the no-slip impen-
etrable wall condition (see Eq. (5)) is implemented via a bounce-back
scheme for the populations 𝑓𝑖 [54,55]. Regarding the thermal dynam-
ics, the boundary condition on the conductive patch (see Eq. (6)) is
implemented by imposing that the thermal distribution function equals
an equilibrium distribution with zero velocity and temperature 𝑇𝐻 ,
i.e. 𝑔𝑖 = 𝑤𝑖𝑇𝐻 . Finally, insulating boundary conditions (see Eq. (7)) are
recovered with bounce-back schemes for 𝑔𝑖 following Refs. [54,58,59].

3. Benchmarks

Different simulations in different setups were performed to validate
the numerical model based on LBM. To test the correct coupling be-
tween the temperature dynamics and the momentum balance equation
via the buoyancy forces (see Eq. (2)), the problem of transition between
conduction and convection in a Rayleigh–Bénard cell [6,60,61] (see
Section 3.1) is considered. To check the implementation of the melting
term in Eq. (4), the one dimensional Stefan problem is considered. In
this system buoyancy forces are neglected and diffusion dominates,
resulting in analytical solutions for melting front evolution and tem-
perature distribution [19,22,46] (see Section 3.2). Finally, to validate
the model in presence of both convection and melting, simulations
for melting dynamics in an enclosure with a homogeneous heating
source are conducted and compared with other results available in
literature [46] (see Section 3.3).
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Fig. 2. Transition from conduction to convection in the Rayleigh–Bénard cell. Panel (a) shows the temperature map and the velocity field for the conductive regime (Ra < Ra𝑐 ) and
the convective regime (Ra > Ra𝑐 ), where Ra is the Rayleigh number (see Eq. (8)) and Ra𝑐 its critical value separating conductive regimes from convective ones. Spatial coordinates
have been made dimensionless with the system size, �̂� = 𝑥∕𝐿𝑥, �̂� = 𝑦∕𝐿𝑦. Panels (b) and (c) show plots of the kinetic energy density 𝑒(𝑡) (see Eq. (27)) as a function of time for
different Ra: 𝑒(𝑡) decays for conductive regimes while 𝑒(𝑡) reaches a stationary state in convective regimes. The change in behaviour is used to calculate Ra𝑐 .
3.1. Rayleigh-Bénard convection

The Rayleigh–Bénard cell consists of a two-dimensional computa-
tional domain of size 𝐿𝑥 × 𝐿𝑦, in which the fluid is under the effect
of gravity and the melting dynamic is absent (𝐿𝑓 = 0 in Eq. (4)). The
top and bottom boundaries of the cell are solid no-slip walls, with a
hot (𝑇 (𝑥, 0) = 𝑇𝐻 = 0.5) and cold (𝑇 (𝑥, 𝐿𝑦) = 𝑇𝐶 = −0.5) temperature
source, corresponding to a temperature jump 𝛥𝑇 = 1. Periodic bound-
ary conditions are set at the side boundaries. The interaction between
gravity and the thermal gradient triggers a mechanical instability,
leading to two possible regimes, depending on the value of Ra. There
is, in fact, a critical value Ra𝑐 , dependent on the aspect ratio 𝐿𝑦

𝐿𝑥
, that

identifies the threshold between conduction and convection inception.
If Ra < Ra𝑐 conduction prevails and the system’s kinetic energy gets
dissipated (𝑢 → 0). On the other hand, for Ra > Ra𝑐 , the system exhibits
a convective dynamics, with the onset of the characteristic vortexes and
a heat plume [6]. Panel (a) of Fig. 2 shows a sketch of the two described
behaviours. A correct implementation of thermal LBM would deliver
an accurate prediction of Ra𝑐 : our benchmark consists in evaluating
Ra𝑐 from the simulations to compare with the analytical prediction.
Simulation parameters are 𝐿𝑥 = 201, 𝐿𝑦 = 103, obtaining 𝐿𝑦

𝐿𝑥
≈ 0.5,

corresponding to Ra𝑐 ≈ 1707.76 [6]. The initial temperature is set to a
linear profile matching the wall temperatures and the density profile is
chosen to satisfy the hydrostatic mechanical equilibrium condition. The
velocity field is initialized with an oscillating perturbation, preserving
the incompressibility of the flow. Simulations are performed at different
Ra by fixing 𝜏 = 𝜏ℎ = 0.8, (corresponding to Pr = 1), 𝜌0 = 1, 𝑔 = 9.8067
and varying 𝛼. The analysis focused on the behaviour of the kinetic
energy 𝑒(𝑡), given by:

𝑒(𝑡) =
∑

�⃗�

𝜌(�⃗�, 𝑡) |
|

𝑢(�⃗�, 𝑡)|
|

2 . (27)

In the conductive regime, 𝑒(𝑡) decays, while in the presence of con-
duction 𝑒(𝑡) reaches a stationary value different from zero. The results
are shown in panels (b) and (c) of Fig. 2. From the analysis of the
simulation data it can be concluded that a critical value for Ra clearly
emerges in the range Ra𝑐 ∈ (1712.60, 1717, 65), which is very close (less
than 1% error) to the expected value of Ra𝑐 .

3.2. Conduction melting with homogeneous heating source: Stefan problem

The second benchmark test was the simulation of a Stefan prob-
lem, i.e. the melting of a solid at the melting temperature 𝑇 with a
𝐶

5 
heating source at temperature 𝑇𝐻 on the left side in the absence of
gravity. The absence of gravity makes the melting front uniform and
the problem one-dimensional [46,62]. There is an analytical solution
(Neumann exact solution) for the temperature field and normalized
melting front [8,46]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇 (𝑥, 𝑡) = 𝑇𝐻 − (𝑇𝐻 − 𝑇𝐶 )
erf(𝑥∕2

√

𝜅𝑡)
erf(𝛽)

�̂�(𝑡) = 𝑠(𝑡)
𝐿𝑥

= 2𝛽
𝐿𝑥

√

𝜅𝑡

𝛽 exp (𝛽2) erf(𝛽) = Ste
√

𝜋

(28)

where 𝛽 is an implicit function of the Stefan number and for the chosen
parameters (𝐿𝑓 = 𝐶𝑝 = 1 ⇒ Ste = 1) its value is 𝛽 ≈ 0.62. This
kind of simulation tests the correct implementation of the melting term
in the LBM. The considered system is an enclosure with 𝐿𝑥 = 100,
𝐿𝑦 = 5, a conductive heating source (see Eq. (6)) at 𝑇𝐻 = 1 on the
left side, an insulating BC (see Eq. (7)) on the right side and periodic
boundary conditions on the top and bottom sides. All walls are no-slip
(see Eq. (5)). Once a site has melted, it is initialized with 𝜌 = 1, 𝑢 = 0.
Three different simulations were performed using 𝜏ℎ = 2.6, 1.6, 0.6
corresponding to 𝜅 = 0.699, 0.367, 0.033. The results are shown in Fig. 3.
In panel (a) of Fig. 3 the temperature field is plotted as a function of the
normalized coordinates for 𝜅 = 0.367, showing that the melting front is
uniform. In panel (b) of Fig. 3 simulation results for �̂� as a function of 𝜃
are compared with the analytical solution given in Eq. (28) for different
values of 𝜅. In panel (c) of Fig. 3 simulation results for 𝑇 as a function
of �̂� are compared with the analytical solution given in Eq. (28) for
different values of 𝜅. Overall an excellent agreement can be observed
and it can be concluded that the implementation of the melting term
in the temperature equation is correct.

3.3. Convection melting with homogeneous heating source

The final benchmark tests the combined effects of convection and
melting by considering the melting of a solid inside a square enclosure
of size 𝐿𝑥 = 𝐿𝑦 = 𝐿 under the effect of gravity. The left wall of
the enclosure is a homogeneous heating source at 𝑇𝐻 = 1, while the
other three walls are insulating (see Eq. (7)). Initially, the solid is at
its melting temperature 𝑇𝐶 = 0. For this system there are no analytical
solutions. However, some predictions on the scaling properties of Ra
and Nu are available [8,63–65]. For the numerical simulations the
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Fig. 3. Melting front dynamics for the Stefan problem. In panel (a) the temperature field is shown at a selected time for thermal diffusivity 𝜅 = 0.367. Spatial coordinates have
been made dimensionless with the system size, �̂� = 𝑥∕𝐿𝑥, �̂� = 𝑦∕𝐿𝑦. Panel (b) compares results for the normalized melting front as a function of the dimensionless time 𝜃 with the
corresponding analytical predictions for different thermal diffusivities 𝜅. Panel (c) shows a comparison between the temperature profile as a function of the normalized coordinate
�̂� with the corresponding analytical predictions for different thermal diffusivities 𝜅 at the selected time 𝜃 = 2.55 ⋅ 10−6; the vertical coordinate is set to �̂�0 = 0. Analytical predictions
for melting front and temperature profiles are given in Eq. (28).
Fig. 4. Panel (a): plot of the Nusselt number Nu as a function of the dimensionless time 𝜃 for a case with Ra = 107, Ste = 10,Pr = 1. The scaling law Nu ∼ 𝜃−1∕2 at small 𝜃 is
reported; other relevant quantities are indicated (see text for more details). Panel (b): compensated plot for the scaling laws given in Eqs. (30) and (31) as a function of Ra. This
paper’s data is plotted in green: Nu2 ∕Ra1∕4 ( ), Numin ∕Ra1∕4 ( ), 𝜃2∕Ra−1∕4 ( ), 𝜃min∕Ra

−1∕2 ( ). Corresponding red point s refer to the simulation data by Huber et al. [46].
parameters were set as 𝐿𝑥 = 𝐿𝑦 = 𝐿 = 250, 𝜏 = 𝜏ℎ = 0.7, 𝑔 = 9.8067 and
𝐶𝑝∕𝐿𝑓 = 10, giving Pr = 1 and Ste = 10. Ra was varied as in Section 3.1
and molten sites initialized as in Section 3.2. The parameters are the
same as those used in the simulations performed by Huber et al. [46]
so that a comparison is possible. The behaviour of Nu as a function
of 𝜃 is reported in panel (a) of Fig. 4 for a case with Ra = 107: Nu
first decreases till it reaches a minimum Nu = Numin at time 𝜃min; then
Nu increases and at time 𝜃2 the melting front touches the right wall
and Nu = Nu2; afterwards Nu stays essentially constant. In the limit
𝜃 → 0, the melting process is dominated by conduction and Neumann’s
exact solution (see Eq. (28)) implies a power-law behaviour in 𝜃 with
exponent −1∕2 [8,46]:

Nu ∼ 𝜃−
1
2 (𝜃 → 0). (29)

At later times, due to the inception of convection, other scaling laws
are predicted in correspondence of 𝜃min [8]:

⎧

⎪

⎨

⎪

𝜃min ∼ Ra−
1
2

Numin ∼ Ra
1
4

. (30)
⎩

6 
and in correspondence of 𝜃2 [8]:

⎧

⎪

⎨

⎪

⎩

𝜃2 ∼ Ra−
1
4

Nu2 ∼ Ra
1
4

. (31)

From the data reported in panel (a) of Fig. 4 it can be observed that
the scaling-law at small times (see Eq. (29)) is in good agreement with
the simulation data. The scaling laws given in Eq. (30) and Eq. (31)
were further tested using compensated data, i.e. rescaling the quantities
𝜃min, Numin, 𝜃2, Nu2 with Ra−1∕2, Ra1∕4, Ra−1∕4, Ra1∕4 respectively. These
compensated quantities, plotted as a function of Ra for Ste = 10, are
shown in panel (b) of Fig. 4. This paper’s simulation data (green points)
are compared with the simulation results of Huber et al. [46] (red
points). It can be seen that compensated data are essentially constant
as a function of Ra, indicating a good agreement with the predicted
scaling laws [8] (see Eq. (30) and Eq. (31)). Compared to the results
of Huber et al. [46] the simulation results show that Nu2 ∕Ra1∕4 as a
function of Ra displays a more constant trend. This is probably due to
a more precise discretization of the advection–diffusion equation via a
D2Q9 instead of a D2Q5 and a second-order thermal equilibrium for the
thermal dynamics (see Section 2.2 for a more quantitative discussion).
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Fig. 5. Plots of the temperature fields with velocity vectors overlaid for different 𝜆 and different times, with Ra = 107 and Ste = 1. Spatial coordinates have been made dimensionless
with the system size, �̂� = 𝑥∕𝐿, �̂� = 𝑦∕𝐿. Selected values of �̂� = 𝜆∕𝐿 are: �̂� = 0 (top row), �̂� = 0.1 (middle row), �̂� = 0.2 (bottom row).
Fig. 6. Panel (a): plot of the Nusselt number Nu as a function of the dimensionless time 𝜃 for different values of �̂� = 𝜆∕𝐿 with Ra = 107 and Ste = 1. Panel (b): plot of the
normalized average melting front position �̂�𝑎𝑣 = 𝑠𝑎𝑣∕𝐿 as a function of the dimensionless time 𝜃 for different values of �̂� = 𝜆∕𝐿.
4. Convection melting with heterogeneous heating source: results
and discussions

Results on the effects of the heterogeneities of the heating source
are reported in this section. Heterogeneity in the heating source is
generated by the insertion of alternating conductive and insulating
patches of length 𝜆. A sketch can be seen in panels (a) and (b) of
Fig. 1. The value of 𝜆 is changed between different simulations. Other
simulation parameters are kept fixed to 𝐿𝑥 = 𝐿𝑦 = 𝐿 = 250, 𝜏 =
𝜏ℎ = 0.7, 𝛼 = 3 ⋅ 10−4, 𝑔 = 9.8067 and 𝐿𝑓 = 𝐶𝑝 = 10, leading to
Pr = 1, Ste = 1, Ra = 107. In Fig. 5 the evolution in time of the
temperature fields with velocity vectors overlaid for different values
of �̂� = 𝜆∕𝐿 is shown. Time increases along the horizontal direction
7 
while �̂� increases along the vertical direction. A significant difference
in the dynamics of the system can be seen at increasing �̂�. In the early
stages of the dynamics (left column), an increase in �̂� results in the net
appearance of distinct thermal plumes which grow in size as �̂� grows.
Thermal plumes merge at later times, and the merging time appears
to increase with increasing �̂�, implying that the larger is �̂� and the
longer is the effect of the heterogeneous heating source felt by melting
front dynamics. Overall, as �̂� increases the melting front gets slower.
A more quantitative assessment of this qualitative observation can be
done by looking at the Nusselt number Nu and the normalized average
melting front �̂�𝑎𝑣 = 𝑠𝑎𝑣∕𝐿 as a function of time, which are reported
for different values of the dimensionless patch size �̂� in panels (a) and
(b) of Fig. 6. Regarding the Nusselt number reported in panel (a), the
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Fig. 7. Plots of the temperature fields with velocity vectors overlaid for �̂� = 0.1 (top row) and �̂� = 0.2 for different times in the early stage of the dynamics. For both systems
Ra = 107 and Ste = 1. Spatial coordinates have been made dimensionless with the system size, �̂� = 𝑥∕𝐿, �̂� = 𝑦∕𝐿.
Fig. 8. Panel (a): near-wall temperature 𝑇nw(�̂�, 𝜃) (see text for details) as a function of the normalized vertical coordinate �̂� = 𝑦∕𝐿 for �̂� = 0 and �̂� = 𝜆∕𝐿 = 0.20 with Ra = 107,
Ste = 1,Pr = 1 and fixed 𝜃 = 1.08 ⋅ 10−3. Panel (b): average of the near-wall temperature ⟨𝑇nw⟩�̂�(𝜃) = ∫ 1

0 𝑇nw(�̂�, 𝜃) 𝑑�̂� as a function of 𝜃 for different values of �̂� = 𝜆∕𝐿.
phenomenology that is observed for homogeneous boundary conditions
(�̂� = 0) stays qualitatively unchanged in presence of heterogeneous
heating sources (�̂� ≠ 0), although Nu starts from smaller values for
𝜃 ≪ 1, due to the reduced heat flux generated by the heterogeneous
heating source. Regarding the plot of �̂� reported in panel (b), lower
values of �̂� can be similarly observed for a fixed time at increasing �̂�.
It is important to notice that when �̂� ≠ 0 oscillations appear in the
plot of Nu as a function of 𝜃 (panel (a) of Fig. 6) for 𝜃 slightly larger
than 𝜃min. An explanation for these oscillations can be found in Fig. 7,
which shows snapshots of the temperature fields in the early stage of
8 
the dynamics: oscillations in Nu are indeed symptomatic of interactions
between the different convective thermal plumes and essentially appear
for those times when plumes merge.

In presence of insulating patches the area of the heated surface
obviously changes. Thus, one also has to consider the effect of a change
in the heated area. To delve deeper into this point, in Fig. 8 the
temperature profiles in the near-wall region 𝑇nw(�̂�, 𝜃) are analysed by
looking at the temperature field at a fixed distance 𝓁nw = 8 ⋅ 10−3𝐿
from the heating source, i.e. 𝑇nw(�̂�, 𝜃) = 𝑇 (�̂� = 𝓁nw∕𝐿, �̂�, 𝜃). Panel (a)
of Fig. 8 shows the profiles of 𝑇 (�̂�, 𝜃) as a function of �̂� for a fixed
nw
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Fig. 9. Plot of the Nusselt number Nu (Panel (a)) and normalized average melting front �̂�𝑎𝑣 (Panel (b)) as a function of the dimensionless time 𝜃 for a case with heterogeneous
heating source (�̂� = 𝜆∕𝐿 = 0.04, Ra = 107, Ste = 1,Pr = 1) and two cases with homogeneous heating source. In the case with heterogeneous heating source, the near-wall temperature
𝑇nw was computed (see Fig. 8 and text for more details) and then the temperature of the homogeneous heating source 𝑇𝐻 was set to the stationary value of the near-wall
temperature, 𝑇𝐻 = 𝑇∞, or to the space–time average of the near wall temperature, 𝑇𝐻 = ⟨𝑇nw⟩�̂�,𝜃 . In Panel (a) The early stage of the dynamics of the heterogeneous heating
source is well fitted with a scaling law Nu ∼ 𝜃−𝑎 with exponent that differs from −1∕2. For the selected case �̂� = 0.04 an exponent 𝑎 ≈ 0.40 was found. Other scaling exponents for
different values of �̂� are given in Table 1.
𝜃 = 1.08 ⋅ 10−3 and different values of �̂�. While in correspondence
of the conductive patches (red segment in the 𝑥 axis) the tempera-
ture approaches the value of the corresponding homogeneous system
(�̂� = 0), in correspondence of the insulating patches (black segment
in the 𝑥 axis) the temperature remains very small. Panel (b) of Fig. 8
shows the spatial average of the near-wall temperature, ⟨𝑇nw⟩�̂�(𝜃) =
∫ 1
0 𝑇nw(�̂�, 𝜃) 𝑑�̂�, as a function of time for different values of �̂�. Overall,
⟨𝑇nw⟩�̂�(𝜃) first shows an increase before going to a steady state with
a stationary value 𝑇∞. Two major effects emerge at increasing �̂�: first,
when �̂� gets larger, the time it takes for ⟨𝑇nw⟩�̂�(𝜃) to reach the stationary
state gets larger, roughly increasing proportionally with �̂�. Second,
the stationary value 𝑇∞ decreases as �̂� increases: as highlighted in
panel (a), this is due to the effect of heterogeneous heating source,
resulting in near wall temperature profiles that are heterogeneous along
the vertical direction and on average smaller than the corresponding
values of 𝑇𝐻 . Thus, in order to promote a fair comparison between
heterogeneous and homogeneous heating sources, it would be desirable
to consider a simulation with a heterogeneous heating source, extract
the near-wall temperature 𝑇nw(�̂�, 𝜃), and perform a simulation with a
homogeneous heating source with 𝑇𝐻 (𝜃) = ⟨𝑇nw⟩�̂�(𝜃). To make progress
in this direction, for a given value of �̂�, additional simulations were
performed with �̂� = 0 and the heating source temperature 𝑇𝐻 set to the
stationary value of the near-wall temperature (𝑇𝐻 = 𝑇∞, protocol 1) or
to the space–time average of the near wall temperature (𝑇𝐻 = ⟨𝑇nw⟩�̂�,𝜃 ,
protocol 2). The time average is computed in the interval [0, 𝜃2]. In
Fig. 9 Panel (a) the behaviour of Nu is shown as a function of 𝜃
by comparing a simulation with �̂� = 0.04 and two simulations with
�̂� = 0 with 𝑇𝐻 chosen based on the two protocols. Note that for these
quantitative comparisons between homogeneous and heterogeneous
heating sources, we adopt the definition of Nu in Eq. (11) and the
definition of 𝜃 in Eq. (14) with 𝑇𝐻 = 𝑇∞. In Fig. 9 Panel (b) the average
normalized melting front �̂�𝑎𝑣 is shown as a function of 𝜃. First of all,
it can be observed that simulation results with �̂� = 0 based on the
two protocols deliver very similar outcomes: indeed, the value of 𝑇∞

is only slightly larger than ⟨𝑇nw⟩�̂�,𝜃 due to the fact that the transient
dynamics of the near-wall temperature does not take the majority of
the time 𝜃2 needed for the melting front to touch the right wall. It is
therefore to be expected that performing a simulation with �̂� = 0 and
dynamical source temperature 𝑇𝐻 (𝜃) = ⟨𝑇nw⟩�̂�(𝜃) would not change too
much results with �̂� = 0 in Fig. 9. In the early stage of the dynamics,
data with homogeneous and heterogeneous heating sources behave
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Table 1
Characterization of the early and late stage dynamics of Nu as a function of 𝜃 for
different values of 𝜆. In the early stage of the dynamics, simulation data are fitted with
the functional behaviour Nu(𝜃) = 𝑏+𝜃−𝑎. The late stage of the dynamics is characterized
by 𝜃2. Values for 𝑎, 𝑏 and 𝜃2 are reported for different values of 𝜆.
𝜆 �̂� = 𝜆∕𝐿 𝑎 𝑏

5 0.02 0.43 4.57
10 0.04 0.40 6.33
25 0.1 0.37 7.78
50 0.2 0.35 3.38

differently: for the homogeneous heating source it can be observed that
Nu ∼ 𝜃−1∕2; for the heterogeneous heating source, instead, fitting the
data for small 𝜃 with the functional behaviour Nu(𝜃) = 𝑏 + 𝜃−𝑎 yields
different exponents 𝑎 for different values of 𝜆. Results are summarized
in Table 1. The scaling behaviour Nu ∼ 𝜃−1∕2 is peculiar of a scenario
where conduction mechanisms dominate (see Fig. 4 and Eq. (29)),
hence a change in the scaling exponent could be related to the presence
of convective rolls that are triggered by the heterogeneous heating
source and appear in the early stages of the dynamics (see Fig. 7). At the
present stage of the analysis, it cannot be claimed that the behaviour of
Nu as a function of time is exactly a power-law, rather this could be an
interesting theoretical topic to develop for future research. Moreover,
in the plot related to the Nu it is observed that the process of melting in
presence of heterogeneous heating sources produces larger Nu at later
times, a fact that is probably related to the overall enhanced convection
that is triggered by the heterogeneous pattern.

Finally, in Fig. 10 we explore the effect of a change in Ra by
comparing cases with heterogeneous heating sources with �̂� = 0.04 and
𝑇𝐻 = 1 and the case with homogeneous heating source with �̂� = 0
and 𝑇𝐻 = 𝑇∞. We adopt the definition of the Rayleigh number given
in Eq. (8) with 𝑇𝐻 = 𝑇∞. We look at compensated data for 𝜃min, Numin,
𝜃2, Nu2, similarly to the analysis proposed in Fig. 4. It is observed that
the scaling laws in Ra are not strongly impacted by the heterogeneity,
although the prefactors for the Numin and Nu2 are different, in that
the compensated plots for Numin ∕Ra−1∕2 and Nu2 ∕Ra−1∕4 for hetero-
geneous heating sources are above the data for homogeneous heating
sources, pointing to the enhanced convection that we already discussed
in for data in Fig. 9.
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Fig. 10. Compensated plots for the scaling laws given in Eqs. (30) and (31) as a
function of Ra with Ste = 1,Pr = 1. We consider simulations with a heterogeneous
eating source with �̂� = 0.04: Nu2 ∕Ra1∕4 ( ), Numin ∕Ra1∕4 ( ), 𝜃2∕Ra−1∕4 ( ),
min∕Ra

−1∕2 ( ). Also simulations with a homogeneous heating source with 𝑇𝐻 = 𝑇∞

re considered (see text for more details): Nu2 ∕Ra1∕4 ( ), Numin ∕Ra1∕4 ( ), 𝜃2∕Ra−1∕4
), 𝜃min∕Ra

−1∕2 ( ).

5. Conclusions

This paper investigates the role of heterogeneous heating sources in
the convective melting processes in PCMs using an ad-hoc model based
on the Lattice Boltzmann method. The relevance of boundary condi-
tions is known from numerical and experimental works in the literature,
including the impact of variations in the temperature of the heating
source [41], the role of asymmetric boundaries [42], the presence of
heating sources protruding into the PCM cell [43], or the effect of
porous thermal supports on PCM performance [13,39,44]. The present
study introduces a twist and explores an alternative heating protocol
by considering heating sources realized via alternating insulating and
conductive patches. The size of the patch has been changed between
simulations in order to address role of heterogeneities in the heating
source. The numerical model has been validated against analytical
results from the literature, as well as other numerical results for melting
dynamics with homogeneous heating sources. The process of melting
10 
has been studied by monitoring the time-dependency of the Nusselt
number and the average melting front position as a function of time.
Results show that the heterogeneity in the heating source impacts in
a non trivial way the melting dynamics. Specifically, heterogeneous
heating sources give rise to convective rolls that would be absent in the
case of a homogeneous heating source. These convective rolls perturb
the early (conductive) stage of the melting dynamics. Importantly, this
perturbation can be controlled by the number of the insulating patches,
therefore it can be tuned in a controlled way. Furthermore, thermal
plumes tend to merge in the late stage of the dynamics, giving rise to
oscillations in the Nusselt number. Beyond the convection effects, in
presence of heterogeneous heating sources also the heated area of the
source is changed. To quantitatively characterize this effect, a compari-
son between heterogeneous heating sources and homogeneous heating
sources whose temperature has been decreased to match the average
heating temperature of the heterogeneous case has been provided.

This study opens the path to future, intriguing perspectives in
the field of thermal control via PCMs. First, it was found that the
presence of convective rolls triggered by the heterogeneous heating
source spoils the scaling-law behaviour of the Nusselt number Nu as
a function of time Nu ∼ 𝜃−1∕2 in the early stages of the dynamics. Data
with heterogeneous heating sources are compatible with a power-law
Nu ∼ 𝜃−𝑎, with 𝑎 ≠ 1∕2. It could also be interesting to approach the
problem from a theoretical point of view, in order to understand if an
actual power-law emerges and what is the relation between 𝑎 and the
heterogeneity size 𝜆. Second, this study was limited to situations where
the fraction of insulating patches corresponds to 50% of the whole
heating source: in the spirit of other studies involving heterogeneous
boundary conditions [33], it could be of interest to study the impact
of different fractions, and whether these could lead to further non-
linearities in the early stages of the dynamics. Finally, it could be
appealing to study the way in which the heating source heterogeneities
impact the melting dynamics in three-dimensional systems. In order to
proceed in this direction, a more efficient code is obviously needed, and
optimization work is already in progress.
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