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Nonlinear Model Reduction in the Loewner
Framework

Joel D. Simard , Student Member, IEEE, and Alessandro Astolfi , Fellow, IEEE

Abstract—We introduce a novel method of model
reduction for nonlinear systems by extending the Loewner
framework developed for linear time-invariant systems.
This objective is achieved by defining Loewner functions
obtained by utilizing a state-space interpretation of the
Loewner matrices. A Loewner equivalent model using these
functions is derived. This allows constructing reduced
order models achieving interpolation in the Loewner sense.

Index Terms—Center manifold, interpolation, Loewner
matrices, model reduction, nonlinear systems.

I. INTRODUCTION

THE goal of model order reduction is to determine a simpli-
fied model of a dynamical system while preserving some

desired properties of the system itself, for example, stability
or steady-state behavior for selected signals. A variety of ap-
proaches to accomplish model reduction have recently been
developed. These include moment matching [1]–[6], balanced
truncation [7]–[10], and Hankel-norm methods [11]–[16]. Un-
der mild assumptions, these methods, originally developed for
linear systems, have been also developed for nonlinear systems
(see, e.g., [3], [6]–[8], [14], [17]–[22]).

The Loewner matrix [23] is an important object that has
been used in the development of reduced order models for
linear time-invariant (LTI) systems, and in the solution of the
so-called generalized realization problem for LTI systems [24].
The Loewner matrix, also known as the divided-difference
matrix [24], is related to the Hankel matrix [25], [26]. It
was first used to solve rational interpolation problems in [27].
The Loewner matrix has an important structure that allows its
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factorization into two matrices: the tangential generalized
controllability matrix and the tangential generalized observabil-
ity matrix. Once factored, these matrices together can be used
to construct LTI models as in [23]. In [28], a data-driven model
reduction approach using the Loewner framework is given for
linear systems, where frequency-response data are inferred from
trajectories of the input and output signals. Note that as a result
of the definitions of moments in the time-domain in [3], it has
been shown in [5] that the Loewner framework in [24] can be
considered as a special case of a two-sided moment-matching
procedure [29]. The Loewner framework has been developed for
bilinear, quadratic-bilinear, and linear switched systems using
a higher order transfer function (frequency domain) approach
in [30]–[32], respectively. A similar approach has been pursued
in [33]. In this article, we extend the Loewner framework to
general nonlinear input-affine systems using an interconnection-
based approach.

In [34], new objects that allow for a state-space interpretation
of the Loewner matrices have been introduced. These new
objects are the left- and the right-Loewner matrices, and they can
be interpreted as the input and output gains of a transformed ex-
perimental setup. This experimental setup involves encoding the
interpolation points into two generators that are interconnected
with the plant. This interpretation allows for a more sophisticated
usage of the tools associated to the Loewner matrices, for exam-
ple, the authors have used this new interpretation to develop a
model order reduction procedure for linear time-varying systems
in [35].

In this article, we utilize the state-space interpretation of the
Loewner matrices to generalize the Loewner method for model
reduction to nonlinear input-affine systems. To accomplish this,
Loewner functions are introduced as generalizations of the
Loewner matrices, which are then used to construct models that
can produce the exact same left- and right-Loewner functions,
thus achieving interpolation in a Loewner sense. Locally, the
original model and the interpolating model produce the same
steady-state response, provided that it exists, when intercon-
nected with generators corresponding to the Loewner functions.
Similarly to the linear setting, the Loewner framework for
nonlinear systems resembles the two-sided moment matching
procedure in [36].

This article is organized as follows. In Section II, we present
preliminary results providing a state-space interpretation of the
Loewner matrices for linear systems. In Section III, we general-
ize the notion of Loewner matrices to define Loewner functions
for nonlinear systems interconnected with linear generators,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4044-1903
https://orcid.org/0000-0002-4331-454X
mailto:j.simard18@imperial.ac.uk
mailto:a.astolfi@imperial.ac.uk
https://doi.org/10.1109/TAC.2021.3110809


5712 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 12, DECEMBER 2021

introduce a special set of coordinates, the Loewner coordinates,
and provide a reduced order model, achieving moment matching,
on the basis of the Loewner functions. In Section IV, the results
of the previous section are further generalized to allow for
nonlinear generators. Finally, in Section V, we conclude this
article.

We conclude this introduction by noting that this article has
been written in the same spirit as papers such as [3], [7], [8], [24],
[29], and [36]; it is a theoretical article introducing ideas and
tools for general nonlinear affine systems, and while comparison
to other methods and large-scale numerical validation of this
work is important, this is the subject of further work relying on
the methods built herein.

II. PRELIMINARIES

We use standard notation. The set of complex numbers is
denoted by C. The imaginary axis of the complex plane is
denoted by C0. The set of vectors having n rows with complex
entries is denoted by Cn. The set of matrices having n rows
and m columns with complex entries is denoted by Cn×m. The
spectrum of a square matrix A is denoted by σ(A).

While the Loewner matrices have been traditionally de-
fined [24], for systems of the form

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

with state x(t) ∈ Cn, u(t) ∈ Cm, y(t) ∈ Cp, and matrices E,
A, B, C, and D of appropriate dimensions, we consider the
special case in which E = I and D = 0, i.e.

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t). (2)

Note that for simplicity, we consider complex-valued signals
and matrices for ease of presentation. These signals and matri-
ces are obtained via coordinate transformations of real-valued
signals and matrices.

The following assumptions hold throughout the article.
Assumption 1: The triple of matrices (A,B,C) is a minimal

realization of the system (1)–(2), i.e., the system (1)–(2) is
reachable and observable.

To pose an interpolation problem, and to define the Loewner
matrices, we require the concept of tangential data. Tangential
data are data sampled in particular directions, and consist of
right tangential data, described by the set

{(λi, ri, wi) | λi ∈ C, ri ∈ Cm, wi ∈ Cp, i = 1, . . . , ρ} (3)

and left tangential data, described by the set

{(μj , �j , vj) | μj ∈ C, ��j ∈ Cp, v�j ∈ Cm, j = 1, . . . , v}.
(4)

We write the right tangential data in a compact form as

Λ = diag[λ1, . . . , λρ] ∈ Cρ×ρ

R =
[
r1 . . . rρ

]
∈ Cm×ρ

W =
[
w1 . . . wρ

]
∈ Cp×ρ

and the left tangential data, again in a compact form, as

M = diag[μ1, . . . , μv] ∈ Cv×v

L =

⎡⎢⎢⎣
�1
...

�v

⎤⎥⎥⎦ ∈ Cv×p, V =

⎡⎢⎢⎣
v1
...

vv

⎤⎥⎥⎦ ∈ Cv×m.

The following assumption is required to guarantee uniqueness
of solution to a number of Sylvester equations arising in this
framework.

Assumption 2: The matrices A, Λ, and M have no common
eigenvalues, that is

σ(A) ∩ σ(Λ) = ∅, σ(A) ∩ σ(M) = ∅, σ(M) ∩ σ(Λ) = ∅.
The goal of the realization problem is to determine a state-

space representation of the form (1)–(2) such that the cor-
responding rational transfer matrix H(s) = C(sI −A)−1B
obeys the right interpolation conditions

H(λi)ri = wi, i = 1, . . . , ρ (5)

and the left interpolation conditions

�jH(μj) = vj , j = 1, . . . , v. (6)

The Loewner matrix and the shifted Loewner matrix [23], L
and σL, respectively, are defined in terms of the tangential data
(3) and (4) as

L =

⎡⎢⎢⎢⎢⎣
v1r1 − �1w1
μ1 − λ1

· · · v1rρ − �1wρ

μ1 − λρ
...

. . .
...

vvr1 − �vw1
μv − λ1

· · · vvrρ − �vwρ

μv − λρ

⎤⎥⎥⎥⎥⎦
and

σL =

⎡⎢⎢⎢⎢⎣
μ1v1r1 − λ1�1w1

μ1 − λ1
· · · μ1v1rρ − λρ�1wρ

μ1 − λρ
...

. . .
...

μvvvr1 − λ1�vw1
μv − λ1

· · · μvvvrρ − λρ�vwρ

μv − λρ

⎤⎥⎥⎥⎥⎦
which provide the classical frequency domain interpretation of
the Loewner matrices. Furthermore, note that if the transfer
matrix H(s) generates the data, then the shifted Loewner matrix
is the Loewner matrix corresponding to the transfer matrix
sH(s). Note also that, by Assumption 2, the Loewner matrix
is the unique solution of the Sylvester equation

LΛ−ML = LW − V R

and the shifted Loewner matrix is the unique solution of the
Sylvester equation

σLΛ−MσL = LWΛ−MVR.

It is also shown in [24] that σL − LΛ = V R and that σL −
ML = LW .
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The definitions of the Loewner and shifted Loewner matrices
given so far are independent of any particular state-space rep-
resentation, i.e., they are defined solely in terms of tangential
data. The following definitions assume that the tangential data
are generated by a system of the form (1)–(2) according to the
relationships given in (5) and (6). We define the tangential gen-
eralized observability matrix Y and the tangential generalized
controllability matrix X as

Y =

⎡⎢⎢⎣
�1C(μ1I −A)−1

...

�vC(μvI −A)−1

⎤⎥⎥⎦
and

X =
[
(λ1I −A)−1Br1 · · · (λρI −A)−1Brρ

]
respectively. These matrices are the unique solution to the
Sylvester equations

Y A+ LC = MY (7)

and

AX +BR = XΛ (8)

and, furthermore, the Loewner matrix and the shifted Loewner
matrix can be expressed in terms of these matrices as

L = −Y X, σL = −Y AX.

Note that having defined Y and X , we can now express W as

W = CX

and V as

V = Y B.

A. State-Space Interpretation

In order to provide a state-space interpretation of the Loewner
matrices for the system (1)–(2), we require the definition of a
few additional objects. These objects are constructed solely from
tangential data. We first define the left-Loewner matrix L� as the
unique solution, by Assumption 2, to the Sylvester equation

ML� − L�Λ = V R (9)

and the right-Loewner matrix Lr as the unique solution, by
Assumption 2, to the Sylvester equation

LrΛ−MLr = LW. (10)

These definitions yield the identity

L = L� + Lr.

In a similar fashion, the shifted left-Loewner matrix σL� and
the shifted right-Loewner matrix σLr are defined as the unique
solution, again by Assumption 2, to MσL� − σL�Λ = MVR,
and σLrΛ−MσLr = LWΛ, respectively. Furthermore, ex-
ploiting these definitions, it is easy to see that

σL = σL� + σLr.

Moreover, noting that M(ML�)− (ML�)Λ = MVR, and
(LrΛ)Λ−M(LrΛ) = LWΛ, by the uniqueness of solution to
(9) and (10), we have that σL� = ML�, and σLr = LrΛ.

Remark 1: The left- and right-Loewner matrices are not
explicitly required when constructing an interpolant in the
Loewner framework, but rather the existence of these objects
enhances understanding of how an interpolant in the framework
fulfills its purpose. The interpretation that is obtained via these
objects does not require frequency domain notions and can be
readily used to define interpolants for nonlinear systems.

We now define two auxiliary systems, using the right- and
left- tangential interpolation data, as

ζ̇r(t) = Λζr(t) + Δ(t) (11)

v(t) = Rζr(t) (12)

and

ζ̇�(t) = Mζ�(t) + Lχ(t) (13)

η(t) = ζ�(t) (14)

with states ζr(t) ∈ Cρ and ζ�(t) ∈ Cv , inputs Δ(t) ∈ Cρ and
χ(t) ∈ Cp, and outputs v(t) ∈ Cm and η(t) ∈ Cv. Consider the
interconnected system defined by the interconnection equations
u = v and χ = y. This system has a state-space representation
given by ⎡⎢⎢⎣

ζ̇r

ẋ

ζ̇�

⎤⎥⎥⎦ =

⎡⎢⎣ Λ 0 0

BR A 0

0 LC M

⎤⎥⎦
⎡⎢⎣ζrx
ζ�

⎤⎥⎦+

⎡⎢⎣I0
0

⎤⎥⎦Δ (15)

η =
[
0 0 I

]⎡⎢⎣ζrx
ζ�

⎤⎥⎦ (16)

and is illustrated in Fig. 1. While the interconnection of the
three subsystems is primarily meant to provide an interpretation
of the Loewner framework that does not rely on frequency data,
it could also be considered to be the result of a desired operating
environment, i.e., the result of generated signals at the plant
input, and filters applied to the output.

To expose an important property of the Loewner matrices, we
recall a result from [34].

Theorem 1 ([34]): Consider the interconnected system (15)–
(16). The coordinates transformation⎡⎢⎣zrzc

z�

⎤⎥⎦ =

⎡⎢⎣ I 0 0

−X I 0

L� Y I

⎤⎥⎦
⎡⎢⎣ζrx
ζ�

⎤⎥⎦
is such that the system in the new coordinates is described by
the following equations:⎡⎢⎢⎣

żr

żc

ż�

⎤⎥⎥⎦ =

⎡⎢⎣Λ 0 0

0 A 0

0 0 M

⎤⎥⎦
⎡⎢⎣zrzc
z�

⎤⎥⎦+

⎡⎢⎣ I

−X

L�

⎤⎥⎦Δ (17)
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Fig. 1. The interconnected system (15)–(16).

Fig. 2. The transformed, parallel interconnected, system (17)–(18).

η =
[
Lr −Y I

]⎡⎢⎣zrzc
z�

⎤⎥⎦ . (18)

Theorem 1 lends itself to a state-space interpretation of the
Loewner matrices: the Loewner matrices can be viewed as the
input and output “gains” of three systems connected in parallel
such that the input/output behavior is the same as that of the
interconnected system (15)–(16), as illustrated in Figs. 1 and 2.

We now provide a definition which is crucial for the construc-
tion of reduced order models in the Loewner sense.

Definition 1 (Loewner Equivalence): Let Σ and Σ be two

systems with left- and right-Loewner matrices L�, Lr, and L
�
,

L
r
, respectively, associated to the generating matrices Λ, R,

M , and L. Then, Σ and Σ are called Loewner equivalent at

(Λ, R,M,L) if L� = L
�

and Lr = L
r
.

The fact that two systems are Loewner equivalent at
(Λ, R,M,L) is equivalent to both systems satisfying the condi-
tions (5) and (6).

Considering Theorem 1, and assuming that Δ is bounded
and converges to zero, A has only negative eigenvalues, and
Λ and M have eigenvalues on the imaginary axis, it is easy
to see that the steady-state response, provided it exists, of the
system interconnected with the generators is dependent entirely
on the generator states and the left- and right-Loewner ma-
trices. Thus, if two exponentially stable systems are Loewner
equivalent at (Λ, R,M,L), then there exists an initial condi-
tion such that the two systems interconnected with the gen-
erators have the same steady-state behavior. It follows that

in the state-space interpretation of the Loewner framework
η is the signal for which “interpolation” occurs, as any two
exponentially stable systems that are Loewner equivalent, or
generate the same tangential data, produce the same signal
η after some transient period when interconnected with the
generators.

We can now formally define what a reduced order model is in
the Loewner sense.

Definition 2 (Reduced Order Model): Let Σ and Σ be two
systems of order n and v, respectively. Σ is called a reduced
order model of Σ in the Loewner sense if Σ and Σ are Loewner
equivalent at (Λ, R,M,L) and v < n.

Following [24], if L, σL, V , and W are known for the system
(1)–(2), with ρ = v and L is nonsingular, then an interpolating
system (i.e., a system that matches the tangential data (3) and
(4) exactly) with state r(t) ∈ Cρ, input ur(t) ∈ Cm, and output
yr(t) ∈ Cp can be defined as

ṙ = L−1σLr − L−1V ur (19)

yr = Wr. (20)

If the Loewner matrix is nonsingular with rank ρ, the system
(19)–(20) is a unique interpolant of degree ρ. Otherwise, there
exists a family of interpolants of degree ρ [24].

Remark 2: Consider the interconnected system (15)–(16)
with associated Loewner matrices L�, Lr, and L. Let X and
Y be the tangential generalized controllability and observability

matrices, and L
�

and L
r

be the left- and right-Loewner matrices,
for the system given by the equations (19)–(20) interconnected
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with the generators (11)–(12) and (13)–(14). Then, the following

is true: X = I , Y = −L, L
�
= L�, and L

r
= Lr.

Remark 3: The state-space interpretation that is presented in
this section has been used to extend the Loewner model reduction
framework to linear time-varying systems in [35].

B. Problem Formulation

In the rest of the article, we focus on nonlinear systems
described by equations of the form

ẋ(t) = f(x(t)) + g(x(t))u(t) (21)

y(t) = h(x(t)) (22)

with state x(t) ∈ Cn, input u(t) ∈ Cm, and output y(t) ∈ Cp,
and functions f : Cn → Cn, g : Cn → Cn×m, and h : Cn →
Cp of appropriate dimensions, and such that f(0) = 0, h(0) =
0, and f(·) is differentiable. Let A := ∂f

∂x (0). For the ease of
presentation, we consider complex valued mappings and signals
which are obtained via linear coordinate transformations of
real-valued mappings and signals. In addition, with some abuse
of terminology, we say, for example, that the zero equilibrium of
ẋ = f(x), with x(t) ∈ Cn and f : Cn → Cn, is locally asymp-
totically stable if the zero equilibrium of the underlying “real”
system is locally asymptotically stable. See also Appendix for
some additional comments on the use of complex valued signals.

Assumption 3: The unforced system ẋ = f(x) is locally ex-
ponentially stable at the origin, that is, all eigenvalues of A are
in C−.

The goal of the following sections is to extend the inter-
polation methods of [24] to nonlinear systems of the form
(21)–(22) using the state-space interpretation given by [34] in
three scenarios of increasing complexity and generality. To do
this, we introduce the notion of Loewner functions which are,
in turn, used to introduce the concept of Loewner equivalence
at given operating conditions. It is important to note that the
following statements regarding the existence of the Loewner
functions are all local.

III. INTERCONNECTION WITH LINEAR GENERATORS

To exploit the state-space interpretation of the Loewner ma-
trices given in [34], we begin by constructing two systems. We
start with a simple setup given by two systems of the form

ζ̇r(t) = Λζr(t) + Δ(t) (23)

v(t) = Rζr(t) (24)

and

ζ̇�(t) = Mζ�(t) + Lχ(t) (25)

η(t) = ζ�(t) (26)

with states ζr(t) ∈ Cρ and ζ�(t) ∈ Cv, inputs Δ(t) ∈ Cρ and
χ(t) ∈ Cp, and outputs v(t) ∈ Cm and η(t) ∈ Cv , and with
matrices Λ ∈ Cρ×ρ, R ∈ Cm×ρ, M ∈ Cv×v, and L ∈ Cv×p.

Assumption 4: The matrices Λ and M have all eigenvalues
on the imaginary axis, and these eigenvalues have geometric
multiplicity one.1

Consider now the interconnection of the system (21)–(22)
with the generators (23)–(24) and (25)–(26), defined via the
interconnection equations u = v and χ = y, which yields the
state-space representation⎡⎢⎢⎣

ζ̇r

ẋ

ζ̇�

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Λζr

f(x) + g(x)Rζr

Mζ� + Lh(x)

⎤⎥⎥⎦+

⎡⎢⎢⎣
I

0

0

⎤⎥⎥⎦Δ (27)

η = ζ� (28)

with state
[
ζ�r x� ζ��

]�
, input Δ, and output η.

A. Loewner Functions

Before presenting the main results, we define the nonlinear
enhancements of the tangential generalized controllability and
observability matrices and of the Loewner matrices. These are
defined in terms of the functions and matrices appearing in
the interconnected system (27)–(28). The tangential generalized
controllability functionX : Cρ → Cn is defined as the solution,
provided it exists, to the PDE with boundary condition

∂X

∂ζr
Λζr = f(X(ζr)) + g(X(ζr))Rζr, X(0) = 0. (29)

The following claim is a direct consequence of Assumptions 3
and 4 and of the center manifold theory [37].

Proposition 1 (Existence of X): Consider the PDE (29) with
the boundary condition X(0) = 0. Suppose Assumption 3 and
Assumption 4 hold. Then, there exists a function X : Cρ → Cn

satisfying the partial differential equation (29) with the given
boundary condition.

The tangential generalized observability function Y : Cn →
Cv is defined as the solution, provided it exists, to the PDE with
boundary condition

∂Y

∂x
f(x) = MY (x)− Lh(x), Y (0) = 0. (30)

To prove the existence of a solution Y , we require the con-
struction of an auxiliary object. To this end, consider the system
described by the equations

ζ̇� = Mζ� + Lh(x) (31)

ẋ = f(x). (32)

By the center manifold theory and Assumptions 3 and 4, there
exists a map2 x = Y (−ζ�) satisfying the PDE with boundary
condition

−∂Y

∂ζ�
(−ζ�)

(
Mζ� + Lh(Y (−ζ�))

)
= f(Y (−ζ�)), Y (0) = 0.

(33)

1This restriction is imposed because we are interested in bounded signals.
2The “−” is key to getting the correct signs in the PDE (30).
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Proposition 2 (Existence of Y ): Consider the PDE (30) with
the boundary condition Y (0) = 0. Suppose Assumptions 3 and3

4 hold. Suppose that the map Y , solving the PDE (33), has
a local differentiable left inverse around the origin. Then, there
exists a function Y : Cn → Cv satisfying the partial differential
equation (30) with the given boundary condition.

Proof: Recall that Y satisfies the PDE

f(Y (−ζ�)) = −∂Y

∂ζ�
(−ζ�)

(
Mζ� + Lh(Y (−ζ�))

)
with boundary condition Y (0) = 0. Let Y be the local left
inverse of Y , which exists by assumption, that is

Y (Y (−ζ�)) = −ζ�

in a neighborhood of the origin. Note that Y (0) = 0. Taking the
time derivative along the trajectories of the system (31)–(32)
yields

∂Y

∂x
ẋ = −∂Y

∂x
(Y (−ζ�))

∂Y

∂ζ�
(−ζ�)ζ̇� = −ζ̇�. (34)

Using (34) in Y yields

∂Y

∂x
f(x) = − (Mζ� + Lh(x)) = MY (x)− Lh(x).

Thus, the left inverse of Y , i.e., Y , solves the PDE (30) in a
neighborhood of the origin with the given boundary condition.�

Having defined the tangential generalized observability and
controllability functions, the nonlinear enhancements of the
tangential data matrices V and W are given by

V (ζr) :=
∂Y

∂x
(X(ζr))g(X(ζr)), W (ζr) := h(X(ζr)).

The nonlinear Loewner function is defined in terms of the tan-
gential generalized controllability and observability functions as

L(ζr) := −Y (X(ζr)).

The left-Loewner function L� : Cρ → Cv is defined as the
solution, provided it exists, to the PDE with boundary condition

∂L�

∂ζr
Λζr = ML�(ζr)− V (ζr)Rζr, L�(0) = 0 (35)

and the right-Loewner function Lr : Cρ → Cv is defined as

Lr(ζr) := L(ζr)− L�(ζr).

To prove the existence of a solution for the PDE (35), we require
a definition from [38].

Definition 3 ([38, Def. 2]): Given an n× n matrix F , with
spectrum σ(F ) = λ = (λ1, . . . , λn), and constants C > 0 and
v > 0, we say that a complex number μ is of type (C, v) with
respect to σ(F ) if for any vector m = (m1,m2, . . . ,mn) of
nonnegative integers we have

|μ−m · λ| ≥ C

|m|v

3Note that Assumption 4 is not necessary. The proof can also be completed
using the approach in the proof of Proposition 3, in which case a type (C, v)
condition is required instead (see Definition 3 and Proposition 3).

where |m| =∑mi > 0.
The following claim follows by a direct application of the

main theorem of [38].
Proposition 3 (Existence of L�): Consider the PDE (35)

with the boundary condition L�(0) = 0. Suppose there exist
constants C > 0 and v > 0 such that all eigenvalues of M are
of type (C, v) with respect to σ(Λ). Then, there exists a function
L� : Cρ → Cv satisfying the partial differential equation (35)
with the given boundary condition.

The definitions introduced thus far show that the Loewner
and right-Loewner functions satisfy the PDEs with boundary
conditions

∂L

∂ζr
Λζr = ML(ζr) + LW (ζr)− V (ζr)Rζr, L(0) = 0

and

∂Lr

∂ζr
Λζr = MLr(ζr) + LW (ζr), Lr(0) = 0.

The shifted Loewner function σL : Cρ → Cv is defined in
terms of the left- and right-Loewner functions as

σL(ζr) := ML�(ζr) +
∂Lr

∂ζr
Λζr

which implies that

σL(ζr) = ML(ζr) + LW (ζr) =
∂L

∂ζr
Λζr + V (ζr)Rζr

and

σL(ζr) = −∂Y

∂x
(X(ζr))f(X(ζr)).

Remark 4: If the system (21)–(22) is linear, then the solution
to the PDEs (29), (30), and (35) becomesX(ζr) = Xζr,Y (x) =
Y x, and L�(ζr) = L�ζr, whereX ,Y , and L� are the solutions to
the Sylvester equations (7), (8), and (9). Thus, the linear Loewner
objects are recovered.

B. Loewner Coordinates

To expose the relation between the Loewner functions and the
interconnection of systems (27)–(28), we select a specific set of
coordinates in a similar fashion as in Theorem 1.

Theorem 2: Consider the system (27)–(28). The coordinates
transformation⎡⎢⎣zrzc

z�

⎤⎥⎦ :=

⎡⎢⎣ ζr

x−X(ζr)

ζ� + Y (x) + L�(ζr)

⎤⎥⎦
is such that the system in the new coordinates is described by
the equations⎡⎢⎣żrżc

ż�

⎤⎥⎦ =

⎡⎢⎣Λ 0 0

0 Ã (zc +X(zr), zr) 0

0 G̃ (zc +X(zr), zr) M

⎤⎥⎦
⎡⎢⎣zrzc
z�

⎤⎥⎦
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+

⎡⎢⎢⎢⎢⎣
I

−∂X

∂ζr
(zr)

∂L�

∂ζr
(zr)

⎤⎥⎥⎥⎥⎦Δ

η = Lr(zr)− Ỹ (zc +X(zr), zr) zc + z�

where zr(t) ∈ Cρ, zc(t) ∈ Cn, z�(t) ∈ Cv, and where Ã :

Cn × Cρ → Cn×n, G̃ : Cn × Cρ → Cv×n, and Ỹ : Cn ×
Cρ → Cv×n.

Proof: We proceed by direct differentiation. For zc, we have

żc = ẋ− ∂X

∂ζr
ζ̇r

= (f(zc +X(ζr))− f(X(ζr)))

+ (g(zc +X(ζr))− g(X(ζr)))Rζr − ∂X

∂ζr
Δ.

For z�, we have

ż� = ζ̇� +
∂Y

∂x
ẋ+

∂L�

∂ζr
ζ̇r

= Mz� +

(
∂Y

∂x
f(x)−MY (x) + Lh(x)

)
+

(
∂L�

∂ζr
Λζr −ML�(ζr) +

∂Y

∂x
g(x)Rζr

)
+

∂L�

∂ζr
Δ.

By the PDEs defining Y (·) and L�(·), that is, (30) and (35),
this becomes

ż� = Mz� +
∂Y

∂x
(zc +X(ζr))g(zc +X(ζr))Rζr

− ∂Y

∂x
(X(ζr))g(X(ζr))Rζr +

∂L�

∂ζr
Δ.

Finally, we have that

η = z� − Y (zc +X(ζr))− L�(ζr)

= Lr(ζr)− (Y (zc +X(ζr))− Y (X(ζr))) + z�.

The result is then obtained by a direct application of
Hadamard’s Lemma. �

Note that, by Assumption 3, for any sufficiently small x(0)
and ζr(0), the solutions of the interconnected systems approach
the center manifold x = X(ζr) exponentially fast; hence, zc
approaches zero provided Δ is sufficiently small and converges
to zero, and the system has a converging input converging state
property. On the center manifold, that is, for x = X(ζr), or zc =
0, one has

żr = Λzr +Δ

ż� = Mz� +
∂L�

∂ζr
(zr)Δ

and

η = Lr(zr) + z�

that is, the system restricted to the center manifold contains only
information on the Loewner functions.

C. Loewner Equivalent Model

In this section, the concept of reduced order model in the
Loewner sense for nonlinear systems is introduced. In addition,
a nonlinear system, reminiscent of the linear systems in [24]
and [35], which interpolates the Loewner functions defined
by the PDEs (29), (30), and (35), is constructed. Given that
the frequency domain interpretations of (5) and (6) hold little
meaning in the nonlinear context, we start by describing what
we mean by an interpolant when referring to nonlinear systems.

Definition 4 (Loewner Equivalence): Let Σ and Σ be two
systems described by equations of the form (21)–(22) admitting

left- and right-Loewner functions L�(·), Lr(·), and L
�
(·), L

r
(·),

respectively, associated to the matricesΛ,R,M , andL. Then,Σ
andΣ are called Loewner equivalent at (Λ, R,M,L) if L�(ζr) =

L
�
(ζr) and Lr(ζr) = L

r
(ζr) in a neighborhood of the origin.

Consistently, we say that a nonlinear system interpolates
another nonlinear system (in the Loewner sense) at (Λ, R,M,L)
if the two systems are Loewner equivalent at (Λ, R,M,L). That
is, for the same matrices Λ, R,M,L, the interpolating system
possesses the exact same left- and right-Loewner functions.

The property of Loewner equivalence has a strong implication
on the steady-state behavior of the system. By Theorem 2,
recalling Assumptions 3 and 4, assuming the foregoing stability
conditions hold, Δ is sufficiently small, bounded, and converges
to zero, and the plant state x has not left the region of attraction
of the origin (i.e., x still approaches the center manifold X(ζr)),
it is easy to see that the steady-state response, provided it exists,
of the system interconnected with the generators is dependent
entirely on the generator states and the left- and right-Loewner
functions. Thus, if two locally exponentially stable systems
are Loewner equivalent at (Λ, R,M,L), then there exist initial
conditions4 such that the two systems interconnected with the
generators have the same steady-state behavior, provided it
exists.

We can now define what a reduced order model is in the
Loewner sense.

Definition 5 (Reduced Order Model): Let Σ and Σ be two
systems of order n and v, respectively. Σ is called a reduced
order model of Σ in the Loewner sense if Σ and Σ are Loewner
equivalent at (Λ, R,M,L) and v < n.

We now construct a nonlinear system, which is Loewner
equivalent at (Λ, R,M,L) to (27)–(28), given that the Loewner
functions of (27)–(28) are known.

Theorem 3: Consider the interconnected system (27)–(28)
with ρ = v. Let L�(·), Lr(·), L(·), σL(·), V (·), and W (·) be the
associated Loewner functions. Assume that ∂L

∂ζr
is nonsingular.

Define the system

∂L

∂ζr
(r)ṙ = σL(r)− V (r)ur (36)

yr = W (r) (37)

4These initial conditions correspond to points on the manifold x = X(ζr).
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with state r(t) ∈ Cρ, input ur(t) ∈ Cm, and output yr(t) ∈
Cp. Then, the system (36)–(37) is Loewner equivalent at
(Λ, R,M,L) to the system (21)–(22).

Remark 5: The left- and right-Loewner functions are not
explicitly used in the construction of the presented inter-
polant; however, their existence provides straightforward jus-
tification of how the interpolant in the nonlinear setting works
(namely, via the parallelized representation and the definition of
Loewner equivalence). That being said, for LTV plants, the
left- and right-Loewner functions are explicitly required when
defining the Loewner equivalent interpolant [35].

Proof: Let X(·), Y (·), L
�
(·), L(·), and L

r
(·) be the set

of Loewner functions for the system (36)–(37). We start by
rearranging (36) into the form

ṙ =

(
∂L

∂ζr
(r)

)−1

σL(r)−
(
∂L

∂ζr
(r)

)−1

V (r)ur.

As a result, the functions X(·), Y (·), and L
�
(·) are solutions

to the PDEs, with boundary conditions,

∂X

∂ζr
Λζr =

(
∂L

∂ζr
(X(ζr))

)−1

σL(X(ζr))

−
(
∂L

∂ζr
(X(ζr))

)−1

V (X(ζr))Rζr, X(0) = 0

(38)

and

∂Y

∂r

(
∂L

∂ζr
(r)

)−1

σL(r) = MY (r)− LW (r), Y (0) = 0

(39)
and

∂L
�

∂ζr
Λζr =

∂Y

∂r
(X(ζr))

(
∂L

∂ζr
(X(ζr))

)−1

V (X(ζr))Rζr

+ML
�
(ζr), L

�
(0) = 0 (40)

while L(·) and L
r
(·) are defined as

L(ζr) := −Y (X(ζr))

and

L
r
(ζr) := L(ζr)− L

�
(ζr).

To prove that (36)–(37) is a Loewner equivalent model, we

show that X(ζr) = ζr, Y (r) = −L(r), and L
�
(ζr) = L�(ζr) is

a solution to the PDEs (38), (39), and (40). Rearranging (38)
yields(

∂L

∂ζr
(X(ζr))

)
∂X

∂ζr
Λζr = σL(X(ζr))− V (X(ζr))Rζr

while letting X(ζr) = ζr yields

∂L

∂ζr
Λζr = σL(ζr)− V (ζr)Rζr

which holds by definition of σL(·). Thus, X(ζr) = ζr satisfies
(38). Letting Y (r) = −L(r) in (39) yields

− ∂L

∂ζr
(r)

(
∂L

∂ζr
(r)

)−1

σL(r) = −ML(r)− LW (r)

or

σL(r) = ML(r) + LW (r)

which holds by definition of σL(·). Thus, Y (r) = −L(r) sat-
isfies (39). Finally, letting X(ζr) = ζr, Y (r) = −L(r), and

L
�
(ζr) = L�(ζr) in (40) yields

∂L�

∂ζr
Λζr = ML�(ζr)− ∂L

∂ζr

(
∂L

∂ζr

)−1

V (ζr)Rζr

= ML�(ζr)− ∂Y

∂x
(X(ζr))g(X(ζr))Rζr

which holds by definition of L�(·). Thus, X(ζr) = ζr, Y (r) =

−L(r), and L
�
(ζr) = L�(ζr) satisfy (40). Because we have

thatX(ζr) = ζr,Y (r) = −L(r), and L
�
(ζr) = L�(ζr), we also

have that

L(ζr) = −Y (X(ζr)) = L(ζr)

and

L
r
(ζr) = L(ζr)− L

�
(ζr) = L(ζr)− L�(ζr) = Lr(ζr)

and thus, the system (36)–(37) is Loewner equivalent at
(Λ, R,M,L) to the system (21)–(22). �

Remark 6: Theorem 3 allows constructing reduced order
models for the system (21)–(22) in the Loewner sense at
(Λ, R,M,L) by simply selecting ρ = v < n, and determining
the nonlinear Loewner functions of the system (21)–(22).

IV. INTERCONNECTION WITH NONLINEAR GENERATORS

In this section, we consider a more general scenario in which
the system (21)–(22) is interconnected with two nonlinear sys-
tems of the form

ζ̇r(t) = λ(ζr(t)) + Δ(t) (41)

v(t) = r(ζr(t)) (42)

and

ζ̇�(t) = m(ζ�(t)) + �(χ(t)) (43)

η(t) = ζ�(t) (44)

with states ζr(t) ∈ Cρ and ζ�(t) ∈ Cv , inputs Δ(t) ∈ Cρ and
χ(t) ∈ Cp, and outputs v(t) ∈ Cm and η(t) ∈ Cv, and with
functions λ, r, m, and � of appropriate dimensions, and such
that λ(0) = 0, r(0) = 0, m(0) = 0, �(0) = 0, and λ(·) and
m(·) are differentiable. LetΛ := ∂λ

∂ζr
(0) andM := ∂m

∂ζ�
(0), with

Assumption 4 still holding.
To motivate the introduction of nonlinear generators, consider

the Van der Pol oscillator (see, e.g., [39]). The limit cycle of
the oscillator is stable; however, its linearization at the origin is
unstable. If one wanted to determine an interpolant for (21)–(22)
when its input is excited by the output of a Van der Pol oscillator,
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Fig. 3. The interconnected system.

then the linearization at the origin would not be appropriate, as
the linearization is unstable. Furthermore, choosing instead a
linear generator with poles on the imaginary axis to approximate
the oscillator would amount to ignoring nonlinear behaviors that
one might be interested in capturing.

Consider now the interconnection of the system (21)–(22)
with the generators (41)–(42) and (43)–(44) defined by the
interconnection equations u = v and χ = y, which yields the
state-space representation⎡⎢⎢⎣

ζ̇r

ẋ

ζ̇�

⎤⎥⎥⎦ =

⎡⎢⎢⎣
λ(ζr)

f(x) + g(x)r(ζr)

m(ζ�) + �(h(x))

⎤⎥⎥⎦+

⎡⎢⎣I0
0

⎤⎥⎦Δ (45)

η = ζ� (46)

with state
[
ζ�r x� ζ��

]�
, input Δ, and output η. The inter-

connected system is depicted in Fig. 3.

A. Loewner Functions

We begin by defining the nonlinear enhancements of the
tangential generalized controllability and observability matrices,
and of the Loewner matrices. These are defined in terms of the
functions and matrices making up the interconnected system
(45)–(46). The tangential generalized controllability function
X : Cρ → Cn is defined as the solution, provided it exists, to
the PDE with boundary condition

∂X

∂ζr
λ(ζr) = f(X(ζr)) + g(X(ζr))r(ζr), X(0) = 0. (47)

The following claim is a direct consequence of Assumptions 3
and 4 and of the center manifold theory [37].

Proposition 4 (Existence of X): Consider the PDE (47) with
the boundary condition X(0) = 0. Suppose Assumption 3 and
Assumption 4 hold. Then, there exists a function X : Cρ → Cn

satisfying the partial differential equation (47) with the given
boundary condition.

The tangential generalized observability function Y : Cn →
Cv is defined as the solution, provided it exists, to the PDE with
boundary condition

∂Y

∂x
f(x) = −m(−Y (x))− �(h(x)), Y (0) = 0. (48)

To prove the existence of a solution Y , we require the con-
struction of an auxiliary object similar to the object constructed
in Section III-A. Consider the system described by the equations

ζ̇� = m(ζ�) + �(h(x)) (49)

ẋ = f(x). (50)

Once again, by the center manifold theory and Assumptions 3
and 4, there exists a map x = Y (−ζ�) satisfying the PDE with
boundary condition

−∂Y

∂ζ�
(−ζ�)

(
m(ζ�) + �(h(Y (−ζ�)))

)
= f(Y (−ζ�))

Y (0) = 0. (51)

Proposition 5 (Existence of Y ): Consider the PDE (48) with
the boundary condition Y (0) = 0. Suppose Assumptions 3 and
4 hold. Suppose that the map Y , solving the PDE (51), has
a local differentiable left inverse around the origin. Then, there
exists a function Y : Cn → Cv satisfying the partial differential
equation (48) with the given boundary condition.

Proof: Recall that Y satisfies the PDE

f(Y (−ζ�)) = −∂Y

∂ζ�
(−ζ�)

(
m(ζ�) + �(h(Y (−ζ�)))

)
with boundary condition Y (0) = 0. Let Y be the local left
inverse of Y , which exists by assumption, that is

Y (Y (−ζ�)) = −ζ�

in a neighborhood of the origin. Note that Y (0) = 0. Taking the
time derivative along the trajectories of the system (49)–(50)
yields

∂Y

∂x
ẋ = −∂Y

∂x
(Y (−ζ�))

∂Y

∂ζ�
(−ζ�)ζ̇� = −ζ̇�.

Using this equation in Y yields

∂Y

∂x
f(x) = − (m(ζ�) + �(h(x))) = −m(−Y (x))− �(h(x)).

Thus, the left inverse of Y , i.e., Y , solves the PDE (48) in a
neighborhood of the origin with the given boundary condition.�

Having defined the tangential generalized observability and
controllability functions, nonlinear enhancements of V and W
are defined as

V (ζr) :=
∂Y

∂x
(X(ζr))g(X(ζr)), W (ζr) := h(X(ζr)).

The nonlinear Loewner function is defined in terms of the tan-
gential generalized controllability and observability functions as

L(ζr) := −Y (X(ζr)).

The left-Loewner function L� : Cρ → Cv is defined as the
solution, provided it exists, to the PDE with boundary condition

∂L�

∂ζr
λ(ζr) = −m(−L�(ζr))− V (ζr)r(ζr)

L�(0) = 0 (52)
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and the right-Loewner function Lr : Cρ → Cv is defined as

Lr(ζr) := L(ζr)− L�(ζr).

A proof that a solution exists for the PDE (52) is now given
by extending the proof of the main theorem in [38]. Note that
this theorem requires analyticity of λ(·), m(·), and V (·)r(·) as
the proof makes use of a series expansion.

Proposition 6 (Existence of L�): Consider the PDE (52) with
the boundary condition L�(0) = 0 and suppose that λ, m, V ,
and r are analytic. Suppose there exist constants C > 0 and
v > 0 such that all eigenvalues of M are of type (C, v) with
respect to σ(Λ). Then, there exists a function L� : Cρ → Cv

satisfying the partial differential equation (52) with the given
boundary condition.

In order to prove Proposition 6, we require the following
preliminary result.

Lemma 1: Assume that κ : Cρ → Cρ, h : Cρ → Cp, β :
Cp → Cv , and ε : Cv → Cv are analytic vector fields such that
κ(0) = 0, h(0) = 0, β(0) = 0, and ε(0) = 0. Let K = ∂κ

∂x (0),
H = ∂h

∂x (0), B = ∂β
∂y (0), and E = ∂ε

∂z (0). Suppose there exist
1) a v × ρ matrix T such that TK = ET −BH;
2) constants C > 0 and v > 0 such that all the eigenvalues

of E are of type (C, v) with respect to σ(K).
Then, locally around x = 0, there exists a unique analytic

solution θ to the PDE
∂θ

∂x
κ(x) = ε(θ(x))− β(h(x)).

Moreover, ∂θ
∂x (0) = T .

Proof: The proof extends a similar proof given in [38];
however, the present proof includes the nonlinear term ε(θ(·)).
To begin with, by analyticity, expand the functions in the partial
differential equation using the Taylor series as

θ(x) = Tx+
∞∑
i=2

θ(i)(x), κ(x) = Kx+
∞∑
i=2

κ(i)(x)

β(h(x)) = BHx+

∞∑
i=2

β(i)(x)

and

ε(θ(x)) = Eθ(x) +

∞∑
i=2

ε(i)(θ(x)).

Let σ(K) = {λ1, . . . , λn} be the spectrum of K and let
σ(E) = {μ1, . . . , μρ} be the spectrum of E. For simplicity, and
similarly to [38], we assume thatK andE are diagonal; however,
this is not necessary. Substituting the expansions into the PDE
yields(

T +

∞∑
i=2

∂θ(i)

∂x

)(
Kx+

∞∑
i=2

κ(i)(x)

)

=

(
Eθ(x) +

∞∑
i=2

ε(i)(θ(x))

)
−
(
BHx+

∞∑
i=2

β(i)(x)

)

= (ET −BH)x+
∞∑
i=2

(
Eθ(i)(x)− β(i)(x)

)

+

∞∑
i=2

ε(i)(θ(x)). (53)

Note that ε(m)(θ(x)) contains terms of degree d ≥ m.
Let deg(ε(m)(θ(x)), p) denote the terms of degree p from
ε(m)(θ(x)). The terms of degree d = 1 from (53) are

TKx = (ET −BH)x.

With some abuse of the summation notation when d = 2 (the
summation on the LHS is taken to be 0 in this case), the terms
of degree d ≥ 2 are

Tκ(d)(x) +
∂θ(d)

∂x
Kx+

d−1∑
k=2

∂θ(k)

∂x
κ(d+1−k)(x)

= Eθ(d)(x)− β(d)(x) +
d∑

k=2

deg(ε(k)(θ(x)), d).

This can be simplified to

∂θ(d)

∂x
Kx = Eθ(d)(x)− β

(d)
(x)

where

β
(d)

(x) := β(d)(x) + Tκ(d)(x) +
d−1∑
k=2

∂θ(k)

∂x
κ(d+1−k)(x)

−
d∑

k=2

deg(ε(k)(θ(x)), d).

It is important to note that β
(d)

contains coefficients of θ
associated with terms of degree less than d. Therefore, we can

expand β
d

and θd as

β
(d)

(x) =

n∑
k=1

∑
|m|=d

βk,mekx
m

and

θ(d)(x) =

n∑
k=1

∑
|m|=d

θk,mekx
m

wherexm = xm1
1 . . . xmn

n . SinceK andE are diagonal,σ(K) =
{λ1, . . . , λn}, and σ(E) = {μ1, . . . , μn}, thus yielding

−
n∑

k=1

∑
|m|=d

βk,mekx
m =

n∑
k=1

∑
|m|=d

θk,mek
∂xm

∂x
Kx

−
n∑

k=1

∑
|m|=d

μkθk,mekx
m.

Note that

∂xm

∂x
Kx = mλxm

hence

−
n∑

k=1

∑
|m|=d

βk,mekx
m =

n∑
k=1

∑
|m|=d

θk,mekmλxm
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−
n∑

k=1

∑
|m|=d

μkθk,mekx
m.

This leads to the equations

θk,mmλxm − μkθk,mxm = −βk,mxm

hence, θk,m can be selected as

θk,m = (μk −mλ)−1βk,m.

Because the eigenvalues of E are of type (C, v) with respect
to σ(K), θk,m is well defined for all k and m. Solving this for
each k and for each xm gives θ(d) and then determining θ(d), for
d = 2, 3, . . . , yields a solution to the PDE, that is, the function
θ. �

Remark 7: The proof of existence of a solution to the PDE
in Lemma 1 is constructive, i.e., existence of solution is proven
by building a particular solution in steps. As such, following
the steps in the proof yields an explicit solution when the
involved functions are analytic and the type-(C, v) condition
holds by calculating Taylor series expansions of mappings and
constructing each β̄(d) term. Scalability for higher dimensional
systems is not straightforward; however, this is outside the scope
of this article.

Remark 8: The proofs of existence of solution to the PDEs in
Propositions 4 and 5 rely on the center manifold theory, and
solutions to the involved PDEs can be approximated to any
degree of accuracy [37].

Proof (Proof of Proposition 6): It is sufficient to substitute
L�(·), λ(·), m(·), and V (·)r(·) into Lemma 1 to complete the
proof of Proposition 6. Note that the conditions in Lemma 1 are
satisfied because of Assumption 4, and because all eigenvalues
of M are of type (C, v) with respect to σ(Λ). �

Remark 9: Lemma 1 can also be applied to prove existence
of solution for the PDE (48) defining Y (·), when a type-(C, v)
condition holds, and to prove existence of solution for the
PDE (47) defining X(·), when a type-(C, v) condition holds
and g(x) is constant (which is always locally achievable via a
coordinates transformation, if the vector field g(·) is involutive).
Consequently, if all mappings are analytic and the type-(C, v)
conditions hold, then we are able to construct explicit solutions
for the considered PDEs via Lemma 1.

Remark 10: The existence conditions based on Lemma 1 have
the advantage that the underlying PDEs have solutions even for
unstable systems. Namely, unstable nonlinear systems can be
analyzed in the nonlinear Loewner framework without stability
assumptions. However, when considering unstable systems the
relation with the output response is lost.

The definitions introduced thus far show that the Loewner
and right-Loewner functions satisfy the PDEs with boundary
conditions

∂L

∂ζr
λ(ζr) = m(L(ζr)) + �(W (ζr))− V (ζr)r(ζr)

L(0) = 0

and

∂Lr

∂ζr
λ(ζr) = m(L(ζr)) +m(−L�(ζr)) + �(W (ζr))

Lr(0) = 0.

The shifted Loewner function σL : Cρ → Cv is defined in
terms of the left- and right-Loewner functions as

σL(ζr) := −m(−L�(ζr)) +
∂Lr

∂ζr
λ(ζr)

which implies that

σL(ζr) = m(L(ζr)) + �(W (ζr))

=
∂L

∂ζr
λ(ζr) + V (ζr)r(ζr)

and

σL(ζr) = −∂Y

∂x
(X(ζr))f(X(ζr)).

Remark 11: As noted in Remark 4, if the system (21)–(22)
is linear, and the auxiliary systems (41)–(42) and (43)–(44) are
linear, then the solution to the PDEs (47), (48), and (52) becomes
X(ζr) = Xζr, Y (x) = Y x, and L�(ζr) = L�ζr, where X , Y ,
and L� are the solutions to the Sylvester equations (7), (8), and
(9). Thus, the linear Loewner objects are recovered.

B. Loewner Coordinates

To expose the relation between the Loewner functions and the
interconnection of systems (45)–(46), we select a specific set of
coordinates in a similar fashion as in Theorems 1 and 2.

Theorem 4: Consider the system (45)–(46). The coordinates
transformation⎡⎢⎣zrzc

z�

⎤⎥⎦ :=

⎡⎢⎣ ζr

x−X(ζr)

ζ� + Y (x) + L�(ζr)

⎤⎥⎦
is such that the system in the new coordinates is described by
the equations⎡⎢⎢⎣
żr

żc

ż�

⎤⎥⎥⎦=
⎡⎢⎢⎣

λ(zr)

Ã (zc +X(zr), zr) zc

M̃ (z� + Lr(zr), zr) z� + G̃ (zc +X(zr), z�, zr) zc

⎤⎥⎥⎦

+

⎡⎢⎣ 0

0

m(Lr(zr))−m(L(zr))−m(−L�(zr))

⎤⎥⎦

+

⎡⎢⎢⎢⎢⎣
I

−∂X

∂ζr
(zr)

∂L�

∂ζr
(zr)

⎤⎥⎥⎥⎥⎦Δ

η = Lr(zr)− Ỹ (zc +X(zr), zr) zc + z�
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Fig. 4. The transformed, parallel interconnected, system.

where zr(t) ∈ Cρ, zc(t) ∈ Cn, z�(t) ∈ Cv, and Ã : Cn ×
Cρ → Cn×n, G̃ : Cn × Cv × Cρ → Cv×n, M̃ : Cv × Cρ →
Cv×v, and Ỹ : Cn × Cρ → Cv×n.

Proof: We proceed by direct differentiation. For zc, we have

żc = ẋ− ∂X

∂ζr
ζ̇r

= (f(zc +X(ζr)) + g(zc +X(ζr))r(ζr))

− (f(X(ζr)) + g(X(ζr))r(ζr))− ∂X

∂ζr
Δ.

For z�, we have

ż� = ζ̇� +
∂Y

∂x
ẋ+

∂L�

∂ζr
ζ̇r

=
(
m(z� − Y (x)− L�(ζr))−m(−Y (x))−m(−L�(ζr))

)
+

(
∂Y

∂x
f(x) + �(h(x)) +m(−Y (x))

)
+

(
∂L�

∂ζr
λ(ζr) +

∂Y

∂x
g(x)r(ζr) +m(−L�(ζr))

)
+

∂L�

∂ζr
Δ.

By the PDE-based definitions of Y (·) and L�(·), (48) and (52),
this becomes

ż� =
(
m(z� − Y (x)− L�(ζr))−m(−Y (x))−m(−L�(ζr))

)
+

(
∂Y

∂x
g(x)− ∂Y

∂x
(X(ζr))g(X(ζr))

)
r(ζr) +

∂L�

∂ζr
Δ.

Finally, we have that

η = z� − Y (zc +X(ζr))− L�(ζr)

= Lr(ζr)− (Y (zc +X(ζr))− Y (X(ζr))) + z�.

The result is then obtained by a direct application of
Hadamard’s Lemma. �

Note that, by Assumption 3, for any sufficiently small x(0)
and ζr(0), the solutions of the interconnected systems approach
the center manifold x = X(ζr) exponentially fast; hence, zc
approaches zero provided Δ converges to zero and the system
has a converging input converging state property. On the center
manifold, that is, for x = X(ζr), or zc = 0, one has

żr = λ(zr) + Δ

ż� =
(
m(z� + Lr(zr))−m(L(zr))−m(−L�(zr))

)
+

∂L�

∂ζr
(zr)Δ

and

η = Lr(zr) + z�

that is, the system restricted to the center manifold contains only
information on the Loewner functions. The transformed system
is depicted in Fig. 4.

C. Loewner Equivalent Model

In this section, similarly to Section III-C, the concept of a
reduced order model in the Loewner sense for nonlinear systems
is introduced. In addition, a nonlinear system, reminiscent of
the linear systems in [24] and [35], which interpolates the
Loewner functions defined by the PDEs (47), (48), and (52),
is constructed.

Similarly to Definition 4, we define Loewner equivalence for
the more general scenario in which the objects defining the
generators are functions rather than matrices.

Definition 6 (Loewner Equivalence): Let Σ and Σ be two
systems described by equations of the form (21)–(22) admitting

left- and right-Loewner functions L�(·), Lr(·), and L
�
(·), L

r
(·),

respectively, associated to the functions λ(·), r(·),m(·), and �(·).
Then, Σ and Σ are called Loewner equivalent at (λ, r,m, �) if

L�(ζr) = L
�
(ζr) and Lr(ζr) = L

r
(ζr) in a neighborhood of the

origin.
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Consistently, we say that a nonlinear system interpolates
another nonlinear system (in the Loewner sense) at (λ, r,m, �)
if the two systems are Loewner equivalent at (λ, r,m, �). That
is, for the same functions λ(·), r(·),m(·), �(·), the interpolating
system possesses the exact same left- and right-Loewner func-
tions.

Similarly to Section III-C, the property of Loewner equiv-
alence has a strong implication on the steady-state behavior
of the systems. By Theorem 4, recalling Assumptions 3 and
4, assuming the foregoing stability conditions hold, that Δ is
sufficiently small, bounded, and converges to zero, it is easy
to see that the steady-state response of the system intercon-
nected with the generators is dependent entirely on the generator
states and the left- and right-Loewner functions. Thus, if two
locally exponentially stable systems are Loewner equivalent
at (λ, r,m, �), then there exist initial conditions such that the
two systems interconnected with the generators have the same
steady-state behavior, provided it exists.

We can now define what a reduced order model is in the
Loewner sense. Note that this is a more general version of
Definition 5 in which the objects defining the generators are
functions rather than matrices.

Definition 7 (Reduced Order Model): Let Σ and Σ be two
systems of order n and v, respectively. Σ is called a reduced
order model of Σ in the Loewner sense if Σ and Σ are Loewner
equivalent at (λ, r,m, �) and v < n.

We now construct a nonlinear system, which is Loewner
equivalent at (λ, r,m, �) to (21)–(22), given that the Loewner
functions of (45)–(46) are known. Once again, note that this is
a more general version of Theorem 3.

Theorem 5: Consider the interconnected system (45)–(46)
with ρ = v. Let L�(·), Lr(·), L(·), σL(·), V (·), and W (·) be the
associated Loewner functions. Assume that ∂L

∂ζr
is nonsingular.

Define the system

∂L

∂ζr
(r)ṙ = σL(r)− V (r)ur (54)

yr = W (r) (55)

with state r(t) ∈ Cρ, inputur(t) ∈ Cm, and output yr(t) ∈ Cp.
Then, the system (54)–(55) is Loewner equivalent at (λ, r,m, �)
to the system (21)–(22).

Proof: Let X(·), Y (·), L
�
(·), L(·), and L

r
(·) be the set

of Loewner functions for the system (54)–(55). We start by
rearranging (54) into the form

ṙ =

(
∂L

∂ζr
(r)

)−1

σL(r)−
(
∂L

∂ζr
(r)

)−1

V (r)ur.

As a result, the functions X(·), Y (·), and L
�
(·) are solutions

to the PDEs

∂X

∂ζr
λ(ζr) =

(
∂L

∂ζr
(X(ζr))

)−1

σL(X(ζr))

−
(
∂L

∂ζr
(X(ζr))

)−1

V (X(ζr))r(ζr), X(0) = 0

(56)

∂Y

∂r

(
∂L

∂ζr
(r)

)−1

σL(r) = −m(−Y (r))− �(W (r)),

Y (0) = 0 (57)

and

∂L
�

∂ζr
λ(ζr) =

∂Y

∂r
(X(ζr))

(
∂L

∂ζr
(X(ζr))

)−1

V (X(ζr))r(ζr)

−m(−L
�
(ζr)), L

�
(0) = 0 (58)

while L(·) and L
r
(·) are defined as

L(ζr) := −Y (X(ζr))

and

L
r
(ζr) := L(ζr)− L

�
(ζr).

To prove that (54)–(55) is a Loewner equivalent model, we

show that X(ζr) = ζr, Y (r) = −L(r), and L
�
(ζr) = L�(ζr) is

a solution to the PDEs (56), (57), and (58). Rearranging (38)
yields(

∂L

∂ζr
(X(ζr))

)
∂X

∂ζr
λ(ζr) = σL(X(ζr))− V (X(ζr))r(ζr)

while letting X(ζr) = ζr yields

∂L

∂ζr
λ(ζr) = σL(ζr)− V (ζr)r(ζr)

which holds by the definition of σL(·). Thus, X(ζr) = ζr sat-
isfies (56). Letting Y (r) = −L(r) in (57) yields

− ∂L

∂ζr
(r)

(
∂L

∂ζr
(r)

)−1

σL(r) = −m(L(r))− �(W (r))

or

σL(r) = m(L(r)) + �(W (r))

which holds by the definition of σL(·). Thus, Y (r) = −L(r)
satisfies (57). Finally, letting X(ζr) = ζr, Y (r) = −L(r), and

L
�
(ζr) = L�(ζr) in (58) yields

∂L�

∂ζr
λ(ζr) = −m(−L�(ζr))− ∂L

∂ζr

(
∂L

∂ζr

)−1

V (ζr)r(ζr)

= −m(−L�(ζr))− ∂Y

∂x
(X(ζr))g(X(ζr))r(ζr)

which holds by the definition of L�(·). Thus, X(ζr) = ζr,

Y (r) = −L(r), and L
�
(ζr) = L�(ζr) satisfy (58). Because we

have that X(ζr) = ζr, Y (r) = −L(r), and L
�
(ζr) = L�(ζr),

we also have that

L(ζr) = −Y (X(ζr)) = L(ζr)

and

L
r
(ζr) = L(ζr)− L

�
(ζr) = L(ζr)− L�(ζr) = Lr(ζr)

and thus, the system (54)–(55) is Loewner equivalent for
(λ, r,m, �) to the system (21)–(22). �
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V. CONCLUSION

We have presented new methods for the model reduction
of nonlinear systems. These methods extend the state-space
interpretation of the Loewner matrices, which are classically
interpreted in the frequency domain, previously developed by
the authors for linear systems in [34] to nonlinear systems. Given
that the frequency domain interpretation of the Loewner matrices
holds little meaning in the nonlinear setting, we define new
objects, the Loewner functions, which are solutions to partial
differential equations and are generalizations of the Loewner
matrices. Given the Loewner functions for an underlying nonlin-
ear system, we have presented a particular reduced order model
that interpolates the underlying system, that is, the reduced order
model produces the same Loewner functions as the underlying
system. Locally, the two systems produce the same steady-state
response, provided it exists, when interconnected with the gener-
ators corresponding to the Loewner functions. The relationship
between the Loewner framework for nonlinear systems and the
two-sided moment matching procedure for nonlinear systems
in [36] is currently being investigated.

APPENDIX

ON THE USE OF COMPLEX-VALUED SIGNALS

At first glance, the restriction ofΛ andM to diagonal matrices
may seem prohibitive. Many important interpolation points,
such as those on the imaginary axis of the complex plane, would
not be implementable under such a framework. In this section,
it is shown that diagonality of the generator matrices is not
actually required, and that such interpolation points can, in fact,
be achieved.

1) Linear Systems: Let P ∈ Cρ×ρ and Q ∈ Cv×v be non-
singular matrices. Consider generators of the form (11)–(12) and
(13)–(14) defined by the equations

ζ̇r = PΛP−1︸ ︷︷ ︸
=:Λ

ζr +Δ (59)

v = RP−1︸ ︷︷ ︸
=:R

ζr (60)

and

ζ̇� = QMQ−1︸ ︷︷ ︸
=:M

ζ� + QL︸︷︷︸
=:L

y (61)

η = ζ� (62)

where Λ ∈ Cρ×ρ and M ∈ Cv×v are diagonal, and Λ, R, M ,
and L are real-valued matrices, and therefore, implementable.
Let X , Y , W , V , L, and σL denote the set of Loewner matrices
associated with the generators (11)–(12) and (13)–(14) inter-
connected with the plant (1)–(2). We now use the real-valued
matrices in (59)–(60) and (61)–(62) to construct a new set of
Loewner matrices, which we represent in terms of the former set
of Loewner matrices. Letting X , Y , W , V , L, and σL denote
the new set of Loewner matrices associated with the generators
(59)–(60) and (61)–(62) interconnected with the plant (1)–(2),

we obtain

X = XP−1, W = WP−1, Y = QY, V = QV

which yields the new Loewner matrices

L = QLP−1, σL = QσLP−1.

We then construct the new Loewner equivalent model as

ω̇ = L
−1
σLω − L

−1
V ur

yr = Wω

which is simplified to

ω̇ = PL−1σLP−1ω − PL−1V ur

yr = WP−1ω.

This new interpolating model is obtained by a coordinates
transformation of the interpolating model (19)–(20); hence, the
generators (11)–(12) and (13)–(14), and the generators (59)–(60)
and (61)–(62), interconnected with the plant (1)–(2) produce the
same interpolant, albeit in different coordinates.

2) Nonlinear Plant With Linear Generators: In a similar
fashion, we now consider the set of Loewner functions associ-
ated with the generators (59)–(60) and (61)–(62) interconnected
with the plant (21)–(22), which we denote X(·), Y (·), W (·),
V (·), L(·), L

�
(·), L

r
(·), and σL(·). Let X(·), Y (·), W (·),

V (·), L(·), L�(·), Lr(·), and σL(·) denote the set of Loewner
functions associated with the interconnected system (23)–(24),
(25)–(26), and (21)–(22). Then, it follows that

X(ζr) = X(P−1ζr), W (ζr) = W (P−1ζr)

Y (x) = QY (x), V (ζr) = QV (P−1ζr)

which admits the new Loewner functions

L(ζr) = QL(P−1ζr), L
�
(ζr) = QL�(P−1ζr)

L
r
(ζr) = QLr(P−1ζr), σL(ζr) = QσL(P−1ζr).

Note also that

∂L

∂ζr
= Q

∂L

∂ζr
(P−1ζr)P

−1.

The new Loewner equivalent model is given by

∂L

∂ζr
(ω)ω̇ = σL(ω)− V (ω)ur

yr = W (ω).

This is simplified to

∂L

∂ζr
(P−1ω)P−1ω̇ = σL(P−1ω)− V (P−1ω)ur

yr = W (P−1ω)

which is obtained via a coordinates transformation from the
interpolating model (36)–(37).
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3) Nonlinear Plant With Nonlinear Generators: Consider
now generators of the form (41)–(42) and (43)–(44) defined by
the equations

ζ̇r = Pλ(P−1ζr)︸ ︷︷ ︸
=:λ(ζr)

+Δ (63)

v = r(P−1ζr)︸ ︷︷ ︸
=:r(ζr)

(64)

and

ζ̇� = Qm(Q−1ζ�)︸ ︷︷ ︸
=:m(ζ�)

+Q�(y)︸ ︷︷ ︸
=:�(y)

(65)

η = ζ� (66)

where λ : Cρ → Cρ and m : Cv → Cv are such that ∂λ
∂ζr

(0) =

Λ and ∂m
∂ζ�

(0) = M are diagonal, and λ(·), r(·), m(·), and �(·)
are real-valued maps. We now consider the set of Loewner
functions associated with the generators (63)–(64) and (65)–(66)
interconnected with the plant (21)–(22), which we denote X(·),
Y (·), W (·), V (·), L(·), L

�
(·), L

r
(·), and σL(·). Let X(·), Y (·),

W (·), V (·), L(·), L�(·), Lr(·), and σL(·) denote the set of
Loewner functions associated with the interconnected system
(41)–(42), (43)–(44), and (21)–(22). Then, it follows that

X(ζr) = X(P−1ζr), W (ζr) = W (P−1ζr)

Y (x) = QY (x), V (ζr) = QV (P−1ζr)

which admits the new Loewner functions

L(ζr) = QL(P−1ζr), L
�
(ζr) = QL�(P−1ζr)

L
r
(ζr) = QLr(P−1ζr), σL(ζr) = QσL(P−1ζr).

Note also that

∂L

∂ζr
= Q

∂L

∂ζr
(P−1ζr)P

−1.

The new Loewner equivalent model is given by

∂L

∂ζr
(ω)ω̇ = σL(ω)− V (ω)ur

yr = W (ω).

This is simplified to

∂L

∂ζr
(P−1ω)P−1ω̇ = σL(P−1ω)− V (P−1ω)ur

yr = W (P−1ω)

which is obtained via a coordinates transformation from the
interpolating model (54)–(55).
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