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Abstract. We study relational and algebraic first-order structures on P(X), for X
a topological space, with the further requirement that such structures are preserved

by image functions associated to continuous functions. Many of the above structures
have arisen independently in disparate and very distant fields.

In particular, we deal with a ternary relation x vz y whose intended interpretation

is x ⊆ z ∪Ky, where K is closure in some topological space. The study provides a
smoother, simpler and more general theory, with respect to the formerly studied

“basic” binary relation given by x ⊆ Ky.

We provide an axiomatization for semilattices with such an “extended” ternary
relation, characterizing those structures which can be embedded into a topological

model with the above interpretation. More generally, we construct “free extensions”

of extended specialization semilattices into closure semilattices. We also take into
account the possibility of adding contact and n-ary hypercontact relations. In this

way we generalize and uniformize many previous results.

1. Introduction

In [12] we proposed the project of studying those relational and algebraic

first-order structures associated to topologies which are preserved “covari-

antly” by continuous functions. Admittedly, the project has a somewhat

narrow range of application: in a strict sense, closure itself is not preserved.

Indeed, if ϕ : X → Y is a continuous function between two topological spaces

and ϕ→ is the associate image function, then ϕ(Kx) ⊆ K(ϕ(x)), for x ⊆ X,

where K denotes closure. On the other hand, the reverse inclusion holds only

if ϕ is a closed function.

However, many properties are preserved also in the mentioned strict sense,

for example, the notion of adherence between a point and a subset of a topo-

logical space. More generally, image functions associated to continuous maps

preserve the contact or proximity relation δ defined by x δ y if Kx ∩Ky 6= ∅.
As well-known, such preservation properties provide an equivalent definition

for the notion of continuity: a function is continuous if and only if it preserves

adherence, equivalently, contact (in the above sense). Such definitions seem
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much closer to intuition than the nowadays more common definition of conti-

nuity in terms of preimages, and in fact they played an important role in the

hystorical development of topology.

The example we mainly considered in [12] is the binary relation a v b defined

for subsets a, b of some topological space X and whose interpretation is given

by a ⊆ Kb, where K is the closure of X. In [12] we provided an axiomatization

for those semilattices with a further preorder v which can be represented in the

above way, where the join operation corresponds to set theoretical union. We

also discovered that such specialization semilattices appeared independently

in many other fields. See [8, 9, 12, 15] for details. As is the case for the

contact mentioned above, the specialization relation v is sufficient to detect

continuity; indeed, a function ϕ between topological spaces is continuous if

and only if the image function ϕ→ is a v-homomorphism [12, Proposition 2.4].

This is an immediate generalization of the classical fact that a function ϕ is

continuous if and only if ϕ preserves the adherence relation between points

and subsets of topological spaces.

Further representations of specialization semilattices appear in [8, 9, 15].

Here we extend the notion of a specialization semilattice by considering a

ternary relation whose intended interpretation is given by a ⊆ h ∪Kb. Quite

surprisingly, though the notion might appear more complex, proofs in this

case turn out to be much simpler. We present axioms for such extended spe-

cialization semilattices and provide various representation theorems, possibly

when specialization is combined with a contact or hypercontact relation. See

[6, 8, 9, 12, 15] for further examples and motivations, and [4, 5, 10, 11, 13, 17]

for the relevance of contact and hypercontact relations.

2. Preliminaries

Unexplained notions and notation can be found in [2, 3, 6, 8, 9, 12]. Semi-

lattices will always be considered as join semilattice and the join operation

will be denoted by +. For the sake of simplicity, we will sometimes assume

that partially ordered sets (posets, for short) have a minimum element, here

always denoted by 0. This is generally not strictly necessary, but will simplify

notation and some arguments. See Remark 3.7 below. See also [8, Remarks

2.3 and 3.4], [11, Remark 6] and [13, Remark 6.10] for parallel observations.

Homomorphisms and embeddings will always be considered in the classical

model-theoretical sense [7]. However, we will reproduce the relevant definitions

in each case of interest. In case of structures with a 0, we will always assume

that homomorphisms send 0 to 0. Formally, 0 is interpreted as a constant in

the language. Indeed, when we say that a poset P (or some other structure) has

a 0, we will always mean that not only 0 is a minimum element of P, but also

that 0 is (the interpretation of) a constant of P, for example, P = (P,≤, 0).

We will sometimes deal with functions preserving only part of the structure.

For example, if δ is interpreted as a binary relation in a class of posets with
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further structure, a {≤, δ}-homomorphism is an order-preserving function ϕ

such that, in addition, a δ b implies ϕ(a) δ ϕ(b), but ϕ is not required to

preserve further structure.

2.1. Structures associated to topologies. We are now going to recall the

definitions of certain structures associated to topological spaces. Together

with a further kind of structure we will introduce in the next section, these

will be frequently combined, and their possible merging is the main subject of

the present paper.

In each case, those structures which are directly associated to topological

spaces will be called topological. Essentially, our main aim is to characterize

the larger class of those structures which can be embedded into topological

structures in the above sense.

2.2. Closure. Recall that a pre-closure operation on some poset P is a unary

operation K which is extensive and isotone, namely, K satisfies Kx ≥ x, for

all x ∈ P and, moreover, x ≤ y implies Kx ≤ Ky. If K is also idempotent,

that is, KKx = Kx, then K is called a closure operation. If P has a minimum

element 0, K is said to be normal if K0 = 0. In presence of a 0 we will always

assume normality, even without specific mention. A (pre-)closure operation

on some semilattice is additive if K(x+ y) = Kx+Ky, for all x and y.

If c is an element of a poset with a pre-closure operation, c is said to be

closed if Kc = c. If both c and d are closed and the meet e of c and d exists,

then e is closed, as well. Indeed, Ke ≤ Kc = c and Ke ≤ Kc = c, by isotony,

hence e ≤ Ke ≤ e, by extensiveness and since e is the meet of c and d. If K

is also assumed to be idempotent, that is, K is a closure operation, then an

element c is closed if and only if c has the form c = Kd, for some element d.

A (pre-)closure poset is a poset together with a (pre-)closure operation.

A (pre-)closure poset S is normal if S has a minimum element 0 and K is

normal. (Pre-)closure semilattices and normal (pre-)closure semilattices are

defined in an analogous way. A (pre-)closure semilattice is additive if K is

additive. Recall that a closure algebra is a Boolean algebra together with an

additive closure operation, namely, an additive closure Boolean algebra, but

the concise terminology has become standard in the literature.

We will use the following well-known property of closure semilattices:

K(x+ y) = K(x+Ky) (2.1)

See, e. g., [8, Remark 2.1(b)] for a proof.

A homomorphism between two closure semilattices (posets) is a semilattice

homomorphism (an order preserving map) η such that η(Ka) = Kη(a), for all

elements a in the domain. An embedding is an injective homomorphism (in the

case of posets, the following implication is also required: η(a) ≤ η(b) implies

a ≤ b). The definition is the same for pre-closure posets and semilattices.
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Definition 2.2.1. If X is a topological space with closure K, then S(X) =

(P(X),∪, ∅,K) is an additive closure semilattice with normal closure, which

will be called the closure semilattice associated to X. As mentioned at the

beginning of this section, closure semilattices which have the form S(X) as

above will be called topological.

Note that, when dealing also with morphisms, the correspondence is not

exactly functorial in the covariant sense: if X and Y are topological spaces,

ϕ is a function from X to Y and the image function ϕ→ : S(X) → S(Y )

is a homomorphism between the associated closure semilattices, then ϕ is a

continuous function. However, the converse holds only if ϕ is also closed. See

[12].

2.3. Contact relations. A weak contact poset is a poset P with minimum

element 0 together with a binary weak contact relation δ on P , that is, a binary

relation such that

a δ b⇔ b δ a (Sym)

a δ b⇒ a > 0 & b > 0, (Emp)

a δ b & a ≤ a1 & b ≤ b1 ⇒ a1 δ b1, (Ext)

a 6= 0⇒ a δ a, (Ref)

for all a, b, a1, b1 ∈ P . We write a 6 δ b to mean that a δ b does not hold. A weak

contact semilattice is defined similarly. The reason for the adjective “weak” is

that the following property is frequently required in the definition of a contact

relation. An additive contact relation on some semilattice is a weak contact

relation satisfying the following condition:

a δ b+c ⇒ a δ b or a δ c. (Add)

Throughout, “contact” will always mean “additive contact”, while “weak con-

tact” will always mean “not necessarily additive weak contact”.

Definition 2.3.1. When symmetry (Sym) of δ is not assumed, we will speak

of a weak pre-contact (the pre here has a meaning unrelated with the pre in the

definition of a pre-closure operation, however, the terminology is standard.) In

the nonsymmetrical case (Add) will be called right-additivity and an (additive)

pre-contact relation is also assumed to satisfy the parallel left-additivity. In

any case, we will always assume (Ref) (some authors do not assume (Ref) in

the definition of a weak pre-contact).

A homomorphism of weak contact or pre-contact posets (semilattices) is an

order preserving map (a semilattice homomorphism) which preserves 0 and

such that a δ b implies η(a) δ η(b). An embedding is also required to be

injective and to satisfy the converse implication.

Definition 2.3.2. Various kinds of overlap relations.
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(a) If S is a poset with 0, then, setting

a σ b if there is p ∈ S, p > 0 such that p ≤ a and p ≤ b, (2.2)

we get a weak contact relation called the overlap relation. In particular, this

applies to (P(X),⊆, ∅), for every set X.

(b) If X is a topological space with closure K and we set

a δ b if Ka ∩Kb 6= ∅, (2.3)

then (P(X),∪, ∅, δ) is a contact semilattice (with additive contact), which will

be called the contact semilattice associated to X.

If, instead, we set

a α b if a ∩Kb 6= ∅, (2.4)

then (P(X),∪, ∅, α) is an additive pre-contact semilattice, again, called the

pre-contact semilattice associated to X. As above, all such structures here in

(b) will be called topological.

(c) More generally, if in a normal pre-closure poset P with 0 we set

a δ b if there is p ∈ P , p > 0 such that p ≤ Ka and p ≤ Kb, (2.5)

then we get a weak contact δ on P. We will call it the closure-overlap (or K-

overlap, for short) weak contact associated to P. We get a weak pre-contact,

called the K-pre-overlap, if we set

a α b if there is p ∈ P , p > 0 such that p ≤ a and p ≤ Kb. (2.6)

The assumption that K is extensive can be weakened; it is enough to assume

that p > 0 implies Kp > 0.

Lemma 2.3.3. If S is a distributive lattice, then the overlap contact defined

by (2.2) is additive.

If S is a normal additive pre-closure distributive lattice, then the weak con-

tact defined by (2.5) and the weak pre-contact defined by (2.6) are additive.

Proof. The first statement appears in [5, Lemma 2, item 1], or see [10, Lemma

2.4]. The proof is somewhat simpler than the following proof of the second

statement.

In a lattice, condition (2.5) reads a δ b if Ka ·Kb > 0. Thus a+a1 δ b if and

only if K(a+ a1) ·Kb > 0, if and only if (Ka+Ka1) ·Kb > 0, by additivity of

K, if and only if (Ka ·Kb) + (Ka1 ·Kb) > 0, since the lattice is assumed to

be distributive. The last inequality means exactly that either Ka ·Kb > 0 or

Ka1 ·Kb > 0, that is, either a δ b or a1 δ b.

The proof dealing with (2.6) is similar; actually, additivity of K is not used

in the proof of left additivity of α. �

In comparison to the case of closure, in the case of contact, functoriality

is preserved for topological spaces. Indeed, a function between two topolog-

ical spaces is continuous if and only if the corresponding image function is a

homomorphism between the associated contact semilattices.
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2.4. Hypercontact relations. See [13] for motivations for the study of hy-

percontact (non binary) relations.

Definition 2.4.1. In [13] we defined a hypercontact poset to be a quadruple

(P,≤, 0,∆), where (P,≤, 0) is a poset with minimal element 0 and ∆ is a

family of finite subsets of P , satisfying the following conditions, for all m ∈ N+,

a1, a2, . . . , am, b ∈ P and F,G finite subsets of P .

{a1, a2, . . . , am} ∈ ∆ implies a1 > 0, a2 > 0, . . . , am > 0, (Emp∆)

F ∈ ∆ and G ⊆ F imply G ∈ ∆, (Sub∆)

if {a1, a2, . . . , am} ∈ ∆ and a1 ≤ b, then {a1, a2, . . . , am, b} ∈ ∆. (Mon∆)

b 6= 0 implies {b} ∈ ∆. (Ref∆)

As usual, a hypercontact semilattice (or lattice, Boolean algebra) is a join semi-

lattice with 0 (or lattice with 0, or a Boolean algebra) together with a family

∆ satisfying the above properties.

A hypercontact semilattice is additive if the following holds.

If {p+ q, p2, . . . , pm} ∈ ∆, then

either {p, p2, . . . , pm} ∈ ∆, or {q, p2, . . . , pm} ∈ ∆.
(Add∆)

A homomorphism of hypercontact posets (semilattices) is an order preserv-

ing map (a semilattice homomorphism) which preserves 0 and such that if

{a1, . . . , am} ∈ ∆, then {η(a1), . . . , η(am)} ∈ ∆. An embedding is also re-

quired to be injective and to satisfy the converse implication.

Parallel to Definition 2.3.2, we can define overlap and K-overlap relations

associated to a (pre-closure) poset. In detail, if S is a poset with 0, the

hypercontact overlap is obtained by setting {a1, . . . , am} ∈ ∆ if there is p ∈ S,

p > 0 such that p ≤ ai, for all i ≤ m (if m = 0, we should interpret the

quantification over the empty set as furnishing a true value, so that ∅ ∈ ∆;

also, the definition should be modified in the exceptional case P = {0}).
In a normal pre-closure poset S the closure-hypercontact (or K-hypercontact)

is given by {a1, . . . , am} ∈ ∆ if there is p ∈ S, p > 0 such that p ≤ Kai, for

all i ≤ m, again, letting ∅ ∈ ∆ in any case.

The hypercontact analogue of Lemma 2.3.3 holds, see [13, Lemma 3.4].

2.5. Specialization semilattices. A specialization poset [12] (sometimes

called a basic specialization poset, when we want to make clear the distinction

with the more encompassing notions we are going to define later) is a partially

ordered set (S,≤) together with a further preorder v, called a specialization,

satisfying the following conditions.

a ≤ b⇒ a v b, (S1)

a v b & b v c⇒ a v c, (S2)

for all elements a, b, c ∈ S.
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A specialization semilattice (or a basic specialization semilattice) is a triple

(S,+, ,v) such that (S,+) is a semilattice, (S1) and (S2) hold with respect to

the order induced by + and moreover

a v b & a1 v b⇒ a+ a1 v b, (S3)

for all elements a, b, a1 ∈ S.

A specialization poset (semilattice) with 0 is further required to have a min-

imum (with respect to ≤) element 0 such that

a v 0⇒ a = 0, (S0)

An element 0 can be generally added (or removed) without modifying the

remaining structure. See [8, Remark 2.3]. Compare also Remark 3.7 below in

an extended situation and [11, Remark 6], [13, Remark 6.10] for the case of

contact relations. Hence we will assume the existence of a 0, when convenient.

It can be shown [12, Remark 3.4(a)] that every specialization semilattice

satisfies

a v b & a1 v b1 ⇒ a+ a1 v b+ b1. (S7)

(the reason in the numbering is that we want to maintain the tags from [12]).

A homomorphism of specialization semilattices (posets) is a semilattice ho-

momorphism (an order preserving map) η such that a v b implies η(a) v η(b).

An embedding is an injective homomorphism satisfying the additional con-

dition that η(a) v η(b) implies a v b. When we are considering only the

above conditions (disregarding the further structure), we will speak of a v-

homomorphism, or of a v-embedding. In the presence of a 0, by convention,

homomorphisms are always required to satisfy η(0) = 0. When some risk of

ambiguity might occur, we shall explicitly mention that the homomorphism is

0-preserving. If X is a topological space, then (P(X),∪, ∅ v) is a “topological”

specialization semilattice with 0, where a v b if a ⊆ Kb. It can be checked

that topological continuity corresponds to the notion of homomorphism be-

tween the associated specialization semilattices [12, Proposition 2.4].

Further details about the above notions can be found in [8, 9, 12, 15].

3. Extended specialization semilattices

Definition 3.1. An extended specialization semilattice, or e-specialization

semilattice, for short, is a triple (S,+,v∗), where v∗ is a ternary relation

on S and ∗ stands for the second place. The required conditions are that

(S,+) is a join semilattice and

a ≤ h+ b ⇒ a vh b, (E1)

a vh b & h vk c & b vc c ⇒ a vk c, (E2)

a vh b & a1 vh b ⇒ a+ a1 vh b, (E3)
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for all elements a, b, c, h, k, a1 ∈ S, where ≤ is the partial order induced by +,

namely, a ≤ b if a+ b = b.

An extended specialization semilattice with 0 has a minimum element 0 such

that

a vh 0 ⇒ a ≤ h. (E0)

Minimum is always intended with respect to ≤.

We can always add a new 0 to an extended specialization semilattice: see

Remark 3.7.

Remark 3.2. Assuming (E1), the condition (E2) is equivalent to the con-

junction of

a vh c & h vk c ⇒ a vk c, and (E2a)

a vh b & b vc c ⇒ a vh c. (E2b)

Indeed, by (E1), c vc c, hence condition (E2) implies (E2a) taking b = c.

Again by (E1), h vh c, hence, taking k = h, condition (E2) implies (E2b).

Conversely, if (E2b) holds, then from the premises of (E2) we get a vh c.

Applying (E2a) we get a vk c, the conclusion in (E2).

Definition 3.3. (a) If S is an extended specialization semilattice, we define a

binary relation v by a v b if a vb b. In this way we get a basic specialization

relation, as defined in Section 2.5. We will check this in Lemma 3.6(i).

(b) A homomorphism of extended specialization semilattices is a semilattice

homomorphism η such that a vh b implies η(a) vη(h) η(b). An embedding is

an injective homomorphism such that also the reverse implication holds. Recall

that, by convention, in the presence of a 0, homomorphisms and embeddings

are assumed to preserve also 0.

Note that if, as in Definition 3.3(a), we define a v b by a vb b, then any

v∗-homomorphism (embedding) is a v-homomorphism (embedding).

As we mentioned in the introduction, the intended interpretation of a vh b
is a ⊆ h ∪Kb in some topological space, or even a ≤ h + Kb in some closure

semilattice. In the next proposition we show that the conditions (E1) - (E3)

are satisfied in the intended models.

Proposition 3.4. Suppose that S′ = (S,+,K) is a closure semilattice and

define v∗ on S by

a vh b if a ≤ h+Kb. (3.1)

Then

(a) S = (S,+,v∗) is an extended specialization semilattice.

(b) If 0 is a minimum for (S,+) and K is normal, then (S,+, 0,v∗) is an

extended specialization semilattice with 0.
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(c) In particular, if X is a topological space with closure K, then (P(X),∪, ∅,
v∗) is an extended specialization semilattice, where a vh b if a ⊆ h∪Kb,
for a, h, b ⊆ X.

(d) Suppose that S′ and T′ are closure semilattices.

If ϕ : S′ → T′ is a homomorphism, then the function ϕ is also a homo-

morphism between the corresponding extended specialization semilattices S

and T.

More generally, if ϕ : S′ → T′ is a semilattice homomorphism, then

ϕ : S→ T is a homomorphism if and only if ϕ satisfies ϕ(Kb) ⊆ Kϕ(b).

(e) In particular, if ϕ : X → Y is a function between topological spaces, then

ϕ is continuous if and only if the image function ϕ→ is a homomorphism

between the corresponding extended specialization semilattices, as given by

(c).

Proof. (a) Since K is extensive, a ≤ h + b implies a ≤ h + Kb, thus we get

(E1). As far as (E2) is concerned, from b ≤ c+Kc, the interpretation of b vc c
through (3.1), we get b ≤ Kc, since K is extensive, hence Kb ≤ KKc = Kc, by

monotonicity and idempotency of K. Thus from a ≤ h+Kb and h ≤ k+Kc,

given, respectively, by a vh b and h vk c, we get a ≤ h+Kb ≤ k+Kc+Kc =

k + Kc, that is, a vk c, by (3.1). (E3) is elementary from the definition of

join.

Item (b) is elementary, as well. Item (c) follows from (a) and (b).

(d) If a vh b in S, then a ≤ h + Kb in S′, by construction. Then

ϕ(a) ≤ ϕ(h) + ϕ(Kb) = ϕ(h) + Kϕ(b) since ϕ is a homomorphism of clo-

sure semilattices. Thus ϕ(a) vϕ(h) ϕ(b) in T, again by construction.

In order to prove the last statement, first notice that we have used only

ϕ(Kb) ⊆ Kϕ(b) in the above proof, not the full hypothesis that ϕ is a K-

homomorphism. In the other direction, if ϕ : S → T is a homomorphism,

then, since Kb vb b, we get ϕ(Kb) vϕ(b) ϕ(b) from the assumption that ϕ

is a homomorphism of extended specialization semilattices. But this means

ϕ(Kb) ⊆ ϕ(b) +Kϕ(b) = Kϕ(b), according to (3.1).

(e) is immediate from the last statement in (d), since, as well-known, a

function ϕ between topological spaces is continuous if and only if the image

function ϕ→ satisfies ϕ(Kx) ⊆ Kϕ(x). �

Definition 3.5. (a) Under the assumptions in Proposition 3.4, the extended

specialization semilattice (S,+,v∗) constructed in Proposition 3.4(a) will be

called the e-specialization reduct of the closure semilattice S′ (this is a slight

abuse of terminology; formally, S is the reduct of a definitional expansion of

S′).

(b) As usual by now, an extended specialization semilattice having the form

indicated in Proposition 3.4(c) will be called topological.

In the basic case, the analogues of Proposition 3.4 are presented in [12,

Remark 3.3 and Proposition 2.4].
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We now state some elementary properties of extended specialization semi-

lattices.

Lemma 3.6. Suppose that S is an extended specialization semilattice with

ternary relation v∗ and a, b, c, h, k, · · · ∈ S.

(i) If we define a v b by a vb b, then (S,+,v) is a basic specialization

semilattice. If S has a 0, this is a 0 also for v, namely, (S0) holds.

(ii) If a vh b and b ≤ c, then a vh c.
(iii) If a vh c and h ≤ k, then a vk c.
(iv) If both a vh b and a1 vh b1, then a+ a1 vh b+ b1.

(v) a vh c if and only if a vh+c c; in particular, if S has a 0, then a v0 c

if and only if a v c. More generally, if k ≤ c, then a vh c if and only if

a vh+k c.

(vi) If h vk c and a ≤ h, then a vk c.
(vii) a vb b if and only if the relation a vh b holds for every h ∈ S.

Proof. (i) (S1) follows immediately from (E1). (S2) follows from (E2) by taking

h = b and k = c. (S3) is immediate from (E3) by taking h = b. The statement

about 0 is also immediate.

(ii) By (E1), b vc c, hence a vh c by (E2a).

(iii) If h ≤ k, then h vk c by (E1). The conclusion follows from (E2a).

(iv) By the assumptions and (ii), a vh b + b1 and a1 vh b + b1. The

conclusion follows from (E3) with b+ b1 in place of b.

(v) The only if part follows from (iii). In the other direction, we have

h+c vh c by (E1), hence, if a vh+c c, then a vh c, by (E2a) with h + c

in place of h and k = h. To prove the nontrivial part in the last statement,

if k ≤ c and a vh+k c, then a vh+c c by (iii), hence a vh c by the first

statement in the present item.

(vi) If a ≤ h, then a vh c by (E1), hence the conclusion follows from (E2a).

(vii) To prove the nontrivial implication, if a vb b, then a vh+b b, for every

h, by taking b in place of h and h + b in place of k in (iii). Then a vh b by

the first statement in (v). �

Remark 3.7. We can always add a new minimal element 0 to an extended

specialization semilattice S “without 0” by setting in S ∪ {0}, for a, h, b 6= 0:

(i) 0 vh b always,

(ii) a vh 0 if a ≤ h, and

(iii) a v0 b if either a = 0, or a, b ∈ S and a vb b,
and letting v∗ remain unchanged when a, h, b ∈ S.

Indeed, the above clauses (i) - (iii) agree in any overlapping case, (E0) holds

because of (ii) and (E1) - (E3) are easily verified. For example, if a, b ∈ S and

a ≤ 0 + b, then a ≤ b+ b, since 0 is minimum, hence a vb b by (E1) in S, thus

a v0 b by (iii). The other cases in (E1) are elementary.
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Conversely, if we remove the element 0 from an extended specialization

semilattice with 0, we get an extended specialization semilattice satisfying

(E1) - (E3).

Results about extended specialization semilattices can be used to give a

uniform proof for results about semilattices and basic specialization semilat-

tices. See Corollaries 5.5 and 5.6 below. This will be an application of the

the next two propositions. The first proposition has a straightforward proof;

it can also be obtained from Lemma 3.6(a)(d) by taking K to be the identity

function on S.

Proposition 3.8. If S = (S,+) is a semilattice, then Se = (S,+,v∗) is an

extended specialization semilattice, where v∗ is defined by

a vh b if a ≤ h+ b. (3.2)

If S has a 0, then it is a 0 also for Se. Semilattice homomorphisms and

embeddings are exactly homomorphisms and embeddings for the structures ex-

panded in the above way.

Proposition 3.9. Suppose that S = (S,+,v) is a basic specialization semi-

lattice.

(a) If we set

a vh b if there is c ∈ S such that a ≤ h+ c and c v b, (3.3)

then Se = (S,+,v∗) is an extended specialization semilattice.

(b) If we use v∗ in order to define v, as in Definition 3.3(a), we get back the

original specialization v of S.

(c) If S has a 0 satisfying (S0), then 0 satisfies also (E0) in Se.

(d) If S and T are basic specialization semilattices, then some function ϕ :

S → T is a homomorphism of specialization semilattices from S to T if

and only if ϕ is a homomorphism of extended specialization semilattices

from Se to Te, where Se and Te are constructed as in (a). If ϕ : Se → Te

is an embedding, then ϕ : S→ T is an embedding.

Proof. We first prove (b). The condition a vb b means that there is c such

that in S a ≤ b + c and c v b, and this implies b + c v b, by b v b and (S3).

By (S1), a v b+ c, hence a v b in S. Conversely, if a v b in S, just take h = b

and c = a in (3.3) in order to get a vb b in Se.

(a) Clause (E1) is immediate by taking c = b.

The assumptions of (E2) together with (3.3) provide elements c1 and c2
such that, in S, a ≤ h + c1, c1 v b, h ≤ k + c2, c2 v c and, by the already

proved item (b), b v c. Then we get a ≤ k+c1 +c2 and c1 v c, by (S2) applied

to c1 v b and b v c. Then (S3) gives c1 +c2 v c, hence c1 +c2 witnesses a vk c
in Se.
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The assumptions of (E3) and (3.3) imply that there are c and c1 such that

a ≤ h + c, c v b, a1 ≤ h + c1 and c1 v b, hence a + a1 ≤ h + c + c1 and

c+ c1 v b, by (S3). Thus c+ c1 witnesses a+ a1 vh b.
(c) is straightforward.

(d) If ϕ is a homomorphism from Se to Te, then ϕ is a homomorphism

from S to T in view of (b). Conversely, if ϕ is a homomorphism from S to T

and a vh b in Se is witnessed by (3.3) for some c ∈ S, then ϕ(c) witnesses

ϕ(a) vϕ(h) ϕ(b) in Te.

To prove the last statement, if ϕ(a) v ϕ(b) in T, then ϕ(a) vϕ(b) ϕ(b) in

Te, by (b). Since ϕ : Se → Te is supposed to be an embedding, a vb b in Se,

that is, a v b in S, again by (b). �

4. Merging the various structures

Motivated by the above topologically induced examples, we are led to con-

sider structures in which also a contact relation is added. For example, a weak

contact closure semilattice is a quintuple (S,+, 0,K, δ) such that (S,+, 0, δ) is

a weak contact semilattice and K is a normal closure operation on S. Weak

contact extended specialization semilattices, etc. are defined in an entirely anal-

ogous way. Since weak contact posets have a 0, by definition, we will always

assume that specialization posets and semilattices, when endowed also with a

contact, have a 0 for which (S0) or (E0) are satisfied.

As in Definition 3.5(a), if S′ = (S,+, 0,K, δ) is a weak contact closure

semilattice, the weak contact e-specialization reduct of S′ is S = (S,+, 0,v∗, δ),
where v∗ is defined by (3.1).

5. Free embeddings into additive closure semilattices

In this section we show that every extended specialization semilattice, possi-

bly, with a contact relation, has a free extension in the class of additive closure

semilattices with respect to the definitional expansion given by (3.1).

Definition 5.1. (A) If S is an extended specialization semilattice, define a

binary relation - on the product S × S by

(a, b) - (c, d) if, in S, a vc d and b vd d. (5.1)

In Proposition 5.3(i) below we will prove that - is reflexive and transitive,

thus if we define ∼ by

(a, b) ∼ (c, d) if both (a, b) - (c, d) and (c, d) - (a, b), (5.2)

then ∼ is an equivalence relation. Moreover, we will show in Proposition 5.3(ii)

that ∼ is a congruence on the semilattice product S × S, hence (S × S)/∼ is

a semilattice.
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Let S̃ be the set of the ∼-equivalence classes. Define K : S̃ → S̃ by

K[a, b] = [a, a+ b], (5.3)

where [x, y] is the ∼-class of the pair (x, y). In Proposition 5.3(iv) we will

prove that the definition is correct.

Define v∗ on S̃ using (3.1), namely, in the case at hand, [a, b] v[h, k] [c, d]

if [a, b] ≤ [h, k] + K[c, d], where + is the semilattice operation of (S × S)/∼
and ≤ is the induced order.

Suppose now that S has a 0. Let S̃ = (S̃,+, [0, 0],v∗), S̃′ = (S̃,+, [0, 0],K),

thus S̃ is the e-specialization reduct of S̃′, in the sense of Definition 3.5(a).

Finally, define υ
S

: S → S̃ by

υ
S
(a) = [a, 0]. (5.4)

(B) Suppose further that δ is a binary relation on S and assume the above

constructions in (A). Define δ̄ on S × S by

(a1, b1) δ̄ (e, f) if there are s, t ∈ S such that s δ t, s va1 b1 and t ve f .
(5.5)

We will show in Proposition 5.3(vi) that δ̄ induces a relation δ̃ on S̃. In

presence of a weak pre-contact δ on S, we let S̃ = (S̃,+, [0, 0],v∗, δ̃), S̃′ =

(S̃,+, [0, 0],K, δ̃). It will always be clear from the context whether we are

dealing with the definitions of S̃ and S̃′ in (A) above, or we are using an

expanded structure as in (B) here or in (C) below.

(C) Again under the assumptions in (A), if ∆ is a family of finite subsets

of S, let ∆̄ be the family of finite subsets of S × S such that

{(a1, b1), . . . , (am, bm)} ∈ ∆̄ if and only if there are s1, . . . , sm ∈ S

such that {s1, . . . , sm} ∈ ∆ and si vai bi, for every i ≤ m. (5.6)

In Proposition 5.3(vii) we will show that ∆̄ induces a family ∆̃ on S̃. Again,

when appropriate, let S̃ = (S̃,+, [0, 0],v∗, ∆̃), S̃′ = (S̃,+, [0, 0],K, ∆̃).

Remark 5.2. As in [8, p. 107] we intuitively think of [a, b] as a+Kb, where

Kb is the “new” closure we want to introduce; in particular, [a, 0] corresponds

to a and [0, b] corresponds to a new element Kb.

We now check that Definition 5.1 is correct.

Proposition 5.3. Under the notation and the definitions in 5.1, the following

statements hold.

(i) The relation - on S ×S is reflexive and transitive, hence ∼ is an equiv-

alence relation.

(ii) The relation ∼ is a congruence on the semilattice product S × S, hence

the quotient inherits a semilattice structure.

(iii) [a, b] ≤ [c, d] in the quotient (S × S)/∼ if and only if (a, b) - (c, d) in

S× S.

(iv) The operation K is well-defined on the ∼-equivalence classes.
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(v) If S has a 0, then K satisfies

K[a, b] = [0, a+ b] = [a, a+ b]. (5.7)

(vi) Under the assumptions in Definition 5.1(B), the relation δ̄ passes to the

quotient under ∼, thus δ̄ induces a relation δ̃ on S̃ defined by

[a, b] δ̃ [e, f ] if there are s, t ∈ S such that s δ t, s va b and t ve f . (5.8)

Moreover,

if (a1, b1) - (c1, d1) and (a1, b1) δ̄ (e, f), then (c1, d1) δ̄ (e, f), (5.9)

if (a1, b1) - (c1, d1) and (e, f) δ̄ (a1, b1), then (e, f) δ̄ (c1, d1). (5.10)

(vii) Under the assumptions in Definition 5.1(C), the following statements

hold.

If j ≤ m, (aj , bj) - (a∗j , b
∗
j ) and {(a1, b1), . . . , (aj , bj), . . . , (am, bm)} ∈ ∆̄,

then {(a1, b1), . . . , (aj−1, bj−1), (a∗j , b
∗
j ), (aj+1, bj+1), . . . , (am, bm)} ∈ ∆̄.

(5.11)

Thus ∆̄ induces a family ∆̃ on the quotient S̃ letting

{[a1, b1], . . . , [am, bm]} ∈ ∆̃ if {(a1, b1), . . . , (am, bm)} ∈ ∆̄. (5.12)

Proof. (i) The relation - is reflexive; indeed, both a va b and b vb b are

immediate from (E1).

In order to check transitivity, assume that (a, e) - (h, b) and (h, b) - (k, c),

that is, a vh b, e vb b, h vk c and b vc c. By (E2) we get a vk c. Recalling

Lemma 3.6(i), we have e v b and b v c, hence e v c, by (S2), that is, e vc c.
Together with a vk c, the last inequality implies (a, e) - (k, c).

Since the definition of ∼ is symmetric, the relation ∼ is symmetric. More-

over, ∼ inherits reflexivity and transitivity from -.

(ii) It is enough to show that if (a, b) - (c, d), then (a, b) + (e, f) - (c, d) +

(e, f), that is, (a + e, b + f) - (c + e, d + f). Indeed, together with the

symmetrical statement, this implies that if (a, b) ∼ (c, d), then (a, b) + (e, f) ∼
(c, d) + (e, f),

By assumption, a vc d. By Lemma 3.6(ii)(iii), a vc+e d + f . By (E1),

e vc+e d+ f . Thus by (E3) we get a+ e vc+e d+ f .

By assumption, b vd d. By Lemma 3.6(ii)(iii), b vd+f d + f . By (E1),

f vd+f d+ f . Thus by (E3) we get b+ f vd+f d+ f .

We have proved both a+ e vc+e d+f and b+f vd+f d+f , which means

(a+ e, b+ f) - (c+ e, d+ f).

(iii) [a, b] ≤ [c, d] means [a, b]+[c, d] = [c, d], that is [a+c, b+d] = [c, d], that

is, (a+c, b+d) ∼ (c, d). This last condition is equivalent to (a+c, b+d) - (c, d),

since (c, d) - (a+ c, b+ d) always hold, in view of (E1).

If (a+ c, b+d) - (c, d), then a+ c vc d and b+d vd d, by definition, hence

a vc d and b vd d, by Lemma 3.6(vi), that is, (a, b) - (c, d). Conversely, if

(a, b) - (c, d), then a vc d and b vd d, thus a + c vc d and b + d vd d, by
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the special case of the argument in (ii) with e = c and f = d. This means

(a+ c, b+ d) - (c, d).

In the last paragraph we have shown that (a+ c, b+d) - (c, d) is equivalent

to (a, b) - (c, d). The conclusion follows from the equivalences proved in the

first paragraph of the proof here in (iii).

(iv) It is enough to show that if (a, b) - (c, d), then (a, a+ b) - (c, c+ d).

By assumption, a vc d, hence a vc c + d by Lemma 3.6(ii). We also get

a vc+d c+ d by Lemma 3.6(iii).

By assumption, b vd d, hence b vc+d c + d, again by Lemma 3.6(ii)(iii).

By (E3), we get a + b vc+d c + d, which, together with the already proved

a vc c+ d, shows (a, a+ b) - (c, c+ d).

(v) In (iv) we have shown that K is well defined on the equivalence classes,

hence it is enough to check that (a, a+ b) ∼ (0, a+ b). This is immediate from

the definitions and (E1).

(vi) We first prove (5.9). Recall from Definition 5.1 that (a1, b1) - (c1, d1)

means that a1 vc1 d1 and b1 vd1 d1. Then s vc1 d1 by (E2), using s va1 b1
given by (a1, b1) δ̄ (e, f) in (5.5) and taking a = s, h = a1, b = b1, k = c1
and c = d1. Condition (5.10) is proved symmetrically (of course, this is not

necessary if δ is symmetrical). Together with s δ t and t ve f , this shows

(c1, d1) δ̄ (e, f).

Applying (5.9) twice, we get that if (a, b) ∼ (c, d), then (a, b) δ̄ (e, f) if and

only if (c, d) δ̄ (e, f). Together with the symmetrical argument, this shows

that the definition of δ̃ in (5.8) is not dependent on the representatives.

(vii) The proof of (5.11) is not essentially different. The assumptions give

certain elements s1, . . . , sm such that the statements in the second line of (5.6)

hold; moreover, (aj , bj) - (a∗j , b
∗
j ) means that aj va

∗
j b∗j and bj vb

∗
j b∗j . As

above, using sj vaj bj and by (E2), we get sj va
∗
j b∗j . Thus s1, . . . , sm witness

also {(a1, b1), . . . , (aj−1, bj−1), (a∗j , b
∗
j ), (aj+1, bj+1), . . . , (am, bm)} ∈ ∆̄. By ap-

plying (5.11) twice, we get that, for every j ≤ m, if (aj , bj) ∼ (a∗j , b
∗
j ), then

{(a1, b1), . . . , (aj , bj), . . . , (am, bm)} ∈ ∆̄ if and only if {(a1, b1), . . . , (aj−1, bj−1),

(a∗j , b
∗
j ), (aj+1, bj+1), . . . , (am, bm)} ∈ ∆̄.

Iterating the above statement, we get that the definition (5.12) does not

depend on the representatives. �

Note that Definitions 5.1(B)(C) and Proposition 5.3(vi)(vii) apply to an

arbitrary binary relation δ or family ∆, we need no special property of δ or of

∆. The definition of δ̄ in 5.1(B)(C) will allow us to prove the next theorem in

a very general form. We mention that in the most interesting case a simpler

definition of δ̄ works, namely, (a1, b1) δ̄ (e, f) if a1+b1 δ e+f . See Lemma

7.3(a) below.

We are now able to prove that, for every extended specialization semilattice

S, possibly with a contact or a hypercontact, the structure S̃′ is free over S

in the class of additive closure semilattices, modulo the definitional expansion
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(3.1). An expression separated by commas within square brackets in the state-

ment of the next theorem can be (uniformly) either added or excluded, so that

the theorem actually consists of four theorems at the same time.

Theorem 5.4. Assume that S is an extended specialization semilattice with

0 [and a weak contact, a weak pre-contact, a hypercontact relation]. Let S̃,

S̃′ and υ
S

be as in Definition 5.1(A) [respectively, (B), (B), (C)]. Then the

following statements hold.

(1) S̃′ is an additive closure semilattice with 0 [and a weak contact, a weak

pre-contact, a hypercontact relation].

(2) υ
S

is an embedding of S into S̃.

(3) The pair (S̃, υ
S
) has the following universal property.

For every additive closure semilattice T′ with 0 [and a weak contact,

a weak pre-contact, a hypercontact relation] and every homomorphism

η : S → T, where T is the e-specialization reduct of T′, there is a

unique homomorphism η̃ : S̃′ → T′ such that η = υ
S
◦ η̃.

S

η
��

υ
S
// S̃

η̃

��

S̃′

η̃

��

T T′

(4) Suppose that U is another extended specialization semilattice [with a

weak contact, a weak pre-contact, a hypercontact relation] and ψ :

S → U is a homomorphism. Then there is a unique homomorphism

ψ̃ : S̃′ → Ũ′ making the following diagram commute:

S

ψ

��

υ
S
// S̃

ψ̃
��

S̃′

ψ̃
��

U
υ
U
// Ũ Ũ′

Corollary 5.5. Theorem 5.4 holds when “extended specialization semilattice”

and “e-specialization reduct” are replaced everywhere by, respectively, “semi-

lattice” and “semilattice reduct”, with the following further variations: the

relation - is defined by

(a, b) - (c, d) if a ≤ c+ d and b ≤ d, (5.13)

∼, S̃, K, υ
S

, possibly, δ̃ or ∆̃, are correspondingly defined as in Definition 5.1

and S̃ = (S̃,+, [0, 0]), S̃′ = (S̃,+, [0, 0],K), possibly both expanded by adding

δ̃ or ∆̃.

Corollary 5.6. Theorem 5.4 holds when “extended specialization semilattice”

and “e-specialization reduct” are replaced everywhere by, respectively, “basic

specialization semilattice” and “specialization reduct”, with the following fur-

ther variations: the relation - is defined by

(a, b) - (c, d) if there is e ∈ S such that a ≤ c+ e, e v d and b v d (5.14)
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∼, S̃, K, υ
S

, possibly, δ̃ or ∆̃, are correspondingly defined as in Definition

5.1 and S̃ = (S̃,+, [0, 0],v), S̃′ = (S̃,+, [0, 0],K), possibly both expanded by

adding δ̃ or ∆̃.

Proof. We first prove Theorem 5.4. (1) is proved as the Claim in the proof

of [8, Theorem 3.2]. We report the details for the reader’s convenience. In

Proposition 5.3(ii) it is shown that (S̃,+) is a semilattice; it remains to check

that K is an additive closure. Indeed, by the definition of K, and since the

projection from S× S (S× S)/∼ is a semilattice homomorphism,

[a, b] ≤ [a, a+ b] = K[a, b],

KK[a, b] = K[a, a+ b] = [a, a+ a+ b] = K[a, b], and

K([a, b] + [c, d]) = K[a+ c, b+ d] = [a+ c, a+ b+ c+ d]

= [a, a+ b] + [c, c+ d] = K[a, b] +K[c, d].

Note that [0, 0] is a 0 of S̃, since (0, 0) is a neutral element for S×S, hence

[0, 0] is neutral for the quotient S̃ = (S× S)/∼. Moreover, K[0, 0] = [0, 0], by

definition, since 0 is a zero in S.

In case S has a further binary relation δ, δ̃ is well-defined by Proposition

5.3(vi).

If δ is a weak contact, the relation δ̃ inherits (Sym), (Emp) and (Ref) from

δ. Indeed, s v0 0 implies s = 0 by (E0). Furthermore, a1 + b1 va1 b1 by (E1),

hence if a1 + b1 > 0, then s = t = a1 + b1 witness [a1, b1] δ̃ [a1, b1]. Moreover,

(Ext) follows from (5.9), its symmetric version and Proposition 5.3(iii). Thus

δ̃ is a weak contact. The case of a weak pre-contact is similar, simply do not

deal with symmetry. Also the case of a hypercontact is entirely similar.

(2) The proof that υ
S

is an injective semilattice homomorphism preserving

0 is similar to the corresponding part in [8, Theorem 4.3(2)]. Indeed, υ
S
(a +

b) = [a + b, 0] = [a, 0] + [b, 0] = υ
S
(a) + υ

S
(b), hence υ

S
is a semilattice

homomorphism. Moreover, υ
S

is injective, since υ
S
(a) = υ

S
(c) means (a, 0) ∼

(c, 0) and this happens only if a vc 0 and c va 0, by the definition of ∼. Then

by the definition of a 0 in an extended specialization semilattice, a ≤ c and

c ≤ a, that is, a = c.

We now check that υ
S

is an embedding with respect to v∗. Indeed, the

following is a chain of equivalent conditions:

(a) a vh b in S,

(b) (a, 0) - (h, b), since 0 ≤ b, hence 0 vb b by (E1),

(c) [a, 0] ≤ [h, b] in S̃, by Proposition 5.3(iii),

(d) [a, 0] ≤ [h, b] = [h, 0] + [0, b] = [h, 0] +K[b, 0], by Proposition 5.3(v),

(e) υ
S
(a) vυS

(h) υ
S
(b), by the definition of v∗.

If a weak (pre-)contact is present, the semilattice embedding υ
S

is also a δ

embedding since υ
S
(a) = [a, 0] δ̃ [c, 0] = υ

S
(c) if and only if there are s, t such

that s δ t, s va 0 and t vc 0, that is, s ≤ a and t ≤ c, by (E0). This implies
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a δ c, by (Ext) and since s δ t. Conversely, if a δ c, just take s = a and t = c

in order to get [a, 0] δ̃ [c, 0]. The case of a hypercontact is similar.

(3) Under the assumptions, a function η̃ : S̃ → T is such that η = υ
S
◦ η̃ if

and only if η̃([a, 0]) = η̃(υ
S
(a)) = η(a), for every a ∈ S. If, moreover, η̃ : S̃′ →

T′ is a homomorphism, then η̃([0, b]) =(5.7) η̃(K[b, 0]) = Kη̃([b, 0]) = Kη(b).

Since η̃ is also supposed to be a semilattice homomorphism, it follows that

η̃([a, b]) = η̃([a, 0]) + η̃([0, b]) = η(a) +Kη(b), hence if η̃ exists it is unique. It

is then enough to show that the above condition

η̃([a, b]) = η(a) +Kη(b) (5.15)

actually determines a homomorphism η̃ from S̃′ to T′.

First, we need to check that if (a, b) ∼ (c, d), then η(a) + Kη(b) = η(c) +

Kη(d), so that η̃ is well-defined. In fact, suppose that (a, b) - (c, d) is given

by (5.1). By a vc d, we get η(a) vη(c) η(d) in T, since η is a homomorphism.

Hence η(a) ≤ η(c) + Kη(d) in T′, because of (3.1), since, by definition, T

is the e-specialization reduct of T′. Similarly, from b vd d, we get η(b) ≤
η(d) + Kη(d) = Kη(d), since K is extensive. It follows that η(a) + Kη(b) ≤
η(c) + Kη(d). Symmetrically, η(a) + Kη(b) ≥ η(c) + Kη(d), thus we get

equality. Hence η̃ is well-defined.

Verifying that η̃ is a semilattice homomorphism is identical to [8, Theorem

3.2].

η̃([a, b]) + η̃([c, d]) = η(a) +Kη(b) + η(c) +Kη(d)

= η(a) + η(c) +Kη(b) +Kη(d)

=A η(a+ c) +K(η(b) + η(d))

= η(a+ c) +Kη(b+ d) = η̃([a+ c, b+ d]),

where we have used the definition of η̃, the assumption that η is a semilattice

homomorphism and in the identity marked with the superscript A we have

used the assumption that K is additive in T′.

Again, the argument showing that η̃ is a K-homomorphism, is similar to

[8].

η̃(K[a, b]) =(5.7) η̃([0, a+ b]) = Kη(a+ b) =

K(η(a) + η(b)) =(2.1) K(η(a) +Kη(b)) = Kη̃([a, b]),

where we have used the definitions of K and η̃, the assumption that η is a

semilattice homomorphism and equations (2.1) and (5.7).

We now check that, in the presence of a weak contact relation, η̃ is also a

δ-homomorphism. For a, b, e, f ∈ S, each condition in the following list implies

the condition below:

(a) [a, b] δ̃ [e, f ],

(b) there are s δ t such that s va b and t ve f , by the definition of δ̃,
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(c) there are s, t ∈ S such that η(s) δ η(t), η(s) vη(a) η(b) and η(t) vη(e)

η(f), since η : S→ T is a homomorphism, in particular, both a δ- and an

e-specialization homomorphism,

(d) there are s, t ∈ S such that η(s) δ η(t), η(s) ≤ η(a) + Kη(b) and η(t) ≤
η(e) +Kη(f), since T is the weak contact e-specialization reduct of T′,

(e) η(a)+Kη(b) δ η(e)+Kη(f), by (Ext) in T′,

(f) η̃([a, b]) δ η̃([e, f ]), by the definition of η̃.

Thus η̃ is also a δ-homomorphism and this completes the proof. The case

of a weak pre-contact relation is the same, since we have never used symmetry

in the above argument and the case of a hypercontact is similar.

(4) is a standard categorical argument, e. g. [1, Proposition 8.25] or the

proof of clause 4 in [8, Theorem 3.2].

Having proved Theorem 5.4, Corollaries 5.5 and 5.6 are almost immediate

from Propositions 3.8 and 3.9. As for Corollary 5.5, if S is a semilattice,

expand S to Se by adding v∗ defined by (3.2) and apply Theorem 5.4 to Se,

getting models, say, S̃e and S̃e
′
. Taking the reduct of S̃e to the language of

semilattices with 0, we immediately get (1) and (2) by the last sentence of

Proposition 3.8 and observing that, in the special case at hand, (5.1) becomes

exactly (5.13). In order to get the universal property (3), if T′ is an additive

closure semilattice with 0 and T is the semilattice reduct of T′, expand T to

an extended specialization semilattice Te by using (3.2) again. By Theorem

5.4, there is a unique homomorphism of e-specialization semilattices η̃ from S̃e
to Te, hence a unique semilattice homomorphism between the reducts S̃e and

Te by the last statement in Proposition 3.8.

Of course, a direct proof of Corollary 5.5 along the lines of the proof of Theo-

rem 5.4 is possible; however, we have showed that Theorem 5.4 “incorporates”

Corollary 5.5.

Corollary 5.6 can be proved in the same way, by using v∗ as defined by

(3.3) and applying Proposition 3.9. A direct proof of Corollary 5.6 appears in

[8], but only in the simpler case when no contact relation is present. �

Actually, the above proofs show that Theorem 5.4 and Corollaries 5.5, 5.6

hold when we add simultaneously any number of weak contact, weak pre-

contact and hypercontact relations to S. Indeed, the semilattice structure of

S̃ and the homomorphism η̃ do not depend on the relations. We also get that

coarseness between pairs of relations of a similar kind is preserved.

From Theorem 5.4(i)(ii) and standard results about closure semilattices,

we get that our axiomatization of extended specialization semilattices charac-

terizes those structures which can be embedded into the standard topological

example. Recall that an extended specialization semilattice is said to be topo-

logical if it has the form (P(X),∪, ∅,v∗) for some topological space X with

closure K, where a vh b if a ⊆ h ∪Kb, for a, h, b ⊆ X.
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Theorem 5.7. Every extended [basic] specialization semilattice can be embed-

ded into a topological extended [basic] specialization semilattice.

Proof. If S is an extended specialization semilattice with 0, let S̃, S̃′ and υ
S

be as in Definition 5.1. By Theorem 5.4(2), υ
S

is an embedding of extended

specialization semilattices.

By a standard argument, see e. g. [12, Proposition 5.6], the additive closure

semilattice S̃′ (cf. Theorem 5.4(1)) can be embedded into a topological closure

semilattice by, say, an embedding ϕ. By Proposition 3.4(d), ϕ is also an em-

bedding between the e-specialization reducts, hence the composition of υ
S

and

ϕ is an embedding of S into a topological extended specialization semilattice.

In the above proof we have assumed that S has a 0. If S has not a 0, simply

add a zero, as in Remark 3.7. We obtain an extended specialization semilattice

S0 with 0. Applying the above proof to S0, we get the result also for the 0-less

S, since S embeds into (the 0-less reduct of) S0.

The case of basic specialization semilattices can be proved in the same way,

using Corollary 5.6. Another proof has been given in [12, Theorem 5.7]. �

We will need much more efforts in order to generalize Theorem 5.7 to spe-

cialization semilattices endowed with a contact or a hypercontact relation.

Put in another way, when a contact or a hypercontact is added, an appropri-

ate version of Theorem 5.7 is not an immediate consequence of Theorem 5.4.

Actually, further axioms should be added.

6. Embeddability into topological contact closure semilattices

Lemma 6.1. Suppose that P is a normal closure poset.

(a) If δ is the associated K-overlap weak contact, as introduced in Definition

2.3.2(c), equation (2.5), then δ satisfies

Ka δ Kc ⇔ a δ c (K+)

(b) If α is the associated K-overlap weak pre-contact defined by (2.6), then α

satisfies

a α Kc ⇔ a α c (6.1)

a α c ⇒ Kc α a, (6.2)

in particular, α is symmetric on closed elements.

Proof. The implications from right to left follow from (Ext), since K is exten-

sive. In the other direction, let us prove (6.1). By definition, a α Kc if and

only if there is p > 0 such that p ≤ a and p ≤ KKc. But KKc = Kc since

K is idempotent, hence the above condition is equivalent to a α c. The proof

of (K+) is similar. In order to prove (6.2), the assumptions give some p > 0

such that p ≤ a and p ≤ Kc, hence p ≤ Ka, thus Kc α Ka, hence Kc α a by

(6.1). �
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By Lemma 6.1, the statements in (K+), resp., (6.1), (6.2), hold in every

topological contact closure semilattice, resp., topological pre-contact closure

semilattice, as well as in every (pre-)contact closure semilattice embeddable

into a topological one. However, the conditions are by no means sufficient, as

already shown in the case of contact semilattices (without a closure) treated

in [10]. The case of posets, instead of semilattices is somewhat simpler [11],

but we will not treat it here.

We are now going to show that the conditions devised in [10] in the case

without closure are also sufficient in the case in which closure is also present.

Of course, by the above comments, we need to assume also (K+) or (6.1),

(6.2). We first recall the relevant conditions from [10], stated with reference

to a weak contact semilattice.

For every b, h, c0, c1 ∈ S, if b ≤ h+ c0, b ≤ h+ c1 and c0 6 δ c1,
then b ≤ h.

(D1)

For every n ∈ N and a, b, c1,0, c1,1, . . . , cn,0, cn,1 ∈ S,
if c1,0 6 δ c1,1, . . . , cn,0 6 δ cn,1 and, for every f : {1, . . . , n} → {0, 1},
either a ≤ c1,f(1) + · · ·+ cn,f(n), or b ≤ c1,f(1) + · · ·+ cn,f(n),

then a 6 δ b.

(D2)

Lemma 6.2. Suppose that T is a weak contact closure semilattice satisfying

(K+). Then the following hold in T.

(a) Condition (D1) holds if and only if the restricted version of (D1) holds in

which c0 and c1 are required to be closed.

(b) Condition (D2) holds if and only if the restricted version of (D2) holds in

which the elements c1,0, . . . , cn,1 are required to be closed.

(c) If T has additive closure, then condition (D2) holds if and only if the

restricted version of (D2) holds in which all the elements involved are

required to be closed.

Proof. (a) An implication is straightforward. In the other direction, assume

that the restricted version of (D1) holds. If the premises of (D1) hold, with

c0 and c1 arbitrary elements, then such premises hold also with Kc0 and Kc1
in place of c0 and c1, since K is extensive and by (K+). Thus the restricted

version of (D1) can be applied, and we get the conclusion.

(b) As above, by (K+) and extensivity of K, if the premises of (D2) hold,

then they hold also with each ci,j replaced by Kci,j .

(c) If K is additive, then Kc1,f(1) + · · · + Kcn,f(n) = K(c1,f(1) + · · · +
cn,f(n)), for every function f , hence, say, a ≤ Kc1,f(1) + · · ·+Kcn,f(n) if and

only if Ka ≤ Kc1,f(1) + · · · + Kcn,f(n), since K(Kc1,f(1) + · · · + Kcn,f(n)) =

KK(c1,f(1) + · · · + cn,f(n)) = K(c1,f(1) + · · · + cn,f(n)). The same holds for

inequalities involving b. Hence the premises still hold if we replace everywhere
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a and b by Ka and Kb. By the restricted version of (D2) and (b), we get

Ka 6 δ Kb hence a 6 δ b by (Ext). �

The next lemma will be of some use, as well.

Lemma 6.3. (A) Suppose that P and Q are pre-closure posets with the K-

overlap weak contact (2.5), and ϕ : P→ Q is a {≤,K}-homomorphism.

(a) If ϕ−1({0Q}) = {0P } (in particular, this holds if ϕ is an order embedding),

then ϕ is a δ-homomorphism.

(b) Suppose further that ϕ is a {≤,K}-embedding and, moreover, for every

a, b ∈ P , if the meet of Ka and Kb in P exists and is 0, then the meet of

ϕ(Ka) and ϕ(Kb) exists in Q and is 0. Then ϕ is a δ-embedding.

(B) The same holds for weak pre-contact closure posets, considering the

K-pre-overlap weak contact (2.6), instead.

Proof. (A)(a) If a δ b, then there is p ∈ P such that 0 < p, p ≤ Ka and

p ≤ Kb, by the definition (2.5) of the K-overlap contact. By the assumption,

0 < ϕ(p), hence, since ϕ is a {≤,K}-homomorphism, ϕ(p) ≤ ϕ(Ka) = Kϕ(a)

and ϕ(p) ≤ ϕ(Kb) = Kϕ(b). Thus ϕ(a) δ ϕ(b).

(b) If a 6 δ b, then the meet of Ka and Kb is 0, since P has the K-overlap

contact (or just by (K+), (Ref) and (Ext)). By the assumptions, the meet of

Kϕ(a) = ϕ(Ka) and Kϕ(b) = ϕ(Kb) is 0, hence ϕ(a) 6 δ ϕ(b), because of the

definition of the K-overlap contact. The converse implication is from (a).

The proof of (B) is similar; actually, we never used any special property of

δ or of K in the above proof, we just needed that δ is defined according to

(2.5) or (2.6) and that ϕ is a {≤,K}-embedding. �

Theorem 6.4. Suppose that S is a weak contact closure semilattice. Then

the following conditions are equivalent, where embeddings are always intended

as {+,K, δ}-embeddings.

(1) S can be embedded into a closure algebra with K-overlap contact.

(1′) S can be embedded into a closure algebra with additive contact and

satisfying (K+).

(2) S can be embedded into an additive closure distributive lattice with

K-overlap contact.

(2′) S can be embedded into an additive closure distributive lattice with

additive contact and satisfying (K+).

(3) S has additive closure and satisfies (K+), (D1) and (D2).

(4) S can be embedded into a complete atomic closure algebra with K-

overlap contact.

(5) S can be embedded into the contact closure semilattice associated to

some topological space, in the sense of Definition 2.3.2(b).

Proof. (1) ⇒ (1′) and (2) ⇒ (2′) follow from Lemmas 2.3.3 and 6.1(a). (1) ⇒
(2) and (1′) ⇒ (2′) are straightforward.
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(2′)⇒ (3) S satisfies (D1) and (D2) in view of the corresponding implication

in [10, Theorem 3.2], forgetting about the closure. The remaining conditions

follow immediately from the corresponding conditions in (2′), since the condi-

tions are preserved under taking substructures (and isomorphism).

(3) ⇒ (1) Suppose that S = (S,≤, 0,K, δ) is a weak contact additive clo-

sure semilattice satisfying the assumptions in (3). Following the proof of [10,

Theorem 3.2], consider the Boolean algebra B− = (P(S),∪,∩, ∅, S, {) and let

ϕ : P → P(S) be the semilattice embedding defined by ϕ(a) = 6 ↑a = {x ∈ S |
a 6≤ x }. Note that ϕ(0) = ∅. On P(S), set Kx =

⋂
{6 ↑Ka | a ∈ S, x ⊆ 6 ↑Ka }.

By the proof of [16, Lemma 2.3], K is an additive closure operation, since ϕ

is injective and K on S is additive. Moreover, ϕ is a K-homomorphism by

construction. See the proof of [12, Proposition 5.6] for more details. So let

B = (P(S),∪,∩, ∅, S, {,K), with K as just introduced.

As in [10], let I be the ideal of B generated by the set of all the elements

of the form ϕ(c) ∩ ϕ(d), with c, d ∈ S and c 6 δ d. By (K+) and since K is

extensive, I is equivalently generated by the set of all the elements of the form

ϕ(Kc) ∩ ϕ(Kd), with c, d ∈ S and c 6 δ d, since, by (K+), this is equivalent to

Kc 6 δ Kd. Since ϕ is a K-homomorphism, the generators of I can be taken

to be of the form Kϕ(c) ∩ Kϕ(d), for c 6 δ d. Note that Kϕ(c) ∩ Kϕ(d) is

closed, being the meet of two closed elements; see the comment shortly after

the definition of a closed element in Section 2.2. Thus I has a set of closed

generators, hence i ∈ I implies Ki ∈ I, since K is additive. Let A be the

quotient B/I. Again by additivity of K, the closure is well-defined on A,

hence A is a closure algebra1.

If π : B → A is the quotient homomorphism, then κ = ϕ ◦ π is a {+,K}-
homomorphism from S to A. Endow A with the K-overlap contact relation

δA and with the overlap relation σA. The proof of the implication (3) ⇒ (1)

in [10, Theorem 3.2] shows that κ is an embedding from (S, δ) to (A, σA). But

this is enough, since the following is a chain of equivalent conditions:

(i) a δ b in S,

(ii) Ka δ Kb, by (K+) in S, holding by assumption,

(iii) κ(Ka) σA κ(Kb), by the mentioned result from [10],

(iv) κ(Ka) δA κ(Kb), since, for closed elements, δ and σ coincide, K being

idempotent,

(v) κ(a) δ κ(b), by (K+) in S, holding by Lemma 6.1

The implication (4) ⇒ (1) is immediate. In order to prove (1) ⇒ (4),

notice that every closure algebra can be extended to a closure algebra which

is complete and atomic (as a Boolean algebra). This fact follows from [16,

Lemma 2.3] and the corresponding theorem for Boolean algebras; see e. g.,

[18, Section 2]. Embed (in the sense of closure algebras) the algebra given by

(1) into a complete atomic closure algebra, and give this larger algebra, too,

1Additivity is necessary: see [18, Section 8].
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the K-overlap contact relation. Since Boolean embeddings preserve meets,

then the embedding is also a δ-embedding, in view of Lemma 6.3.

(4) ⇔ (5) Since a complete atomic Boolean algebra B is isomorphic to

a field of sets, say, P(X), a closure operation on B is uniquely associated

to a topology on X, by Kuratowski characterization. Thus (4) and (5) are

essentially the same statement. �

7. Embeddability into topological extended specialization semilat-

tice

Recall that if S is an extended specialization semilattice, we have set a v b
if a vb b. Recall condition (D2) from the previous section. We let (D2v) be

the condition similar to (D2) in which ≤ is replaced by v. For a weak contact

e-specialization semilattice, the following conditions will also be relevant in

what follows.

s δ t & s va b & t ve f ⇒ a+b δ e+f (E+)

b vh a+c0 & b vh a+c1 & c0 6 δ c1 ⇒ b vh a (D1v∗)

Recall that weak contact semilattices have a 0 by definition and that if a

specialization structure is also present, we assume that 0 satisfies the requested

property (S0) or (E0), relative to the specialization.

Lemma 7.1. Suppose that S is a weak contact extended specialization semi-

lattice.

(a) If S satisfies (D1v∗), then S satisfies (D1).

(b) If S satisfies (D2v), then S satisfies (D2).

Proof. (a) If b ≤ h + c0, then b vh 0+c0, by (E1). Similarly, if b ≤ h + c1,

then b vh 0+c1. If furthermore c0 6 δ c1, then b vh 0, by (D1v∗), hence b ≤ h,

by (E0). This shows that S satisfies (D1).

(b) This is immediate from (E1). �

Recall from Definition 3.5(a) that if S′ is a closure semilattice, the e-

specialization reduct of S is the extended specialization semilattice in which

v∗ is given by (3.1) in Proposition 3.4, namely, a vh b if a ≤ h+Kb.

Lemma 7.2. Suppose that S is a weak contact extended specialization semi-

lattice and S is the e-specialization reduct of some closure semilattice S′. Then

(a) S′ satisfies (K+) if and only if S satisfies (E+).

Suppose further that S′ has additive closure and satisfies (K+). Then

(b) S′ (equivalently, S) satisfies (D1) if and only if S satisfies (D1v∗).

(c) S′ (equivalently, S) satisfies (D2) if and only if S satisfies (D2v).

Proof. (a) We first prove the “only if” condition. By (3.1), the premises of

(E+) read s ≤ a+Kb and t ≤ e+Kf , thus s ≤ a+Kb ≤ K(a+Kb) = K(a+b),



Relational structures associated to topological spaces 25

because of (2.1). Similarly, t ≤ K(e + f). From s δ t and (Ext), we get

K(a+ b) δ K(e+ f), hence a+b δ e+f , since we are assuming (K+).

For the converse, take s = Kb, a = b, t = Kf and e = f in (E+), getting

b δ f from Kb δ Kf . If b δ f , then Kb δ Kf by extensiveness of K and (Ext),

with no need of further assumptions.

(b) First, note that (D1) does not deal with specialization or closure, hence

it holds in S if and only if it holds in S′. As far as the other equivalence is

concerned, an implication is from Lemma 7.1(a) and needs no assumption on

K.

For the other direction, suppose that S′ satisfies (D1). By (3.1), the

premises of (D1v∗) give b ≤ h + K(a+c0) = h + Ka + Kc0, by additivity

of K, and similarly b ≤ h+Ka+Kc1. By (K+), Kc0 6 δ Kc1, thus b ≤ h+Ka,

by applying (D1) with h+Ka in place of a. Thus b vh a, by using (3.1) one

more time. This shows that S satisfies (D1v∗).

(c) As in (b), the first equivalence uses the fact that (D2) speaks only about

the semilattice operation and the weak contact relation.

In the other equivalence, an implication is from Lemma 7.1(b), and does

not need the assumption that S′ satisfies (K+). For the converse, assume the

premises of (D2v). If, say, a v c1,f(1) + · · · + cn,f(n) holds, for some f , then

a ≤ K(c1,f(1) + · · ·+ cn,f(n)) = Kc1,f(1) + · · ·+Kcn,f(n) by (3.1), extensivity

and additivity of K. By c1,0 6 δ c1,1, . . . and (K+), we get Kc1,0 6 δ Kc1,1, . . .
Thus we can apply (D2) in S′, getting a 6 δ b. �

Lemma 7.3. Suppose that S is a weak contact extended specialization semi-

lattice and let the notation in Definition 5.1(A)(B) be in charge.

(a) If S satisfies (E+), then

[a, b] δ̃ [e, f ] in S̃ if and only if a+b δ e+f in S. (7.1)

(b) S̃′ satisfies (K+) if and only if S satisfies (E+).

(c) Suppose that S satisfies (E+). Then

(c1) S̃ (equivalently, S̃′) satisfies (D1) if and only if S satisfies (D1v∗).

(c2) S̃ (equivalently, S̃′) satisfies (D2) if and only if S satisfies (D2v).

Proof. (a) By (5.8), [a, b] δ̃ [e, f ] means exactly that the premises of (E+) hold,

thus a+ b δ c+ d by (E+) itself. Conversely, if a+b δ e+f , just take s = a+ b

and t = e+ f , in order to have [a, b] δ̃ [e, f ], as given by (5.8), using (E1).

(b) Recall from Definition 5.1 that S̃ is the e-specialization reduct of S̃′.

If S̃′ satisfies (K+), then S̃ satisfies (E+), by Lemma 7.2(a). Since (E+) is a

universal statement and S is embedded in S̃, then S̃ satisfies (E+).

Conversely, K[a, b] δ̃ K[c, d] means [a, a + b] δ̃ [c, c + d], by the definition

(5.3) of K in S̃′. By (a), if S satisfies (E+), then [a, a + b] δ̃ [c, c + d] if and

only if a+ b δ c+ d if and only if [a, b] δ̃ [c, d], again by (E+).

(c) As in the previous lemma, note that (D1) and (D2) do not deal with

specialization or closure, hence we can equivalently work in S̃ or in S̃′.
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(c1) We first write down explicitly the meaning of (D1) in S̃. By (b)

and Lemma 6.2(a), we may assume that c0 and c1 are closed (in the ex-

pansion S̃′), hence by Proposition 5.3(v) we my assume that c0, c1 have the

form [0, c′0], [0, c′1]. Thus we can write the premises of (D1) in S̃ as [b′, b′′] ≤
[h, a] + [0, c′0], [b′, b′′] ≤ [h, a] + [0, c′1] and not [0, c′0] δ̃ [0, c′1]. By Proposition

5.3(iii), the inequalities mean (b′, b′′) - (h, a + c′0) and (b′, b′′) - (h, a + c′1),

that is,

(i) b′ vh a+ c′0,

(ii) b′′ v a+ c′0,

(iii) b′ vh a+ c′1, and

(iv) b′′ v a+ c′1.

By (a), not [0, c′0] δ̃ [0, c′1] is equivalent to

(v) c′0 6 δ c′1.

Thus, assuming (E+), S̃ satisfies (D1) if and only if the above conditions (i)

- (v), stated in terms of elements of S, imply [b′, b′′] ≤ [h, a], that is, b′ vh a
and b′′ v a.

If S̃ satisfies (D1) and we take b′′ = 0, then (ii) and (iv) are automati-

cally satisfied; dealing with the remaining conditions means exactly that S

satisfies (D1v∗). This implication follows also from (b) and Lemma 7.2(b),

since (D1v∗) is a universal statement, so if S̃ satisfies (D1v∗), then S satisfies

(D1v∗), since it is isomorphic to a substructure of S̃.

Conversely, if (D1v∗) holds in S and we have (i) - (v), we get b′ vh a from

(i) and (iii). Applying (D1v∗) with h = 0, we get b′′ v a from (ii), (iv) and

(v), by Lemma 3.6(v). Thus (b′, b′′) - (h, a), by (5.1). We have proved that S̃

satisfies (D1).

(c2) As in the proof of (c1), by the assumption that S satisfies (E+), by

(b) and by Lemma 6.2(b) it is enough to deal with closed elements of S̃′.

Notice that S̃′ has additive closure by Theorem 5.4(1). Again by Proposition

5.3(v), closed elements have the form [0, a], hence a condition like, say, [0, a] ≤
[0, c] + [0, d], that is, (0, a) - (0, c+d), by Proposition 5.3(ii)(iii), translates to

a v c+ d, by the definition (5.1) of - and Lemma 3.6(v). �

Theorem 7.4. A weak contact extended specialization semilattice S can be

embedded into a topological one if and only if S satisfies (E+), (D1v∗) and

(D2v).

Proof. A topological weak contact extended specialization semilattice T sat-

isfies (D1) and (D2) by [10, Theorem 3.2 (1′) ⇒ (3)], forgetting about the

specialization. Note that specialization does not appear in (D1) and (D2);

for comparison, the parallel case of [10, Theorem 3.2] in which closure is also

taken into account is Theorem 6.4 here. Moreover, considering also the topo-

logical closure on T, (K+) holds, hence T satisfies (E+), (D1v∗) and (D2v),
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by Lemma 7.2. Since (E+), (D1v∗) and (D2v) are universal sentences, if S

can be embedded into T, then S satisfies (E+), (D1v∗) and (D2v).

Conversely, S can be embedded into S̃, a reduct of S̃′, by Theorem 5.4(1).

If S satisfies (E+), (D1v∗) and (D2v), then S̃′ satisfies (K+), (D1) and (D2)

by Lemma 7.3(b)(c). Thus S̃′ can be embedded into a topological closure

semilattice, by Theorem 6.4(3) ⇒ (5). Note that S̃′ has additive closure, by

Theorem 5.4(1). Considering the e-specialization reducts and composing the

two embeddings, we get an embedding of S into a topological weak contact

e-specialization semilattice �

8. Further remarks

Example 8.1. In Lemma 3.6(i) we have seen that to an extended specializa-

tion semilattice there is associated a basic specialization semilattice by setting

a v b if a vb b.
In this example we show that the extended structure cannot be retrieved

from the basic structure. This shows that the notion of an extended special-

ization semilattice is actually more general than the notion of a basic special-

ization semilattice.

Consider the 5-element semilattice with S = {0, h, b, h+b, a} with h+b < a.

Let K be the closure operation defined by K(h + b) = a and Kx = x, for

x 6= h + b. By Proposition 3.4(a)(b), equation (3.1) induces the structure of

an extended specialization semilattice S on S. In S the relation a vh b fails.

Let S1 be defined as S, except that we let a vh b hold in S1. We claim that

S1 is an extended specialization semilattice. Of course, this can be checked di-

rectly, but we can also use the topological representation given by Proposition

3.4(c).

Let X = {h′, h′′, b′, b′′} be a topological space such that K({h′}) = {h′, h′′}
and K({b′}) = {b′, b′′}. The remaining topological structure will not be rel-

evant. Equation (3.1) provides an extended specialization semilattice T on

P(X). Let 0 = ∅, h = {h′} b = {b′}, h+ b = {h′, b′}.
If we further set a = X, we get the extended specialization semilattice S,

as a substructure of T.

If instead we set a = {h′, b′, b′′}, we get the extended specialization semi-

lattice S1.

Symmetrically, we can also get another extended specialization semilattice

S2 in which a vb h, instead.
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