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Annihilator of the Hamiltonian Vector Field in
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Abstract—Within the framework of finite-horizon optimal
control problems involving nonlinear, input-affine dynam-
ics, a connection between the costate variable and gener-
ating functions of the annihilating codistribution of the un-
derlying Hamiltonian vector field is established. It is shown
that the inverse mapping of any collection of n, such gen-
erating functions coincide, for any time and for a certain
constant vector, with the costate of the optimal process. In
particular, the corresponding constant vector is determined
by solving a parameterized boundary value problem in the
state space of the original plant alone, rather than in the
extended state/costate space of the Hamiltonian dynamics.

Index Terms—Annihilating codistribution, finite-horizon
optimal control, Hamiltonian systems, nonlinear systems.

I. INTRODUCTION

A PARTICULARLY desirable objective of any control sys-
tem consists in ensuring that the state of the plant is steered

from a generic initial configuration to a specific value in a safe
and optimal fashion, according to a certain performance (or cost)
criterion, see, e.g., [1]. The above control task can be naturally
formulated as an infinite-horizon optimal control problem [2],
provided that the time interval allocated to complete the trans-
ferring of the state between distinct end-points is sufficiently
long compared with the time scales of the plant. On the con-
trary, whenever the primary attention is focused on completing
the assigned control task within a prescribed horizon, fixed a
priori, rather than on reaching a specific configuration at the
end of such an interval, the structure of the solution to such a
seemingly similar problem becomes significantly different from
a mathematical point of view, being for instance intrinsically
dependent on the elapsed time, i.e., time-varying [1, Sec. 5.1].

Despite the above difference between finite-horizon and
infinite-horizon optimal control, the two problems in fact share
common approaches toward the characterization of the un-
derlying solutions. These strategies can be further categorized
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according to methods that are inspired by the so-called dynamic
programming (DP), see, e.g., [3], and those that are based on
Pontryagin’s minimum (or maximum) principle (PMP) [4]. In
the setting of finite-horizon problems, strategies inspired by
DP characterize the optimal feedback in terms of the solution
to a certain quadratic, time-varying partial differential equa-
tion (PDE), i.e., the so-called Hamilton–Jacobi–Bellman (HJB)
equation [1]. The latter in particular yields necessary and suffi-
cient conditions for optimality and permits the characterization
of the optimal solution, as well as of the optimal cost, for any
initial condition in the state space. Methods based on the PMP
provide, unless additional assumptions hold, only necessary
conditions for optimality. As a consequence, such strategies
are typically employed in practice merely to identify candidate
optimal solutions (extremals). Moreover, the computation of the
optimal control law is based on the knowledge of the specific
initial configuration of the plant, hence essentially leading to
open-loop strategies. Nonetheless, despite the above drawbacks,
the widespread use of such strategies is essentially motivated
by the simplicity of the underlying conditions, provided in
terms of ordinary differential equations (instead of PDEs) that
should be satisfied by the optimal process together with an
auxiliary variable (costate). In fact, the design can be recast
in terms of a (two-point) boundary value problem (BVP) for a
certain nonlinear system. Considering the relevant role played
by optimal control formulations in practical applications, it is
not surprising that numerous elegant and efficient techniques
have been envisioned to address such BVPs. These methods
rely either on a transcription of the underlying continuous-time
optimal control problem into a nonlinear programming problem
or on the construction of a sequence of initial value problems
with an iterative refinement of the guess of the initial condition,
see, e.g., [5], [6], and [7] for more discussions.

A. Contribution of This Article

The aim of this manuscript consists in discussing how knowl-
edge of first integrals can be used to compute optimal control
laws. Within the framework of finite-horizon optimal control,
recalled in Section II, the main contribution of the manuscript
consists in establishing a connection between the costate vari-
able and the first integrals of the underlying Hamiltonian vector
field, which are functions of the state and the costate variables.
First, it is shown in Section III that the time evolution of the

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4525-4656
mailto:mario.sassano@uniroma2.it


SASSANO: ON THE CONNECTION BETWEEN COSTATE AND THE ANNIHILATOR OF THE HAMILTONIAN VECTOR FIELD 2779

optimal costate coincides, for any time, with the inverse mapping
of any collection of n-independent first integrals in which the
second argument is replaced by a constant vector. The latter
depends on the initial condition of the plant and is computed,
via a fixed-point characterization, by solving a (parameterized)
BVP formulated in the original coordinates of the state alone,
rather than in the extended state/costate space. The property is
established via a preliminary nonlinear change of coordinates in
such a way that the optimal costate is constant over time in the
transformed coordinates. It is further shown in Section V that, in
the linear quadratic (LQ) setting, the result can be equivalently
achieved via a linear, although necessarily time-varying, change
of coordinates. In a different context (i.e., zero-sum differential
games) and limited to LQ problems, a similar intuition has been
explored in [8]. Despite the particularly elegant characterization
in [8], restricting the attention to linear, time-varying change of
coordinates prevented the unveiling of much deeper connections
between first integrals and the optimal costate.

Furthermore, it is shown that knowledge of a closed-form
expression for the mapping between the initial condition of
the plant and the corresponding constant vector permits the
computation of the underlying value function via a line integral
instead of solving a quadratic, time-varying PDE. Despite the
remarkably long history of research in optimal control, it ap-
pears that such strong connections between two relevant objects
related to Hamiltonian systems, namely, optimal costate and first
integrals, have not been observed hitherto.

Finally, it is discussed in Section IV how these abstract prop-
erties may pave the way to envision computationally efficient
strategies to determine optimal control laws, which rely on
premises significantly different from shooting methods based
on the Hamiltonian dynamics. Indeed, apart from the above
dimensional reduction of the required BVP, it is shown that,
by hinging on the proposed constructions, the dynamics for
which the BVP must be solved naturally inherits the stability
properties of the original plant, differently from the case in which
the Hamiltonian dynamics are employed.

B. Notation

Given a function h : Rn → R, the notation ∇xh(x) describes
the column vector of partial derivatives of the function h, while
dh(x) defines the gradient. Moreover, if f : Rn → R

n is
a vector-valued function, the notation ∇xf(x) describes its
Jacobian matrix. The subscript in ∇x· is neglected whenever the
argument is clear from the context. The set Cκ(Rn) contains
the functions defined over R

n with continuous derivatives
up to order κ. For a function h and a vector field f , the Lie
derivative Lfh is defined as Lfh := dh f . For two vector fields
f1 and f2, the Lie bracket [f1, f2] is defined as [f1, f2] :=
(∇f2)f1 − (∇f1)f2. Given a matrix M ∈ R

n×n, σ(M)
denotes the spectrum of M . Provided M is symmetric, M � 0
(M � 0) specifies that M is positive (semi)definite. Given
an ordinary differential equation ẋ = f(x; η), x(t0) = x0,
parameterized with respect to η ∈ R

q, the flow ϕ(t, t0, x0; η)
denotes the mapping that satisfies ϕ(t0, t0, x0; η) = x0 and
∂
∂tϕ(t, t0, x0; η) = f(ϕ(t, t0, x0; η); η), for all t ≥ t0.

II. PRELIMINARIES AND PROBLEM STATEMENT

The objective of this section is to recall a few standard
definitions and results concerning the optimal control problem
for nonlinear systems over a finite horizon. To this end, consider
nonlinear, input-affine dynamics described by

ẋ = f(x) + g(x)u, x(t0) = x0 (1)

where x : R → R
n denotes the state of the plant and u : R →

R
m denotes the input. Suppose that the system possesses an

equilibrium at the origin, i.e., f(0) = 0. Given a control input
u ∈ C0([t0, tf ]), defined over an interval [t0, tf ] ⊂ R fixed a
priori, the performance of (1) driven by u is evaluated via the
cost functional J : C0([t0, tf ]) → R defined by

J(u(·)) = 1

2

∫ tf

t0

(
�(x(τ)) + ‖u(τ)‖2R

)
dτ +m (x(tf )) (2)

with R = R
 � 0. The running cost on the state variable is
described by the function � : Rn → R�0, �(0) = 0, whereas
the terminal cost is defined by the function m : Rn → R�0,
m(0) = 0. The value of the functional J is parameterized
with respect to the initial condition x0 in (1). Furthermore,
in the following it is implicitly assumed that the vector field
f : Rn → R

n, the matrix-valued function g : Rn → R
n×m and

the functions � and m are sufficiently smooth. The statement in
the following formulates the optimal control problem considered
here.

Problem 1: Consider the dynamics (1) and fix x0 ∈ R
n. The

finite-horizon optimal control problem consists in determining
a control input u�(t), t ∈ [t0, tf ] such that J(u�) < J(u) for
all u ∈ C0([t0, tf ]), namely, with the property that the func-
tional (2) is minimized along the trajectories of (1). ◦

A precise characterization of the existence and regularity
properties of the solution to Problem 1, which constitutes a
challenging task per se and which has attracted significant atten-
tion in the literature (see, e.g., [9]), is beyond the scope of this
manuscript. Therefore, the following assumption is stated to set
the framework for the results in the following. To provide a con-
cise notation, define the matrix-valued functionS : Rn → R

n×n

according to S(x) := g(x)R−1g(x)
 for all x ∈ R
n.

Assumption 1: There exists a unique solution V � : [t0, tf ]×
R
n → R>0, V � ∈ C2([t0, tf ]× R

n), of the HJB PDE{
−∇tV = 1

2�(x) +∇xV

f(x)− 1

2∇xV

S(x)∇xV

V (tf , x) = m(x)
(3)

for all t ∈ [t0, tf ] and all x ∈ R
n. ◦

The requirements of Assumption 1, which may be relaxed to
hold locally in a neighborhood of the origin, ensure the existence
of a unique optimal solution to Problem 1, which is obtained in
terms of the feedback control law [10, Sec. 4.2]

u�(t) = −R−1g (x�(t))
 ∇xV (t, x�(t)) . (4)

However, the closed-form computation of the value function V �

is typically not viable in practice. To circumvent the latter issue,
an alternative trajectory-based approach, hence more akin to the
formulation of Problem 1, is provided by the theory developed
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by Pontryagin to tackle the problem in the spirit of calculus of
variations [1]. Toward this end, consider the auxiliary variable
λ : R → R

n and define the (minimized) Hamiltonian function
H : Rn × R

n → R described by

H(x, λ) = min
u

{
λ
(f(x) + g(x)u) +

1

2
�(x) +

1

2
‖u‖2R

}

= λ
f(x) +
1

2
�(x)− 1

2
λ
S(x)λ. (5)

PMP yields necessary conditions for optimality in terms of the
solution to the BVP described by (see [4])

[
ẋ

λ̇

]
=

[
∇λH(x, λ)

−∇xH(x, λ)

]
:= fH(χ) (6)

with χ = (x, λ), together with the split conditions

x(0) = x0, λ(tf ) = ∇xm (x(tf )) . (7)

Assumption 2: Fix x0 ∈ R
n. There exists a unique solution

to the BVP (6) and (7) in [t0, tf ]. ◦
By the so-called sensitivity conditions in optimal control

(see, e.g., [9, Ch. 12]), it follows that the unique solution to
the BVP (6) and (7) satisfies λ�(t) = ∇xV

�(t, x�(t)) for all
t ∈ [t0, tf ]. Furthermore, by combining Assumptions 1 and 2,
one has that the unique extremal satisfying the necessary condi-
tions (6) and (7) indeed yields the optimal solution in terms
of u�(t) = −R−1g(x�(t))
λ�(t). Finally, since the analysis
of the following sections is based on the construction of the
annihilating codistribution of fH, the following definitions are
briefly recalled from [11, Sec. 1.3].

Definition 1: Given a collection of vector fields f1,..., fd, a
distribution Δ is a mapping that assigns to each point x ∈ R

n

a vector space, i.e., a subspace of R
n, defined as Δ(x) =

span{f1(x), . . ., fd(x)}. The dimension of the distribution cor-
responds to the dimension of the subspace Δ(x) at x. Δ is
nonsingular if there exist a neighborhood U and an integer d
such that dim(Δ(x)) = d for all x ∈ U . ◦

Definition 2: A codistribution C is a mapping that assigns
to each point x ∈ R

n a dual vector space, i.e., a subspace of
(Rn)�, defined as C(x) = span{ω1(x), . . ., ωd(x)}, with ωi(x)
describing a covector field. Given a nonsingular distribution Δ
of dimension d, the annihilator is a codistribution C := Δ⊥ =
span{ω1, . . ., ωn−d} with the property that ωi(x)f(x) = 0, for
i = 1, . . ., n− d and for all f ∈ Δ. ◦

Among the set of annihilators of a given distribution Δ,
one of particular interest is a codistribution that is spanned
by gradients only, namely, such that there exist independent
functions φ1,... φn−d, with φi : R

n → R, such that Δ⊥ =
span{dφ1, . . ., dφn−d}. Whenever such functions exist, the dis-
tribution is said to be (locally) completely integrable.

Definition 3: A distribution Δ is said to be involutive if
[f, g] ∈ Δ for any pair of vector fields f ∈ Δ and g ∈ Δ. ◦

By Frobenius Theorem (see, e.g., [11, Th. 1.4.1]), a nonsin-
gular distribution is completely integrable if and only if it is
involutive. Thus, building on Definitions 1–3 and on Frobenius

theorem, the following property1 holds: any 1-dimensional dis-
tribution Δ(x) = span{f(x)} ⊂ R

n, i.e., consisting of a single
vector field, always admits n− 1 independent functions φi with
the property that dφi(x)f(x) = 0, in a neighborhood of any
point such that f(x) is different from zero. The property is
derived by recalling that [f, f ] = 0 for any f , hence Δ = {f} is
involutive (see [11, Rmk. 1.3.8]). The assumption in the follow-
ing requires, therefore, that the optimal process χ� = (x�, λ�)
evolves sufficiently away from the origin of Rn × R

n, in such
a way that the underlying vector field remains nonsingular.

Assumption 3: Fix x0 ∈ R
n. There exists δ > 0 such that

mint∈[t0,tf ] ‖χ�(t)‖ > δ. ◦

III. ON THE RELATION BETWEEN THE ANNIHILATING

CODISTRIBUTION AND OPTIMAL COSTATE

Since fH is a vector field mapping the state into the tan-
gent space subset of R

2n, hence it can be interpreted as a
1-dimensional distribution, by Frobenius Theorem the latter
vector field always admits, away from the equilibrium point at
the origin, an annihilating codistribution of dimension 2n− 1.
Therefore, there exist 2n− 1 independent functions ψi(x, λ)
with the property that2 dψifH = 0. Consider a nonempty set
Ω ⊂ R

n × R
n, the projection of which on the x-space contains

a given initial condition x0, and let Ξ = {ψi}i=1,...,2n−1 denote
a set of independent generating functions whose gradients span
the annihilator of fH, namely, f⊥H = span{dψ1, . . ., dψ2n−1} for
all (x, λ) ∈ Ω. The following statement clarifies the role of the
functions in Ξ toward the computation of the optimal solution to
Problem 1, by suggesting how first integrals of the Hamiltonian
dynamics can be used to construct optimal control laws.

Theorem 1: Consider the nonlinear system (1) together with
the cost functional (2) and fix x0 ∈ R

n. Suppose that Assump-
tions 1–3 hold. Consider any selection of n functions in Ξ with
the property that ψ(x, λ) := [ψi1 , . . ., ψin ]


 is such that ∇λψ
is nonsingular in Ω0 ⊆ Ω. Then, for all the optimal processes
(x�, λ�) that remain inΩ0 for all t ∈ [t0, tf ], the optimal solution
is equivalently described by3

u�(t) = −R−1g(x�(t))
ψ−1 (x�(t), ψ (ξ,∇xm(ξ))) (8)

where the constant vector ξ ∈ R
n is such that

ξ = ϕz (tf , t0, x0; ξ) (9)

with ϕz(t, t0, x0; ξ) denoting the flow of the (reduced) system

ż = f(z)− S(z)ψ−1(z, ψ (ξ,∇xm(ξ)) , z(0) = x0 (10)

parameterized with respect to ξ. �
Remark 1: A few observations about Theorem 1 are in order

before the formal proof. First, note that the condition (9) entails

1Such a property is also obtained as a straightforward consequence of the
so-called flow-box or straightening out theorem, see, e.g., [12, Th. 1].

2It is worth observing that such a property can be put into perspective with
respect to the geometric properties of Hamiltonian vector fields by recalling
that dψifH = {ψi,H}, where {·, ·} denotes the Poisson bracket. The interested
reader is referred to [13] where an elegant characterization of such properties is
discussed in the setting of infinite-horizon optimal control.

3The notation ψ−1 describes the (partial) inverse with respect to λ, i.e., a
mapping with the property that λ = ψ−1(x,ψ(x, λ)) = ψ−1(z, ψ(z, λ)) =
ψ−1(z, p), provided x = z and p = ψ(x, λ).
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that the optimal solution of Problem 1 can be determined in
two steps, by solving first (i) a linear time-invariant PDE (to
compute the set Ξ of annihilating functions) and subsequently
(ii) a BVP of dimension n, instead of 2n as for (6) and (7), with
respect to a vector field parameterized via ξ. Furthermore, the
functions in Ξ do not vary with x0 in Ω0, hence the solution to
step (i) above should not be repeated for different initial con-
ditions. Conversely, to put the complexity of the computations
involved in Theorem 1 into perspective, it is worth observing
that an implementation via (numerical) integration of (6) and
(7) or via the direct solution of (3) would instead hinge upon
a BVP of dimension 2n or on a quadratic, time-varying PDE,
respectively. In addition, the explicit knowledge of the solution
of the BVP of dimension 2n for a certain x0 does not provide
any insight on the solution for a different initial condition,
and hence, it should be repeated. Finally, note that (9) may be
interpreted as the task of computing a fixed point of the mapping
ξ �→ ϕz(tf , t0, x0; ξ). The latter intuition is exploited in the
following (see Section IV-B) to suggest numerically appealing
strategies for its solution. �

Proof of Theorem 1: To begin with define the change of
coordinates for the Hamiltonian dynamics (6) described by

z = x p = ψ(x, λ) (11)

and note that, by the assumption on non-singularity of the Jaco-
bian matrix∇λψ, the mapping (x, λ) �→ (x, ψ(x, λ)) constitutes
a local diffeomorphism in the neighborhood of any point in Ω0

(see [11, Prop. 1.2.3]). Since the componentsψi, i = 1, . . ., n, of
the mapping ψ belong to Ξ, hence the corresponding gradients
belong to f⊥H , one has that, by construction, dψi fH = 0 in Ω
for i = 1, . . ., n. Therefore, in the transformed coordinates, the
Hamiltonian dynamics (6) becomes[

ż
ṗ

]
=

[
ẋ

∇χψ fH

]
=

[
f(z)− S(z)ψ−1(z, p)

0

]
(12)

together with the split boundary conditions

z(0) = x0 (13a)

p(tf ) = ψ (z (tf ) ,∇zm (z(tf ))) . (13b)

Note that (11) does not constitute a canonical change of co-
ordinates, hence, as expected, the Hamiltonian structure is not
preserved in the transformed coordinates. Nonetheless, by in-
specting the second block equation of (12), it follows immedi-
ately that the variable p(t) is constant over time in the interval
t ∈ [t0, tf ], and, hence, by (13b), is equal to

p(t) = ψ (z(tf ),∇zm (z(tf ))) (14)

for all t ∈ [t0, tf ]. Replacing (14) into the first block equation of
(12), the latter then coincides with (10) where the final state z(tf )
(appearing on the right-hand side of (14)) is described in terms of
a generic constant vector ξ ∈ R

n. The proof is then concluded by
observing that, in order to be consistent with (14), and hence with
the resulting dynamics in (10), the constant vector ξ := z(tf )
must be precisely characterized by the condition (9). �

Remark 2: The structure of the control law (8) implies that
the annihilating codistribution of the underlying Hamiltonian

dynamics yields the optimal solution of Problem 1 in terms of a
(parameterized) state feedback, similarly to techniques inspired
by DP [9], [14], whose characterization is, however, formulated
in terms of a BVP without the need for solving any PDE,
similarly to methods based on PMP [4]. �

The following statement establishes a connection between
(the inverse mapping of) any collection ofn generating functions
of the annihilator of the Hamiltonian dynamics (6) and the time
history of the optimal costate. More precisely, it is shown that the
latter coincides for any time with the former provided the second
argument is replaced by a suitably defined constant vector.

Corollary 1: Suppose that the hypotheses of Theorem 1 hold.
Then, there exists a constant vector v ∈ R

n with the property that

λ�(t) = ψ−1(x�(t), v) (15)

for all t ∈ [t0, tf ], where λ� denotes the optimal costate. �
Proof: The claim follows immediately from the constructions

discussed in the proof of Theorem 1 and by uniqueness of the
optimal process. In fact, by considering the inverse change of
coordinates, it follows that

λ�(t) = ψ−1 (x�(t), p�(t))

= ψ−1 (x�(t), ψ (ξ,∇xm(ξ))) (16)

for all t ∈ [t0, tf ], with ξ satisfying the condition (9). The
conclusion then follows by letting v := ψ(ξ,∇xm(ξ)). �

Remark 3: A combination of the intuitions behind
Theorem 1 and Corollary 1 permits the derivation of straightfor-
ward algebraic conditions that relate the optimal initialization
of the costate variable, i.e., λ�(t0), and the vector ξ in (9). In
fact, by construction of the change of coordinates, it follows
that p�(t0) = ψ(x0, λ

�(t0)). Therefore, since p� is constant in
[t0, tf ], hence p�(tf ) = ψ(ξ,∇xm(ξ)) = p�(t0), the vector ξ
is obtained, for fixed (x0, λ

�(t0)), by solving the system of
algebraic equations

ψ (x0, λ
�(t0)) = ψ (ξ,∇xm(ξ)) (17)

for all x0 ∈ Ω and t0 ∈ R. �
Remark 4: By further reconciling the conclusions of

Corollary 1 with the sensitivity conditions arising in optimal
control theory, it follows that the composition of the annihilator
of the Hamiltonian vector field with its inverse function yields
the sensitivity of the optimal cost, namely,

∇xV
� (t0, x0) = ψ−1(x0, ·) ◦ ψ (ξ,∇xm(ξ)) (18)

provided ξ satisfies (9). It is worth observing that, differently
from the left-hand side, the right-hand side of (18) does not
depend explicitly on the initial time, which is encoded in the
value of ξ that solves (9). �

The structure of (18) implicitly suggests that the annihilating
codistribution of the Hamiltonian dynamics is strictly related
also to the value function of Problem 1. However, such a direct
computation is viable only if the overall dependence of the right-
hand side of (18) on the initial condition x0 is captured: this
includes the fact that the value of ξ depends, in turn, on the
specific selection of x0, as it appears by inspecting (9). This
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intuition is summarized in the following statement, in which the
concise notation ψ̄(ξ) := ψ(ξ,∇xm(ξ)) is employed.

Corollary 2: Suppose that the hypotheses of Theorem 1
hold. In addition, let μ : Rn → R

n be such that μ(x) =
ϕz(tf , t0, x;μ(x)) for all x ∈ Ω0. Define the function

ν(x) =

∫ 1

0

〈
ψ−1

(
h, ψ̄(μ(h))|h=x0+s(x−x0)

)
, x− x0

〉
ds.

(19)
Then, the value function satisfies V �(t0, x) = ν(x)− ν(0), for
all x ∈ Ω0. �

Proof: Provided the fixed-point condition (9) is satisfied for
all x0 ∈ Ω, as prescribed by the definition of the function
μ, it follows by (18) that the gradient of the optimal value
function V �(t0, x), for fixed t0 and for all x ∈ Ω0, coin-
cides with ψ−1(x, ψ̄(μ(x))). Furthermore, note that ∇xν(x) =
ψ−1(x, ψ̄(μ(x))), by construction, and that V �(t0, 0) = 0, by
the definition of Problem 1 for all t0 (by time-invariance of the
involved functions). Thus, one has that ν(x)− ν(0) yields the
optimal value function V �(t0, x) of Problem 1 in Ω0. �

The statement of Corollary 2 entails that the value function
may be equivalently computed by solving a linear, time-invariant
PDE (to determine first integrals) and a line integral, rather
than by solving a quadratic, time-varying PDE. The claims of
Theorem 1 and Corollaries 1 and 2 are illustrated in the fol-
lowing via a numerical example involving a linear system and
a quadratic cost functional, for which the constructions can be
easily carried out. In more general settings, the computations
may, in fact, be obstructed by cumbersome notation and com-
putational issues. These relevant aspects are instead addressed
in Section IV-A.

Example 1: Consider an LQ optimal control problem de-
scribed by the dynamics

ẋ = u x(0) = x0 (20)

together with the cost functional

J(u) =
1

2

∫ 1

0

(
x(t)2 + u(t)2

)
dt (21)

hence as in (2) with �(x) = x2, R = 1 and m ≡ 0. In this
setting, the optimal solution can be immediately determined by
relying on the knowledge, for instance, of the eigenvalues and
eigenvectors of the underlying Hamiltonian matrix, which allow
to construct the solution to the corresponding differential Riccati
equation, see e.g., [1]. More precisely, the optimal solution is
u�(t) = −P (t)x(t), for t ∈ [0, 1], with

P (t) =
(
1− e−2(1−t)

)(
1 + e−2(1−t)

)−1

(22)

solution of −Ṗ = 1− P 2, P (1) = 0, and associated also with
the value function according to V �(t, x) = (1/2)x2P (t). Con-
sider instead the dynamics (6), which becomes[

ẋ

λ̇

]
=

[
−λ

−x

]
(23)

together with the boundary conditionsx(0) = x0, λ(1) = 0. The
functionψ(x, λ) = x2 − λ2 yields the annihilator of the (linear)
vector field in (23). Thus, the associated inverse function is

defined as ψ−1(z, p) = ±
√
z2 − p depending on the sign of

λ. Therefore, according to Theorem 1, since the variable p(t) is
constant in the interval [0,1] and equal to

p(t) = ψ(z(1), 0) = z(1)2 =: ξ2 (24)

the reduced system (10) becomes

ż = ∓
√
z2 − ξ2, z(0) = x0. (25)

By separation of variables, the scalar equation (25) yields(
z(t) +

√
z(t)2 − ξ2

x0 +
√
x20 − ξ2

)±1

= et

for all t ∈ [0, 1], which, by solving at t = 1 and z(1) = ξ with
respect to ξ, satisfies the fixed-point condition (9) by selecting

μ(x0) =
2ex0
e2 + 1

. (26)

Therefore, by Theorem 1 and Corollary 1, it follows that the op-
timal costate variable λ�(t), t ∈ [0, 1], is equivalently described
in terms of z(t) and μ(x0) as

λ�(t) = P (t)x�(t) = ±
√
(z�(t))2 − μ(x0)2

where z�(t) solves (25) with ξ = μ(x0). Furthermore, the opti-
mal value function V �(0, x) and the integral (19), namely,

ν(x)− ν(0) =
x2

2

√
(e2 + 1)2 + 4e2

(e2 + 1)2

coincide for all x ∈ R. �
Apart from specially structured classes of optimal control

problems, the solution of (6) and (7) can be seldom computed
in a closed form. As anticipated in Section I, shooting methods
aim at providing an accurate estimate of the underlying solution.
More precisely, the split boundary conditions (7) are satisfied
by iterating on (suitably updated) guesses of the correspond-
ing initial condition for the costate variable λ(t0), so that the
terminal condition eventually holds. Thus, the initial guess
for λ(t0) plays a crucial role toward numerical reliability of
such methods. In this respect, the property that the origin is
an unstable equilibrium point for (6), provided rather standard
assumptions hold (see also Section V), renders the majority of
shooting methods troublesome, if not impossible, to implement
in practice whenever the difference tf − t0 is large. Within
this framework, the following formal statement and numerical
simulation illustrate an advantageous feature of the fixed-point
condition (9) compared with classic methods.

Proposition 1: Consider the reduced system (10) and
suppose that σ(∇zf(z)|z=0) ⊂ C

−. Moreover, let G0(ξ) :=
∇z(S(z)ψ

−1(z, ψ̄(ξ)))|z=0 and suppose thatG0(0) = 0. Then,
there exists ε ∈ R>0 with the property that, for all ξ such
that ‖ξ‖ < ε, z = 0 is locally exponentially stable (LES) for
system (10). ◦

Proof: By isolating the linear terms with respect to z in the
vector field of system (10), the latter can be written as

ż = A0z + f̃(z)−G0(ξ)z − G̃(ξ, z)

= (A0 −G0(ξ)) z + f̃(z)− G̃(ξ, z) (27)
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with A0 := ∇zf(z)|z=0, where f̃ : Rn → R
n and G̃ : Rn ×

R
n → R

n contain higher order terms with respect to z. Since
A0 is Hurwitz by assumption, and hence σ(A0 −G0(0)) ⊂ C

−,
the claim follows immediately by continuity of the mappingG0

with respect to ξ and of the eigenvalues of a matrix with respect
to variations in its entries. �

Remark 5: The statement of Proposition 1 entails that, for
sufficiently small initial conditions x0 and provided the original
system (1) possesses a LES equilibrium point at the origin, it
is always possible to initialize an iterative strategy designed
to converge to the correct ξ (such as the one proposed in
Section IV-B) by means of a selection of ξ0 that ensures a numer-
ically meaningful terminal condition z(tf ) even for arbitrarily
large tf . Intuitively, the stability properties of the underlying
plant are inherited by the system employed in the shooting
method, and hence, the accuracy of the initial guess of the vector
ξ is not crucial. This is profoundly different from what happens
in general with the (full-order) Hamiltonian dynamics (6) in
which, even for arbitrarily small initial conditions for the state,
the (random) selection of λ(t0) gives rise with probability one
to a trajectory that diverges for large terminal times. In fact, the
set of initial guesses for λ(t0) that are associated with bounded
trajectories of (6) is of zero measure, whereas the selection of
an ill-conditioned λ(t0) is generic. This aspect is illustrated in
Example 2. �

Remark 6: The emphasis of Proposition 1 is on the property
of rendering the set of well-conditioned initial guesses for the
choice of ξ an open set, rather than a zero-measure one. Con-
versely, the fact that the former set is centered at the origin is
not particularly relevant. As a consequence, the assumptions on
G0 may be partially relaxed by requiring instead that there exists
ξ̂ ∈ R

n such thatA0 −G0(ξ̂) is Hurwitz. Then, the conclusions
of Proposition 1 would hold for all ξ such that ‖ξ − ξ̂‖ < ε, for
some positive ε. �

Example 2: Consider the LQ problem described by[
ẋ1
ẋ2

]
=

[
−x1 + x2
−0.5x2 + u

]
(28)

initialized at x0 = [1, 0.5]
, together with the cost functional

J(u) =

∫ tf

0

u(t)2 dt+
1

2
x1(tf )

2. (29)

It can be shown that the functions

ψ1(x, λ) =

√
λ1

2λ1 + λ2
, ψ2(x, λ) =

√
λ1 (3x2 + 2λ1 + 3λ2)

(30)
well defined in the positive orthant of the state/costate space are
independent functions such that span{dψ1, dψ2} ⊂ f⊥H , where
the (linear) vector field fH is defined as

fH :=

⎡
⎢⎢⎣

−x1 + x2
−0.5x2 − λ2

λ1

−λ1 + 0.5λ2

⎤
⎥⎥⎦ . (31)

It is straightforward to notice that the latter vector field possesses
an unstable equilibrium point at the origin. The objective of

Fig. 1. Time histories of the Hamiltonian dynamics (31) initialized at
λ(0) = λ�x0

+ δλ (dashed lines) and of the reduced dynamics (10) with ξ
as above (solid lines) for several terminal times, i.e., tf = 2 (top graph),
tf = 4 (middle graph), and tf = 6 (bottom graph).

the following numerical simulation consists in assessing the
influence of the value of the terminal time tf toward the im-
plementation of a shooting method either directly for (31) or for
(10) with (28) and (30). To this end, suppose that the dynamics
described by (31) are forward integrated from the initial con-
dition x(0) = x0 and λ(0) = λ�x0

+ δλ, where λ�x0
denotes the

optimal initialization of the costate for the given x0 and δλ is a
(small) perturbation. To perform a fair comparison, the value of
ξ employed to forward propagate the dynamics (10) is instead
selected according to (17) with respect to λ(0), namely, by solv-
ing ψ(x0, λ

�
x0

+ δλ) = ψ(ξ,∇m(ξ)). Note that the structure
of the terminal cost in (29) implies that ∇m(ξ) = [ξ1, 0]


. In
the following numerical simulations, the perturbation from the
nominal value is selected as δλ = [0.02, −0.01]
. The graphs
of Fig. 1 depict the time histories of the Hamiltonian dynamics
described by (31) initialized at λ(0) = λ�x0

+ δλ (dashed lines)
and of the reduced dynamics (10) with ξ as above (solid lines) for
several terminal times, i.e., tf = 2 (top graph), tf = 4 (middle
graph), and tf = 6 (bottom graph). The latter graph, in particu-
lar, illustrates the fact that forward integration of the Hamiltonian
dynamics (6) yields numerically troublesome results for large tf
(‖λ(6)−∇xm(x(6))‖ = 15.83), whereas the forward integra-
tion of (10) may still provide meaningful values (‖z(6)− ξ‖ =
0.42). This feature is employed in Section IV-B to define a hybrid
mechanism that converges to the fixed point μ(x0). �

IV. DISCUSSION ON CONSTRUCTIVE ASPECTS

While providing an alternative characterization of the op-
timal solution in terms of a reduced system, the statement
of Theorem 1 involves constructive steps that may appear as
stumbling blocks in practice. The two daunting requirements
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are the computation of the annihilator of the Hamiltonian vector
field, which is guaranteed to exist by Frobenius theorem, and
of the constant vector ξ that satisfies the condition (9). This
latter step in fact must be typically accomplished without the
knowledge of a closed-form expression of the flow ϕz . These
aspects are addressed in the two following sections, respectively.
It is worth mentioning that the purpose of the results in this
section is to suggest possible approaches to tackle such construc-
tive challenges. Nonetheless, further refinements or alternative
approaches, some of which are hinted to in Section VI, might
be envisioned.

A. Approximate Annihilator via Newton’s Method

The constructions discussed in this section yield a systematic
way of computing a set of functions that approximate, with an
arbitrary degree of accuracy in a neighborhood of a given state,
the generating functions of the annihilator of the Hamiltonian
vector field fH without the need for solving any differential
or algebraic equation. To this end, fix (x0, λ0) ∈ R

n × R
n,

different from the origin, and suppose, without loss of generality
(as explained in the footnote below), that f2nH (x0, λ0) �= 0, where
f iH denotes the ith component of fH.

Assumption 4: The components f iH, i = 1, . . ., 2n, are real
analytic functions in a neighborhood of (x0, λ0). ◦

Assumption 4, although required to prove the following state-
ment, may be relaxed in practice by accepting also sufficiently
smooth vector fields. To provide a concise statement of the
following result, define the matrix4 M ∈ R

2n×2n as:

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 1 0
... ···

...
0 1 . . . 0 0
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (32)

Lemma 1: Fix χ0 = (x0, λ0) and suppose that Assumption 4
holds. Define s ∈ R

2n and

hr1 (s1, . . ., s2n) =

r1∑
k=1

LkfHχ (χ0 +Ms)
sk1
k !
. (33)

Let π0(χ) = χ0, consider the iterations

πj+1 = πj +∇hr1(πj)−1 (χ− hr1(πj)) (34)

j = 0, 1, . . ., r2 − 1, and define the functions ψ̃i(x, λ),
i = 1, . . ., 2n− 1, as[
ψ̃1 . . . ψ̃2n−1

]

:=
[
0(2n−1)×1 I2n−1

]
πr2(x, λ). (35)

Then, for any ε > 0 there exist r�1 ∈ N, r�2 ∈ N, and a nonempty
neighborhood of χ0 such that, for all i = 1, . . ., 2n− 1∥∥∥dψ̃i fH(χ)∥∥∥ < ε

for all r1 > r�1 and r2 > r�2 . �
Remark 7: To streamline the proof of Lemma 1, it is worth

preliminary recalling the arguments of the (constructive) proof

4Whenever the last component of the vector field fH is equal to zero at
(x0, λ0), the structure of the matrixM should be modified accordingly with the
row of zeros corresponding to a nonzero element of fH.

of Frobenius Theorem in [11, Th. 1.4.1], on which the former
relies. The latter in particular shows that the annihilator of a
distribution Δ(x) = span{f1(x), . . ., f�(x)} ⊂ R

n, of dimen-
sion � around a certain state x̄ ∈ R

n, can be determined by first
completing the distribution with auxiliary vector fields such that
rank[Δ(x̄) fn−�(x̄) . . . fn(x̄)] = n. Then, one should com-
pute the flows ϕfi(si, x̄) of all the vector fields in Δ as well
as those of fn−�,..., fn. Then, defining the function Ψ(s) =
ϕf1(s1, ·) ◦ . . . ◦ ϕfn(sn, x̄) as the composition of such flows,
it is shown in [11, Th. 1.4.1] that the gradients of the last
n− � functions in the inverse mapping x �→ Ψ−1(x) span the
annihilating codistribution Δ⊥. �

Proof of Lemma 1: The proof of the claim follows from
the premises discussed in Remark 7. To begin with the
1-dimensional distribution defined by the vector field fH is
complemented by the trivial selection of the vector fields

f2 =

⎡
⎢⎢⎢⎢⎢⎣

0
...
0
1
0

⎤
⎥⎥⎥⎥⎥⎦ , f3 =

⎡
⎢⎢⎢⎢⎢⎣

0
...
1
0
0

⎤
⎥⎥⎥⎥⎥⎦ , . . ., f2n =

⎡
⎢⎢⎢⎢⎢⎣

1
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎦ .

The flows of the above vector fields can be then immediately
computed and are such that ϕf2(s2, ·) ◦ . . . ◦ ϕf2n(s2n, χ0) =
χ0 +Ms. Then, the proof is concluded by relying, first, on
the approximation of the flow ϕfH(s1, χ0 +Ms), needed to
construct the mapping Ψ(s) introduced in Remark 7 and
which is an analytic function of time s1 by Assumption 4,
via the corresponding Taylor expansion of order r1, see (33)
for the definition of hr1 , and subsequently on the approx-
imation of the inverse mapping via Newton’s iterations,
see (34). �

Remark 8: As a consequence of the constructions discussed
in the statement of Lemma 1, it follows that a change of co-
ordinates based on ψ̃i in (35) in place of ψi (namely, defining
p̃ = ψ̃(x, λ)) is such that the dynamics of the transformed costate
variable can be (locally) uniformly bounded as ‖ ˙̃p(t)‖ < ε̃, for
any ε̃ > 0 and all t ∈ [t0, tf ]. A similar bound, which may be
arbitrarily tuned, is then inherited also by the computation of the
fixed-point condition (9), and hence on the optimal solution. The
approximation stems from considering that also p̃(t) is constant
in [t0, tf ] while tackling (9). �

Example 3: Consider Hamiltonian dynamics described by

[
ẋ

λ̇

]
=

[
x2 − λ

−x− 2xλ

]
(36)

and fix (x0, λ0) = (1, 0). Fig. 2 depicts dψ̃ fH obtained by
approximating the flow of the Hamiltonian dynamics via (33)
with r1 = 4 and for two different values of r2, namely, r2 = 1
(light gray) and r2 = 3 (dark gray). The quadratic convergence
properties of the algorithm, inherited by Newton’s method, can
be appreciated from Fig. 2, in which the dark gray surface is
almost flat in the desired neighborhood. �
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Fig. 2. Graph of dψ̃ fH obtained by approximating the flow of the
Hamiltonian dynamics via (33) with r1 = 4 and for two different values
of r2, namely, r2 = 1 (light gray) and r2 = 3 (dark gray).

B. Fixed-Point Condition via Sensitivity Equations

The objective of this section is to propose a computational ap-
proach for determining the value of ξ that satisfies the fixed-point
condition (9). More precisely, this is achieved by combining a
rather standard approach for computing the partial derivative of
the flow of a differential equation with respect to a parameter
appearing in the vector field (sensitivity) with the framework
introduced for the analysis and control of hybrid systems. A
comprehensive review about the latter class of systems is beyond
the scope of this article (see [15] for detailed discussions). It
appears that (9) can be satisfied by minimizing the (static) cost
ζ �→ Tx0

(ζ), T : Rn → R, defined as

Tx0
(ζ) = ‖ζ − ϕz (tf , t0, x0; ζ) ‖2. (37)

The latter task can be, in turn, accomplished by a standard
gradient descent method, provided one is able of (numerically)
evaluating the flow and its derivative with respect to ζ, as
discussed in the following result. To provide a concise statement,
defineF (z, ζ) := f(z)− S(z)ψ−1(z, ψ(ζ,∇xm(ζ)) and recall
(see [15]) that solutions to hybrid dynamical systems are param-
eterized with respect to two distinct time variables (t, k), cap-
turing the elapsed continuous time and the number of occurred
discrete-time events, respectively.

Proposition 2: Suppose that the hypotheses of Theorem 1
hold. Consider the hybrid system with state (τ, ζ, z,S) ∈ R×
R
n × R

n × R
n×n described by the flow dynamics

τ̇ = 1 (38a)

ζ̇ = 0 (38b)

ż = F (z, ζ) (38c)

Ṡ = (∇zF (z, ζ)) S +∇ζF (z, ζ) (38d)

jump dynamics

τ+ = 0 (39a)

ζ+ = ζ − γ(I − S)
(ζ − z) (39b)

Algorithm 1. Optimal control via first integrals
Parameters: ri ∈ N, i = 1, 2, ε > 0
Input: (x0, λ0) ∈ R

n × R
n

(1) Let π0 = (x0, λ0)
(2) For j = 0 to r2
(3) πj+1 = πj +∇hr1(πj)−1 (χ− hr1(πj))
(4) with hr1 defined in (33)
(5) Let [ψ̃1 . . . ψ̃2n−1]


 = [0(2n−1)×1 I2n−1]πr2
(6) If ∃{i1, . . ., in} ⊂ {1, . . ., 2n− 1} such that
(7) rank(∇λ[ψ̃i1 . . .ψ̃in ]|(x0,λ0)) = n

(8) set ψ̃ = [ψ̃i1 . . .ψ̃in ]

 and Go to step (10)

(9) Else STOP
(10) Compute ψ̃−1(x, p)
(11) Let (38)–(39) evolve with ψ̃−1 in F until
(12) Tx0

(ζ(ktf , k − 1)) =: Tx0
(ζ[k]) < ε

(13) Set u(t) for t ∈ [t0, tf ] as
(14) u(t) = −R−1g(x(t))
ψ̃−1(x(t), ψ̃(ζ[k],∇xm(ζ[k])))

z+ = x0 (39c)

S+ = 0 (39d)

and with flow and jump sets described by C := {(τ, ζ, z,S) :
τ � tf} and D := {(τ, ζ, z,S) : τ � tf}, respectively. Then,
there exist a nonempty set U and a piecewise constant
function γ(t, k) such that limt+k→∞ ‖ζ(t, k)− μ(x0)‖ = 0,
along all the trajectories of (38) and (39) for all
(τ(0, 0), ζ(0, 0), z(0, 0),S(0, 0)) ∈ U . �

Proof: The claims of Proposition 2 are obtained as a conse-
quence of a gradient-descent method with variable step size.
In fact, note that the dynamics (38d) is such that S(t, k) =
∇ζϕz(t, t0, x0; ζ) for any t. Therefore, the right-hand side of the
jump dynamics (39b) coincides with a standard gradient-based
update ζ+ = ζ − γ(∇ζTx0

)
. �
The above strategy represents essentially a shooting method

with two main differences with respect to classic implementa-
tions: first, it requires to “shoot” for the selection of the parameter
ξ in (10) to satisfy (9); second, the iterations are formulated
within the framework of hybrid systems. The practical imple-
mentation of the strategy suggested in Proposition 2 is briefly
summarized by the schematic algorithm in the following and
subsequently illustrated by the case study in Example 4.

Algorithm 1 provides a systematic strategy to translate the
abstract properties discussed in Section III into a design strategy
in practice. Nonetheless, it may be possible to replace a few steps
therein with alternative approaches. More precisely, the role of
steps (1)–(5) could be played by any method that computes first
integrals of the Hamiltonian dynamics (see, e.g., the use of alge-
braic geometry arguments in Example 5), whereas the objective
of the steps (11) and (12) could be equivalently achieved by any
shooting method on the reduced dynamics (10) with respect to
the parameter ξ.

Example 4: Consider a nonlinear system described by[
ẋ1
ẋ2

]
=

[
f1(x2)
u

]
(40)
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Fig. 3. Time history of the logarithm of the cost function Tx0 (ζ) along
the trajectories of the system (38) and (39) initialized at ζ(0, 0) = [1, 1]
,
z(0, 0) = x0, and S(0, 0) = 02×2.

initialized at x(0) = x0, together with the cost functional

J(u(·)) = 1

2

∫ 1

0

‖u(t)‖2dt+ 1

2
‖x(1)‖2 (41)

hence as in (2) with �(x) ≡ 0, R = 1, and m(x) = (1/2)‖x‖2.
The corresponding Hamiltonian dynamics are described by⎡

⎢⎢⎣
ẋ1
ẋ2
λ̇1

λ̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f1(x2)
−λ2

0

− df1
dx2

(x2)λ1

⎤
⎥⎥⎦ (42)

with the boundary conditions x(0) = x0 and λ(1) = x(1). It can
be shown that the functions

ψ1(x, λ) = λ1, ψ2(x, λ) = f1(x2)λ1 −
λ2
2

2
(43)

constitute a pair of independent functions the gradients of which
belong to the annihilating codistribution of the vector field in
(42). Fig. 3 depicts the time history of the cost function Tx0

(ζ),
in semi-logarithmic scale, along the trajectories of the system
(38) and (39) with f1(x2) = x32 initialized at ζ(0, 0) = [1, 1]
,
z(0, 0) = x0 = [5, 3]
, and S(0, 0) = 02×2. The value of ξ that
satisfies (9) is, therefore, obtained as ξ� = [6.6894, 0.1918]


and the optimal costate is[
λ�1(t)

λ�2(t)

]
=

[
ξ�1√

2((z�2(t))
3ξ�1 − (ξ�2)

3ξ�1 − (1/2)(ξ�2)
2)

]
.

�

C. Numerical Simulations

The objective of this section is to corroborate the theoretical
findings of the previous sections by means of two numerical

simulations. In both cases, the claims of Theorem 1 are compared
with the optimal solution of the underlying problem, numerically
computed via the command bvp in MATLAB, which permits
the solution to the corresponding nonlinear BVP. In Example 5,
the Hamiltonian dynamics admit a closed-form expression of
the annihilator, whereas the subsequent example is employed
to discuss the use of approximate first integrals whenever these
cannot be determined.

Example 5: Consider a nonlinear system described by

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ −x1 − 2x3 − u
x21 + x2 + 2x1x3 + x23

x3 + u

⎤
⎦ (44)

initialized at x(0) = x0, together with the cost functional

J (u(·)) = 1

2

∫ 1

0

‖u(t)‖2dt+ 1

2
‖x(1)‖2. (45)

The corresponding Hamiltonian dynamics are described by

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
λ̇1

λ̇2

λ̇3

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−x1 − 2x3 − λ1 + λ3

x21 + x2 + 2x1x3 + x23
x3 + λ1 − λ3

λ1 − 2x1λ2 − 2x3λ2

−λ2

2λ1 − λ3 − 2x1λ2 − 2x3λ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(46)

with the boundary conditions x(0) = x0 and λ(1) = x(1). By
relying on the notion of semi-invariant of a nonlinear system and
by borrowing techniques from algebraic geometry (see [16] for
more details), it can be shown that (46) admits

ψ(x, λ) =

⎡
⎢⎢⎢⎣
(λ1 − λ3)

(
x21 + 2x1x3 + x23 + 3x2

)
λ2

(
x21 + 2x1x3 + x23 + 3x2

)
3λ1 − 2λ2 (x1 + x3)

x21 + 2x1x3 + x23 + 3x2

⎤
⎥⎥⎥⎦ (47)

as a collection ofn = 3 generating functions for the annihilating
codistribution, yielding the inverse mapping ψ−1(x, p) in (48)
(shown at the bottom of this page). Fix x0 = [1, −1, −2]
.
Thus, by replacing the closed-form expressions of ψ and
ψ−1, defined in (47) and (48), respectively, into (10),
the fixed point ξ� is computed via (38) and (39), yielding
ξ� = [0.5269, −1.8573, −0.8948]
. Fig. 4 shows the time
histories of the reduced system (10) (solid lines) together with
the components of ξ� (dashed lines). By letting z� denote the
solution to (10) with ξ = ξ�, it is verified that the optimal costate
variable λ�, numerically computed via bvp, indeed, satisfies

ψ−1(x, p) =

⎡
⎢⎢⎢⎢⎢⎣
p3

(
x2
1

3 + 2
3x1x3 +

x2
3

3 + x2

)
+

2p2 (x1 + x3)

3 (x21 + 2x1x3 + x23 + 3x2)
p2

x21 + 2x1x3 + x23 + 3x2

p3

(
x2
1

3 + 2
3x1x3 +

x2
3

3 + x2

)
+

−3p1 + 2p2 (x1 + x3)

3 (x21 + 2x1x3 + x23 + 3x2)

⎤
⎥⎥⎥⎥⎥⎦ (48)
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Fig. 4. Time histories of the state of (10) in the case of Example 5,
together with the corresponding value of ξ� (dashed lines).

λ�(t) = ψ−1(z�(t), p)|p=ψ(ξ�,ξ�) (since ∇xm(x) = x) for all
t ∈ [0, 1], with ψ in (47) and ψ−1 in (48). �

Example 6: Consider a nonlinear system in strict feedback
form described by⎡

⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ x2 +�1(x1)
x2 +�2(x1, x2)

u

⎤
⎦ =: f(x) + bu (49)

b = [0, 0, 1]
, with �1(x1) = −x51 and �2(x1, x2) = x21x
2
2,

together with the cost functional

J (u(·)) = 1

2

∫ tf

0

‖u(t)‖2dt+ 1

2
‖x(tf )‖2, (50)

i.e., as in (45) although with tf = 4.5. Letting x0 =
[0.5, 0.2, −0.2]
, the (numerically computed) optimal process
(x�, λ�) corresponds to the trajectory of the Hamiltonian dy-
namics, naturally associated with (49) and (50), initialized at
λ�(0) = [0.0230, 0.0866, 0.0132]
. Since the generating func-
tions of the annihilator of the Hamiltonian dynamics cannot be
easily computed, these are instead approximated by postulat-
ing the structure of such functions according to ψai (x, λ) =
ai1x1 + ai2x2 + ai3x3 + ai4λi + ai5x

2
1 + ai6x

2
2 + ai7x

2
3, for i =

1, 2, 3. Given a prescribed point (x0, λ0) ∈ R
3 × R

3 and by
relying on ideas similar to those underlying the expansion (33),
the coefficients aij , i = 1, . . ., 3, j = 1, . . ., 7, are determined
with the property that ψai (x0, λ0) �= 0 while

dk

dtk
ψai (x(t), λ(t))

∣∣∣
t=0

= 0

k = 1, . . ., 6, namely, the first six time derivatives with respect
to t of the composite function ψai (x(t), λ(t)) are zeroed at

Fig. 5. Time histories of the state of (52) (solid lines), with ξ selected
as x�(tf ), together with the terminal values of the optimal state x�(tf )
(dashed lines).

(x0, λ0). This ensures that the function ψai (x, λ) remains suf-
ficiently small in a neighborhood of (x0, λ0) and in the di-
rection of the flow of the underlying Hamiltonian dynamics.
The above strategy leads to the mapping ψa in (51) shown at
the bottom of this page, obtained by selecting (x0, λ0) with
λ0 = [0.05, 0.09, −0.04]
, which approximates λ�(0). The ef-
fect of such an approximation is then assessed according to the
following strategy. The mappingψa in (51) and its inverseψa,−1

with respect to λ, which is immediately computed since ψa is
linear in λ, are employed to construct (approximate) reduced
dynamics (10), i.e.,

ż = f(z)− bb
ψa,−1 (z, ψa(ξ, ξ)) (52)

z(0) = x0, with f and b defined in (49). Then, a measure
of the approximation is provided by ea := ‖z(tf )− x�(tf )‖2,
where z(tf ) denotes the solution of (52) with ξ = x�(tf ) at
t = tf = 4.5, while x�(tf ) denotes the terminal value of the
(numerically computed) optimal state. In fact, with knowledge of
the exact expression of ψ, one obtains ea = 0. Fig. 5 depicts the
time histories of the state of (52) (solid lines), with ξ = x�(tf ),
together with the terminal values of the optimal state x�(tf )
(dashed lines). Furthermore, a sensitivity analysis is reported
in Fig. 6 , which shows the values of ea obtained by fixing
λ0,1 = 0.05 and by letting λ0,2 and λ0,3 vary. �

V. REVISITING THE LINEAR QUADRATIC REGULATOR (LQR)
PROBLEM

The results discussed in the previous sections are specialized
here to the setting of linear dynamics and quadratic cost func-
tionals, which constitute the LQR problem. Toward this end,
consider a linear time-invariant (LTI) system described by the

ψa(x, λ) =

⎡
⎣−0.9048x1 − 1.1998x2 − 1.5559x3 + 2.5755λ1 + 0.6410x21 + 1.2556x22 + 3.5477x23

1.3025x1 + 2.2693x2 + 3.4895x3 + 2.3223λ2 − 0.8738x21 − 3.9525x22 − 3.4913x23
0.2668x1 − 1.9733x2 − 1.0869x3 + 1.9935λ3 + 0.1389x21 + 2.4154x22 + 2.3074x23

⎤
⎦ (51)
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Fig. 6. Graph of ea in Example 6 obtained by fixing λ0,1 = 0.05 and
by letting λ0,2 and λ0,3 vary.

equations

ẋ = Ax+Bu, x(t0) = x0 (53)

together with the quadratic cost functional

J(u(·)) = 1

2

∫ tf

t0

(
‖x(t)‖2Q + ‖u(t)‖2R

)
dt+

1

2
‖x(tf )‖2M

(54)
with Q = Q
 � 0, R = R
 � 0, and M =M
 � 0. The cor-
responding Hamiltonian dynamics (6) are linear and described
by [

ẋ

λ̇

]
=

[
A −S̄
−Q −A


] [
x
λ

]
:= H

[
x
λ

]
(55)

with S̄ := BR−1B
 � 0. In the rest of this section, the follow-
ing rather standard structural assumption is considered.

Assumption 5: The pairs (A,B) and (A,C) are reachable and
observable, respectively. ◦

As a consequence of the requirements of Assumption 5,
the Hamiltonian matrix H in (55) possesses a split spectrum,
namely, having n eigenvalues with positive real part and n
eigenvalues with negative real part. Therefore, the underlying
linear system (55) is unstable. In the case of LTI systems, such
as the Hamiltonian system (55), the generating functions for the
corresponding annihilator are related to the eigenstructure of the
matrixH . For illustrative purposes, suppose that the matrixH is
diagonalizable. Then, the system (55) admits 2n− 1 generating
function of the annihilator of the form

ψi(x, λ) =

(
v
i χ

)a1(
v
1 χ

)ai (56)

withχ = (x, λ), where the vectorvi and the scalarai ∈ Cdenote
the ith eigenvector and eigenvalue, respectively, of the matrix
H
, namely, left eigenvectors of the matrix H .

Remark 9: The nonlinear structure of (56) (i.e., rational
functions of the state) is not surprising. In fact, recall that the
desired consequence of determining such generating functions

and performing the corresponding change of coordinates would
be to zero certain components of the vector field. In the linear
setting and limiting the search to linear change of coordinates
(hence, preserving linearity in the transformed coordinates), the
latter structure would correspond to obtaining zero eigenvalues.
However, since time-invariant linear changes of coordinates
preserve the eigenvalues of the original system, it follows that the
above objective could not be achieved by such a transformation.
Nonetheless, it is worth observing that instead, by relying on
the property of linearity of the underlying dynamical systems, a
result identical to Theorem 1 can be equivalently obtained by the
use of a time-varying linear change of coordinates. The latter in
fact may replace the (nonlinear) change of coordinates induced
by the annihilating codistribution. �

To this end, letΠx = [ I 0 ] ∈ R
n×2n andΠλ = [ 0 I ] ∈

R
n×2n denote the projection matrices on the state and costate

space, respectively.
Proposition 3: Consider the LTI system (53) together with

the quadratic cost functional (54) and fix x0 ∈ R
n. Define

Y (t) = Πλe
H(tf−t) =:

[
Y1(t) Y2(t)

]
(57)

and suppose that Y2(t) is invertible in [t0, tf ]. LetX(t) ∈ R
n×n

satisfy

Ẋ(t) = AX(t)−X(t)Ã(t), X(t0) = I (58)

with Ã(t) = A+ S̄Y2(t)
−1Y1(t). Then, the reduced BVP (9)

and (10) becomes z(tf ) = ξ with

ż(t) = Az(t)−X(t)S̄Y2(t)
−1MX(tf )

−1ξ (59)

for all t ∈ [t0, tf ] and z(t0) = x0. �
Proof: Define the time-varying matrix T : R → R

2n×2n as

T (t) =

[
X(t) 0
Y1(t) Y2(t)

]
. (60)

Consider then the change of coordinates described by[
z
p

]
= T (t)

[
x
λ

]
which is such that the transformed dynamics become[

ż
ṗ

]
=
(
Ṫ (t) + T (t)H

)
T (t)−1

[
z
p

]
.

Similarly to the nonlinear setting, the objective of the change
of coordinates consists in transforming the state/costate system
(55) into dynamics of the form of[

ż
ṗ

]
=

[
A K(t)
0 0

] [
z
p

]
=: Λd

[
z
p

]
(61)

where K : R → R
n×n must be determined, together with T (t),

such that Ṫ (t) + T (t)H = ΛdT (t). In fact, the structure of (61)
implies that ṗ = 0. By expanding the latter (matrix) differential
equation one obtains the conditions[

Ẋ 0

Ẏ1 Ẏ2

]
+

[
XA −XS̄

Y1A− Y2Q −Y1S̄ − Y2A



]

=

[
AX +KY1 KY2

0 0

]
(62)
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in which the dependence on time of the time-varying matrices
has been removed for brevity. The second block-row equa-
tions are satisfied via the selection of Yi(t), for all t ∈ [t0, tf ]
and i = 1, 2, as in (57). Since Y (tf ) = Πλ, one has that ad-
ditionally p(tf ) = λ(tf ) =Mx(tf ) =MX(tf )

−1z(tf ). The
top-right block is instead dealt with by selecting K(t) =
−X(t)S̄Y −1

2 (t), which in turn implies that X(t) provided by
the initial value problem (58) satisfies the top-left block of (62).
Finally, by the structure of Λd achieved with the selection of
X , Y1, and Y2 as above, it follows that the state p is constant
over time in [t0, tf ] and equal to p(t) =MX(tf )

−1ξ, where
ξ ∈ R

n must verify a fixed-point condition ξ = z(tf )with z(tf )
denoting the solution of

ż(t) = Az(t) +K(t)p(t)X = Az(t)−X(t)S̄Y −1
2 (t)p(t)

= Az(t)−X(t)S̄Y −1
2 (t)MX−1(tf )ξ (63)

at time t = tf , hence concluding the proof. �
Remark 10: Since Y (tf ) = Πλe

H(tf−t)|t=tf = [0, I] and
observing that Y2(t) is a continuous function of time, it follows
that the invertibility condition on Y2(t) holds for all t in the
interval [t0, tf ] provided tf is sufficiently small. �

The equations are significantly simplified whenever the run-
ning cost does not impose any penalty on the state, which is
captured instead only by the terminal cost, i.e., when Q = 0 in
(54). The above intuition is discussed in the following result.

Proposition 4: Consider the LTI system (53) together with
the quadratic cost functional (54), withQ = 0, and fix x0 ∈ R

n.
Let G : R → R

n×n denote the controllability Gramian matrix of
(A,R−1/2B). Then, the fixed-point condition described by (59)
and z(tf ) = ξ is satisfied by

ξ = μ(x0) := (I + G(tf )M)−1 eAtfx0 (64)

for all x0 ∈ R
n. �

Proof: To begin with, in this case, by inspecting the dy-
namics governing the evolution of Y1(t) and Y2(t), it can be
noted that they are satisfied by Y1 ≡ 0 and Y2(t) = e−A


(tf−t).
Since Y1 is identically equal to zero, the equation for X(t)
becomes time invariant and described by Ẋ = AX −XA. The
latter is then solved by X(t) = eAtX0e

−At = eAte−At ≡ I ,
where the boundary condition X(t0) = I has been used. Fi-
nally, the matrix-valued function K reduces instead to K(t) =

−S̄eA
(tf−t). Therefore, the transformed optimal costate is
equal to p(t) =Mz(tf ) =Mx(tf ) and the dynamics (59) be-
comes ż = Az − S̄eA


(tf−t)Mξ, z(0) = x0. The latter requires
that

ξ = eAtfx0 −
∫ tf

t0

eA(tf−τ)S̄eA

(tf−τ)dτMξ

= eAtfx0 − G(tf )Mξ (65)

where G(tf ) denotes the Gramian matrix evaluated at t = tf ,
which is positive definite by Assumption 5. Therefore, the fixed-
point condition can be immediately satisfied in closed form by
letting ξ = μ(x0) defined in (64). �

Remark 11: The result of Proposition 4 in essence recovers
the intuition behind the elegant constructions of [8] in the setting

of a class of LQ differential games (pursuit/evasion). Therein,
a time-varying change of coordinates is proposed to remove
the dependence of the underlying Hamiltonian function on the
state (which instead appears in the boundary condition) with the
byproduct of inducing a constant optimal costate. The results
of Section III may be then also interpreted as the extension of
ideas similar to those proposed in [8] to the nonlinear setting
via the notion of annihilating codistribution of the Hamiltonian
vector field. �

The section is then concluded by motivating the need for the
use of the annihilating codistribution, rather than a time-varying
change of coordinates, in the setting of nonlinear systems. To-
ward this end, the following statement first provides an equiv-
alent interpretation of the results of Proposition 4 and of [8],
although in the setting of optimal control rather than differential
game theory.

Proposition 5: Consider the LTI system (53) together with
the quadratic cost functional

Jr(u(·)) =
1

2

∫ tf

t0

‖u(t)‖2Rdt+
1

2
‖x(tf )‖2M . (66)

Then, the optimal control problem defined by (53) and (66) is
equivalently described by the time-varying, state-independent,
Hamiltonian function

H̃(λ, u, t) = λ
B̃(t)u+
1

2
u
Ru (67)

B̃(t) := M̃eA(tf−t)B, M̃
M̃ =M , the optimal costate of
which satisfies λ̇ = −∇zH̃ = 0 for t ∈ [t0, tf ]. �

Proof: Define the transformed variable zL(t) =
M̃ΦA(tf , t)x(t) = M̃eA(tf−t)x(t), where M̃ is such that
M̃
M̃ =M . Clearly, the cost (66) becomes Jr(u(·)) = (1/2)∫ tf
t0

‖u(t)‖2R + (1/2)‖zL(tf )‖2. The dynamics is instead
described by

żL(t) = M̃∇tΦA(tf , t)x(t) + M̃ΦA(tf , t)ẋ(t)

= −M̃ΦA(tf , t)Ax(t) + M̃ΦA(tf , t)(Ax(t) +Bu(t))

= M̃ΦA(tf , t)u(t) = B̃(t)u(t)

from which the structure of H̃ in (67) follows immediately. �
The objective achieved by the auxiliary dynamics żL illus-

trates the obstruction that prevents the straightforward extension
of the ideas in [8] to the nonlinear setting of (1), without resorting
to the notion of annihilating codistribution. To this end, consider
the latter system and suppose that a mappingΛ : R× R

n → R
n

is sought for to achieve a structure similar to (67). By letting
zN (t) = Λ(t, x(t)), it follows that

żN (t) = ∇tΛ(t, x(t)) +∇xΛ(t, x(t))ẋ(t)

= ∇tΛ(t, x(t)) +∇xΛ(t, x(t))(f(x(t)) + g(x(t))u(t))

= ∇xΛ(t, x(t))g(x(t))u(t) =: g̃(t, x(t))u(t)

provided ∇tΛ(t, x) +∇xΛ(t, x)f(x) = 0 for all (t, x) ∈
[t0, tf ]× R

n, which is indeed described by time-varying dy-
namics although still function of the original state x. The latter
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dependence is inherited by the resulting transformed Hamilto-
nian, thus preventing the straightforward extension of [8] to the
nonlinear setting.

VI. CONCLUSION

Within the framework of finite-horizon optimal control prob-
lems, it has been shown that the evolution of the costate vari-
able coincides, for any time, with the inverse mapping of any
collection of n-independent first integrals of the underlying
Hamiltonian vector field. This is achieved by interpreting the
inverse mapping as a mapping of the original state and constant
vector, whose computation is formulated in terms of a BVP, in
place of the costate variable. Interestingly, the BVP is defined in
the original (state) coordinates, rather than in the (extended)
state/costate space as for the classic Hamiltonian dynamics.
Such abstract property is subsequently employed to propose
a systematic strategy to compute optimal control laws, which
is based upon premises significantly different from existing
methods. Nonetheless, since the constructions envisioned in
Section IV-A may become troublesome for higher dimensional
systems, further extensions and refinements are needed. It may
be possible, for instance, to entirely circumvent the closed-form
constructions of Section IV-A by relying on functional approx-
imators (such as, e.g., neural networks) parameterized in such a
way that the required (partial) inversion remains feasible.

Since the resulting conditions appear to be particularly ap-
pealing from the computational point of view (considering, for
instance, the reduced dimension and the stability properties of
the BVP), it would be of interest to further extend similar ideas to
the context of differential games, in which, indeed, the notion of
open-loop Nash equilibrium is intimately related to the evolution
of certain state/costate dynamics for each player. Moreover, a
deeper understanding of the connections between first integrals
and optimal costate for large terminal times tf (ideally in the
limit for tf that tends to infinity) would widen the range of
applicability of the proposed characterization. For similar pur-
poses, it would be interesting to relax the regularity properties
of the involved functions and to generalize the structure of the
considered optimal control task, encompassing for instance the
case of constraints on the input.
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