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approach that is valid for large-enough supercooling to quantitatively describe these phe-
nomena in terms of few parameters, which are computable once the model is specified. The
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the background of gravitational waves recently detected by pulsar timing arrays (NANOGrav,
CPTA, EPTA, PPTA) and others that are either excluded by the observing runs of LIGO
and Virgo or within the reach of future gravitational wave detectors. Furthermore, we find
regions of the parameter space where primordial black holes produced by large over-densities
due to such phase transitions can account for dark matter. Finally, it is shown how this
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1 Introduction

First-order phase transitions (PTs) leave potentially observable footprints that can be evidence
for new physics because the Standard Model (SM) does not feature this type of transitions.

One example of such footprints is the spectrum of gravitational waves (GWs) produced by
first-order PTs. GW astronomy has become an extremely active and exciting branch of physics
after the discovery of the GWs from binary black hole and neutron star mergers [1–3]. Very
recently, the interest in this field has been further boosted by the detection of a background of
GWs by pulsar timing arrays: these include the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav), the Chinese Pulsar Timing Array (CPTA), the European
Pulsar Timing Array (EPTA) and the Parkes Pulsar Timing Array (PPTA) [4–7].

Another interesting consequence of first-order PTs is the production of primordial black
holes (PBHs) [8–19], which in turn can account for a fraction or the entire dark matter
observed abundance.

First-order PTs always take place when the corresponding symmetry breaking is mostly
induced (and masses are generated) radiatively, i.e. through perturbative loop corrections [20].
The seminal work on this radiative symmetry breaking (RSB) is ref. [21] by Coleman and
E. Weinberg, which studied a simple toy model (see also ref. [22] for a recent analysis). The
Coleman-Weinberg work was then extended to a more general field theory by Gildener and
S. Weinberg [23]. Furthermore, thanks to an approximate scale invariance, in the RSB scenario
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the first-order PTs feature a period of supercooling, when the temperature dropped by several
orders of magnitude below the critical temperature [20, 24].

Supercooling in the RSB scenario allows us to be confident about the validity of the
one-loop approximation and the derivative expansion [20]. Moreover, it also ensures that
the gravitational corrections to the false vacuum decay are amply negligible whenever the
symmetry breaking scale is small compared to the Planck mass, which is, of course, the most
interesting case from the phenomenological point of view.

Indeed, many RSB models featuring a strong first-order PT and predicting potentially
observable GWs have been studied, ranging from electroweak (EW) symmetry breaking [25–30]
to unified models [31], passing through, e.g., Peccei-Quinn [32] symmetry breaking [33–36]
and the seesaw mechanism [37, 38] (see ref. [39] for a review).

In [20] it was shown that a model-independent description of PTs and the consequent
production of GWs in the RSB scenario is possible in terms of few parameters (which are
computable once the model is specified) if enough supercooling occurred. Ref. [20] provided a
sufficient condition on the amount of supercooling, which ensures that the model independent
description is valid. This led to a “supercool expansion” in terms of a quantity that is small
when supercooling is large enough.

In this work we investigate whether this condition can be weakened and, if so, how to
systematically perform a corresponding “extended supercool expansion”. A weaker condition
on supercooling is useful because it allows us to describe a larger class of models through the
model-independent approach, without repeating the study of the PTs every time.

Once one establishes that such extended supercool expansion can be performed, one can
use it to describe in a model-independent way not only the spectrum of GWs, but also the
production of PBHs due to the first-oder PTs. In particular, the amount of dark matter in the
form of these PBHs can be determined in terms of the few parameters, which are computable
once the model is specified. Moreover, one can identify the model-independent regions of
parameter space corresponding to the GW background recently detected by pulsar timing
arrays, as well as those excluded by the runs [40] of the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [41, 42] and Advanced Virgo [43] and those within the reach of future
GW detectors. These include the Laser Interferometer Space Antenna (LISA) [44], Cosmic
Explorer (CE) [45, 46], Einstein Telescope (ET) [47–49], the Big Bang Observer (BBO) [50–52],
the Deci-hertz Interferometer Gravitational wave Observatory (DECIGO) [53, 54], etc.

The paper is structured as follows.

• In section 2 we introduce the general class of theories featuring RSB, where the masses
are mostly generated radiatively. These theories may include the SM or may be though of
as “dark” sectors weakly coupled to the SM. In the same section the model-independent
description of RSB and the corresponding PTs in the supercool expansion is reviewed.
This is necessary to render the subsequent original sections understandable and to
establish our conventions.

• In section 3 we investigate when and how one can extend the validity of the model-
independent description of PTs to a larger class of RSB models by weakening the
condition on the amount of supercooling.

• Section 4 is devoted to the possible applications of such extended supercool expansion
to the production of GWs and PBHs through first-oder PTs. We also include in the
discussion the background of GWs recently discovered by pulsar timing arrays.
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• Since the usefulness of the model-independent approach studied here is mainly due
to the fact that one can avoid repeating the analysis of the PT in each RSB model,
in section 5 it is shown how to apply it to specific models by considering a couple
of examples: a simple illustrative one and a phenomenological completion of the SM
featuring right-handed neutrinos below the EW scale and the gauging of the difference
B−L between the baryon and lepton numbers, which undergoes RSB. In these examples
the accuracy of the extended supercool expansion is also studied.

• Section 6 provides a detailed summary of the main original results of this paper and
the final conclusions.

2 Supercool expansion: a recap

In this section the important properties of RSB and the supercool expansion are summarized.
This is necessary to explain in a clear way the original results of the subsequent sections.
The reader can find in ref. [20] the proof of any non-trivial statement that is present in this
section. We will also define our basic conventions here.

In the RSB scenario the sector responsible for the symmetry breaking is (at least
approximately) classically scale invariant and it is thus described in general by a Lagrangian
of the form

L ns
matter = −1

4F
A
µνF

Aµν + DµϕaD
µϕa

2 + ψ̄ji /Dψj − 1
2(Y a

ijψiψjϕa + h.c.) − Vns(ϕ), (2.1)

while gravity is assumed to be Einstein’s gravity at the energies that are relevant for this
work.1 Here we consider generic numbers of real scalars ϕa, Weyl fermions ψj and vectors
V A

µ (with field strength FA
µν), respectively. The V A

µ are gauge fields and allow us to construct
the covariant derivatives Dµϕa and Dµψj . Of course, in (2.1) all terms are gauge-invariant.
Also, the Y a

ij are the Yukawa couplings and Vns(ϕ) has the general form

Vns(ϕ) = λabcd

4! ϕaϕbϕcϕd, (2.2)

where λabcd are the quartic couplings.
In the RSB mechanism mass scales emerge radiatively from loops because there may be

some specific energy at which the potential in (2.2) develops a flat direction, ϕa = νaχ, where
νa are the components of a unit vector ν, i.e. νaνa = 1, and χ is a single scalar field. So, the
RG-improved potential V along ν reads

V (χ) = λχ(µ)
4 χ4,

(
λχ(µ) ≡ 1

3!λabcd(µ)νaνbνcνd

)
. (2.3)

Having a flat direction along ν for the RG energy µ equal to some specific value µ̃ means
λχ(µ̃) = 0. Including the one-loop correction the quantum effective potential can be written

Vq(χ) = β̄

4

(
log χ

χ0
− 1

4

)
χ4, (2.4)

1It is possible, however, to construct a classically scale-invariant theory of gravity where scale invariance is
broken by dimensional transmutation [55–60] at energies that are assumed above those of interest here.
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where
β̄ ≡

[
µ
dλχ

dµ

]
µ=µ̃

(2.5)

and χ0 is related to µ̃ through a renormalization-scheme-dependent formula. The field value
χ0 is a stationary point of Vq and, when β̄ > 0, is also a point of minimum. Therefore, when
the conditions 

λχ(µ̃) = 0 (flat direction),[
µ

dλχ

dµ

]
µ=µ̃

> 0 (minimum condition),
(2.6)

are satisfied one has a minimum of Vq at a non-vanishing value χ0 of χ and the fluctuations
of χ around χ0 have mass

mχ =
√
β̄ χ0. (2.7)

This non-trivial minimum can generically break global and/or local symmetries and
generate the particle masses, with χ0 being the symmetry breaking scale. EW symmetry
breaking can also be induced when there is a term in L of the form

Lχh = 1
2λχh(µ̃)χ2|H|2, (2.8)

where H is the SM Higgs doublet and λχh is some coupling. Indeed, by evaluating this term
at χ = χ0 we obtain the Higgs squared mass parameter

µ2
h = 1

2λχh(µ̃)χ2
0. (2.9)

So when λχh(µ̃) > 0 the masses of the SM elementary particles are generated. Recalling the
well-known formula that relates µ2

h and the Higgs mass, it is clear that we cannot use this
mechanism to generate µ2

h when χ0 is much below the EW scale and demand the validity
of perturbation theory at the same time. Of course, it is still possible that the SM with an
explicit scale-symmetry breaking parameter is weakly coupled to a scale-invariant sector that
features RSB. In this case perturbation theory can be compatible with a χ0 much smaller
than the EW scale.

Including now thermal corrections, the general expression of the effective potential Veff
at finite temperature T is (in the Landau gauge and at one-loop level)

Veff(χ, T ) = Vq(χ) + T 4

2π2

∑
b

nbJB(m2
b(χ)/T 2) − 2

∑
f

JF (m2
f (χ)/T 2)

+ Λ0, (2.10)

where the mb and mf are the background-dependent bosonic and fermionic masses, respectively,
the sum over b runs over all bosonic degrees of freedom and nb = 1 for a scalar (we work with
real scalars) and nb = 3 for a vector degree of freedom. In (2.10) the sum over f , which runs
over the fermion degrees of freedom, is multiplied by 2 because we work with Weyl spinors.
Also, the thermal functions JB and JF are

JB(x) ≡
∫ ∞

0
dpp2 log

(
1−e−

√
p2+x

)
= −π4

45 + π2

12x− π

6x
3/2 − x2

32 log
(
x

aB

)
+O(x3), (2.11)

JF (x) ≡
∫ ∞

0
dpp2 log

(
1+e−

√
p2+x

)
= 7π4

360 − π2

24x− x2

32 log
(
x

aF

)
+O(x3), (2.12)
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where aB = 16π2 exp(3/2 − 2γE), aF = π2 exp(3/2 − 2γE) and γE is the Euler-Mascheroni
constant (the derivation of the expansions above are given in [61]). In eq. (2.10) we have
included a constant term Λ0 to account for the observed value of the cosmological constant
when χ is set to the point of minimum of Veff .

The PT associated with a radiative symmetry breaking always turns out to be of first
order. The absolute minimum of the effective potential is at χ = 0 for T larger than the
critical temperature Tc, while, for T < Tc, is at a non-zero temperature-dependent value. In
the latter case the decay rate per unit of spacetime volume, Γ, of the false vacuum into the
true vacuum can be computed with the formalism of [62–65]:

Γ ∼ exp(−S) , (2.13)

where S is the action

S = 4π
∫ 1/T

0
dtE

∫ ∞

0
drr2

(1
2 χ̇

2 + 1
2χ

′2 + V̄eff(χ, T )
)
, V̄eff(χ, T ) ≡ Veff(χ, T ) − Veff(0, T )

(2.14)
evaluated at the bounce, i.e. the solution of the differential problem [66]

χ̈+ χ′′ + 2
r
χ′ = dV̄eff

dχ
, (2.15)

χ̇(r, 0) = 0, χ̇(r,±1/(2T )) = 0, χ′(0, tE) = 0, lim
r→∞

χ(r, tE) = 0. (2.16)

A dot and a prime denote a derivative with respect to the Euclidean time tE and the spatial
radius r ≡

√
x⃗ 2, respectively. A particular solution of (2.15)–(2.16) is the time-independent

bounce,

χ′′ + 2
r
χ′ = dV̄eff

dχ
, χ′(0) = 0, lim

r→∞
χ(r) = 0, (2.17)

for which
S = S3

T
, S3 ≡ 4π

∫ ∞

0
dr r2

(1
2χ

′2 + V̄eff(χ, T )
)
. (2.18)

If the time-independent bounce dominates, the decay rate is [64, 65]

Γ ≈ T 4
(
S3

2πT

)3/2
exp(−S3/T ) (2.19)

and S3 evaluated at the time-independent bounce can be written as follows:

S3 = −8π
∫ ∞

0
dr r2V̄eff(χ, T ). (2.20)

As long as perturbation theory holds, in a generic theory with RSB, eq. (2.1), when
T goes below Tc the scalar field χ is always trapped in the false vacuum until T is much
below Tc, i.e. the universe always features a phase of supercooling. If this process is strong
enough, in a generic theory of the form (2.1) the full effective action for relevant values of
χ can be described by three and only three parameters: χ0, β̄ and a real, non-negative and
χ-independent quantity g,

g2 ≡
∑

b

nbm
2
b(χ)/χ2 +

∑
f

m2
f (χ)/χ2, (2.21)
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which plays the role of a “collective coupling” of χ with all fields of the theory. This is possible
because the field value χb around the barrier, which can be defined by V̄eff(χb, T ) = 0, turns
out to be small compared to T for large-enough supercooling:

χ2
b

T 2 ≈ g2

6β̄ log χ0
T

, (2.22)

such that the small-field expansions in (2.11) and (2.12) can be truncated as

JB(x) ≈ JB(0) + π2

12x, (2.23)

JF (x) ≈ JF (0) − π2

24x, (2.24)

and the logarithmic term in Vq can be written as follows:

log χb

χ0
− 1

4 = log χb

T
− 1

4 + log T

χ0
≈ log T

χ0
. (2.25)

A sufficient condition for the approximations in (2.23) and (2.24) to be valid is that ϵ is small,
where

ϵ ≡ g4

6β̄ log χ0
T

(2.26)

Using now the approximations in (2.25), (2.23) and (2.24), the bounce action can be computed
with

V̄eff(χ, T ) ≈ m2(T )
2 χ2 − λ(T )

4 χ4 (2.27)

where m and λ are real and positive functions of T defined by

m2(T ) ≡ g2T 2

12 , λ(T ) ≡ β̄ log χ0
T
. (2.28)

For this effective potential the tunneling process is dominated by the time-independent bounce.
The bounce action S3 computed with the effective potential in (2.27) turns out to be

S3 = c3
m

λ
, c3 = 18.8973 . . . (2.29)

(see also [67, 68] for previous calculations).
In general the nucleation temperature Tn can be defined as the temperature for which

Γ/H4
I = 1, so, using the fact that the decay is dominated by the time-independent bounce, at

T = Tn
S3
Tn

− 3
2 log

(
S3/Tn

2π

)
≈ 4 log

(
Tn

HI

)
, (2.30)

where

HI =

√
β̄χ2

0

4
√

3M̄P

(2.31)

is the Hubble rate associated with the exponential expansion of space that takes place during
supercooling. By using the expression of S3 in (2.29) and the definitions in (2.28) one finds
the following solution for Tn

X ≡ log χ0
Tn

≈ c−
√
c2 − 16a
8 , (2.32)
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with
a ≡ c3g√

12β̄
, c ≡ 4 log 4

√
3M̄P√
β̄ χ0

+ 3
2 log a

2π (2.33)

and M̄P is the reduced Planck mass.
In general, the strength of the PT is measured by the parameter α defined as [69, 70]

α ≡ 30ρ(Tn)
π2g∗(Tn)T 4

n

, (2.34)

where g∗(T ) is the effective number of relativistic species at temperature T , in the presence
of supercooling

ρ(Tn) ≈
[
−V̄eff(⟨χ⟩, T )

]
T =Tn

(2.35)

and ⟨χ⟩ is the point of absolute minimum of the full effective potential. For an RSB PT
α ≫ 1.

Another important parameter to analyse the production of GWs and PBHs is the inverse
duration β of the PT that, in models with supercooling, is [34, 71, 72]

β =
[ 1

Γ
dΓ
dt

]
tn

, (2.36)

where tn is the value of the time t when T = Tn. Recalling that the tunneling process is
dominated by the time-independent bounce,

β ≈ Hn

[
T
d

dT
(S3/T ) − 4 − 3

2T
d

dT
log(S3/T )

]
T =Tn

, (2.37)

where Hn ≈ HI is the Hubble rate when T = Tn.
Note that here we are relying on a small ϵ expansion (a “supercool expansion”) and what

we have done so far is the analysis at leading order (LO), that is modulo terms of relative
order

√
ϵ. Including these terms and treating them perturbatively would mean working in the

supercool expansion at next-to-leading order (NLO). This can be done by including the term
of order x3/2 in the expansion of JB(x), eq. (2.11), and is justified if ϵ is small. In section 3
we will explain how to extend the supercool expansion to order-one values of ϵ.

The effective potential at NLO, therefore, includes a cubic-in-χ term and reads

V̄eff(χ, T ) ≈ m2(T )
2 χ2 − k(T )

3 χ3 − λ(T )
4 χ4, (2.38)

where m2 and λ are defined in (2.28),

k(T ) ≡ g̃3T

4π , (2.39)

and g̃ is a real, non-negative and χ-independent parameter defined by

g̃3 ≡
∑

b

nbm
3
b(χ)/χ3. (2.40)

This is an extra parameter that is needed for a model-independent description of this scenario
at NLO. In general we have

g̃ ≤ g. (2.41)
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To understand why the term cubic in χ in (2.38) can be considered as a small correction
in the supercool expansion, one can rescale χ → χ/

√
λ in the bounce action, eq. (2.14), to

obtain

S = 4π
λ

∫ 1/T

0
dtE

[∫ ∞

0
dr r2

(
1
2 χ̇

2 + 1
2χ

′2 + m2

2 χ2 − 1
4χ

4
)

− k

3
√
λ

∫ ∞

0
dr r2χ3

]
. (2.42)

Since we eventually need to set T = Tn, the term proportional to k has relative order at
most

√
ϵ times a small number ≈ 1/(

√
2π) (where the LO result S3 ≈ 4πgT/(

√
12λ) has been

used). Working with the supercool expansion at NLO (i.e. treating the cubic term in (2.38)
perturbatively at first order) one can then find corrected analytical expressions for Tn, S3
and β, which depend on the extra parameter g̃. For example,

S3 = 1
λ

(
c3m− c̃3

k

3
√
λ

)
, (2.43)

where
c̃3 ≡ 4π

∫ ∞

0
dr r2χ3

LO (2.44)

and χLO is the LO bounce configuration. Of course, one can then go ahead and compute
smaller and smaller corrections.

3 Extending the validity of the supercool expansion

In this section we study when and how one can extend the validity of the supercool expansion
to cases in which

ϵ ∼ 1. (3.1)

3.1 Several degrees of freedom

The expansion developed in [20], which we have reviewed in section 2, generally works for
ϵ small. However, it also holds for values of ϵ of order one if there are several degrees of
freedom, say N , with dominant couplings (all of the same order of magnitude, say τ) to
the flat-direction field χ. Indeed, in this case g defined in (2.21) scales as g ∼

√
Nτ , while

g̃ defined in (2.40) scales as g̃ ≲ 3√Nτ , and so g̃3/g3 ≲ 1/
√
N : the inequality here is due

to the fact that g̃ receives contributions only from bosons, while both fermions and bosons
contribute to g. As a result, the extra cubic term in the bounce action of eq. (2.42) gets
a further suppression factor (see eq. (2.39)), which is at least as small as 1/

√
N . On the

other hand,

• since 1/X = 6β̄ϵ/g4, for order one ϵ the quantity 1/X is still small because β̄ is loop
suppressed and so the approximation in (2.25) is still good,

• truncating the small-x expansions in (2.11) and (2.12) up to the x3/2 term is still
justified because the higher-order terms involve smaller and smaller coefficients,2 with
the coefficient of the O(x2) term being already quite small, ∼ 1/32.

2One can check that by looking at the full expansions of JB(x) and JF (x) provided, for example, in [73].

– 8 –



J
C
A
P
1
2
(
2
0
2
3
)
0
4
6

3.2 Improved supercool expansion
On the other hand, if the number of degrees of freedom with a dominant coupling to χ is too
small, one instead has g̃ ≈ g and, in this case, the expansion of section 2 breaks down for
order 1 values of ϵ (although it still holds for small ϵ).

3.2.1 Bounce solution and action
In order to extend the class of theories that can be described by the supercool expansion
one is, therefore, interested in including the cubic term in (2.38) in the non-perturbative
computation of the bounce action and treating the other corrections as perturbations (indeed,
they are still small as long as ϵ is at most of order one, as we have seen in section 3.1). We
will refer to this improvement as the “improved supercool expansion”. Let us explain how to
construct it.

The expression of V̄eff in (2.38), together with the form of the bounce problem in (2.15)–
(2.16), tells us that the characteristic bounce size Rb is of order Rb ∼ 1/m(T ) ≳ 1/T , where in
the second estimate we have used the perturbativity condition that g is not too large. Indeed,
the bounce size can be read from the large-r limit of the bounce solution and in this limit the
last condition in (2.16) tells us that only the quadratic term in (2.38) matters. Therefore, the
bounce solutions are approximately time-independent even including the cubic term in (2.38).

Looking then at (2.18) and redefining [22] r ≡ lρ and χ ≡ ξφ one obtains the bounce
action for the new radial variable ρ and the new field φ

S3 ≡ 4πlξ2
∫ ∞

0
dρ ρ2

(
1
2

(
dφ

dρ

)2
+ Ṽeff(φ, T )

)
, (3.2)

where
Ṽeff(φ, T ) ≡

(
l

ξ

)2
V̄eff(χ, T ). (3.3)

By evaluating at the bounce solution one then obtains, like in (2.20), a simplified bounce
action

S3 = −8πlξ2
∫ ∞

0
dρ ρ2Ṽeff(φ, T ). (3.4)

Choosing now

l = 1
m
, ξ = m2

k
, (3.5)

with m and k defined in (2.28) and (2.39), respectively, gives

Ṽeff(φ, T ) = 1
2φ

2 − 1
3φ

3 − λ̃

4φ
4, (3.6)

S3 = −8πm3

k2

∫ ∞

0
dρ ρ2

(
1
2φ

2 − 1
3φ

3 − λ̃

4φ
4
)

(3.7)

where
λ̃ ≡ λm2

k2 > 0 (3.8)

and λ defined in (2.28). The quantity λ̃ can also be rewritten by using (2.28) and (2.39) as
follows

λ̃(T ) = (4π)2β̄

12 g̃6/g2 log(χ0/T ), (3.9)
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
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Figure 1. The relevant bounce and the corresponding integrand function (divided by 8πlξ2) appearing
in the bounce action, eq. (3.4), for the effective potential (2.38) and varying λ̃ ≡ λm2/k2.

which depends on T only through log(χ0/T ). Using the definition of ϵ in (2.26) one obtains

λ̃ = 2π2

9ϵ
g6

g̃6 , (3.10)

and recalling the bound in (2.41)

λ̃ ≥ 2π2

9ϵ . (3.11)

So the small-ϵ expansion of section 2 corresponds to λ̃ large. Here we are interested in setting
ϵ of order 1 and g̃ ≈ g, when that expansion breaks down. Thus we are interested in finite
values of λ̃ around 1. In figure 1 the time-independent bounces for λ̃ ∈ [1/2, 1] are shown,
together with −ρ2Ṽeff , which appears in the integrand of the bounce action in (3.4).

We are not able to find the analytic dependence of the bounce action S3 on κ. However,
one can compute the bounce and the corresponding S3 for several values of κ and then perform
a fit [22, 74, 75]. Doing so we find that

S3 = 27πm3

2k2

1 + exp
(
−1/

√
λ̃
)

1 + 9
2 λ̃

= 27πm3
1 + exp

(
−k/

(
m

√
λ
))

2k2 + 9λm2 (3.12)

reproduces the numerical calculations at the ∼ 1% level for the values of λ̃ we are interested
in. The result in (3.12) was found by [22] in a specific setup. Here its validity has been
established in a model-independent way within the improved supercool expansion.

3.2.2 Nucleation temperature
Inserting the expression in (3.12) into the equation for the nucleation temperature Tn in (2.30)
leads to a complicated non-polynomial equation in λ̃. This equation can be partially simplified
by dropping the second term on the left-hand side of eq. (2.30), which is always negligible
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Figure 2. The solution λ̃n of eq. (3.13) as a function of a1 and a2 defined in (3.14). The inset in the
right plot gives the maximal value of a2 for a given a1 such that the solution λ̃n exists. Using the
definitions of λ̃ and λ in (3.8) and (2.28) one can extract the nucleation temperature.

with respect to the first one because the semiclassical approximation requires S3/T large.
Within this approximation the equation for λ̃ reads

a1 − a2λ̃ = F (λ̃) ≡
1 + exp

(
−1/

√
λ̃
)

2/9 + λ̃
, (3.13)

where
a1 ≡ c c3k

2

3πa β̄ m2 , a2 ≡ 4c3k
4

3πa β̄2m4 , (3.14)

the value of c3 is given in (2.29) and a and c are defined in eq. (2.33) (the term 3
2 log a

2π in c
can be dropped as it comes from the second term on the left-hand side of eq. (2.30)). Here
we are interested in the smallest real and positive solution λ̃n ≡ λ̃(Tn) of eq. (3.13) for which
the straight line a1 − a2λ̃ reaches F (λ̃) from below in increasing λ̃ (that corresponds to Γ
reaching H4

I from below). Clearly, such a solution does not always exist for any a1 and a2.
First, one must have a1 ≤ F (0) = 9/2; second, for each given a1 the parameter a2 must me
smaller than a certain critical value ā2(a1), which is given in the inset of the right plot of
figure 2. Figure 2 also shows as a function of a1 and a2 the solution λ̃n (when it exists),
which has been obtained numerically. Tables containing the numerical determination of ā2
as a function of a1 and of λ̃n as a function of a1 and a2 can be found at [76]. Once we fix
the parameters g, β̄, χ0 and g̃ the quantities a1 and a2 as well as λ̃n and thus the nucleation
temperature Tn are fixed.

Using the obtained solution λ̃n we checked that the PT strength parameter α is large
in an RSB PT for realistic and perturbative values of the parameters, even in the improved
supercool expansion discussed in this paper. Thus, the plasma effects (such as those studied
in refs. [77, 78]) can be neglected in this particular scenario.

One might wonder whether the effect of the spacetime curvature due to HI ̸= 0 can
alter the decay rate. In standard Einstein gravity, this may happen if Tn is so small to be
comparable with HI . We checked that, whenever a solution for λ̃n exists, this never happens,
at least for realistic and perturbative values of the parameters. On the other hand, if a
solution for λ̃n does not exist, the effect of the spacetime curvature, along with quantum
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fluctuations, can eventually become important in the decay rate [33, 79–81] and lead to the
completion of the transition.

3.2.3 Duration of the phase transition
Using the expression of S3 in (3.12) and dropping the last term in (2.37), which is negligible in
the semiclassical approximation as we have pointed out in section 3.2.2, we obtain a formula
for the inverse duration of the PT:

β

Hn
≈ π3g5

6
√

3g̃8
(4π)2β̄

g̃4 (−F ′(λ̃n)) − 4, (3.15)

where F ′ is the derivative of F defined in eq. (3.13) with respect to λ̃; note that F is a
monotonic decreasing function of λ̃ so −F ′ > 0.

Figures 3 and 4 show β/Hn (computed with the improved supercool expansion) as
a function of g and β̄ for fixed values of χ0. There g̃ has been set equal to g: when g̃ is
significantly lower than g the expansion developed in [20] works well as discussed in section 3.1
and there is no need to resort to the improved supercool expansion. Moreover, in figures 3
and 4 only values of g and β̄ with ϵ < 3 are displayed:3 indeed, for large values of ϵ one
needs to take into account the higher-order corrections for a good accuracy. In figures 3 and 4
β/Hn never vanishes although there are values of g and β̄ for which β/Hn ∼ 1. The relevant
solution of the nucleation temperature equation in (3.13), i.e. λ̃n, ceases to exist before β/Hn

vanishes. As commented in the last paragraph of section 3.2.2, when the solution λ̃n does not
exist the effect of the spacetime curvature, as well as quantum fluctuations, can eventually
become important in the decay rate.

4 Applications

Let us now apply the improved approximations developed in section 3 to the production of
GWs and PBHs.

4.1 Gravitational Waves

In the RSB scenario the dominant source of GWs are vacuum bubble collisions: the energy
density of the space where the bubbles move is dominated by the vacuum energy density due
χ, which leads to an exponential growth of the corresponding cosmological scale factor. This
inflationary behavior dilutes preexisting matter and radiation and, thus, we neglect the GW
production due to turbulence and sound waves in the cosmic fluid [71, 82, 83].

In the presence of supercooling and for α ≫ 1 one finds the following GW spectrum due
to vacuum bubble collisions4 [71]

h2ΩGW(f) ≈ 1.29 × 10−6
(
Hr

β

)2 ( 100
g∗(Tr)

)1/3 3.8(f/fpeak)2.8

1 + 2.8(f/fpeak)3.8 , (4.1)

3In the present improved approximation ϵ is computed by using eq. (3.10) with λ̃ = λ̃n.
4The spectral density ΩGW is defined as usual as

ΩGW(f) ≡ f

ρcr

dρGW

df
,

where ρcr ≡ 3H2
0 M̄2

P is the critical energy density, H0 is the present value of the Hubble rate and ρGW is the
energy density of the stochastic background.
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Figure 3. Inverse duration β of the phase transition in units of the Hubble rate Hn as a function of g
and β̄ for various values of the symmetry breaking scale χ0. Here g̃ = g and ϵ < 3 has been imposed
to guarantee the validity of the improved supercool expansion.

where Tr is the reheating temperature after supercooling, Hr is the corresponding Hubble
rate and fpeak is the red-shifted frequency peak today, given by [71]

fpeak ≈ 3.79 β

Hr

(
g∗(Tr)

100

)1/6 Tr

108GeV Hz. (4.2)

Ref. [71] used the results of [84] based on the envelope approximation. This is an approximation
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Figure 4. Like in figure 3, but for larger values of the symmetry breaking scale χ0.

where all the energy is assumed to be stored in the bubble walls, that are taken to be thin, and
at bubble collision one uses as a source for GW production the energy-momentum tensor of
the uncollided part of the bubble walls. Studying the collision of two bubbles in a scalar field
model with symmetry breaking entirely due to the standard Higgs mechanism, refs. [85, 86]
found that this has about 5% accuracy. For ϵ ∼ 1 this is comparable with the precision of
the improved supercool expansion when one uses the approximation in (2.25) and neglects
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the terms in the small-x expansions of (2.11) and (2.12) of order higher than O(x3/2). In our
situation the envelope approximation is expected to capture the dominant source5 of GWs [92]
because, during the exponential growth of the universe, the bubbles expand considerably
and in this process the energy gained in the transition from the false to the true vacuum is
transferred to the bubble walls, which, at the same time, become thinner for energy reasons.

For sufficiently fast reheating

Hr ≈ Hn ≈ HI , and T 4
r ≈ 15β̄χ4

0
8π2g∗(Tr) . (4.3)

But otherwise Hr and Tr can depend on the details of the specific model. Reheating can occur
e.g. thanks to the Higgs portal coupling in (2.8) or other portal interactions such as a kinetic
mixing between the photon and a dark photon (see [93] for a review) that become massive
through RSB. Note also that the dependence of ΩGW and fpeak on g∗(Tr) is quite weak.

Ref. [20] computed fpeak and provided regions where ΩGW(fpeak) is above the sensitivities
of several current and proposed GW detectors (including LIGO, Virgo, LISA, ET, CE, BBO
and DECIGO); moreover, ref. [20] found corresponding regions in the space of g, β̄, χ0 and
g̃ using the supercool expansion at LO and NLO. Then here we focus on the improved
supercool expansion.

In figure 5 fpeak computed with the improved supercool approximation is shown for
various values of χ0; moreover, in that figure we considered only values of g and β̄ such that
ϵ < 3 and set g̃ = g (for the reasons explained at the end of section 3.2.3). Figure 5 also shows
frequencies of GW signals that have been recently detected by pulsar timing arrays [4–7]
(see ref. [94] for a PT interpretation of the detected signals performed by the NANOgrav
collaboration and relevant for our study and refs. [95–110] for other independent discussions
of PT interpretations).

Combining with the information in figure 3, one finds that it is possible to account for the
signals detected by pulsar timing arrays for χ0 ∼ 10 GeV and choosing the basic parameters
g, g̃ and β̄ appropriately, as illustrated in figure 6.

Figure 7 shows instead the regions where ΩGW(fpeak) is above the sensitivities of
Advanced LIGO’s and Advanced Virgo’s third observing (O3) run (left plot) and LISA
with power law sensitivity [111] (right plot) for two non-vanishing values of g̃ and using the
improved supercool approximation. The regions in the left plot are thus, remarkably, ruled
out. In figure 7 we again considered only values of g and β̄ such that ϵ < 3. The parameter
χ0 has been chosen around 109 GeV in the left plot of figure 7 and 104 GeV in the right one
because the corresponding fpeak is then around the frequency range of LIGO-VIRGO O3 [40]
and LISA [111], respectively (see figure 5). A χ0 around 109 GeV is relevant e.g. for axion
models, while a χ0 around 10 or 100 TeV could be associated with observable physics at
colliders and is relevant e.g. for supersymmetric models or low-scale unified theories such as
the Pati-Salam model [112] or Trinification [113].

4.2 Primordial black holes

As shown in [20] the PT associated with an RSB is always of first order. Besides having the
potential of leaving observable GW footprints, first-order PTs can also naturally generate
PBHs because generically lead to large over-densities [8–19]. One of the main motivations for

5However, see the recent works [87–91] that improved the calculation of ΩGW and can be relevant in the
general case.
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Figure 5. The peak frequency as a function of g and β̄ in the case of fast reheating and fixing
g∗(Tr) = 110. Also, g̃ = g and ϵ < 3 has been imposed.

studying PBHs is the fact that they can account for a fraction fPBH of (or even the whole)
dark matter density.

4.2.1 Late-blooming mechanism

One of the mechanism to generate PBHs from first-order PTs is based on the presence of strong
supercooling, which generically takes place in the RSB scenario and is a key property for the
validity of the supercool expansion. Since the bubble formation process is statistical for both
quantum and thermal reasons, distinct causal patches percolate at different times. Patches
that percolate the latest undergo the longest vacuum-dominated stage and, therefore, develop
large over-densities triggering their collapse into PBHs. This late-blooming mechanism has
been studied in a number of papers (see e.g. refs. [15–19]) and we refer the reader to these
works for an introduction to this mechanism. A key feature is that the longer the supercooling
period lasts (the smaller β/Hn is) the more effective this mechanism is.
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Figure 6. Regions corresponding to the GW background detected by pulsar timing arrays. In both
plots χ0 = 10 GeV, g∗(Tr) = 110 and fast reheating is assumed. Here ϵ < 3 has been imposed.
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Figure 7. Regions where ΩGW(fpeak) is above the sensitivities of LIGO-VIRGO O3 (left plot, where
χ0 = 2 × 109 GeV) and LISA (right plot, where χ0 = 104 GeV). In both plots g∗(Tr) = 110 and fast
reheating is assumed. Here ϵ < 3 has been imposed.

Following the method illustrated in ref. [19] and using the improved supercool expansion
we have identified regions of the parameter space (shown in figure 8) for which PBHs produced
by the late-blooming mechanism can account for a significant fraction of the dark matter
density in a model-independent way. This was possible because, as discussed in section 3.2.3
and shown in figures 3 and 4, we can compute β/Hn only in terms of the parameters g, g̃, β̄
and χ0 for large-enough supercooling: this hypothesis allows us to use the supercool expansion
(in figure 8 the improved version is used). For all values of these parameters in figure 8 the
PT is very strong (α > 100 for g∗ ∼ 102) and the improved supercool expansion gives a good
approximation for the key quantities of the PT in a model-independent way. The regions of
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Figure 8. Density plots giving the values of β/Hn varying g and β̄. On the lower dashed line the
whole dark matter is due to PBHs generated through the late-blooming mechanism (fPBH = 1); the
upper dashed line corresponds instead to fPBH = 10−10. Here g̃ = g and ϵ < 3 has been imposed.

figure 8 contained between the dashed lines have 10−10 < fPBH < 1. The regions below the
lower dashed line, for which fPBH = 1, are, remarkably, excluded in a model independent way
because of the phenomenological necessity of not overproducing dark matter.

4.2.2 Other mechanisms?
Several other mechanisms to produce PBHs have been proposed in the literature. Some of
these are unrelated to the RSB and strong supercooled PTs and thus we do not discuss them,
although, of course, they could contribute to the PBH abundance in specific models.

Another mechanism that can be a priori related to the RSB and strong supercooled PTs
in a model-independent way is the one based on bubble collisions [8, 9, 13]. However, in ref. [13]
it was pointed out that bubble collisions during a first-order PT can produce PBHs only if the
bubble radii become near-horizon-sized and the bubble walls have a non-negligible thickness
when they collide. In RSB PTs this PBH production mechanism is, therefore, suppressed
because the bubble walls become very thin after a long period of supercooling (as discussed
in section 4.1) and also we checked that the bubble radii never become near-horizon-sized for
values of χ0 up to 1016 GeV. Larger values of χ0 are not considered here as they require a UV
completion of gravity.

5 Examples of specific models

What we have done so far is a model-independent study of phase transitions and corresponding
production of GWs and PBHs in the RSB scenario, which is valid in the supercool expansion
or, more generally, in the improved supercool expansion. This formalism can be applied to
any RSB model featuring a large-enough amount of supercooling (ϵ at most of order 1). To
illustrate the usefulness of these results here we apply them to some concrete models.

5.1 A simple model
We start with a simple toy model that can illustrate all essential features of the RSB scenario.
The basic requirements of RSB is the existence of a flat direction that is radiatively broken
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to generate a minimum (β̄ > 0). This positivity condition can be satisfied by introducing a
gauge group, which can generically give positive contributions to the scalar beta functions.
Here we take this group to be SU(2) (an Abelian case will be discussed in section 5.2). The
scalar fields will be organized here in a complex adjoint field A, whose no-scale potential is6

Vns = λ1Tr2(A†A) + λ2|Tr(AA)|2, (5.1)

where λ1 and λ2 are real couplings. Therefore, there exist a non-trivial flat direction, for
which A = A†, at a scale µ̃ where λ1 + λ2 = 0. When A = A† the three components Ak of A
along the Pauli matrices, A = Akσ

k/2, can always be transformed through an element of the
gauge group SU(2) in a way that only one of these components is not vanishing and positive.
We identify this non-zero component with χ.

Here β̄ is the beta function of λ1 + λ2, i.e.

µ
d

dµ
(λ1 + λ2) = 1

(4π)2

[
12g4

a + 40λ1λ2 − 24g2
a(λ1 + λ2) + 28(λ2

1 + λ2
2)
]
, (5.2)

where ga is the gauge coupling of SU(2). Evaluating at the scale µ̃, at which λ2 = −λ1, gives

β̄ = 1
(4π)2

[
12g4

a + 16λ2
1

]
µ=µ̃

. (5.3)

In order to simplify the following discussion we also assume that λ1 ≪ ga such that we have
a single coupling to deal with.

In this case the massive background-dependent spectrum only features two spin-1 particles
with equal mass, MV = |ga|χ. All the other masses either vanish or are negligibly smaller. So
the collective coupling g defined in eq. (2.21) turns out to be

g =
√

6|ga| (5.4)

and so
β̄ = g4

3(4π)2 . (5.5)

Also, g̃ defined in eq. (2.40) reads

g̃ = 3√6|ga| = g
6√6
. (5.6)

Having determined β̄ and g̃ in terms of g one can now use the model-independent analysis
based on the improved supercool expansion of section 3.2 with only two free parameters: g
and χ0.

At this point it is interesting to quantify the error that one is making in analysing
this model with the standard supercool expansion at NLO of section 2 rather than with
the improved supercool expansion of section 3.2, namely treating the cubic term in (2.38)
perturbatively. Figure 9 (upper plots) shows ϵ and

enlo ≡ max(e1, e2, e3), (e1, e2, e3) ≡
(

c̃2
3g̃

6ϵ

2π2c2
3g

6 ,
|1
2 log(ϵ/g2) − 1/4|

X
,

ϵ

6 × 32

)
(5.7)

6A global U(1) symmetry acting on A is imposed to forbid additional terms.
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(computed for simplicity with the LO formula for Tn in (2.32)). The parameter enlo in (5.7)
quantifies the above-mentioned error: the first entry e1 in the max function is the square
of the size of the second term in (2.43) relative to the first one (which is an estimate of the
next-to-next-to-leading correction in treating the cubic term in (2.38) perturbatively); the
second and third entries, e2 and e3, are instead estimates of the error due to the approximation
in (2.25) and to truncating the small-x expansions in (2.11) and (2.12) up to the x3/2 term,7
respectively. As one can see, although ϵ is above 1 the quantity enlo is small, especially for
smaller values of g. The reason why this happens is because here one has two massive vector
fields for a total of six degrees of freedom and there is, therefore, an extra suppression of the
neglected terms as explained in section 3.1. Looking at figure 9 one also sees that e1 is larger
than e2 and e3, meaning that the improved supercool expansion is a better approximation
than the standard supercool expansion at NLO in this case. This is not surprising because
the number of degrees of freedom with dominant couplings to the flat-direction field χ is not
very large (it is six) and ϵ is not smaller than one in this case.

5.2 Radiative electroweak and lepton symmetry breaking

Let us study now an example that is phenomenologically well-motivated. The SM is a very
successful model but it clearly has to be extended: neutrino oscillations, dark matter and
baryon asymmetry must be accounted for in a phenomenologically complete model. One
of the most economical way to achieve this goal is to add three right-handed neutrinos Ni

featuring Majorana masses below the EW scale (see e.g. [114, 115]).
The corresponding Majorana mass terms can be promoted to scale-invariant Yukawa

interactions
1
2yijANiNj + h.c. (5.8)

in L ns
matter of eq. (2.1) by introducing a charged scalar A with a non-vanishing lepton number

(here the yij are the corresponding Yukawa couplings). Coupling A and the Ni to the classically
scale-invariant part8 of the SM through renormalizable dimension-four interactions allows
us to build a classically scale-invariant model of the type described in section 2. In order to
generate the Ni Majorana masses one can then try to realize an RSB of the lepton number
along the field direction9 |A|, which, as we have seen, requires the quartic coupling λa of
the field A to vanish at an energy scale where its beta function is positive (see eq. (2.6)).
However, it turns out that in this simple model the Yukawa interactions in (5.8) drives this
beta function to negative values when λa and λah are negligibly small.

This problem can be elegantly solved by gauging the Abelian U(1) symmetry acting on
A. As well known, in order to avoid any gauge anomalies, such new gauge symmetry must
correspond to B − L and so we call it U(1)B−L. Therefore all leptons (including the Ni) and
quarks as well as the scalar A are charged under this Abelian symmetry. A radiatively-induced
vacuum expectation value of A can then generate the Ni Majorana masses and induce the

7The extra factor of 6 in the denominator of the last entry comes from the fact that the x2 term in the
small-x expansions in (2.11) and (2.12) features a coefficient

∑
b

nbm4
b which equals g4χ4/6 in this case.

8The tachyonic mass parameter of the Higgs, which is needed to induce EW symmetry breaking, emerges
radiatively as described in eq. (2.9).

9With two scalar fields, A and the Higgs doublet H, one can conceive other flat directions. However, such
modification of the SM should appear at a sufficiently high mass scale χ0 to fulfil the experimental bounds and,
therefore, the quartic portal coupling λah between |A|2 and |H|2 should be sufficiently small to respect eq. (2.9)
with the measured value of µ2

h. In this limit the only viable flat direction should be along A for λa = 0.
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Figure 9. Comparison between ϵ and the error enlo that one is making in using the standard supercool
expansion at NLO of section 2. The upper plots refer to the simple toy model of section 5.1 (enlo is
defined in (5.7)), while the lower plots regards section 5.2 (enlo is defined in (5.17)).

tachyonic Higgs mass parameter in eq. (2.9). This classically scale-invariant model has been
previously considered in ref. [116], but without accounting for dark matter.

The Lagrangian is given by

L ns
SM +DµA

†DµA+ N̄ji /DNj − 1
4B

′
µνB

′µν

+
(
YijLiHNj + 1

2yijANiNj + h.c.
)

− λa|A|4 + λah|A|2|H|2, (5.9)

where L ns
SM represents the classically scale-invariant SM Lagrangian and the Li are the three

families of SM lepton doublets. Here Dµ is the covariant derivative with respect to the full
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gauge group SU(3)C × SU(2)L × U(1)Y × U(1)B−L, i.e. the SM group times the B − L one:

Dµ = ∂µ + ig3T
αGα

µ + ig2T
aW a

µ + igY YBµ + i
[
gmY + g′

1(B − L)
]
B′

µ, (5.10)

which involve the gluons Gα
µ, the triplet of W bosons W a

µ as well as the gauge fields Bµ and B′
µ

of U(1)Y and U(1)B−L (as usual B′
µν ≡ ∂µB

′
ν − ∂νB

′
µ) together with the respective generators

Tα, T a,Y, B − L and gauge couplings g3, g2, gY , g
′
1. Here gm takes into account the Abelian

mixing between U(1)Y and U(1)B−L. We do not propose this model as UV completion of the
SM but just as an effective field theory valid up to the symmetry breaking scale χ0.

As discussed around eq. (2.4), to realize RSB we need the beta function of the quartic
coupling of the flat-direction field χ, in this case λa. Using the general formalism of [117–119]
we find the following one-loop expression

(4π)2µ
d

dµ
λa = 96g′4

1 − 48λag
′2
1 + 20λ2

a + 2λ2
ah + 2λa Tr(yy†) − Tr(yy†yy†). (5.11)

Evaluating now this beta function at a scale where λa = 0 to compute β̄ defined in (2.5) and
neglecting λah and y for the reasons explained above (all right-handed neutrino Majorana
masses are taken below the EW scale in [114, 115]) one finds

β̄ = 96g′4
1

(4π)2 . (5.12)

One the other hand, in this setup the background-dependent mass of the new gauge boson,
Z ′, is

mZ′(χ) = 2|g′
1|χ, (5.13)

where we used eq. (5.10) and the fact that |B−L| = 2 for the new scalar field A, the collective
coupling g defined in eq. (2.21) is

g = 2
√

3|g′
1|, (5.14)

and g̃ defined in eq. (2.40) is
g̃ = 2 3√3|g′

1| = g
6√3
. (5.15)

Therefore,

β̄ = 2g4

3(4π)2 . (5.16)

Like in the previous section, one can now use the model-independent analysis based on the
improved supercool expansion of section 3.2 with only two free parameters: g and χ0.

Let us quantify the error that one is making in analysing this model with the standard
supercool expansion at NLO of section 2. Figure 9 (lower plots) shows ϵ and

enlo ≡ max(e1, e2, e3), (e1, e2, e3) ≡
(

c̃2
3g̃

6ϵ

2π2c2
3g

6 ,
|1
2 log(ϵ/g2) − 1/4|

X
,

ϵ

3 × 32

)
(5.17)

(computed for simplicity with the LO formula for Tn in (2.32)). The estimate of the error
in (5.17) has been obtained like10 in (5.7). As one can see, although ϵ is above 1 the quantity
enlo is small, especially for smaller values of g. The reason why this happens is again because

10In this case, however, one has an extra factor of 3 in the denominator of the last entry because the
coefficient

∑
b

nbm4
b equals g4χ4/3 now.

– 22 –



J
C
A
P
1
2
(
2
0
2
3
)
0
4
6

we have more than one massive degrees of freedom. In this case, however, we have a single
massive vector field, Z ′, rather than two like in section 5.1 and so the suppression of the
neglected terms is slightly weaker as one can see in figure 9. Figure 9 also shows that
the improved supercool expansion is a better approximation than the standard supercool
expansion at NLO as e1 > e2 and e1 > e3 in this case too. Again we attribute this to the fact
that the number of degrees of freedom with dominant couplings with the flat-direction field χ
is not very large (it is three here) and ϵ is not smaller than one in this case.

Since this model is phenomenologically very well motivated, it is also interesting to
study the reheating after the supercooling period. In the following discussion we focus on
the decay of the flat-direction field χ coming from A into two physical Higgs bosons of mass
Mh ≈ 125 GeV. This process is induced by the portal interaction λah|A|2|H|2. Expanding
around χ = χ0 one obtains the effective interaction λahχ0δχ|H|2, where δχ ≡ χ− χ0. On the
other hand, using (2.7) and (5.16) one finds

mχ =
√

2
3
g2

4πχ0. (5.18)

The radiative symmetry breaking of B − L also induces EW symmetry breaking according
the discussion around (2.9) and a physical Higgs mass Mh =

√
λahχ0. So the decay rate of χ

in a pair of Higgs particles χ → HH is (when Mh is negligible compared to mχ)

Γ(χ → HH) = λ2
ahχ

2
0

8πmχ
= 1

2

√
3
2
M4

h

g2χ3
0
. (5.19)

The reheating temperature due to this channel may be computed through

T 4
r = 45Γ2(χ → HH)M̄2

P

4π3g∗(Tr) . (5.20)

But this formula is only valid if the radiation energy density ρR does not exceed the vacuum
energy density ρV due to χ (because ρV represents the full energy budget of the system). If
this condition is not satisfied we determine Tr as the maximal temperature compatible with
ρR ≤ ρV , leading to the formula for Tr in (4.3). For g of order one, g∗ ∼ 102 and χ0 ≲ 105 GeV
the reheating temperature is well above the EW scale and (4.3) holds such that the reheating
effectively is fast. Increasing χ0 lowers Tr in (5.20) and ρR ≤ ρV can be satisfied.

6 Summary and conclusions

Let us conclude by providing a summary of the main original results obtained.

• In section 3 we have significantly extended the applicability of the model-independent
approach to study PTs proposed in [20], which now works for a larger class of RSB
models: the amount of supercooling required for the model-independent approach to
work has been extended from ϵ small up to values of ϵ of order 1, where ϵ is defined in
eq. (2.26).
First, in section 3.1 it was pointed out that the supercool expansion proposed in [20]
already gives an accurate model-independent description even for ϵ ∼ 1 if there are
several degrees of freedom with dominant couplings to the flat-direction field χ (the one
responsible for RSB).
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In section 3.2 it was then explained how to improve the supercool expansion to obtain a
good model-independent description for ϵ ∼ 1 and an arbitrary number of (even few)
degrees of freedom with dominant couplings to χ. This has been achieved by including,
unlike in [20], the cubic term of the effective potential in (2.38) in the non-perturbative
computation of the bounce action and treating the other corrections as perturbations
(indeed, those are still small as long as ϵ is at most of order one, as we discussed in
section 3.1). Such “improved supercool expansion” has been used to compute to good
accuracy the nucleation temperature Tn (and thus the strength α of the PT) as well as
the inverse duration β of the PT in terms of few parameters that are fixed once the
model is specified:

– χ0: the symmetry breaking scale
– β̄: the beta function of the quartic coupling λχ of χ, evaluated at the scale where
λχ vanishes.

– g: a sort of collective coupling of χ to all fields of the theory, which is precisely
defined in eq. (2.21). It is the square root of the sum of the squares of the couplings
of χ to all fields.

– g̃: an extra parameter that characterizes the size of the cubic term in (2.38). It is
the cube root of the sum of the cubes of the couplings of χ to all bosonic fields, so
g̃ ≤ g.

Analytical calculation can be performed to a greater extent in the approach of section 3.1,
but the improved supercool expansion of section 3.2 works for a larger class of models.

• In section 4 such improved supercool expansion has then been applied to study in a
model-independent way the spectrum of GWs and the production of PBHs due to the
first-order PT associated with the RSB.
We have explained how to determine the GW spectrum (its amplitude and fpeak) in
terms of the above mentioned parameters in the hypothesis of fast reheating after
supercooling. Among other things, we have found values of fpeak and regions of the
parameter space that correspond to the GW background recently detected by pulsar
timing arrays. Moreover, we have also found regions of the parameter space where the
GW spectrum is above the sensitivity of LIGO-VIRGO O3 (which are then ruled out)
and others that are within the reach of LISA.
Furthermore, we have studied the generic validity of PBH production mechanisms in
the RSB scenario for large supercooling. Also, we identified regions of the parameter
space where PBHs produced by large over-densities due to an RSB PT can account for
a significant fraction of the dark matter density. Other mechanisms for PBH production
can be active, however, in specific models.

• In section 5 we have applied the developed model-independent approach to study the
PT in two RSB models: a simple illustrative one and a gauged B −L phenomenological
completion of the SM featuring right-handed neutrinos below the EW scale. In both
these models there are more than one degrees of freedom with dominant couplings
to χ, but the number of these degrees of freedom is not much larger than one (it is
six in the first model and three in the second one). Then we find that the improved
supercool expansion of section 3.2 works better than the method of section 3.1, which
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however already allows us to obtain a reasonably-good semi-analytical estimate of
the PT properties. Given the phenomenological interest of the B − L model, in the
same section we have also studied reheating after supercooling, finding values of the
parameters for which the reheating is fast and others for which it is not.
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