Recent evidence strongly suggests that peroxidative modification of lipids may play a significant role in atherogenesis. In our present research, we investigated if the oxidative stress mediated by oxygen free radicals was a pathophysiologic condition that occurred in the early stages of human development. Thus the aim of this research was to examine lipid peroxidation in human fetal aortas. Human fetal aortas and proximal iliac arteries (n = 8) were obtained from fetuses aged 7 +/- 2 months, immediately after autopsy. Lipids from the initial fatty streak lesions (LFS) and the vessels uninvolved (LUV) were extracted by the chloroform/methanol method. Lipid peroxidation levels were measured by two different methods: determination of lipid conjugate dienes (the spectrum trend was recorded from 320 to 200 nm with a spectrophotometer) and malonyldialdehyde (MDA) content (TBA method). We observed that lipid conjugated dienes were present in LFS, but not in LUV, with a characteristic absorption peak at 233 nm. In addition, MDA levels were significantly higher when the LFS = 3.85 +/- 0.91 nmol than when the LUV = 0.41 +/- 0.12 nmol (p < 0.001 versus LUV). The presence of lipid peroxidation in our samples could be mediated by free radical production in the first stages of human development. Thus these data suggest that LFS peroxidation mediated by free radicals occurs in the vascular circulation in the early stages of human development. This could influence the progression of vascular damage and atherosclerotic disease.

D'Armiento, F., Di Gregorio, F., Ciafre', S.a., Posca, T., Liguori, A., Napoli, C., et al. (1993). Histological findings and evidence of lipid conjugated dienes and malonyldialdehyde in human fetal aortas. ACTA PAEDIATRICA, 82(10), 823-828.

Histological findings and evidence of lipid conjugated dienes and malonyldialdehyde in human fetal aortas

CIAFRE', SILVIA ANNA;
1993-10-01

Abstract

Recent evidence strongly suggests that peroxidative modification of lipids may play a significant role in atherogenesis. In our present research, we investigated if the oxidative stress mediated by oxygen free radicals was a pathophysiologic condition that occurred in the early stages of human development. Thus the aim of this research was to examine lipid peroxidation in human fetal aortas. Human fetal aortas and proximal iliac arteries (n = 8) were obtained from fetuses aged 7 +/- 2 months, immediately after autopsy. Lipids from the initial fatty streak lesions (LFS) and the vessels uninvolved (LUV) were extracted by the chloroform/methanol method. Lipid peroxidation levels were measured by two different methods: determination of lipid conjugate dienes (the spectrum trend was recorded from 320 to 200 nm with a spectrophotometer) and malonyldialdehyde (MDA) content (TBA method). We observed that lipid conjugated dienes were present in LFS, but not in LUV, with a characteristic absorption peak at 233 nm. In addition, MDA levels were significantly higher when the LFS = 3.85 +/- 0.91 nmol than when the LUV = 0.41 +/- 0.12 nmol (p < 0.001 versus LUV). The presence of lipid peroxidation in our samples could be mediated by free radical production in the first stages of human development. Thus these data suggest that LFS peroxidation mediated by free radicals occurs in the vascular circulation in the early stages of human development. This could influence the progression of vascular damage and atherosclerotic disease.
ott-1993
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/13 - BIOLOGIA APPLICATA
English
Con Impact Factor ISI
Free Radicals; Iliac Artery; Lipid Peroxidation; Oxygen; Malondialdehyde; Arteriosclerosis; Aorta; Humans
D'Armiento, F., Di Gregorio, F., Ciafre', S.a., Posca, T., Liguori, A., Napoli, C., et al. (1993). Histological findings and evidence of lipid conjugated dienes and malonyldialdehyde in human fetal aortas. ACTA PAEDIATRICA, 82(10), 823-828.
D'Armiento, F; Di Gregorio, F; Ciafre', Sa; Posca, T; Liguori, A; Napoli, C; Colasanti, P; Calì, A; Vecchione, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/9197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact