The research activity on internal combustion engines is increasingly cast to find an alternative solution to reduce the wide utilization of petroleum fuels like diesel oil and gasoline, for environmental, political and economic concerns. Natural gas (NG) is an ideal fuel to be operated in internal combustion engines, since its characteristics allow for much lower environmental impact and reduced fuel consumption with respect the conventional fuels. It also is particularly suitable to be operated under high volumetric compression ratio engines, thus providing higher efficiency, and moreover it is characterized by a wide flammability range. This latter aspect promotes the employment of a lean burn strategy, thus further increasing the engine efficiency and reducing the exhaust emissions. The dual-fuel natural gas/diesel concept allows extending the lean flammability limit of NG with respect to SI-NG operations and simultaneously reducing the NOX-PM trade-off affecting diesel combustion. Such a technology consists in introducing NG as main fuel in a conventional diesel engine. A certain amount of diesel pilot injection is preserved to act as the ignition source for the air/NG mixture. The easiness of dual-fuel conversion makes such technology rather inviting especially as a retrofit for the existing diesel vehicles, which could not meet the more and more stringent emission regulations in the future. In the present study, the dual-fuel combustion process with its inherent complexity is investigated both from an experimental and a numerical point of view. The experimental activity has the main target to analyze the problems connected with the conversion of a heavy-duty diesel engine to dual-fuel operation, and to put into evidence the influence of the main engine parameters on performance and pollutants formation. The numerical activity, characterized by a mixed 1-D/3-D approach, has been carried out with the initial target of a correct understanding of the complex dual-fuel combustion mechanism. A detailed multi-dimensional simulation of the whole working cycle of the engine has been subsequently performed, to provide for the correct representation of the fluid-dynamic effect involved in dual-fuel operations. Such an approach allows for the complete description of the engine overall behavior and the dual-fuel combustion in detail.

La ricerca nel campo dei motori a combustione interna è sempre più rivolta ad identificare una soluzione alternativa all’utilizzo dei combustibili derivati dal petrolio, per ragioni di carattere ambientale, politico ed economico. Il gas naturale (NG) è un combustibile ideale per motori a combustione interna, essendo caratterizzato da basso impatto ambientale e consumi ridotti rispetto ai combustibili convenzionali (benzina e gasolio). Inoltre esso è particolarmente adatto ad essere utilizzato in motori ad elevato rapporto di compressione volumetrico, ed è caratterizzato da un ampio campo di infiammabilità. Quest’ultimo aspetto promuove la combustione magra di miscele di aria e NG, ottenendo un ulteriore incremento di rendimento ed un’ulteriore diminuzione dei consumi. I motori dual-fuel NG/diesel permettono di estendere il limite magro d’infiammabilità rispetto ai motori ad accensione comandata alimentati a NG, ed allo stesso tempo consentono di ridurre il trade-off NOX-PM di cui soffrono i motori diesel. Tale tecnologia consiste nell’introduzione del NG come combustibile principale in un motore diesel. Una certa quantità di gasolio viene ancora iniettata, ed agisce come sorgente d’accensione per la miscela di aria e NG. La facilità di conversione rende la tecnologia dual-fuel particolarmente allettante come retrofit di motori diesel già esistenti che in futuro si troverebbero a non soddisfare i sempre più stringenti limiti sulle emissioni inquinanti. Nel presente lavoro, la combustione dual-fuel, con la sua inerente complessità, viene analizzata seguendo un approccio misto numerico-sperimentale. L’attività sperimentale ha come obiettivo l’analisi dei vantaggi e dei problemi connessi con la conversione di un motore diesel heavy-duty al funzionamento dual-fuel, sulla base delle prestazioni e delle emissioni inquinanti. L’attività numerica è caratterizza da un approccio misto 1-D/3-D, ed è stata inizialmente condotta per la corretta comprensione del complesso meccanismo di combustione in modalità dual-fuel. L’analisi multi-dimensionale (3-D) dettagliata del sistema cilindro–pistone è stata successivamente effettuata per la corretta rappresentazione dei fenomeni termo-fluidodinamici evolventi in camera di combustione. Una tale strategia permette la completa descrizione del comportamento dell’intero sistema motore e della combustione dual-fuel nel dettaglio.

Scarcelli, R. (2008). Lean-burn operation for natural gas/air mixtures: the dual-fuel engines.

Lean-burn operation for natural gas/air mixtures: the dual-fuel engines

SCARCELLI, RICCARDO
2008-05-06

Abstract

The research activity on internal combustion engines is increasingly cast to find an alternative solution to reduce the wide utilization of petroleum fuels like diesel oil and gasoline, for environmental, political and economic concerns. Natural gas (NG) is an ideal fuel to be operated in internal combustion engines, since its characteristics allow for much lower environmental impact and reduced fuel consumption with respect the conventional fuels. It also is particularly suitable to be operated under high volumetric compression ratio engines, thus providing higher efficiency, and moreover it is characterized by a wide flammability range. This latter aspect promotes the employment of a lean burn strategy, thus further increasing the engine efficiency and reducing the exhaust emissions. The dual-fuel natural gas/diesel concept allows extending the lean flammability limit of NG with respect to SI-NG operations and simultaneously reducing the NOX-PM trade-off affecting diesel combustion. Such a technology consists in introducing NG as main fuel in a conventional diesel engine. A certain amount of diesel pilot injection is preserved to act as the ignition source for the air/NG mixture. The easiness of dual-fuel conversion makes such technology rather inviting especially as a retrofit for the existing diesel vehicles, which could not meet the more and more stringent emission regulations in the future. In the present study, the dual-fuel combustion process with its inherent complexity is investigated both from an experimental and a numerical point of view. The experimental activity has the main target to analyze the problems connected with the conversion of a heavy-duty diesel engine to dual-fuel operation, and to put into evidence the influence of the main engine parameters on performance and pollutants formation. The numerical activity, characterized by a mixed 1-D/3-D approach, has been carried out with the initial target of a correct understanding of the complex dual-fuel combustion mechanism. A detailed multi-dimensional simulation of the whole working cycle of the engine has been subsequently performed, to provide for the correct representation of the fluid-dynamic effect involved in dual-fuel operations. Such an approach allows for the complete description of the engine overall behavior and the dual-fuel combustion in detail.
6-mag-2008
A.A. 2007/2008
Ingegneria dell'energia-ambiente
20.
La ricerca nel campo dei motori a combustione interna è sempre più rivolta ad identificare una soluzione alternativa all’utilizzo dei combustibili derivati dal petrolio, per ragioni di carattere ambientale, politico ed economico. Il gas naturale (NG) è un combustibile ideale per motori a combustione interna, essendo caratterizzato da basso impatto ambientale e consumi ridotti rispetto ai combustibili convenzionali (benzina e gasolio). Inoltre esso è particolarmente adatto ad essere utilizzato in motori ad elevato rapporto di compressione volumetrico, ed è caratterizzato da un ampio campo di infiammabilità. Quest’ultimo aspetto promuove la combustione magra di miscele di aria e NG, ottenendo un ulteriore incremento di rendimento ed un’ulteriore diminuzione dei consumi. I motori dual-fuel NG/diesel permettono di estendere il limite magro d’infiammabilità rispetto ai motori ad accensione comandata alimentati a NG, ed allo stesso tempo consentono di ridurre il trade-off NOX-PM di cui soffrono i motori diesel. Tale tecnologia consiste nell’introduzione del NG come combustibile principale in un motore diesel. Una certa quantità di gasolio viene ancora iniettata, ed agisce come sorgente d’accensione per la miscela di aria e NG. La facilità di conversione rende la tecnologia dual-fuel particolarmente allettante come retrofit di motori diesel già esistenti che in futuro si troverebbero a non soddisfare i sempre più stringenti limiti sulle emissioni inquinanti. Nel presente lavoro, la combustione dual-fuel, con la sua inerente complessità, viene analizzata seguendo un approccio misto numerico-sperimentale. L’attività sperimentale ha come obiettivo l’analisi dei vantaggi e dei problemi connessi con la conversione di un motore diesel heavy-duty al funzionamento dual-fuel, sulla base delle prestazioni e delle emissioni inquinanti. L’attività numerica è caratterizza da un approccio misto 1-D/3-D, ed è stata inizialmente condotta per la corretta comprensione del complesso meccanismo di combustione in modalità dual-fuel. L’analisi multi-dimensionale (3-D) dettagliata del sistema cilindro–pistone è stata successivamente effettuata per la corretta rappresentazione dei fenomeni termo-fluidodinamici evolventi in camera di combustione. Una tale strategia permette la completa descrizione del comportamento dell’intero sistema motore e della combustione dual-fuel nel dettaglio.
dual-fuel engines; lean-burn natural gas operation; combustion modeling; diesel pilot injection; spray breakup; dual-fuel performance; dual-fuel emissions; /HNG2 blends
Settore ING-IND/09 - SISTEMI PER L'ENERGIA E L'AMBIENTE
English
Tesi di dottorato
Scarcelli, R. (2008). Lean-burn operation for natural gas/air mixtures: the dual-fuel engines.
File in questo prodotto:
File Dimensione Formato  
Scarcelli PhD Thesis.pdf

accesso aperto

Descrizione: Thesis
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact