Let g be a locally Lipschitz continuous real-valued function which satisfies the Keller-Osserman condition and is convex at infinity, then any large solution of -Delta u + g(u) = 0 in a ball is radially symmetric. (c) 2006 Elsevier Inc. All rights reserved.

Porretta, A., Veron, L. (2006). Symmetry of large solutions of nonlinear elliptic equations in a ball. JOURNAL OF FUNCTIONAL ANALYSIS, 236(2), 581-591 [10.1016/j.jfa.2006.03.010].

Symmetry of large solutions of nonlinear elliptic equations in a ball

PORRETTA, ALESSIO;
2006-01-01

Abstract

Let g be a locally Lipschitz continuous real-valued function which satisfies the Keller-Osserman condition and is convex at infinity, then any large solution of -Delta u + g(u) = 0 in a ball is radially symmetric. (c) 2006 Elsevier Inc. All rights reserved.
2006
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
elliptic equations; boundary blow-up; Keller-Osserman condition; radial symmetry; spherical Laplacian
Porretta, A., Veron, L. (2006). Symmetry of large solutions of nonlinear elliptic equations in a ball. JOURNAL OF FUNCTIONAL ANALYSIS, 236(2), 581-591 [10.1016/j.jfa.2006.03.010].
Porretta, A; Veron, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/38884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact