Superoxide dismutases (SODs) represent the first line of defense against oxidative stress, which is considered an essential factor in several neurodegenerative diseases and aging. We investigated the role of the copper,zinc superoxide dismutase (SOD1) in the maintenance of intracellular redox homeostasis by analyzing the early effects of SOD1 down-regulation in SH-SY5Y neuroblastoma cells. Through the use of small interference RNA, SOD1 was efficiently down-regulated at 48 h after transfection without any significant effect on cell viability. The steady-state concentration of superoxide was significantly increased after 12 h, when SOD1 was only slightly decreased, and progressively returned to values close to those observed in control cells. The superoxide increase was buffered by the enhanced levels of antioxidant glutathione (GSH); however, GSH increase was not sufficient to avoid damage to proteins in terms of carbonyls. GSH-depleting agents, such as BSO or diamide, further increased protein damage and committed SOD1 deficient cells to death, confirming the pivotal role played by this antioxidant. Although SOD1 declined mostly in the cytosolic compartment, mitochondria were significantly affected with impairment of the mitochondrial transmembrane potential and a decrease in ATP production. Together with these effects carbonylation of mitochondrial proteins was detected and in particular a consistent carbonylation and decrease of the antiapoptotic protein Bcl-2. These conditions induced a high susceptibility of SOD1-depleted cells to treatment with the mitochondrial reactive oxygen species producing agent rotenone. Overall, the results demonstrate that loss of SOD1 leads to severe damage of mitochondria, suggesting an important biological role for this enzyme in the preservation of mitochondrial homeostasis.

Aquilano, K., Vigilanza, P., Rotilio, G., Ciriolo, M.r. (2006). Mitochondrial damage due to SOD1 deficiency in SH-SY5Y neuroblastoma cells: a rationale for the redundancy of SOD1. THE FASEB JOURNAL, 20(10), 1683-1685 [10.1096/fj.05-5225fje].

Mitochondrial damage due to SOD1 deficiency in SH-SY5Y neuroblastoma cells: a rationale for the redundancy of SOD1.

AQUILANO, KATIA;ROTILIO, GIUSEPPE;CIRIOLO, MARIA ROSA
2006-01-01

Abstract

Superoxide dismutases (SODs) represent the first line of defense against oxidative stress, which is considered an essential factor in several neurodegenerative diseases and aging. We investigated the role of the copper,zinc superoxide dismutase (SOD1) in the maintenance of intracellular redox homeostasis by analyzing the early effects of SOD1 down-regulation in SH-SY5Y neuroblastoma cells. Through the use of small interference RNA, SOD1 was efficiently down-regulated at 48 h after transfection without any significant effect on cell viability. The steady-state concentration of superoxide was significantly increased after 12 h, when SOD1 was only slightly decreased, and progressively returned to values close to those observed in control cells. The superoxide increase was buffered by the enhanced levels of antioxidant glutathione (GSH); however, GSH increase was not sufficient to avoid damage to proteins in terms of carbonyls. GSH-depleting agents, such as BSO or diamide, further increased protein damage and committed SOD1 deficient cells to death, confirming the pivotal role played by this antioxidant. Although SOD1 declined mostly in the cytosolic compartment, mitochondria were significantly affected with impairment of the mitochondrial transmembrane potential and a decrease in ATP production. Together with these effects carbonylation of mitochondrial proteins was detected and in particular a consistent carbonylation and decrease of the antiapoptotic protein Bcl-2. These conditions induced a high susceptibility of SOD1-depleted cells to treatment with the mitochondrial reactive oxygen species producing agent rotenone. Overall, the results demonstrate that loss of SOD1 leads to severe damage of mitochondria, suggesting an important biological role for this enzyme in the preservation of mitochondrial homeostasis.
2006
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
Aging; Bcl-2; Neurodegeneration; Oxidative stress
Aquilano, K., Vigilanza, P., Rotilio, G., Ciriolo, M.r. (2006). Mitochondrial damage due to SOD1 deficiency in SH-SY5Y neuroblastoma cells: a rationale for the redundancy of SOD1. THE FASEB JOURNAL, 20(10), 1683-1685 [10.1096/fj.05-5225fje].
Aquilano, K; Vigilanza, P; Rotilio, G; Ciriolo, Mr
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/38858
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 48
social impact