We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.

De Zotti, G., Gonzalez Nuevo, J., Lopez Caniego, M., Negrello, M., Greenslade, J., Hernandez Monteagudo, C., et al. (2018). Exploring cosmic origins with CORE: extragalactic sources in cosmic microwave background maps. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018(4), 020 [10.1088/1475-7516/2018/04/020].

Exploring cosmic origins with CORE: extragalactic sources in cosmic microwave background maps

DE GASPERIS, GIANCARLO;VITTORIO, NICOLA;
2018-04-05

Abstract

We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.
5-apr-2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
astro-ph.GA; astro-ph.GA; astro-ph.CO
http://arxiv.org/abs/1609.07263v4
De Zotti, G., Gonzalez Nuevo, J., Lopez Caniego, M., Negrello, M., Greenslade, J., Hernandez Monteagudo, C., et al. (2018). Exploring cosmic origins with CORE: extragalactic sources in cosmic microwave background maps. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018(4), 020 [10.1088/1475-7516/2018/04/020].
De Zotti, G; Gonzalez Nuevo, J; Lopez Caniego, M; Negrello, M; Greenslade, J; Hernandez Monteagudo, C; Delabrouille, J; Cai, Z; Bonato, M; Achucarro, A; Ade, P; Allison, R; Ashdown, M; Ballardini, M; Banday, A; Banerji, R; Bartlett, J; Bartolo, N; Basak, S; Bersanelli, M; Biesiada, M; Bilicki, M; Bonaldi, A; Borrill, J; Bouchet, F; Boulanger, F; Brinckmann, T; Bucher, M; Burigana, C; Buzzelli, A; Calvo, M; Carvalho, C; Castellano, M; Challinor, A; Chluba, J; Clements, D; Clesse, S; Colafrancesco, S; Colantoni, I; Coppolecchia, A; Crook, M; D'Alessandro, G; de Bernardis, P; DE GASPERIS, G; Diego, J; Di Valentino, E; Errard, J; Feeney, S; Fernandez Cobos, R; Ferraro, S; Finelli, F; Forastieri, F; Galli, S; Genova Santos, R; Gerbino, M; Grandis, S; Hagstotz, S; Hanany, S; Handley, W; Hervias Caimapo, C; Hills, M; Hivon, E; Kiiveri, K; Kisner, T; Kitching, T; Kunz, M; Kurki Suonio, H; Lagache, G; Lamagna, L; Lasenby, A; Lattanzi, M; Le Brun, A; Lesgourgues, J; Lewis, A; Liguori, M; Lindholm, V; Luzzi, G; Maffei, B; Mandolesi, N; Martinez Gonzalez, E; Martins, C; Masi, S; Massardi, M; Mccarthy, D; Melchiorri, A; Melin, J; Molinari, D; Monfardini, A; Natoli, P; Notari, A; Paiella, A; Paoletti, D; Partridge, R; Patanchon, G; Piat, M; Pisano, G; Polastri, L; Polenta, G; Pollo, A; Poulin, V; Quartin, M; Remazeilles, M; Roman, M; Rossi, G; Roukema, B; Rubino Martin, J; Salvati, L; Scott, D; Serjeant, S; Tartari, A; Toffolatti, L; Tomasi, M; Trappe, N; Triqueneaux, S; Trombetti, T; Tucci, M; Tucker, C; Valiviita, J; van de Weygaert, R; Van Tent, B; Vennin, V; Vielva, P; Vittorio, N; Young, K; For, T
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1609.07263v4.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/188236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 20
social impact