Stimulus-frequency, transient-evoked, and distortion product otoacoustic emissions (OAEs) have been measured in eight normal-hearing human ears over a wide stimulus level range, with high spectral resolution. The single-reflection component of the response was isolated using time-frequency filtering, and its average delay was measured as a function of frequency and stimulus level. The apical-basal transition was studied by fitting the average delay of the filtered single-reflection OAEs, expressed in number of cycles, to a three-slope power-law function with two knot frequencies. The results show that the scale-invariant prediction of constant dimensionless delay approximately holds only over a narrow intermediate frequency range (1-2.5 kHz). Below 1 kHz, and, to some extent, above 2.5 kHz, the dimensionless delay increases with frequency, at all stimulus levels. Comparison with the numerical simulations of a delayed-stiffness active cochlear model show that the increase of tuning with frequency reported by behavioral experiments only partly explains this result. The low-frequency scaling symmetry breaking associated with the deviation of the Greenwood tonotopic map from a pure exponential function is also insufficient to explain the steep low-frequency increase of the OAE delay. Other sources of symmetry breaking, not included in the model, could therefore play a role.

Moleti, A., Pistilli, D., Sisto, R. (2017). Evidence for apical-basal transition in the delay of the reflection components of otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 141(1), 116-126 [10.1121/1.4973866].

Evidence for apical-basal transition in the delay of the reflection components of otoacoustic emissions

MOLETI, ARTURO;
2017-01-01

Abstract

Stimulus-frequency, transient-evoked, and distortion product otoacoustic emissions (OAEs) have been measured in eight normal-hearing human ears over a wide stimulus level range, with high spectral resolution. The single-reflection component of the response was isolated using time-frequency filtering, and its average delay was measured as a function of frequency and stimulus level. The apical-basal transition was studied by fitting the average delay of the filtered single-reflection OAEs, expressed in number of cycles, to a three-slope power-law function with two knot frequencies. The results show that the scale-invariant prediction of constant dimensionless delay approximately holds only over a narrow intermediate frequency range (1-2.5 kHz). Below 1 kHz, and, to some extent, above 2.5 kHz, the dimensionless delay increases with frequency, at all stimulus levels. Comparison with the numerical simulations of a delayed-stiffness active cochlear model show that the increase of tuning with frequency reported by behavioral experiments only partly explains this result. The low-frequency scaling symmetry breaking associated with the deviation of the Greenwood tonotopic map from a pure exponential function is also insufficient to explain the steep low-frequency increase of the OAE delay. Other sources of symmetry breaking, not included in the model, could therefore play a role.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
English
Moleti, A., Pistilli, D., Sisto, R. (2017). Evidence for apical-basal transition in the delay of the reflection components of otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 141(1), 116-126 [10.1121/1.4973866].
Moleti, A; Pistilli, D; Sisto, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
JASA2017.pdf

solo utenti autorizzati

Licenza: Non specificato
Dimensione 4.73 MB
Formato Adobe PDF
4.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/187872
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact