The placenta growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family, which shares with VEGF-A the tyrosine kinase receptor VEGFR-1 and the co-receptor neuropilin-1 (NRP-1). In melanoma models, PlGF enhances tumour growth and neovessel formation, whereas NRP-1 promotes the metastatic process. Increased secretion of PlGF and expression of NRP-1 have also been involved in intrinsic or acquired resistance to anti‑angiogenic therapies. In this study we investigated whether PlGF and NRP-1 cooperate in promoting melanoma aggressiveness independently of VEGFR-1. For this purpose, the melanoma cell clones M14-N, expressing NRP-1 and lacking VEGFR-1, and M14-C, devoid of both receptors, were used. M14-N cells are characterized by an invasive phenotype and vasculogenic mimicry, whereas M14-C cells possess a negligible invasive capacity. The results indicated that M14-N cells secrete higher levels of PlGF than M14-C cells and that PlGF is involved in the invasion of the extracellular matrix (ECM) and vasculogenic mimicry of M14-N cells. In fact, neutralizing antibodies against PlGF reverted ECM invasion in response to PlGF and markedly reduced the formation of tubule-like structures. Moreover, M14-N cells migrated in response to PlGF and chemotaxis was specifically abrogated by anti-NRP-1 antibodies, demonstrating that PlGF directly activates NRP-1 in the absence of VEGFR-1. We also compared the levels of PlGF in the plasma of patients affected by metastatic melanoma with those of healthy donors and evaluated whether PlGF levels could be affected by a bevacizumab-containing chemotherapy regimen. Melanoma patients showed a 20-fold increase in plasma PlGF and the bevacizumab-containing regimen induced a reduction of VEGF-A and in a further increase of PlGF. In conclusion, our studies suggest that the activation of NRP-1 by PlGF directly contributes to melanoma aggressiveness and represents a potential compensatory pro-angiogenic mechanism that may contribute to the resistance to therapies targeting VEGF-A.

Pagani, E., Ruffini, F., Cappellini, G., Scoppola, A., Fortes, C., Marchetti, P., et al. (2016). Placenta growth factor and neuropilin-1 collaborate in promoting melanoma aggressiveness. INTERNATIONAL JOURNAL OF ONCOLOGY, 48(4), 1581-1589 [10.3892/ijo.2016.3362].

Placenta growth factor and neuropilin-1 collaborate in promoting melanoma aggressiveness

GRAZIANI, GRAZIA;
2016-01-01

Abstract

The placenta growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family, which shares with VEGF-A the tyrosine kinase receptor VEGFR-1 and the co-receptor neuropilin-1 (NRP-1). In melanoma models, PlGF enhances tumour growth and neovessel formation, whereas NRP-1 promotes the metastatic process. Increased secretion of PlGF and expression of NRP-1 have also been involved in intrinsic or acquired resistance to anti‑angiogenic therapies. In this study we investigated whether PlGF and NRP-1 cooperate in promoting melanoma aggressiveness independently of VEGFR-1. For this purpose, the melanoma cell clones M14-N, expressing NRP-1 and lacking VEGFR-1, and M14-C, devoid of both receptors, were used. M14-N cells are characterized by an invasive phenotype and vasculogenic mimicry, whereas M14-C cells possess a negligible invasive capacity. The results indicated that M14-N cells secrete higher levels of PlGF than M14-C cells and that PlGF is involved in the invasion of the extracellular matrix (ECM) and vasculogenic mimicry of M14-N cells. In fact, neutralizing antibodies against PlGF reverted ECM invasion in response to PlGF and markedly reduced the formation of tubule-like structures. Moreover, M14-N cells migrated in response to PlGF and chemotaxis was specifically abrogated by anti-NRP-1 antibodies, demonstrating that PlGF directly activates NRP-1 in the absence of VEGFR-1. We also compared the levels of PlGF in the plasma of patients affected by metastatic melanoma with those of healthy donors and evaluated whether PlGF levels could be affected by a bevacizumab-containing chemotherapy regimen. Melanoma patients showed a 20-fold increase in plasma PlGF and the bevacizumab-containing regimen induced a reduction of VEGF-A and in a further increase of PlGF. In conclusion, our studies suggest that the activation of NRP-1 by PlGF directly contributes to melanoma aggressiveness and represents a potential compensatory pro-angiogenic mechanism that may contribute to the resistance to therapies targeting VEGF-A.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/14 - FARMACOLOGIA
English
Con Impact Factor ISI
Adult; Aged; Bevacizumab; Cell Line, Tumor; Cell Movement; Epithelial-Mesenchymal Transition; Humans; Melanoma; Middle Aged; Neoplasm Metastasis; Neuropilin-1; Placenta Growth Factor; Vascular Endothelial Growth Factor Receptor-1; Young Adult; Drug Resistance, Neoplasm
Pagani, E., Ruffini, F., Cappellini, G., Scoppola, A., Fortes, C., Marchetti, P., et al. (2016). Placenta growth factor and neuropilin-1 collaborate in promoting melanoma aggressiveness. INTERNATIONAL JOURNAL OF ONCOLOGY, 48(4), 1581-1589 [10.3892/ijo.2016.3362].
Pagani, E; Ruffini, F; Cappellini, G; Scoppola, A; Fortes, C; Marchetti, P; Graziani, G; D'Atri, S; Lacal, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Int J Oncol 2016.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 908.54 kB
Formato Adobe PDF
908.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/170653
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact