Coupling graphene with a soft polymer surface offers the possibility to build hybrid constructs with new electrical, optical and mechanical properties. However, the low reactivity of graphene is a hurdle in the synthesis of such systems which is often bypassed by oxidizing its carbon planar structure. However, the defects introduced with this process jeopardize the properties of graphene. In this paper we present a different approach, applicable to many different polymer surfaces, which uses surfactant assisted ultrasonication to exfoliate, and simultaneously suspend, graphene in water in its intact form. Tethering pristine graphene sheets to the surfaces is accomplished by using suitable reactive functional groups of the surfactant scaffold. We focussed on applying this approach to the fabrication of a hybrid system, made of pristine graphene tethered to poly(vinyl alcohol) based microbubbles (PVA MBs), designed for enhancing photoacoustic signals. Photoacoustic imaging (PAI) is a powerful preclinical diagnostic tool which provides real time images at a resolution of 40 μm. The leap toward clinical imaging has so far been hindered by the limited tissues penetration of near-infrared (NIR) pulsed laser radiation. Many academic and industrial research laboratories have met this challenge by designing devices, each with pro’s and con’s, to enhance the photoacoustic (PA) signal. The major advantages of the hybrid graphene/PVA MBs construct, however, are: (i) the preservation of graphene properties, (ii) biocompatibility, a consequence of the robust anchoring of pristine graphene to the bioinert surface of the PVA bubble, and (iii) a very good enhancement in a NIR spectral region of the PA signal, which does not overlap with the signals of PA active endogenous molecules such as hemoglobin.

Toumia, Y., Domenici, F., Orlanducci, S., Mura, F., Grishenkov, D., Trochet, P., et al. (2016). Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES, 8(25), 16465-16475 [10.1021/acsami.6b04184].

Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging

Toumia, Y;Domenici, F;ORLANDUCCI, SILVIA;PARADOSSI, GAIO
2016-06-01

Abstract

Coupling graphene with a soft polymer surface offers the possibility to build hybrid constructs with new electrical, optical and mechanical properties. However, the low reactivity of graphene is a hurdle in the synthesis of such systems which is often bypassed by oxidizing its carbon planar structure. However, the defects introduced with this process jeopardize the properties of graphene. In this paper we present a different approach, applicable to many different polymer surfaces, which uses surfactant assisted ultrasonication to exfoliate, and simultaneously suspend, graphene in water in its intact form. Tethering pristine graphene sheets to the surfaces is accomplished by using suitable reactive functional groups of the surfactant scaffold. We focussed on applying this approach to the fabrication of a hybrid system, made of pristine graphene tethered to poly(vinyl alcohol) based microbubbles (PVA MBs), designed for enhancing photoacoustic signals. Photoacoustic imaging (PAI) is a powerful preclinical diagnostic tool which provides real time images at a resolution of 40 μm. The leap toward clinical imaging has so far been hindered by the limited tissues penetration of near-infrared (NIR) pulsed laser radiation. Many academic and industrial research laboratories have met this challenge by designing devices, each with pro’s and con’s, to enhance the photoacoustic (PA) signal. The major advantages of the hybrid graphene/PVA MBs construct, however, are: (i) the preservation of graphene properties, (ii) biocompatibility, a consequence of the robust anchoring of pristine graphene to the bioinert surface of the PVA bubble, and (iii) a very good enhancement in a NIR spectral region of the PA signal, which does not overlap with the signals of PA active endogenous molecules such as hemoglobin.
giu-2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/02 - CHIMICA FISICA
English
Con Impact Factor ISI
Published online (June 2016)
Toumia, Y., Domenici, F., Orlanducci, S., Mura, F., Grishenkov, D., Trochet, P., et al. (2016). Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES, 8(25), 16465-16475 [10.1021/acsami.6b04184].
Toumia, Y; Domenici, F; Orlanducci, S; Mura, F; Grishenkov, D; Trochet, P; Lacerenza, S; Bordi, F; Paradossi, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
just accepted ACS_AMI.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/144287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 47
social impact