Two different mechanisms are responsible for the DPOAE generation. The nonlinear distortion wave-fixed mechanism generates the DPOAE Zero-Latency (ZL) component, as a backward traveling wave from the "overlap" region. Linear reflection of the forward DP wave (IDP) generates the DPOAE Long-Latency (LL) component through a place-fixed mechanism. ZL and LL components add up vectorially to generate the DPOAE recorded in the ear canal. The 2f1-f2 and 2f2-f1 DPOAE intensity depends on the stimulus level and on the primary frequency ratio r = f2/f1, where f1 and f2 are the primary stimuli frequencies. Here we study the behavior of the ZL and LL DPOAE components as a function of r by both numerical and laboratory experiments, measuring DPAOEs with an equal primary levels (L1 = L2) paradigm in the range [35, 75] dB SPL, with r ranging in [1.1, 1.45]. Numerical simulations of a nonlocal nonlinear model have been performed without cochlear roughness, to suppress the linear reflection mechanism. In this way the model solution at the base represents the DPOAE ZL component, and the solution at the corresponding DPOAE tonotopic place corresponds to the IDP. This technique has been not effectual to study the 2f2-f1 DPOAE, as a consequence of its generation mechanism. While the 2f1-f2 generation place is known to be the tonotopic place x(f2), the 2f2-f1 DPOAE one has to be assumed basal to its corresponding reflection place. That is because ZL components generated in x(f2) cannot significantly pass through their resonant place. Moreover increasing the ratio r, 2f2-f1 ZL and LL generation place approach each other, because the overlap region of primary tones decreases. Consequently, the distinction between the two places becomes complicated. DPOAEs have been measured in six young normal-hearing subjects. DPOAE ZL and LL components have been separated by a time-frequency filtering method based on the wavelet transform 1. due to their different phase gradient delay. Amplitude/phase vs ratio and ratio-frequency maps have been analyzed both in numerical and laboratory data. As already observed in animal studies [4], the generation of 2f1-f2 DPOAE is around the f2 tonotopic place with a maximum around r = 1.2 for the ZL component, while the LL component shows a decreasing trend with r. Instead, 2f2-f1 DPOAEs show a decreasing trend with r for both ZL and LL components.

Botti, T., Sisto, R., Moleti, A., D’Amato, L., Sanjust, F. (2015). DPOAE generation dependence on primary frequencies ratio. ??????? it.cilea.surplus.oa.citation.tipologie.CitationProceedings.prensentedAt ??????? 12th International Workshop on the Mechanics of Hearing: Protein to Perception, Cape Sounio (Greece) [10.1063/1.4939417].

DPOAE generation dependence on primary frequencies ratio

MOLETI, ARTURO;
2015-01-01

Abstract

Two different mechanisms are responsible for the DPOAE generation. The nonlinear distortion wave-fixed mechanism generates the DPOAE Zero-Latency (ZL) component, as a backward traveling wave from the "overlap" region. Linear reflection of the forward DP wave (IDP) generates the DPOAE Long-Latency (LL) component through a place-fixed mechanism. ZL and LL components add up vectorially to generate the DPOAE recorded in the ear canal. The 2f1-f2 and 2f2-f1 DPOAE intensity depends on the stimulus level and on the primary frequency ratio r = f2/f1, where f1 and f2 are the primary stimuli frequencies. Here we study the behavior of the ZL and LL DPOAE components as a function of r by both numerical and laboratory experiments, measuring DPAOEs with an equal primary levels (L1 = L2) paradigm in the range [35, 75] dB SPL, with r ranging in [1.1, 1.45]. Numerical simulations of a nonlocal nonlinear model have been performed without cochlear roughness, to suppress the linear reflection mechanism. In this way the model solution at the base represents the DPOAE ZL component, and the solution at the corresponding DPOAE tonotopic place corresponds to the IDP. This technique has been not effectual to study the 2f2-f1 DPOAE, as a consequence of its generation mechanism. While the 2f1-f2 generation place is known to be the tonotopic place x(f2), the 2f2-f1 DPOAE one has to be assumed basal to its corresponding reflection place. That is because ZL components generated in x(f2) cannot significantly pass through their resonant place. Moreover increasing the ratio r, 2f2-f1 ZL and LL generation place approach each other, because the overlap region of primary tones decreases. Consequently, the distinction between the two places becomes complicated. DPOAEs have been measured in six young normal-hearing subjects. DPOAE ZL and LL components have been separated by a time-frequency filtering method based on the wavelet transform 1. due to their different phase gradient delay. Amplitude/phase vs ratio and ratio-frequency maps have been analyzed both in numerical and laboratory data. As already observed in animal studies [4], the generation of 2f1-f2 DPOAE is around the f2 tonotopic place with a maximum around r = 1.2 for the ZL component, while the LL component shows a decreasing trend with r. Instead, 2f2-f1 DPOAEs show a decreasing trend with r for both ZL and LL components.
12th International Workshop on the Mechanics of Hearing: Protein to Perception
Cape Sounio (Greece)
2015
12.
Rilevanza internazionale
su invito
2015
Settore FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
English
Intervento a convegno
Botti, T., Sisto, R., Moleti, A., D’Amato, L., Sanjust, F. (2015). DPOAE generation dependence on primary frequencies ratio. ??????? it.cilea.surplus.oa.citation.tipologie.CitationProceedings.prensentedAt ??????? 12th International Workshop on the Mechanics of Hearing: Protein to Perception, Cape Sounio (Greece) [10.1063/1.4939417].
Botti, T; Sisto, R; Moleti, A; D’Amato, L; Sanjust, F
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/134535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact